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ABSTRACT
High dimensionality and class imbalance have been largely recognized as important
issues in machine learning. A vast amount of literature has indeed investigated suitable
approaches to address the multiple challenges that arise when dealing with high-
dimensional feature spaces (where each problem instance is described by a large number
of features). As well, several learning strategies have been devised to cope with the
adverse effects of imbalanced class distributions, which may severely impact on the
generalization ability of the induced models. Nevertheless, although both the issues
have been largely studied for several years, they have mostly been addressed separately,
and their combined effects are yet to be fully understood. Indeed, little research has
been so far conducted to investigate which approaches might be best suited to deal with
datasets that are, at the same time, high-dimensional and class-imbalanced. To make a
contribution in this direction, our work presents a comparative study among different
learning strategies that leverage both feature selection, to copewith high dimensionality,
as well as cost-sensitive learning methods, to cope with class imbalance. Specifically,
different ways of incorporating misclassification costs into the learning process have
been explored. Also different feature selection heuristics have been considered, both
univariate andmultivariate, to comparatively evaluate their effectiveness on imbalanced
data. The experiments have been conducted on three challenging benchmarks from the
genomic domain, gaining interesting insight into the beneficial impact of combining
feature selection and cost-sensitive learning, especially in the presence of highly skewed
data distributions.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning
Keywords Cost-sensitive learning, Class imbalance, High-dimensional data analysis, Feature
selection, Random forest

INTRODUCTION
In the last decades, an increasing number of real-world applications have produced datasets
with a huge dimensionality, i.e., with a very large number of features. Biomedical data
analysis, text mining and sensor-based data analysis are just some examples of application
fields where the data instances can be represented in a very large feature space. Besides
posing severe requirements in terms of computational resources, the high dimensionality
may have a negative impact on the predictive performance of machine learning algorithms
(the so-called ‘‘curse of dimensionality’’ issue) (Bolón-Canedo, Sánchez-Maroño & Alonso-
Betanzos, 2015) andmay also hinder the interpretability and the applicability of the induced
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models. The use of proper techniques to reduce the data dimensionality is then of utmost
importance, as recognized by a vast amount of scientific literature in the field (Saeys, Inza
& Larranaga, 2007; Khalid, Khalil & Nasreen, 2014; Dessì & Pes, 2015a; Tadist, Najah &
Nikolov, 2019; Hambali, Oladele & Adewole, 2020). In particular, feature selection (Guyon
& Elisseeff, 2003) has proven to be very effective in such a context, enabling to obtain faster,
more accurate and more understandable predictors.

On the other hand, the high dimensionality often comes in conjunction with other issues
embedded in the nature of data. In the context of supervised learning tasks, one of such
issues is the imbalance in the class distribution (Branco, Torgo & Ribeiro, 2016; Fernández et
al., 2018a), whichmay strongly degrade the generalization ability of traditional classification
algorithms. Indeed, they are typically designed to minimize the overall prediction error,
without distinguishing between different types of errors, and this may result in poor
performance on the minority class(es). Despite being more difficult to recognize, however,
rare instances can carry precious knowledge on the domain of interest and are often the
most interesting/important from an application viewpoint (He & Garcia, 2009; Krawczyk,
2016).

Both the issues mentioned above, namely the high dimensionality and the class
imbalance, have been extensively studied in the data mining and machine learning
communities but, in most cases, they have been considered independently, as separate
problems, without investigating their combined effects. Indeed, a limited amount of
research has focused on learning strategies specifically conceived to cope with both issues
simultaneously, e.g., (Blagus & Lusa, 2010; Maldonado, Weber & Famili, 2014; Shanab &
Khoshgoftaar, 2018; Zhang et al., 2019; Pes, 2020), and there is a need for more studies that
systematically investigate the extent to which the methods so far proposed for handling
class imbalance and reducing the data dimensionality can be effectively combined.

In this regard, a number of papers have recently explored the integration of feature
selection and sampling-based data-balancing methods (Blagus & Lusa, 2013; Khoshgoftaar
et al., 2014; Yin & Gai, 2015; Gao, Khoshgoftaar & Napolitano, 2015; Huang et al., 2021),
suggesting that such a hybrid approach may be useful in some scenarios and also discussing
and evaluating different integration strategies (e.g., whether feature selection should be
used before or after data sampling). On the other hand, less attention has been given to
the integration of feature selection and cost-sensitive learning which is a potentially useful
strategy that deserves more investigations (Feng et al., 2020; Pes, 2021).

To give a contribution in this field, our paper presents a comparative study among
different learning strategies that properly combine feature selection, to deal with high
dimensionality, and cost-sensitive learning methods, to deal with class imbalance.
Essentially, cost-sensitive learning involves assigning different misclassification costs
to the different classes, based on their importance for the task at hand, and then building
a model capable of minimizing the total cost rather than the total number of errors, as
in traditional classification. Although cost-sensitivity can be introduced directly into the
learning algorithm, by modifying its design in an ad hoc way, there is also an interest in
meta-learning approaches that can convert any existing method into a cost-sensitive one
(Fernández et al., 2018a). This can be achieved by acting on the weights of the instances at
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the training stage or properly setting the probability threshold to classify new instances (Ling
& Sheng, 2010). In this work, we aim to investigate the extension of such a meta-learning
framework, so far applied in the context of low dimensional classification tasks (López
et al., 2013), to hybrid learning strategies that also incorporate a feature selection step.
Specifically, we study the impact of introducing cost-sensitivity at the feature selection
stage or at the model induction stage under different cost settings and in conjunction with
different selection methods. Such methods have been chosen as representatives of different
paradigms and heuristics (filter and embedded methods, univariate and multivariate
approaches), in order to assess and compare their effectiveness on imbalanced data.

As a representative case study, we focus on the analysis of genomic datasets that
present both the issues explored in this paper, i.e., that are both high-dimensional and
class-imbalanced. It is a very challenging domain where the curse of dimensionality is a
primary and critical concern since the number of features (genes) greatly overcomes the
number of instances (biological samples), making the reduction of the data dimensionality
an indispensable step. Indeed, the importance of identifying a reduced number of genes for
medical diagnosis, while ensuring at the same time good predictive performance, has been
widely highlighted in the literature (Saeys, Inza & Larranaga, 2007). In such a scenario, the
contribution of this work is to comparatively evaluate the impact of feature selection when
used alone, i.e., without any strategy specifically designed to handle class imbalance, and
when combined with cost-sensitive learning.

The results of our experiments, although not exhaustive, highlight the importance of
jointly addressing high-dimensionality and class imbalance, giving useful insight into the
benefits of a hybrid approach that relies on both feature selection and cost-sensitivity.
Our study, in fact, shows that both feature selection and cost-sensitive classification can
be greatly beneficial when used alone, but it is their combination that proves to be overall
more convenient, leading to predictive models that can achieve good performance while
exploiting only the most representative features of the domain at hand, with results that
compare well with recent studies in the field. Furthermore, compared to other cost-sensitive
approaches that rely on ad hoc algorithmic modifications, the strategies explored here have
the advantage of being implementable with a variety of different methods, making them
potentially suitable in a variety of scenarios.

The rest of the paper is organized as follows. In the next section (‘‘Background concepts
& Literature survey’’), we provide background concepts on feature selection and imbalance
learning techniques, with a brief survey of themain approaches and research lines presented
in recent literature. The ‘‘Materials & Methods’’ section describes all the material and
methods involved in our study, including the benchmarks, the feature selection methods,
and the cost-sensitive learning strategies. The experimental study is presented in the
‘‘Experimental study’’ section with a summary and a discussion of the most interesting
results. Finally, concluding remarks and future research directions are outlined in the last
section (‘‘Conclusions & Future Research Directions’’).
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BACKGROUND CONCEPTS & LITERATURE SURVEY
The background concepts relevant to our work are summarized in this section along
three directions: (i) feature selection, (ii) imbalance learning methods, and (iii) hybrid
approaches that leverage both feature selection and imbalance learning methods. Relevant
proposals in the literature and open research problems are also outlined.

Feature selection
A large corpus of literature has discussed the significant benefits of feature selection in
high-dimensional learning tasks, e.g., in terms of efficiency, generalization ability and
interpretability of the induced models (Guyon & Elisseeff, 2003; Dessì & Pes, 2015a; Li et
al., 2018). In fact, feature selection can remove irrelevant and noisy attributes, as well as
redundant information, so making the learning algorithm focus on a reduced subset of
predictive features.

Several selection methods have been proposed in the last years, which exploit different
paradigms and heuristics (Kumar & Minz, 2014;Bolón-Canedo, Sánchez-Maroño & Alonso-
Betanzos, 2015). Broadly, these methods can be categorized along two dimensions:

• Evaluation of individual features or feature subsets. Some selection techniques are
designed to weight each single feature based on its correlation with the target class
(ranking approach). Other methods exploit a proper search strategy (e.g., a greedy
search) to build different candidate subsets, whose quality is evaluated according to a
proper criterion that tries to maximize the relevance of the selected features as well as
to minimize their degree of redundancy (such a criterion may depend or not on the
algorithm that will be used to induce the final model).
• Interaction with the classifier. Filter approaches carry out the selection process as a
pre-processing step, only relying on the intrinsic characteristics of the data at hand,
without any interaction with the classifier; wrapper methods use the classifier itself to
evaluate different candidate solutions (e.g., in terms of final predictive performance
or considering both the performance and the number of selected features); embedded
approaches leverage the internal capability of some learning algorithms to assess the
relevance of the features for a given prediction task.

A significant amount of research has investigated the strengths and the limits of the
different selection methods so far proposed, (e.g., Saeys, Inza & Larranaga, 2007; Drotár,
Gazda & Smékal, 2015; Bolón-Canedo et al., 2018; Bommert et al. , 2020). Hybrid and
ensemble approaches, that properly combine different selection methods, have also been
explored in the last years, with promising results in several application fields ((Dessì & Pes,
2015b; Almugren & Alshamlan, 2019; Bolón-Canedo & Alonso-Betanzos, 2019). However, it
is not possible to find a feature selection technique that is best in all situations, and the
choice of the most appropriate method for a given task remains often difficult (Oreski,
Oreski & Klicek, 2017; Li et al., 2018).

Furthermore, little research has examined the effectiveness of the available feature
selection algorithms in relation to the class imbalance problem (Haixiang et al., 2017).
Indeed, when high-dimensionality and class imbalance coexist, the analysis may be
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intrinsically more complex due to an increased overlapping among the classes (Fu, Wu &
Zong, 2020). In such a scenario, feature selection can potentially be quite helpful, although
few studies have so far evaluated, in a comparative way, the behavior of different selection
heuristics across imbalanced classification tasks (Zheng, Wu & Srihari, 2004; Cho et al.,
2008; Wasikowski & Chen, 2010). Recently, some selection algorithms have also been
modified to better deal with imbalanced data (Yin et al., 2013;Maldonado, Weber & Famili,
2014;Moayedikia et al., 2017), with positive results in dependence on the problem settings,
but there is a lack of general methodological guidelines to fully exploit, in a synergic
manner, both feature selection and imbalance learning methods (Zhang et al., 2019; Pes,
2020).

Imbalance learning methods
Among the imbalance learning methods, some popular approaches act at the data level by
modifying the class distribution in the original training data (He & Garcia, 2009; Branco,
Torgo & Ribeiro, 2016). In particular, under-sampling techniques remove a fraction of
instances of the majority class, either randomly or using some kind of informed strategy,
while over-sampling techniques introduce new instances of the minority class, in order to
reduce the level of class imbalance. In the first case, the major drawback is that some useful
data can be discarded, with a reduction of the training set size (which may be problematic
in small sample size domains). For oversampling, on the other hand, several authors agree
that it can increase the risk of overfitting especially when exact copies of existing minority
instances aremade (Fernández et al., 2018a). Amore sophisticated oversampling technique,
the SMOTE approach, involves the introduction of new instances of the minority class by
interpolating between existing minority instances that are close to each other (He & Garcia,
2009). This technique (with its extensions) has been successfully applied in a variety of
domains, but its effectiveness in high-dimensional scenarios is still under debate and needs
to be investigated in depth (Fernández et al., 2018b).

The ensemble classification paradigm has also been investigated as a potential solution
to address class-imbalanced tasks (Galar et al., 2012; Zhao et al., 2021), but with limited
applications on high-dimensional data (Lin & Chen, 2013), due to the intrinsically higher
computational cost. A more efficient, and still effective, approach to deal with imbalanced
data relies on the cost-sensitive paradigm (Ling & Sheng, 2010; López et al., 2013), where
the different classification errors are penalized to a different extent in order to reduce
the bias towards the majority class. The penalty terms, or costs, assigned to the errors are
usually encoded in a cost matrix and are chosen in dependence on the characteristics of the
domain at hand. Although there are many different ways of implementing cost-sensitive
learning, the approaches discussed in the literature can be categorized into two main
groups, i.e., (i) ad hoc modification of existing learning algorithms and (ii) meta-learning
approaches, independent of a specific classifier, that use the costs to act on the training
instances or the classifier output (Ling & Sheng, 2010), as further discussed in the following
section (‘‘Materials & Methods’’).

Interestingly, a number of empirical studies have shown that, in some appli-
cation domains, cost-sensitive learning performs better than sampling methods
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(He & Garcia, 2009). Other authors have observed, with an extensive comparison between
sampling methods and cost-sensitive techniques, that no approach always outperforms the
other, the results being dependent on the intrinsic data characteristics (López et al., 2012).
Despite the considerable amount of research in this field, the effectiveness of the different
cost-sensitive techniques has yet to be comparatively explored in high-dimensionality
problems, as most of the available studies focus on datasets with a relatively low number
of features (López et al., 2013; Fernández et al., 2018a).

Hybrid strategies
Recent literature has stressed the need to further investigate the combined effects of
high dimensionality and class imbalance and to devise hybrid learning strategies that
exploit, in a joint manner, both feature selection and imbalance learning methods. To this
respect, a number of contributions have been made in the last years (Blagus & Lusa, 2013;
Khoshgoftaar et al., 2014; Yin & Gai, 2015; Gao, Khoshgoftaar & Napolitano, 2015; Triguero
et al., 2015; Shanab & Khoshgoftaar, 2018; Pes, 2020; Huang et al., 2021), mainly focused
on studying suitable ways to integrate feature selection and sampling-based data balancing
methods. Most of the results seem to indicate that using feature selection in conjunction
with random under-sampling is generally better than with SMOTE, especially when the
number of minority instances is quite low. On the other hand, no consensus exists on
whether feature selection should be applied before or after data sampling, with results that
depend on the specific problem at hand.

Another interesting, but less explored, area of research is the integration of feature
selection and cost-sensitive learning. Indeed, some selection algorithms have been recently
proposed that incorporate some kind of cost-sensitive correction, e.g., using an ad hoc
optimization function (Maldonado, Weber & Famili, 2014; Feng et al., 2020), but limited
research has been done on cost-sensitive meta-learning approaches (Fernández et al.,
2018a; Pes, 2021) that can be implemented in conjunction with different feature selection
and classification algorithms (e.g., acting on the instances’ weights). In this regard,
methodological guidelines are still lacking, as well as comparative studies that investigate
which strategy may be most suited (e.g., introducing costs at the feature selection stage or
at the model induction stage), and the impact of the adopted selection heuristic, based on
the intrinsic properties of the data at hand (e.g., instances-to-features ratio and degree of
imbalance). This is the specific field where our work aims to give a contribution, as detailed
in the rest of the paper.

MATERIALS & METHODS
Focusing on a challenging application domain where the issues of high dimensionality
and class imbalance may have a critical impact, this study evaluates the effectiveness of
cost-sensitive learning strategies that incorporate a proper dimensionality reduction step,
carried out through feature selection. All the materials and methods involved in our study
are presented in what follows. Specifically, the first sub-section (‘‘Genomic benchmarks’’)
describes themain characteristics of the genomic benchmarks used for the experiments. The
second sub-section (‘‘Feature selection methods’’) illustrates the adopted ranking-based
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selection framework, with a description of the six selection algorithms chosen for the
analysis. Finally, the third sub-section (‘‘Integrating costs into the learning process’’)
discusses different ways to incorporate misclassification costs into the learning process, as
well as different ways to combine them with feature selection.

Genomic benchmarks
For our experiments, we chose three genomic benchmarks that encompass different levels
of class imbalance. Specifically, the DLBCL dataset (Shipp et al., 2002) contains biological
samples of diffuse large b-cell lymphoma (58 instances) and follicular lymphoma (19
instances), with only a moderate level of imbalance (i.e., 25% of minority instances);
each sample is described by the expression level of 7,129 genes, which leads to a very low
instances-to-features ratio (i.e., 0.01). In turn, the Glioma dataset (Nutt et al., 2003) has
much more features (12,625 genes) than instances (50 biological samples), thus making
the classification task quite challenging; in particular, in the binary version of the dataset
here considered, the task is to discriminate between classic oligodendroglioma (14% of
the instances) and other glioma types. Finally, the Uterus dataset (OpenML, 2021) has
more instances, with a less critical—although still low—instances-to-features ratio (0.14);
it contains indeed 1,545 biological samples, each described by the expression level of
10,935 genes. On the other hand, this benchmark also exhibits a more imbalanced data
distribution, with only 8% of instances of the minority class (uterus cancer). For each of
the considered datasets, the samples of the minority class have been modelled as positive
and those of the majority class as negative, as usual practice in the imbalance learning field.

Feature selection methods
Given the dimensionality of the data at hand, involving thousands of features, we exploited
a ranking-based selection approach, which is indeed the primary choice in the presence of
thousands of features (Saeys, Inza & Larranaga, 2007; Bolón-Canedo, Sánchez-Maroño &
Alonso-Betanzos, 2015), as the size of the search spacemakes impractical the direct adoption
of subset-oriented search strategies (they may still be very useful, however, to refine the
selection process after a first, preliminary, dimensionality reduction).

Specifically, we considered both filter methods, that weight the features based on their
correlation with the target class, using some statistical or entropic criterion, and embedded
methods, that rely on the features’ weights derived by a suitable classifier. In both cases, the
weights assigned to the features can be used to obtain a ranked list where the features appear
in descending order of relevance (i.e., from the most important to the least important): this
list can be finally cut at a proper threshold point, to select a subset of predictive features to
be used as input to the learning algorithm.

The six ranking methods chosen for the experiments are as follows:

• Pearson’s correlation (CORR), that evaluates the worth of each feature by measuring
the extent to which its values are linearly correlated with the class (Tan et al., 2019): the
higher the correlation, the more relevant the feature for the predictive task at hand. More
in detail, the correlation between a feature X and the class attribute Y can be calculated

Pes and Lai (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.832 7/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.832


using the expression:

CORR(X ,Y )=
σXY

σXσY

where σXY is the covariance of X and Y, and σX and σY are the standard deviations of X
and Y, respectively.
• Information Gain (IG), that is able to capture more complex, not necessarily linear,
dependencies among the class and the features. Specifically, IG relies on the information-
theoretical concept of entropy (Witten et al., 2016): a weight is indeed computed for each
feature bymeasuring howmuch the uncertainty in the class prediction decreases, i.e., how
much the class entropy decreases, when the value of the considered feature is known. By
denoting as H the entropy function, we can therefore derive the IG value for a feature X
as:

IG(X)=H (Y )−H (Y |X)

where H(Y) is the entropy of the class Y before observing X, while H(Y|X) is the
conditional entropy of Y given X (Hall & Holmes, 2003).
• Gain Ratio (GR), that, similarly to IG, exploits the concept of entropy to assess the degree
of correlation between a given feature and the class. However, GR tries to compensate
for the IG’s bias toward features with more values by introducing a proper correction
factor that considers how broadly the feature splits the data at hand (Witten et al., 2016).
Specifically, such a correction is defined as

SplitInfo(X)=−
r∑

i=1

|Xi|

I
· log2

|Xi|

I

where |Xi| is the number of training instances where X takes the value Xi, r is the number
of distinct values of X, and I is the total number of instances. The GR value for a feature X
can then be obtained as:

GR(X)= IG(X)/SplitInfo(X)

• ReliefF (RF), that measures the worth of the features according to the extent to which
they can discriminate between data instances that are near to each other (Urbanowicz
et al., 2018). Iteratively, a sample instance is extracted from the dataset and its features’
values are compared to the corresponding values of the instance’s nearest neighbors
(one, or more, for each class): the relevance of each feature is then measured based on
the assumption that a predictive feature should have the same value for instances of the
same class and different values for instances of different classes. More in detail, in the
original two-class formulation, for each drawn sample instance Ri the algorithm finds
its nearest hit H (nearest neighbor from the same class) and its nearest miss M (nearest
neighbor from the opposite class). Starting from a null weight for the feature X under
evaluation, i.e., W(X) = 0, such a weight is iteratively updated as follows:

W (X) :=W (X)−diff (X ,Ri,H )/m+diff (X ,Ri,M )/m
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where m is the number of randomly drawn sample instances (it can also coincide
with the total number of instances, as in our implementation) and diff is a function
that computes the difference between the value of X for two instances: the difference
computed for Ri andH, diff(X, Ri,H), makesW(X) lower, while the difference computed
for Ri and M, diff(X, Ri,M), increases it. Such a binary formulation can be extended to
also handle multi-class and noisy data (Robnik-Sikonja & Kononenko, 2003).
• SVM-AW, that leverages a linear Support Vector Machine (SVM ) classifier to assign a
weight to each feature. Indeed, the SVM algorithm looks for an optimal hyperplane as a
decision function to separate the instances in the feature space:

f (x)=w ·x+b

where x is an instance vector in theN -dimensional space of input features, w is a weight
vector, and b is a bias constant. In this function, each feature (i.e., space dimension) is
assigned a weight that can be interpreted as the feature’s contribution to the multivariate
decision of the classifier. Such a weight can be assumed, in absolute value, as a measure
of the strength of the feature (Rakotomamonjy, 2003).
• SVM-RFE, that, similarly to SVM-AW, relies on the features’ weights derived by a
linear SVM classifier. However, the SVM-RFE approach involves a recursive feature
elimination strategy that iteratively removes a given percentage of the least predictive
features (those with the lowest weights) and repeats the hyperplane function induction
on the remaining features, which are hence reweighted accordingly (Guyon et al.,
2002; Rakotomamonjy, 2003). The computational complexity of the method is strongly
influenced by the percentage p of features removed at each iteration: when p = 100%,
SVM-RFE reduces to SVM-AW as all the features are ranked in one step; when p <100%,
the overall ranking of features is constructed in an iterative way, at a higher computation
cost (the lower p, the greater the number of iterations).For our study, the parameter p
was set as 50%, in order to contain the computational cost of the method.

As summarized above, the considered rankingmethods exploit quite different heuristics.
Indeed, CORR, IG, GR, and RF do not leverage any classifier and can be thus categorized
as filters, while SVM-AW and SVM-RFE are two popular representatives of the embedded
selection techniques (Saeys, Inza & Larranaga, 2007). On the other hand, from a different
perspective, these methods can be distinguished into univariate (CORR, IG, and GR)
and multivariate (RF, SVM-AW, and SVM-RFE) approaches: the first group assesses the
relevance of each feature independently of the other features, while the methods in the
second group can capture, to some extent, the inter-dependencies among the features
(indeed, the instances’ position in the attribute space contributes to determining, in a
multivariate way, both the RF ’s ranks and the SVM ’s weights). Although widely employed
in different application contexts, the above selection methods are still to be exhaustively
evaluated in connection with the class imbalance problem, especially in the presence of low
instances-to-features ratios.
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Integrating costs into the learning process
As discussed previously in the ‘‘Background concepts & Literature survey’’ section, the
cost-sensitive paradigm has been largely explored in the context of imbalanced data
analysis (He & Garcia, 2009; López et al., 2013), but most of the reported applications refer
to low-dimensional datasets. Basically, this paradigm involves taking misclassification costs
into consideration, in order to induce models that minimize the total cost of the errors
rather than the number of errors, as traditional classifiers typically do. Indeed, in several
real-world scenarios, the incorrect classification of a rare instance (e.g., a rare disease or an
illegal transaction) may have more costly implications and consequences, which makes it
crucial to reduce such kind of errors as much as possible.

Although a number of learning algorithms have been designed to be cost-sensitive
in themselves (Ling & Sheng, 2010; Fernández et al., 2018a), our focus here is on a
methodological framework that can be adopted to convert a generic learner into a cost-
sensitive one. Specifically, a cost matrix can be defined (e.g., based on domain knowledge)
that expresses the cost C(i,j) of classifying an instance of class i as an instance of class j.
Assuming a binary scenario, with a minority (positive) and a majority (negative) class, a
false negative error (i.e., a positive instance incorrectly classified as a negative one) is given
higher cost than a false positive error (i.e., a negative instance incorrectly classified as a
positive one), while the costs for the correct predictions are typically set to zero (or to some
negative value, which can be interpreted as a ‘‘reward’’ that reduces the overall cost of the
model). Hence, for a given cost matrix, an instance x should be classified into the class j
that has the minimum expected cost, defined as:

R
(
j|x
)
=

∑
i

P(i|x) ·C(i,j)

where P(i|x) is the probability estimation of classifying an instance x into class i. It can be
shown that a proper probability threshold pth can be derived to classify an instance into
positive if P(+|x) > = pth (Ling & Sheng, 2010), where:

pth=
C(−,+)

(C−,+)+C(+,−)
.

Alternatively, cost-sensitivity can be achieved by weighting the instances of each class
according to their misclassification costs, without acting on the classifier threshold. This
means that higher weights are assigned to the instances of the minority class (which has a
higher misclassification cost). Such a weighting mechanism can be used at different stages
of the learning process, which may lead to quite different outcomes, as discussed in the
following section. Specifically, since our methodological approach relies on integrating
both cost-sensitivity and feature selection into the learning process, we consider and
compare different strategies that are schematized in Figs. 1 and 2.

Essentially, the first strategy (WeightFS+MI ) consists in reweighting the instances at the
feature selection (FS) stage, according to the given cost matrix (Fig. 1). This way, the feature
selection itself is made cost-sensitive, without any action at themodel induction (MI ) stage.
In contrast, the other two strategies make the classifier cost-sensitive (Fig. 2), either with
an instance weighting mechanism (FS+WeightMI strategy) or acting on the probability
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Figure 1 Introducing cost-sensitivity at the feature selection stage.
Full-size DOI: 10.7717/peerjcs.832/fig-1

Figure 2 Introducing cost-sensitivity at the model induction stage.
Full-size DOI: 10.7717/peerjcs.832/fig-2

threshold to minimize the expected cost (FS+MinCostMI strategy). The effectiveness of
such learning strategies is evaluated in this study for different cost matrices, in order to
investigate the optimal cost settings based on the intrinsic data characteristics, as discussed
in what follows.

EXPERIMENTAL STUDY
In this section, we first present the specific settings of our experiments, along with the
metrics employed for performance evaluation (‘‘Experimental settings & Evaluation
metrics’’). Next, the main experimental results are illustrated and discussed (‘‘Results &
Discussion’’).

Experimental settings & evaluation metrics
For each of the benchmarks described above, the cost-sensitive learning strategies shown
in Fig. 1 and Fig. 2 have been evaluated in conjunction with different feature selection
methods (CORR, IG, GR, RF, SVM-AW, SVM-RFE), as well as for different levels of data
reduction, i.e., selecting feature subsets of different sizes. As a learning algorithm for model
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induction, we exploited the Random Forest classifier (Breiman, 2001), which has proven to
be a suitable choice in the genomic domain here considered (Chen & Ishwaran, 2012; Pes,
2020), as well as across different application contexts (Rokach, 2016), even in the presence
of imbalanced data distributions (Khoshgoftaar, Golawala & Van Hulse, 2007; Bartoletti,
Pes & Serusi, 2018;Walker & Hamilton, 2019; Chicco & Oneto, 2021). Specifically, we relied
on commonly adopted settings which involve a forest of 100 trees, each built choosing, at
the splitting stage, the best attribute among a number log 2(n)+1 of random features (where
n is the dataset dimensionality). For the Random Forest classifier, as well as for the six
considered selection methods, we exploited the implementations provided by the WEKA
machine learning workbench (Weka, 2021), which also provides proper meta-functions
supporting cost-sensitive learning.

More in detail, the settings adopted for the Random Forest classifier correspond
to the default parameters in the WEKA library. The WEKA CorrelationAttributeEval,
InfoGainAttributeEval, GainRatioAttributeEval, and ReliefFAttributeEval functions, with
their default settings, have been used to implement the filter methods CORR, IG, GR, and
RF, respectively. For the embedded approaches SVM-AW and SVM-RFE, we exploited the
SVMAttributeEval function, by setting the percentage of features to eliminate per iteration
as 100% and 50% respectively. Each of these attribute evaluation functions has been coupled
with the Ranker search method that allows selecting the desired number of top-ranked
features. Further, to introduce cost-sensitivity at the feature selection stage, we relied on
the CostSensitiveAttributeEval meta-function that can wrap any of the adopted selectors
andmake it cost-sensitive based on a given cost matrix. Similarly, the CostSensitiveClassifier
meta-function has been used to introduce cost-sensitivity at the model induction stage,
acting both on the instances’ weights or on the probability threshold of the classifier.

As regards performance evaluation, we considered proper measures that can reliably
estimate the model capability of discriminating among imbalanced classes (Luque et al.,
2019). In particular, the Matthews Correlation Coefficient (MCC) expresses the degree of
correlation between the observed and predicted classifications:

MCC =
TP ·TN −FP ·FN

√
(TP+FP)(TP+FN )(TN +FP)(TN +FN )

where, according to the commonly adopted notation, TP is the number of true positives,
i.e., the actual positives that are correctly classified as positives; TN is the number of true
negatives, i.e., the actual negatives that are correctly classified as negatives; FP is the number
of false positives, i.e., the actual negatives that are wrongly classified as positives; FN is the
number of false negatives, i.e., the actual positives that are wrongly classified as negatives.
As highlighted in recent literature, the MCC measure turns out to be very trustworthy on
imbalanced datasets (Chicco, 2017; Chicco, Warrens & Jurman, 2021).

Another performance metric widely adopted in the context of imbalance learning is the
G-mean (Branco, Torgo & Ribeiro, 2016). It is defined as the geometric mean between the
fraction of positive instances classified correctly (TP rate or sensitivity) and the fraction of
negative instances classified correctly (TN rate or specificity):

G−mean=
√
sensitivity · specificity.
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Such a mean takes into account the capability of the model of discriminating each single
class, providing a useful trade-off between different types of errors, i.e., the false negatives
(that affect the sensitivity, namely TP/(TP+FN)) and the false positives (that affect the
specificity, namely TN/(TN+FP)).

A different way to account for both false positives and false negatives is to jointly
consider the sensitivity and the precision, which expresses the fraction of instances that are
actually positive in the group the model has classified as positive (namely TP/(TP+FP)).
In particular, the well-known F-measure is defined as the harmonic mean between the
sensitivity and the precision:

F−measure=
2 · sensitivity ·precision
sensitivity+precision

.

By using multiple performance measures (MCC, G-mean, F-measure), we aim to
obtain a more reliable insight into the effectiveness of the considered learning strategies.
To estimate such measures in a robust way, we considered their average value across
different model training-testing runs. Specifically, for each of the considered datasets, we
performed a 5-fold stratified cross-validation, repeated 4 times, as in similar studies dealing
with high-dimensional and imbalanced data, e.g., (Khoshgoftaar et al., 2014; Shanab &
Khoshgoftaar, 2018). Each run of 5-fold cross-validation leads to 5 different partitions of
the original data into training and test set (respectively 80% and 20% of the records).
By repeating the cross-validation four times, we obtained 20 different partitions with the
same percentage of training and test data. This is somewhat similar to a repeated holdout
protocol where different training/test sets are drawn from the original dataset: the overall
learning process (feature selection and model induction) has been repeated 20 times (for
each learning strategy and each specific setting), each time using a different training set for
model induction and the corresponding test set for performance evaluation. Finally, all the
evaluation metrics have been averaged across the 20 runs, to reduce any possible bias due
to a specific data partitioning.

Results & discussion
The first step of our experimental study involves evaluating the extent to which the
considered selection methods (see sub-section ‘‘Feature selection methods’’) are useful in
mitigating the adverse effects of class imbalance. Indeed, although such methods have been
widely employed across several application contexts, their effectiveness in high-dimensional
and imbalanced tasks is yet to be investigated in depth.

Specifically, as the employed techniques act by ranking the features according to their
degree of relevance, different threshold values have been considered to cut the resulting
ranked lists, in order to obtain feature subsets of different sizes. This allowed us to explore
the impact of different levels of dimensionality reduction on the performance metrics
mentioned above (see previous sub-section). The results obtained on the DLBCL, Glioma
and Uterus datasets are shown in Figs. 3, 4, and 5 respectively. In each figure, we show
the predictive performance of the Random Forest classifier, in terms ofMCC, G-mean and
F-measure, when used alone (baseline model), i.e., without any dimensionality reduction,
as well as when used in conjunction with the different selection methods (CORR, IG, GR,
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RF, SVM-AW, SVM-RFE); note that the baseline model is represented by a dashed line in
the figures.

A first point to highlight is that the feature selection process seems to be effective in
improving the classifier performance, either in the presence of a moderate imbalance
level (DLBCL dataset) as well as for more skewed class distributions (Glioma and Uterus
datasets). Indeed, for each of the employed metrics, i.e., the MCC, the G-mean and the
F-measure, the baseline values are quite low, especially for the Glioma dataset that has
the lowest instance-to-features ratio (0.004), with only 7 positive instances in total. As we
can see in the figures, when the data dimensionality is properly reduced, a considerable
improvement in performance can be achieved. The statistical significance of such an
improvement was assessed by applying the Wilcoxon signed-rank test (Demšar, 2006),
which is a non-parametric alternative to the paired t -test for comparing two classifiers
over different data samples. Specifically, for each performance measure, we compared the
outcome obtained with and without feature selection (i.e., the baseline model). Fixing the
level of dimensionality reduction, i.e., the percentage of selected features, this comparison
was carried out for each of the six considered selection methods (CORR, IG, GR, RF,
SVM-AW, SVM-RFE), leading to six separate comparisons against the baseline. To address
the issue of multiple hypothesis testing, the Holm-Bonferroni correction was applied that
involves ordering the p-values from most significant to the least significant: p1, p2, . . . , pk
(where k is the number of the hypotheses). Then, if p1 is below α/k, the corresponding null
hypothesis (no statistical difference) is rejected and we are allowed to compare the second
p2 with α/(k-1); if the second hypothesis is rejected too, the test proceeds with the third,
and so on. In our setting, α= 0.05 and k = 6. The results of this analysis are summarized
in Table 1 considering, as an example, the models obtained by selecting 2% of the original
features. The performance values that turned out to be significantly different from the
baseline are marked in bold, with the corresponding p-values in brackets.

Based on Table 1, as well as the curves in Figs. 3–5, some interesting insight can be
derived by comparing the performance of the different selection methods across the
three examined benchmarks. In particular, the SVM -based methods, i.e., the multivariate
SVM-AW and SVM-RFE, seem to suffer to a greater extent as the degree of imbalance
increases (Figs. 4 and 5), albeit achieving the best results on the DLBCL dataset (Fig. 3). On
the other hand, the other multivariate method, RF, exhibits a quite satisfactory behavior
across different levels of imbalance and instances-to-features ratios. As well, the univariate
methods (CORR, IG, GR), despite showing slightly worse performance on the DLBCL
dataset, seem to be a suitable option on the most imbalanced benchmarks, at least for
small percentages of selected features. Furthermore, they have the advantage of being
computationally less expensive than the multivariate approaches.

Overall, no single method turns out to be better across the different settings explored in
Figs. 3–5 but, irrespective of the chosen selection approach, the dimensionality reduction
step has proven to be beneficial in this first phase of our analysis, besides having undoubtful
advantages in terms of knowledge discovery (as it can identify the most predictive features
for the considered domain). As a further and fundamental step of our experiments, we
investigated whether, and under which conditions, the use of hybrid learning strategies that

Pes and Lai (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.832 14/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.832


Figure 3 DLBCL dataset:MCC,G-mean and F-measure performance in conjunction with different se-
lection methods (CORR, IG,GR, RF, SVM-AW, SVM-RFE), for different percentages of selected fea-
tures.

Full-size DOI: 10.7717/peerjcs.832/fig-3
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Figure 4 Glioma dataset:MCC,G-mean and F-measure performance in conjunction with different se-
lection methods (CORR, IG,GR, RF, SVM-AW, SVM-RFE), for different percentages of selected fea-
tures.

Full-size DOI: 10.7717/peerjcs.832/fig-4
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Figure 5 Uterus dataset:MCC,G-mean and F-measure performance in conjunction with different se-
lection methods (CORR, IG,GR, RF, SVM-AW, SVM-RFE), for different percentages of selected fea-
tures.

Full-size DOI: 10.7717/peerjcs.832/fig-5
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Table 1 Comparison of the classification performance achieved with and without feature selection, for
(a) the DLBCL dataset, (b) the Glioma dataset and (c) the Uterus dataset. The comparison is carried out
for each of the considered selection methods (by retaining 2% of the original features). The values in bold
turned out to be significantly different from the baseline according to theWilcoxon signed-rank test with
Holm-Bonferroni correction (p-values in brackets).

(a) Baseline CORR IG GR RF SVM-AW SVM-RFE

MCC 0.50 0.72 0.71 0.71 0.80 0.85 0.80
(0.0024) (0.0085) (0.0035) (0.0006) (0.0008) (0.0008)

G-mean 0.55 0.82 0.79 0.78 0.86 0.87 0.84
(0.0010) (0.0017) (0.0010) (0.0006) (0.0007) (0.0008)

F-measure 0.5 0.76 0.75 0.73 0.82 0.85 0.81
(0.0019) (0.0038) (0.0023) (0.0009) (0.0007) (0.0008)

(b) Baseline CORR IG GR RF SVM-AW SVM-RFE
MCC 0.08 0.58 0.58 0.55 0.52 0.30 0.37

(0.0012) (0.0012) (0.0017) (0.0024) (0.0267) (0.0131)
G-mean 0.09 0.59 0.59 0.57 0.52 0.31 0.37

(0.0012) (0.0012) (0.0014) (0.0024) (0.0267) (0.0131)
F-measure 0.08 0.58 0.58 0.57 0.52 0.30 0.37

(0.0012) (0.0012) (0.0014) (0.0024) (0.0267) (0.0131)
(c) Baseline CORR IG GR RF SVM-AW SVM-RFE
MCC 0.34 0.50 0.48 0.47 0.50 0.46 0.41

(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0004)
G-mean 0.38 0.63 0.62 0.61 0.63 0.52 0.47

(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0002)
F-measure 0.26 0.51 0.49 0.48 0.51 0.41 0.35

(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (0.0002)

involve both feature selection and cost-sensitivity can be further beneficial. Specifically,
as schematized in Figs. 1 and 2, we considered both making the feature selection itself
cost-sensitive (WeightFS+MI strategy) as well as introducing costs at the model induction
stage (FS+WeightMI and FS+MinCostMI strategies). For each of these strategies, the
evaluation has been performed in conjunction with different selection methods and
different percentages of selected features.

A first comparative view of the results is shown in Figs. 6–8 that refer to DLBCL, Glioma
and Uterus datasets respectively. For the sake of space and readability, we only show here
the G-mean values obtained in conjunction with the CORR method, as representative of
the univariate approach, and the SVM-RFE method, as representative of the multivariate
approach; for both the methods, we focus on small percentages of selected features, from
0.25% to 2%, that are usually more interesting in practical applications. In each figure, the
results obtained by simply carrying out the feature selection before inducing the model
(FS + MI approach) are compared with those achieved with the three considered hybrid
strategies, i.e.,WeightFS(c)+MI, FS+WeightMI(c) and FS+MinCostMI(c), where c is the cost
assigned to the false negatives (i.e., the positive/minority instances classified incorrectly).
As we can see, different values have been explored for c (three settings that have proven
interesting are shown in each figure), while a (fixed) unitary cost has been assigned to the
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Figure 6 DLBCL dataset:G-mean performance achieved with different learning strategies, in conjunc-
tion with the CORRmethod and the SVM-RFE method, for different percentages of selected features.

Full-size DOI: 10.7717/peerjcs.832/fig-6

false positives (i.e., the negative/majority instances classified incorrectly), with no cost for
the correct predictions. The performance of the baselinemodel, without any dimensionality
reduction or cost-sensitive correction, has also been shown in the figures (dashed line).

When comparing the outcome of the different learning strategies, we can observe that
using an instance weighting mechanism at the feature selection stage (WeightFS+MI )
is not advantageous compared to the simpler FS + MI strategy that is actually able to
improve the baseline performance, as also observed previously in Figs. 3–5, without any
cost-sensitive correction. On the other hand, introducing costs at the model induction
stage, after reducing the data dimensionality, can be strongly beneficial especially in the
presence of a high level of class imbalance. In all the considered benchmarks, in fact, the
hybrid strategies FS+WeightMI and FS+MinCostMI have proven to be more convenient
than using feature selection alone (FS + MI ). In particular, although weighting instances
at the model induction stage (FS+WeightMI ) turns out to be a good option on the DLBCL
dataset (Fig. 6), the FS+MinCostMI approach seems to be overall more convenient across
the different settings here explored, with a significant improvement of the prediction
performance on the most imbalanced datasets (Figs. 7 and 8). As regards the choice of the
c parameter, i.e., the cost assigned to the misclassified minority instances, we can see that it
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Figure 7 Glioma dataset:G-mean performance achieved with different learning strategies, in conjunc-
tion with the CORRmethod and the SVM-RFE method, for different percentages of selected features.

Full-size DOI: 10.7717/peerjcs.832/fig-7

should be increased with the increase of the imbalance level; however, values higher than 5
were not found convenient in our case study, due to the greater amount of false positives.

Once again,we applied theWilcoxon signed-rank test, withHolm-Bonferroni correction,
to assess whether the differences observed in Figs. 6–8 are statistically significant. In
particular, we compared the G-mean performance achieved using the hybrid strategies
FS+WeightMI and FS+MinCostMI with that achieved using feature selection alone (FS +
MI ). For each strategy, we considered three cost settings (corresponding to different values
of the c parameter), leading to three distinct comparisons against the FS + MI approach.
The results of this analysis (considering α= 0.05 and k = 3) are summarized in Table 2,
for two different percentages of selected features (i.e., 0.25% and 2%). We marked in bold
the performance values that were found to be significantly different from those obtained
with feature selection alone, with the corresponding p-values in brackets. As we can see, the
hybrid strategies were confirmed to be overall more convenient than the FS + MI approach,
which in turn was found to be better than the baseline classifier (Table 1). More in detail,
the significance of the performance improvements achieved with the hybrid approach
may depend on how the feature selection is carried out (adopted selection method and
level of dimensionality reduction), besides the intrinsic data characteristics. Indeed, in
the least imbalanced dataset, i.e., DLBCL (Table 2A), feature selection alone may lead to
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Figure 8 Uterus dataset:G-mean performance achieved with different learning strategies, in conjunc-
tion with the CORRmethod and the SVM-RFE method, for different percentages of selected features.

Full-size DOI: 10.7717/peerjcs.832/fig-8

quite satisfactory results, in dependence on the adopted settings, while the hybrid strategies
always perform significantly better, irrespective of the adopted settings, in the Uterus
dataset (Table 2C), which is the most imbalanced.

For a more complete picture, a second comparative view of our results is given in
Figs. 9–11, where we focus on a given percentage of selected features (2%) and show the
outcome of all the six selection methods considered in the study, in terms ofMCC, G-mean
and F-measure; for the sake of readability, the results of the WeightFS+MI strategy, less
convenient than the others, have been here omitted. The performance of the other two
strategies, FS + WeightMI and FS+MinCostMI, whose effectiveness has also been shown
in Table 2, is here compared with that achieved (i) only using feature selection without
cost-sensitive corrections, (ii) only using cost-sensitive learning without feature selection
(data series ‘all features’ in the charts), and (iii) without using feature selection or costs
(baseline). As we can see, although the obtained performance may depend on the specific
selection method, as well as on the intrinsic data characteristics, the adoption of a hybrid
learning strategy, that combines feature selection and cost-sensitive learning, is overall
more convenient. When proper cost settings are used, indeed, it leads to the best results on
the DLBCL datasets (Fig. 9). As regards the other two benchmarks (Figs. 10 and 11), the
MinCostMI approach has proven to be capable of providing good results with and without
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Table 2 G-meanmeasured using a hybrid learning strategy (FS + WeightMI or FS + MinCostMI ) or feature selection alone (FS + MI ), for
(a) theDLBCL dataset, (b) theGlioma dataset and (c) theUterus dataset. The comparison is carried out, separately for the FS + WeightMI and
FS +MinCostMI strategies, using CORR and SVM -RFE as selection methods (by retaining 0.25% and 2% of the original features). The values in
bold turned out to be significantly different from those obtained with the FS+MI approach according to theWilcoxon signed-rank test with Holm-
Bonferroni correction (p-values in brackets).

(a) FS+WeightMI(c) FS+MinCostMI(c)

FS+MI c = 2 c = 3 c = 4 c = 2 c = 3 c = 4

CORR 0.25% 0.79 0.86 (0.0119) 0.87 (0.0053) 0.89 (0.0010) 0.88 (0.0029) 0.87 (0.0059) 0.85 (0.0243)
CORR 2% 0.82 0.86 (0.1427) 0.86 (0.1427) 0.90 (0.0021) 0.89 (0.0048) 0.90 (0.0093) 0.87 (0.0515)
SVM-RFE 0.25% 0.90 0.92 (0.2204) 0.92 (0.0774) 0.93 (0.1105) 0.93 (0.0659) 0.89 (0.2797) 0.86 (0.0779)
SVM-RFE 2% 0.84 0.91 (0.0091) 0.93 (0.0121) 0.96 (0.0024) 0.96 (0.0007) 0.94 (0.0098) 0.89 (0.1436)

(b) FS+WeightMI(c) FS+MinCostM/(c)
FS+MI c = 3 c = 4 c = 5 c = 3 c = 4 c = 5

CORR 0.25% 0.56 0.56 (1.00) 0.64 (0.2919) 0.66 (0.1404) 0.67 (0.1099) 0.75 (0.0324) 0.86 (0.0141)
CORR 2% 0.59 0.67 (0.1714) 0.61 (0.3759) 0.68 (0.0700) 0.83 (0.0178) 0.87 (0.0143) 0.88 (0.0113)
SVM-RFE 0.25% 0.42 0.56 (0.0284) 0.53 (0.1030) 0.55 (0.1342) 0.73 (0.0041) 0.76 (0.0024) 0.78 (0.0017)
SVM-RFE 2% 0.37 0.62 (0.0157) 0.65 (0.0100) 0.65 (0.0062) 0.78 (0.0019) 0.86 (0.0009) 0.89 (0.0008)

(c) FS+WeightMI(c) FS+MinCostMI(c)
FS+MI c = 3 c = 4 c = 5 c = 3 c = 4 c = 5

CORR 0.25% 0.65 0.74 (<0.0001) 0.76 (<0.0001) 0.77 (<0.0001) 0.85 (<0.0001) 0.86 (<0.0001) 0.87 (<0.0001)
CORR 2% 0.63 0.72 (<0.0001) 0.73 (<0.0001) 0.75 (<0.0001) 0.84 (<0.0001) 0.87 (<0.0001) 0.88 (<0.0001)
SVM-RFE 0.25% 0.56 0.67 (<0.0001) 0.66 (<0.0002) 0.69 (<0.0001) 0.80 (<0.0001) 0.84 (<0.0001) 0.86 (<0.0001)
SVM-RFE 2% 0.47 0.63 (<0.0001) 0.64 (<0.0001) 0.67 (<0.0001) 0.80 (<0.0001) 0.86 (<0.0001) 0.88 (<0.0001)

feature selection. However, reducing the data dimensionality is of paramount importance
in the considered domain, as well as in all domains where we need to acquire knowledge
about the features that are most influential for prediction. Hence, we can still recommend
the adoption of a hybrid learning strategy that allows to fully exploit the potential of
cost-sensitive learning while using only a subset of the original features.

Albeit not exhaustive, the analysis here reported shows the importance of jointly
addressing the issues of high-dimensionality and class imbalance and gives useful insight
into how to introduce cost-sensitivity into the learning process, along with a proper
dimensionality reduction step. Encompassing different selection heuristics, different levels
of data reduction and different cost settings, this study complements related research
works that have recently investigated the integration of feature selection and imbalance
learning methods (Blagus & Lusa, 2013; Khoshgoftaar et al., 2014; Shanab & Khoshgoftaar,
2018; Zhang et al., 2019; Pes, 2020; Pes, 2021; Huang et al., 2021), showing that the hybrid
learning strategies here explored may also be effective in challenging scenarios where the
class imbalance problem comes in conjunction with very low instances-to-features ratios.

Differently from other works in this area, our approach is not tied to a specific
selection or classification algorithm (Yin et al., 2013; Maldonado, Weber & Famili, 2014;
Moayedikia et al., 2017; Feng et al., 2020), but relies on a general methodological framework
that could be used as a meta-learning approach useful to integrate, and better exploit, a
variety of methods already available. Interestingly, in the most imbalanced benchmarks,
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Figure 9 DLBCL dataset:MCC,G-mean and F-measure performance achieved with different learning
strategies, in conjunction with the six considered selection methods.

Full-size DOI: 10.7717/peerjcs.832/fig-9
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Figure 10 Glioma dataset:MCC,G-mean and F-measure performance achieved with different learning
strategies, in conjunction with the six considered selection methods.

Full-size DOI: 10.7717/peerjcs.832/fig-10
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Figure 11 Uterus dataset:MCC,G-mean and F-measure performance achieved with different learning
strategies, in conjunction with the six considered selection methods.

Full-size DOI: 10.7717/peerjcs.832/fig-11
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all the selection methods included in our study perform equally well when integrated into
the FS+MinCostMI learning strategy, leading to similar results despite the significant
differences observed when they are used alone. This seems to suggest that quite
different selection heuristics can be successfully exploited within proper cost-sensitive
methodological frameworks.

The effectiveness of the approach here discussed is also confirmed by a comparison
with recent works in the literature (although the experiments are not always directly
comparable due to the diversity of the evaluation protocols and metrics). In particular,
our results compare well with those reported in recent papers that relied on data partitions
involving 20% of test records, as in our study. For example, in terms of F-measure for the
minority class, we achieved better results than (Yin et al., 2013) on the DLBCL dataset. In
terms of G-mean, our results are superior to those reported in Moayedikia et al. (2017),
where some selection methods designed for imbalanced data are compared. Our results are
also comparable, in terms of G-mean, with the ones in Lin & Chen (2013), where different
strategies for classifying high-dimensional and imbalanced data are explored, including
ensemble correction strategies. Finally, our performance is only slightly inferior to the
best results reported in Maldonado, Weber & Famili (2014) where, however, a different
experimental protocol is used (i.e., a leave-one-out cross-validation).

The encouraging results here obtained may pave the way for larger comparative studies
involving more datasets from different domains. This could be very useful for researchers
and practitioners in different application fieldswhomight take advantage ofmethodological
guidelines to deal with prediction tasks that involve both skewed data distributions and
high-dimensional feature spaces.

CONCLUSIONS & FUTURE RESEARCH DIRECTIONS
In this work, we focused on challenging classification tasks where the imbalanced
distribution of the data instances is coupled with a large number of features, which
may severely impact on the generalization performance of commonly adopted classifiers.
In such a context, we presented a comparative study aimed at exploring the extent to which
different feature selection methods (both univariate and multivariate) may lead to a higher
separability between majority and minority instances. Further, we explored different ways
of integrating feature selection with cost-sensitive learning, by exploiting a methodological
framework that is not tied to a specific selection algorithm or classifier.

The experimental analysis that we carried out on three public genomic benchmarks,
encompassing different levels of dimensionality reduction and different cost settings, has
provided some useful insight along the following directions:

• Feature selection, besides involving important advantages in terms of knowledge
discovery and interpretability of the induced models, is also useful, in itself, in coping
with the adverse effects of class imbalance, leading to a better separability among the
different classes. In particular, in the presence of a moderate level of imbalance (as
in the DLBCL dataset here considered), feature selection alone, without cost-sensitive
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corrections, leads to quite satisfactory results, not much inferior to those achieved with
more sophisticated learning strategies.
• In the presence of a higher level of imbalance (as in the Glioma and Uterus datasets),
additional benefits can be obtained, in terms of generalization performance, by
integrating feature selection with cost-sensitive learning. Different ways of implementing
such an integration have been here considered, by making the selection process
cost-sensitive (WeightFS + MI learning strategy) or properly introducing costs at the
model induction stage, after reducing the data dimensionality (FS+WeightMI and
FS+MinCostMI strategies). Overall, the FS+MinCostMI approach has proven to be the
most effective across the different settings explored in this study, leading to models
that achieve good performance with a reduced number of features, irrespective of the
specific selection algorithm employed. The strategy used for introducing costs into the
learning process has therefore shown to be more influential than the specific selection
heuristic chosen for implementation. Such an evaluation highlights the importance of
devising proper learning strategies that integrate dimensionality reduction techniques
and imbalance learning methods, to effectively deal with datasets that are both high-
dimensional and class-imbalanced.

Starting from the analysis here presented, there are several aspects that we aim to explore
in our future work. As a first point, it should be interesting to evaluate the impact of the
learning strategies here investigated on different classifiers. For our experiments, indeed,
we chose the Random Forest algorithm that has proven to be a suitable option across
imbalanced classification tasks from different domains, as pointed out previously. But
other choices could be also considered, so as to evaluate the extent to which different
combinations of classifiers and selection methods may take advantage of the adoption of a
cost-sensitive approach. Further, more benchmarks from different real-world domains will
be analyzed to gain a deeper insight into the best strategies to integrate feature selection
and cost-sensitive learning, based on the specific characteristics of the data at hand. In
fact, making the classifier cost-sensitive has proven to be more effective, in the considered
case study, than making the feature selection itself cost-sensitive, but further investigations
could be conducted in this respect extending the evaluation to different feature selection
approaches.
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