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Background. The side-channel cryptanalysis method based on convolutional neural network (CNNSCA)
can effectively carry out cryptographic attacks. The CNNSCA network models that achieve cryptanalysis
mainly include CNNSCA based on the VGG variant (VGG-CNNSCA) and CNNSCA based on the Alexnet
variant (Alex-CNNSCA). The learning ability and cryptanalysis performance of these CNNSCA models are
not optimal, and the trained model has low accuracy, too long training time, and takes up more
computing resources. In order to improve the overall performance of CNNSCA, the paper will improve
CNNSCA model design and hyperparameter optimization.

Methods. The paper first studied the CNN architecture composition in the SCA application scenario, and
derives the calculation process of the CNN core algorithm for side-channel leakage of one-dimensional
data. Secondly, a new basic model of CNNSCA was designed by comprehensively using the advantages of
VGG-CNNSCA model classification and fitting efficiency and Alex-CNNSCA model occupying less
computing resources, in order to better reduce the gradient dispersion problem of error back propagation
in deep networks , the SE (Squeeze-and-Excitation) module is newly embedded in this basic model , this
module is used for the first time in the CNNSCA model, which forms a new idea for the design of the
CNNSCA model.Then apply this basic model to a known first-order masked dataset from the side-channel
leak public database (ASCAD). In this application scenario, according to the model design rules and
actual experimental results, exclude non-essential experimental parameters. Optimize the various
hyperparameters of the basic model in the most objective experimental parameter interval to improve its
cryptanalysis performance, which results in a hyper-parameter optimization scheme and a final
benchmark for the determination of hyper-parameters.

Results. Finally, a new CNNSCA model optimized architecture for attacking unprotected encryption
devices is obtained——CNNSCAnew. Through comparative experiments, CNNSCAnew's guessing entropy
evaluation results converged to 61. From model training to successful recovery of the key, the total time
spent was shortened to about 30 minutes, and we obtained better performance than other CNNSCA
models.
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9 Abstract

10 Background. The side-channel cryptanalysis method based on convolutional neural network 

11 (CNNSCA) can effectively carry out cryptographic attacks. The CNNSCA network models that 

12 achieve cryptanalysis mainly include CNNSCA based on the VGG variant (VGG-CNNSCA) and 

13 CNNSCA based on the Alexnet variant (Alex-CNNSCA). The learning ability and cryptanalysis 

14 performance of these CNNSCA models are not optimal, and the trained model has low accuracy, 

15 too long training time, and takes up more computing resources. In order to improve the overall 

16 performance of CNNSCA, the paper will improve CNNSCA model design and hyperparameter 

17 optimization.

18 Methods. The paper first studied the CNN architecture composition in the SCA application 

19 scenario, and derives the calculation process of the CNN core algorithm for side-channel leakage 

20 of one-dimensional data. Secondly, a new basic model of CNNSCA was designed by 

21 comprehensively using the advantages of VGG-CNNSCA model classification and fitting 

22 efficiency and Alex-CNNSCA model occupying less computing resources, in order to better 

23 reduce the gradient dispersion problem of error back propagation in deep networks , the SE 

24 (Squeeze-and-Excitation) module is newly embedded in this basic model , this module is used 

25 for the first time in the CNNSCA model, which forms a new idea for the design of the CNNSCA 

26 model.Then apply this basic model to a known first-order masked dataset from the side-channel 

27 leak public database (ASCAD). In this application scenario, according to the model design rules 

28 and actual experimental results, exclude non-essential experimental parameters. Optimize the 

29 various hyperparameters of the basic model in the most objective experimental parameter 

30 interval to improve its cryptanalysis performance, which results in a hyper-parameter 

31 optimization scheme and a final benchmark for the determination of hyper-parameters.

32 Results. Finally, a new CNNSCA model optimized architecture for attacking unprotected 

33 encryption devices is obtained——CNNSCAnew. Through comparative experiments, 

34 CNNSCAnew's guessing entropy evaluation results converged to 61. From model training to 

35 successful recovery of the key, the total time spent was shortened to about 30 minutes, and  we 

36 obtained better performance than other CNNSCA models.

37
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40 Introduction

41 Side Channel Analysis[1](SCA) refers to bypassing the tedious analysis of encryption algorithms, 

42 by using the information  (such as execution time, power consumption, electromagnetic radiation 

43 , etc.)leaked by the hardware device embedded in the encryption algorithm during the calculation 

44 process , combined with statistical analysis methods to attack cryptographic systems. The side-

45 channel cryptanalysis method is divided into profiling methods and non-profiling methods: non-

46 profiling methods include differential power attack[2] (DPA), correlation power attack[3] (CPA) 

47 and mutual information attack[4] (MIA); profiling methods include template attack[5] (TA), side-

48 channel cryptography attack based on multi-layer perceptron (MLPSCA), and side-channel 

49 cryptography attack based on convolutional neural networks (CNNSCA). Although the attack 

50 method of the non-profiling method is simple and direct, weak side-channel signal or excessive 

51 environmental noise can cause the attack to fail. The profiling method can effectively analyze the 

52 characteristics of the side-channel signal when the encryption knowledge of the attacking device 

53 is obtained in advance, so it is easier to crack the cryptogramme. In the case of an encrypted 

54 implementation copy, the best cryptanalysis attack in the traditional SCA method is TA[5-8], but 

55 TA has difficulties in statistical analysis when processing high-dimensional side-channel signals, 

56 and cannot attack the implementation of protected encryption. With the rapid development of 

57 supervised machine learning algorithms, it can effectively analyze one-dimensional data with 

58 similar power consumption traces in other fields, and side-channel cryptanalysis based on 

59 machine learning (MLSCA)[9-11] has begun to emerge. The new profiling method MLPSCA 

60 surpasses the traditional profiling method in attack performance [11-13], and overcomes the 

61 shortcomings of template attacks that cannot handle high-dimensional side-channel signals, but it 

62 also loses effectiveness when attacking encryption with protection. Nowadays, with the 

63 development of machine learning, deep learning techniques with excellent performance in image 

64 classification and target recognition have become popular. Studies have shown that the 

65 application of convolutional neural network algorithms under deep learning can produce better 

66 encryption performance in side-channel analysis[12-16]. The deep network helps to mine the deep 

67 features in the data, which can make the neural network have more powerful performance, which 

68 makes CNNSCA can also attack the encryption implementation with protection. In the side-

69 channel analysis application scenario, deep learning eliminates the step of manually extracting 

70 features from the workflow of model construction. For example, in the traditional bypass attack 

71 method, the TA with better attack effect only selects 5 strong feature points, while the deep 

72 learning model can select hundreds to thousands of feature points, select more features to 

73 construct a template, it is extremely beneficial to the generalization and robustness of the side-

74 channel analysis model.

75

76 Analyze the above domestic and foreign documents, there are two main types of CNN structures 

77 that have successfully used CNNSCA to achieve cryptanalysis, which are based on two variants 

78 of Alexnet and VGGnet network structures [12,16-18]. Among them, the 2012 ILSVRC(ImageNet 

79 Large Scale Visual Recognition Challenge) champion structure Alexnet[19], although successful 
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80 in the SCA application, but in fact, the training accuracy of CNNSCA based on this network 

81 variant is not high, moreover, the Alex-CNNSCA network model in the literature [16] has a large 

82 amount of training parameters and a long calculation time, which means that there is still room 

83 for optimization of this network structure. The 2013 ILSVRC champion network ZFNet [20] has 

84 not changed much from the 2012 first ILSVRC champion network Alexnet. The 2014 ILSVRC 

85 runner-up structure VGGnet[21] also succeeded in breaking secrets in the SCA application. In the 

86 literature [12,17-18], VGG-CNNSCA models with different parameters were proposed. Among 

87 them, the best cryptanalysis performance is in the literature [12] proposed VGG-CNNSCA, but 

88 its training accuracy is still not high. Obviously, there is still room for improvement in the 

89 cryptanalysis performance. The 2014 ILSVRC champion network GoogLeNet[22] and the 2015 

90 ILSVRC champion network ResNet[23] have also been used in SCA, but the effect is average. 

91 This conclusion has been confirmed in the literature [12]. The last ILSVRC champion network in 

92 2017 was the SEnet[24] proposed by Momenta and Oxford University. There is currently little 

93 literature on applying this network to SCA scenarios.

94

95 Although CNNSCA overcomes the shortcomings of the previous profiling methods and 

96 improves the cryptanalysis performance, the existing CNNSCA model learning ability and 

97 cryptanalysis performance are not optimal. The disadvantages of these models are: low training 

98 accuracy and excessive training time long, taking up too much computing resources, etc. The 

99 reason is mainly affected by CNNSCA model design and hyperparameter optimization. In order 

100 to improve the overall performance of CNNSCA, the paper will improve CNNSCA model 

101 design and hyperparameter optimization, and has done the following work:

102 1. The composition of the CNN architecture in the SCA application scenario is studied, and 

103 the calculation process of the CNN core algorithm for side-channel leakage of one-

104 dimensional data is deduced.

105 2. Taking advantage of the high efficiency of classification and fitting of the VGG-

106 CNNSCA model and the advantages of the Alex-CNNSCA model occupying less 

107 computing resources, a new basic model of CNNSCA is designed to better reduce the 

108 gradient dispersion of error back propagation in the deep network. The problem is that 

109 the SE module is newly embedded in this basic model, so that the model basically 

110 achieves the purpose of breaking the secrets, thereby solving the problem of constructing 

111 the CNNSCA model.

112 3. Apply the above basic model to a known first-order mask data set of the side-channel 

113 leak public database (ASCAD). In this application scenario, according to the model 

114 design rules and actual experimental results, unnecessary experiments are maximized 

115 parameter, optimize the various hyperparameters of the model in the most objective 

116 experimental parameter interval to improve the breaking performance of the new 

117 CNNSCA, which solves the problem of hyperparameter optimization, and gives the final 

118 determination benchmark for hyperparameters. Finally, a new CNNSCA model 
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119 optimized architecture for attacking unprotected encryption devices-CNNSCAnew is 

120 obtained.

121 4. The performance verified on public data sets exceeds other profiling SCA methods.

122

123 The algorithms involved in the paper experiments are all programmed in the Python language, 

124 and use the deep learning architecture Keras library[25] (version 2.4.3) or directly use the GPU 

125 version of the Tensorflow library[26] (version 2.2.0). The experiment was carried out on an 

126 ordinary computer equipped with 16 GB RAM and 8G GPU (Nvidia GF RTX 2060). All 

127 experiments use side-channel leaking public data sets-known first-order mask data sets in the 

128 ASCAD database, use 50,000 pieces of data from its training set to train the model, and 

129 randomly select 1,000 pieces of data from its test set for testing. When testing the cryptanalysis 

130 performance of the CNNSCA model, the guessing entropy index is used to evaluate the 

131 cryptanalysis performance.

132

133 Materials & Methods

134 Materials

135 1 CNN

136 Convolutional Neural Network (CNN) is one of the most successful algorithms of artificial 

137 intelligence, and it is a multi-layer neural network with a new structure. Its design is inspired by 

138 the research on the optic nerve receptive field [27-28]. The core component of CNN, the 

139 convolution kernel, is the structural embodiment of the local receptive field. It belongs to the 

140 deep network of back propagation training. It uses the two-dimensional spatial relationship of the 

141 data to reduce the number of parameters that need to be learned, and improves the training 

142 performance of the BP algorithm(Error Back Propagation, which is used to calculate the gradient 

143 of the loss function with respect to the parameters of the neural network) to a certain extent. The 

144 main difference between CNN and MLP is the addition of the convolution block structure. In the 

145 convolution block, a small part of the input data is used as the original input of the network 

146 structure, and the data information is forwarded layer by layer in the network, and each layer 

147 uses several convolution cores to extract features of the input data. Convolutional neural 

148 networks have been successfully applied in computer vision, natural language processing, 

149 disaster climate prediction and other fields, especially shine on ILSVRC [29]. ILSVRC is one of 

150 the most popular and authoritative academic competitions in the field of machine vision in recent 

151 years, representing the highest level in the field of imaging. The introduction of outstanding 

152 CNNs in the image classification and target positioning projects of the ILSVRC competition 

153 over the years is shown in Table 1(CNN with outstanding performance in previous ILSVRC 

154 competitions).

155

156 Table 1 sorts out the champion networks and individual runner-up networks of the last ILSVRC 

157 classification task from 2012 to 2017, and briefly introduces their names, rankings, classification 

158 results under the top1 and top5 indicators, and some remarks. Top1 refers to the largest 
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159 probability vector as the prediction result, if the classification is correct, it is correct. Top5 is 

160 correct as long as there is a correct classification in the top five of the largest probability vectors. 

161 Among them, the error rate of the classification results of the last champion network SEnet (2017) 

162 under the top5 index is obviously the lowest, reaching 2.25%. Deep convolutional networks have 

163 greatly promoted the development of various fields of deep learning.

164

165 2 CNNSCA model hyperparameters

166 Hyperparameters of neural network models are a concept often used in machine learning or deep 

167 learning, including the structural parameters and training parameters of the network model. To 

168 design a CNN model in SCA application scenarios, all the parameters that need to be set are as 

169 follows:

170 1) Structural parameters

171 Define all the parameters of the neural network architecture, including the regular parameter 

172 network layer activation function, classification function, loss function, and optimizer. In the 

173 convolutional neural network, the network layer is subdivided into convolutional blocks (a 

174 combination of different numbers of convolutional layers and pooling layers), convolutional 

175 layers, full link layers, pooling layers, the number of convolution kernels , convolution kernel 

176 size and fill.

177

178 The convolution block, convolution layer, pooling layer, number of convolution kernels, 

179 convolution kernel size and padding in these parameters mainly control the scale and 

180 performance of feature extraction in the feature extraction stage of the CNNSCA model. Full 

181 link layer, activation function, classification function and loss function, these parameters 

182 constitute the main body of the CNNSCA network, and perform feature learning and fitting 

183 classification on side-channel leakage data.

184

185 2) Training parameters

186 Control the parameters of the network model training phase, including the number of iterations, 

187 batch learning volume, and learning rate. When training a network model, a complete training set 

188 is processed at one time, which is called complete batch learning. If a single training sample is 

189 processed at a time, it is called random learning. In practice, in order to improve efficiency, a 

190 compromise method is usually adopted, called small-batch learning, that is, small batches of 

191 training samples are processed at one time during the model learning process. The batch size 

192 depends on environmental factors[30] (such as network architecture, computer GPU performance, 

193 the trade-off between network regularization effect and stability, etc.). The number of iterations 

194 is an important parameter to be adjusted. A small value will cause the network model to underfit 

195 (the model is too poor to capture the feature trend in the training data set), while a higher value 

196 will cause the network model to overfit (the model is too Complex, perfectly fits the training data 

197 set, but cannot generalize its prediction to other data sets). In addition, the variable that optimizes 
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198 the training effect of the network model-the learning rate (also called the step size), aims to 

199 promote the gradient (ie, the error gradient) drop during the training process.

200

201 The number of iterations and the amount of batch learning affect the degree of model training, 

202 and the optimizer and learning rate are used to control the gradient of the error. These parameters 

203 all have an important impact on CNNSCA's cryptanalysis performance and need to be adjusted 

204 according to specific attack scenarios.

205

206 3 Core algorithm and network structure of CNNSCA

207 3.1 CNN network structure for SCA

208 Combined with the side-channel cryptanalysis scenario, the CNN applied to the side-channel 

209 attack mainly has six network layers stacked layer by layer and an embeddable SE module:

210 a) Convolutional layers (Conv for short) are linear layers. The incomplete connection 

211 between layers can avoid the two shortcomings of a fully connected network: training 

212 weights requires a huge amount of calculation and model overfitting. The weights of 

213 the same convolution kernel (also known as filters) in the same layer are shared, 

214 allowing the convolution layer to extract constant displacement features while 

215 reducing parameters. The convolutional layer can also use multiple convolution 

216 kernels. Each convolution kernel extracts different abstract features from the input 

217 vector. These abstract features are arranged side by side in an additional dimension 

218 (the so-called depth), making the CNN resistant to time-domain distortion Vector 

219 features[31]. The convolutional layer usually needs to set the padding mode , one is 

220 valid padding , so that the dimension of the feature vector after convolution is smaller 

221 than the original vector; the other is the same padding , so that the convolutional The 

222 feature vector dimension is the same as the original vector.

223 b) Batch Normalization layers[32] (BN for short), whose role is to reduce the deviation of 

224 covariates in the two stages of training and prediction, which is conducive to the use 

225 of a higher learning rate for the network model[33].

226 c) Activation layers (ACT for short) are non-linear layers and consist of a single real 

227 function, which acts on each coordinate of the input vector. The ReLU function is 

228 currently the first choice in deep learning.

229 d) Pooling layers (POOL for short) are non-linear layers. Use the pooling window to 

230 slide on the input vector to extract salient feature points to reduce the feature 

231 dimension. There is no weight in the pooling layer, which will not cause distortion of 

232 the input signal.

233 e) Fully-Connected layers (FC for short), the neurons between the layers are completely 

234 connected, and these layers need to train a lot of weights. This layer is expressed by 

235 an affine function as: D-dimensional x vector is the input, and Ax+B is the output. 

236 Among them, A∈RC×D is the weight matrix and B∈RC is the deviation vector. 

237 These weights and deviations are the training parameters of the FC layer.
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238 f) Softmax layer (SOFT for short). In multi-classification tasks, softmax is usually used 

239 as the activation function of the output layer. Here, softmax is used to represent the 

240 output layer. This layer classifies the input, obtains the predicted value of each label, 

241 and takes the label corresponding to the maximum value as the global classification 

242 result.

243 g) SE module, SEnet is a classic attention model structure, and it is also a required basic 

244 network structure for fine-grained classification tasks. SEnet proposed the Squeeze-

245 and-Excitation (SE) module, which did not introduce a new spatial dimension, and 

246 improved the representation ability of the model by displaying the channel correlation 

247 between the features of the convolutional layer. The feature recalibration mechanism: 

248 by using global information to selectively enhance informatized features and 

249 compress those useless features at the same time. In deep network training, this 

250 mechanism can effectively overcome the gradient dispersion problem in error back 

251 propagation. The SE module is universal. Even if it is embedded in an existing 

252 model, its parameters do not increase significantly. It is a relatively successful 

253 attention module[24]. The structure of the SE module is shown in Figure 1 (SE 

254 module).

255

256 In Figure 1, the SE module uses global pooling as a squeeze operation, and then uses 

257 two FC layers to form an excitation structure to profile the correlation between 

258 channels, and output and input the same number of feature channels weights. The 

259 advantages of this are: 1) it has more nonlinearity and can better fit the complex 

260 correlation between channels; 2) the amount of parameters and the amount of 

261 calculation are greatly reduced. Then obtain the normalized weight between 0 and 1 

262 through a sigmoid function, and then use a scale operation to weight the normalized 

263 weight to the features of each channel[24]. Finally, the output of scale is superimposed 

264 on the input x before the SE module to generate a new vector  .x%

265

266 3.2 Core algorithm of CNN for SCA

267 1) Convolution calculation

268 Usually convolution operations in the field of computer vision are numerical operations on two-

269 dimensional image data. In the SCA application scenario, the dimensionality of the convolution 

270 operation is adjusted, which is to slide the convolution kernel on the one-dimensional energy 

271 trace data. The number of steps moved each time is called the step length, and the convolution 

272 calculation is performed on each sliding to obtain a value. After one round of calculation is 

273 completed, a feature vector representing the vector feature is obtained. The rule of numerical 

274 operation is to multiply a one-dimensional convolution kernel with a value at the corresponding 

275 position of a one-dimensional vector, and then sum. For example, there is a 1x3 convolution 

276 kernel, which convolves a 1x6 one-dimensional vector with a step size of 1. The calculation 

277 process is shown in Figure 2 (Convolution calculation process).
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278

279 In Figure 2(a), the convolution kernel slides from the left side of the input vector. The first 

280 numerical calculation is: 1x1+0x0+1x1=2, and the first value 2 of the new feature vector is 

281 obtained. Then, the convolution kernel slides one step to the right to continue the numerical 

282 calculation: 1x0+0x1+1x0=0, to get the second value 0 of the new feature vector, as shown in 

283 Figure 2(b). Repeat this process until the convolution kernel slides to the far right of the input 

284 vector, and the convolution calculation is complete.

285

286 2) Pooling calculation

287 There are three ways of pooling: Max-Pooling, Mean-Pooling and Stochastic Pooling. Maximum 

288 pooling is to extract the maximum value of the value in the pooling window, average pooling is 

289 to extract the average value of the value in the pooling window, and random pooling is to 

290 randomly extract the value in the pooling window. The original pooling operation of CNN is also 

291 a numerical operation on two-dimensional image data. In the SCA application scenario, the 

292 pooling calculation has also been dimensionally adjusted, and a pooling mode is selected for 

293 calculation on the one-dimensional energy trace data. For example, the pooling window size is 

294 1x2, and the maximum or average pooling operation is performed on a 1x6 one-dimensional 

295 vector with a step size of 2. The pooling calculation is shown in Figure 3 (Pooling calculation 

296 process).

297

298 In Figure 3(a), the maximum pooling starts from the left side of the input vector. Every two steps 

299 of the pooling window, the maximum value of the two values in the window is selected as a 

300 value of the new feature vector. The average pooling is shown in Figure 3(b). For every two 

301 sliding steps of the pooling window, the average of the two values of the window class is 

302 calculated as a value of the new feature vector. The pooling window slides to the right until the 

303 rightmost of the input vector, and the pooling calculation is complete.

304

305 3) softmax function

306 This function normalizes the output value and converts all output values into probabilities. The 

307 sum of the probabilities is 1. The formula of softmax is:

308 (1)𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥𝑖)= 𝑒𝑥𝑝 (𝑥𝑖)𝛴𝑗𝑒𝑥𝑝 (𝑥𝑗)
309 Here  represents the input of the i-th neuron in the softmax layer,  represents the input of ix jx

310 the j-th neurons in the softmax layer, and is the sum of calculations for . The result of the 
j jx

311 function is used as the fitting probability of the i-th neuron label.

312

313 4) Principle of weight adjustment

314 Using the cost function and gradient descent algorithm[34], each time the network model is 

315 trained, the weights are automatically adjusted in the direction of error reduction, so that the 
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316 training parameters are repeated until all iterations are over, and the weight adjustment is 

317 completed.

318

319 5) Evaluation of Cryptanalysis Performance

320 Generally, security officers consider two indicators when evaluating CNNSCA's cryptanalysis 

321 performance: one is the training accuracy of the neural network model during modeling, the Acc 

322 indicator[35], and the other is the security indicator guessing entropy of the key obtained in the 

323 attack phase[36-37]. The guessing entropy index is commonly used to evaluate the SCA 

324 cryptanalysis performance, and the guessing entropy is used to measure the efficiency of 

325 decrypt.Guessing Entropy (GE) is obtained through a custom rank function Rank(⋅), which is 

326 defined as:

327 (2)𝑅ank(𝑔,𝐷𝑡𝑟𝑎𝑖𝑛,𝐷𝑡𝑒𝑠𝑡,𝑛)= |{𝑘 ∈ 𝐾|𝑑𝑛[𝑘]≥ 𝑑𝑛[𝑘 ∗ ] �}|
328

329 The adversary uses the modeling data set Dtrain to establish a bypass analysis model g, and uses n 

330 energy trace samples in the attack data set Dtest to perform n attacks during the attack phase. 

331 After each attack, the logarithm value of the distribution probability of 256 types of hypothetical 

332 cryptograms is obtained, compose a vector [ [1], [2], , [ ]]i i i kL
i
d = d d d , whose indexes are arranged in 

333 the positive order of the hypothetical cryptogramme’s key space (the index counts from zero), 

334 where i∈n, k∈K, and K is the key space of the hypothetical cryptogramme. The results of each 

335 attack are accumulated. Then, the rank function Rank(⋅) sorts all the elements of the vector di in 

336 reverse order by value, and keeps the position of the corresponding index of each element in the 

337 vector before and after sorting consistent with the position of the element, and obtains a new 

338 ranking vector [ [1], [2], , [ ]]i i i kL
i
D = D D D , where each the element Di[k] contains two values k and 

339 d[k], and finally the index of the logarithmic element of the known cryptogramme k* probability 

340 in Di is output, that is, the guessing entropy GE(d[k*]). At the i-th attack, the higher the matching 

341 rate of the energy trace model of the real cryptogramme, the higher the index ranking of its 

342 GE(d[k*]). Guessing entropy is the GE(d[k*]) index ranking output of each attack——rank. In n 

343 attacks, the better the performance of the cryptanalysis method and the higher the efficiency, the 

344 faster the ranking of GE(d[k*]) converge to zero. It shows that in the i-th attack, the guessing 

345 entropy converges to zero and continues to converge in subsequent attacks. The adversary only 

346 needs i attacks to crack the cryptogramme, that is, only i power consumption traces are needed to 

347 break the secret. Equation (2) can be rewritten as (3):

348  (3)GE𝑛 (𝑔)= Every[𝑅ank(𝑔,𝐷𝑡𝑟𝑎𝑖𝑛,𝐷𝑡𝑒𝑠𝑡,𝑛)]
349

350 4 Side-channel leaking public data sets

351 The newly published ASCAD database[12] aims to achieve AES-128 with first-order mask 

352 protection, namely 8-bit AVR microcontroller (ATmega8515), in which the energy trace is the 

353 data signal converted by the collected electromagnetic radiation. The adversary outputs the 

354 collected signal for the third S-box of the first round of AES encryption, and launches an attack 
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355 against the first AES key byte. The database follows the MNIST database[38] rules and provides a 

356 total of four data sets, each with 60,000 entries power consumption traces, of which 50,000 

357 power consumption traces are used for analysis/training, and 10,000 power consumption traces 

358 are used for testing/attack. The first three ASCAD data sets respectively represent the encryption 

359 realization leakage with three different random delay protection countermeasures. The signal 

360 offsets desync=0, desync=50, and desync=100 are used to represent these three data sets with 

361 two strategies of mask and delay. All power consumption traces in the first three types of data 

362 sets contain 700 feature points. These feature points are selected from the original energy trace 

363 containing 100,000 feature points, and the selection basis is the position of the largest signal 

364 peak. When the mask is known, the maximum signal-to-noise ratio of the data set can reach 0.8, 

365 but it is almost 0 when the mask is unknown. The last ASCAD data set stores the original energy 

366 trace.

367

368 Methods

369 1 Design of CNNSCA base model

370 With reference to the advantages of the VGG-CNNSCA model with high classification and 

371 fitting efficiency and the Alex-CNNSCA model occupying less computing resources, the paper 

372 selects the same structural parameters from these two models, and some of the factors that 

373 promote the high fitting efficiency of the two types of models parameter. These parameters 

374 construct a new CNN simple model specifically for SCA scenarios, which is used to test the 

375 impact of different hyperparameters on model performance. The convolution block of this simple 

376 model consists of the Conv layer, BN layer, and ACT layer. After the block, a POOL layer is 

377 usually added to reduce the feature dimension. The new convolution block is repeated n times in 

378 the network model until it is reasonable. Until the output of the size. Then, introduce n FC layers, 

379 use the softmax function in the last FC layer, and finally output the classification prediction 

380 results. In addition, in order to improve the classification and recognition performance of the 

381 CNNSCA model, the SE module is newly embedded in the simple model. Its main function is to 

382 reduce the gradient dispersion problem in error back propagation. This is the first use in the 

383 CNNSCA model. The SE module will be embedded between the convolutional layer and the 

384 pooling layer of the convolutional block of the simple model, and the simple model containing 

385 the SE module will be renamed to the CNNSCA base model-CNNSCAbase. The newly designed 

386 CNNSCAbase structure is shown in Figure 4(Convolutional network structure in a side-channel 

387 attack scenario).

388

389 The initial configuration basis and selection of CNNSCAbase are as follows: Find out the two 

390 prototypes of Alex-CNNSCA and VGG-CNNSCA to set the same parameters, set these 

391 parameters in CNNSCAbase in the same way, these parameters are as follows: 5 convolutional 

392 blocks , 3 full connections , the padding modes of the convolutional layers are SAME, and the 

393 activation functions of all layers before the last layer of the network select ReLU. In addition, in 

394 most classification tasks, convolutional networks use softmax, crossentropy, and RMSprop as the 
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395 model's classification function, loss function, and optimizer[19-23]. Here, CNNSCAbase also 

396 chooses to use these three activation functions . Since the side-channel leakage data belongs to 

397 one-dimensional data, the processing complexity is less than that of two-dimensional data. Here, 

398 the convolution layer of each convolution block is initialized to 1, and the number of convolution 

399 kernels in the first convolution layer is 64 (choose the smaller number of Alexnet or VGGnet), 

400 the size of the convolution kernel is 3x3, the step size is 1, the pooling mode is tentatively 

401 averaged pooling mode, the pooling window size is 2, and the step size is 2. In addition, in the 

402 initial setting of CNNSCAbase, a new SE module is embedded in the last four convolution 

403 blocks. All initial structure parameters of CNNSCAbase are shown in Table 2(CNNSCAbase 

404 Configuration).

405

406 Here we first verify and analyze the model training effect of CNNSCAbase with and without SE 

407 module. Remove the SE module from the CNNSCAbase model, all other parameters remain 

408 unchanged, and name this model CNNSCAnoSE. Train the models CNNSCAnoSE and 

409 CNNSCAbase on the training set of the ASCAD dataset with known masks. The training results 

410 of the two models are shown in Figure 5(Training effect of CNNSCAnoSE model and 

411 CNNSCAbase model):

412

413 As shown in Figure 5, when the training iteration reaches 28 times, the accuracy of 

414 CNNSCAbase is significantly higher than that of CNNSCAnoSE, which is about 96%. Continue 

415 to train the CNNSCAnoSE model, and when the training iteration reaches 70 times, its accuracy 

416 rate rises to about 90%. In addition, when the training accuracy of the two models is close, the 

417 training time of the 28-iteration CNNSCAbase model is about 1393 seconds, which is 

418 significantly less than the training time of the 70-iteration CNNSCAnoSE model, the training 

419 time of the latter is about 2240 seconds. This proves that the SE module can promote the 

420 improvement of the classification performance of the CNNSCAbase model and can reduce the 

421 model training time.

422

423 Next, we discuss the hyperparameter optimization of the CNNSCA model. Model structure 

424 parameters and training parameters are hyperparameters and need to be set in advance. Later, we 

425 will design a set of experimental procedures to optimize these hyperparameters in specific 

426 application scenarios. For example, we choose to determine the model parameters first rather 

427 than the global training parameters, first determine the number of Conv layers, rather than first 

428 determine the kernel size or the number of filters . The reason for this design is: currently, 

429 Python's deep learning architecture library [25-26] is mainly used to program the CNN network. 

430 When using these library methods, the CNN network structure is usually programmed first. The 

431 order in which these parameters appear in the program code will be affected by the library 

432 methods, and then the training parameters are designed according to the size of the network and 

433 the size of the training set. It is precisely in consideration of the order in which the parameters 
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434 appear during programming, we have designed the order of the following experimental 

435 procedures.

436

437 2 Selection and optimization of CNN structure parameters for side-channel cryptanalysis

438 2.1 Structural parameter selection rules

439 In section Methods 1, the base model CNNSCAbase is set, and the best model after parameter 

440 optimization will be named CNNSCAnew later. In CNNSCAbase, in addition to the specific set 

441 of structural parameters, the remaining structural parameters need to be customized. These 

442 structural parameters include classification function, loss function, optimizer, the number of 

443 convolutional layers in each convolution block, the number of convolution kernels in the 

444 convolution layer, convolution kernel size, pooling layer pooling mode. When choosing these 

445 custom structure parameters, you need to follow the classic rules of building a deep learning 

446 network structure[20,22], which can reduce the number of unnecessary test parameters. The rules 

447 are as follows:

448

449 Rule 1: Set the same parameters for the convolutional layers in the same convolutional block to 

450 keep the amount of data generated by different layers unchanged.

451 Rule 2: The dimensionality of each pooling window is 2, and the window sliding step is also 2, 

452 each operation reduces the dimensionality of the input data to half.

453 Rule 3: In the convolutional layer of the i-th block (starting from i=1), the number of convolution 

454 kernels is n:
 

, i≥2. This rule keeps the amount of data processed by different 1
1 2i

in n  

455 convolution blocks as constant as possible. The network structure characteristics of VGG-16 in 

456 this reference [21] are formulated.

457 Rule 4: The size of the convolution kernel of all convolution layers is the same.

458

459 2.2 Structural parameter optimization

460 Among the custom structure parameters, the structure parameters that need to be further adjusted 

461 through experimental analysis are: the number of convolution layers in each convolution block, 

462 the number of convolution kernels in the convolution layer, the size of the convolution kernel, 

463 the pooling mode of the pooling layer, SE module. The experimental process of structural 

464 parameter optimization is as follows:

465

466 1) Number of convolutional layers

467 In Section Methods 1, in the initial CNNSCAbase structure, the number of convolutional layers 

468 for each convolution block is 1, and the convolutional structure is named Cnov1. Refer to the 

469 number of convolutional layers of different convolutional blocks of the Alexnet and VGGnet16 

470 prototypes. It is found that the minimum number is 1 and the maximum is 3, and the small 

471 number is distributed in the front convolution block, and the large number is at the back. This is 

472 also to build deep learning The common habit of the Internet. Therefore, the upper limit of the 

473 number of convolutional layers of the CNNSCAbase convolution block is set to 3, and the 
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474 baseline is Cnov1, and a certain convolutional layer parameter configuration can be obtained 

475 through two sets of necessary experiments. When training the CNNSCAbase model, the training 

476 iteration and batch parameters of the current optimal CNNSCA model[12] are used, which are 75 

477 and 200 (in all experiments in section Methods 2.2, unless otherwise specified, the iteration and 

478 batch parameters are used. experiment).

479

480 Experiment 1: Set up a model in which the number of convolutional layers in 5 convolutional 

481 blocks is 2, and other parameters are consistent with CNNSCAbase, and the structure is named 

482 Cnov2. Then set the number of convolutional layers of the first 4 convolutional blocks to 2, and 

483 the convolutional layer of the last convolutional block to 3. Other parameters are consistent with 

484 CNNSCAbase, and the structure is named Cnov3. The specific settings of the number of 

485 convolutional layers of each convolution block of Cnov1~3 are shown in Table 

486 3(CNNSCAbase.Conv1-7 Configuration). The three structures constructed are trained and tested, 

487 and the results of experiment 1 are shown in Figure 6(Convergence of guessing entropy of 

488 Cnov1~3).

489

490 From the results in Figure 6, it is found that when Cnov2 and Cnov1 attack the 750th energy 

491 trace, their guessing entropy basically converges to 0, while Cnov3 cannot converge in a finite 

492 number of (1000) attacks. When doing further analysis, if you set two or more convolutional 

493 blocks with 3 convolutional layers in the 5 convolutional blocks of the model, the calculation 

494 amount and parameter amount of model training will increase by several times, and the 8G GPU 

495 memory used in the experiment will be directly exhausted , unable to run the code, then this 

496 parameter setting method will have no practical significance. Therefore, the upper limit of the 

497 number of convolutional layers for each convolutional block is determined to be 2.

498

499 Experiment 2: On the basis of the conclusion of Experiment 1, the convolutional layer parameter 

500 setting of each convolution block is further accurate. As shown in Figure 6, the convergence of 

501 the orange line representing the entropy of Cnov2's guess is more stable than that of Cnov1, but 

502 it is obvious that there are more convolutional layers, which means that the amount of model 

503 calculations and parameters are relatively large, which affects the overall performance of the 

504 model. Therefore, four structures of Cnov4~7 are set, and each structure sequentially reduces the 

505 number of convolutional layers in each convolution block of Cnov2 by one. The specific settings 

506 of the number of convolutional layers of each convolution block of Cnov4~7 are shown in Table 

507 3(CNNSCAbase.Conv1-7 Configuration). Train and test these constructed structures, and the 

508 results of experiment 2 are shown in Figure 7(Convergence of guessing entropy of 

509 Cnov1~2,4~7).

510

511 The red curve representing the entropy of Cnov5 guessing in Figure 7 converges optimally. 

512 Finally, the number of convolutional layers of the Cnov5 structure is determined, and the 

513 benchmark is set for the number of convolutional layers of CNNSCAnew.
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514

515 2) The number of convolution kernels in the convolution layer

516 It is known that the number of convolution kernels of each convolutional layer of CNNSCAbase 

517 is initially set according to Rule 3. The number of convolution kernels of the first convolutional 

518 layer is 64. Usually increasing the number of convolution kernels means that more dimensional 

519 feature extraction is performed on the input data, thereby improving the classification efficiency 

520 of the convolutional network. But it will inevitably lead to an increase in the amount of 

521 calculation and storage of the attack device, which will lead to an increase in the training time of 

522 the model. Therefore, under the condition that the efficiency loss of the guarantee model is not 

523 large, the model training time can be reduced by reducing the number of convolution kernels. 

524 Since the number of convolution kernels in the later layer increases by a factor of 2 of the 

525 number of convolution kernels in the first convolution layer, to determine the number of 

526 convolution kernels as a benchmark, it is only necessary to test the number of convolution 

527 kernels in the first convolution layer. At the same time, the CNNSCA model in reference [12], 

528 the upper limit of the number of convolution kernels in the convolution layer is 512, which can 

529 achieve the effect of breaking the density, so the paper also adjusts the upper limit of the number 

530 of convolution kernels to 512.

531

532 Experiment 3: Name the four structures tested as filter1, filter2, filter3, and filter4. The 

533 convolution kernel values of the first convolution layer are 8, 16, 32, 64, and the number of 

534 convolution kernels of the remaining four convolution blocks is also increased by a factor of 2 

535 respectively. The upper limit of the number of convolution kernels is always 512. Other 

536 structural parameters are the parameters of the current CNNSCAnew. Train and test the filter1~4 

537 structure, and the result of experiment 3 is shown in Figure 8(Convergence of guessing entropy 

538 of filter1~4 (epochs=75)).

539

540 Figure 8 shows that after 75 iterations of training, the guessing entropy of the filter4 structure 

541 cannot converge. Although the guessing entropy of the filter1~3 structure converges, it fluctuates 

542 all the time. When checking the training accuracy of the filter1~3 structure, it is found that the 

543 accuracy of the three structures has reached more than 99%, or even reached 1. Obviously, the 

544 model has an overfitting phenomenon, which is the most common problem in neural networks. 

545 Therefore, the number of training iterations of the filter1~3 structure is reduced to 40, the three 

546 structures are retrained, and then the test set is attacked again, and the result shown in Figure 

547 9(Convergence of guessing entropy of filter1~3 (epochs=40))  is obtained. The guessing entropy 

548 of the filter1~3 structure in Figure 9 all converge to rank 0, and filter3 converges to the position 

549 of rank 0 earliest. In summary, the benchmark for selecting convolution kernel parameters is the 

550 filter3 structure, and the convolution kernel parameters of the CNNSCAnew structure are 

551 updated synchronously.

552

553 3) Pooling mode of pooling layer
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554 It is known that the initial setting mode of the pooling layer of CNNSCAbase is AveragePool, 

555 and another common pooling mode is MaxPooling. According to rule 3, both the pooling 

556 window and the pooling step size are still selected here.

557

558 Experiment 4: Will test the impact of two pooling modes AveragePool and MaxPooling on the 

559 current CNNSCAnew structure. The result of experiment 4 is shown in Figure 10(Convergence 

560 of guessing entropy of AveragePool and MaxPool structure).

561

562 In Figure 10, it is obvious that the guessing entropy convergence of the average pooling structure 

563 is better than the maximum pooling structure, so the benchmark of the pooling layer pooling 

564 mode is average pooling, and the pooling mode of the CNNSCAnew structure is set to average 

565 pooling.

566

567 4) Convolution kernel size

568 The size of the convolution kernel of each convolution layer in CNNSCAbase is initially set to 

569 1x3, or 3 for short. In deep learning, people often reduce the size of the convolution kernel by 

570 increasing the depth of the network, thereby reducing the computational complexity of the 

571 network. In the VGG-CNNSCA structure, the convolution kernel uses a larger size of 11, and in 

572 the Alex-CNNSCA structure, a small size of 3 is used.

573

574 Experiment 5: Test the attack effects of the models with the convolution kernel sizes of 3, 5, 7, 9, 

575 and 11, and name these five structures as kernel3, kernel5, kernel7, kernel9, and kernel11. The 

576 other parameters of these structures are compared with The current CNNSCAnew is the same. 

577 The result of experiment 5 is shown in Figure 11(Convergence of guessing entropy of different 

578 convolution kernel size structures).

579

580 In Figure 11, the convolution kernel size of the structure kernel3 is 3, which guesses that the 

581 entropy convergence is better than other structures, so the size 3 is used as the setting reference 

582 for the convolution kernel size. At the same time, the size of the convolution kernel of the 

583 CNNSCAnew structure is set to 3.

584

585 5) SE module

586 The attention mechanism in deep learning is essentially similar to the selective visual attention 

587 mechanism of humans, and the core role is to select information that is more critical to the 

588 current task goal from a large number of information[24]. The paper has initially added an SE 

589 fixed module to the last four convolution blocks of CNNSCAbase. The initial setting of the 

590 dimensional change ratio of the first full link layer of the SE module is 1/16, but this 

591 conventional setting is in the SCA scene The suitability of the medium requires further 

592 verification.

593
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594 Experiment 6: Test the SE module of the model. The rate of the dimensional change of the first 

595 full link layer is 1/4, 1/8, 1/16, and 1/32 respectively. The other parameters of the test model are 

596 the same as CNNSCAnew. . Experiment 7: Test the attack effect of the SE module used 1, 2, and 

597 3 times for the last four convolutional blocks in the current CNNSCAnew structure. The results 

598 of experiment 6 are shown in Figure 12(Convergence of guessing entropy for different SE 

599 dimension ratios).

600

601 As shown in Figure 12, when the dimensional ratio of the SE module is 1/8, the guessing entropy 

602 convergence of the overall structure of the CNN is the best. On the basis of this dimensional ratio, 

603 the result of Experiment 7 is shown in Figure 13(Convergence of guessing entropy for different 

604 number of SE cycles). It is found that when the last four convolution blocks of CNNSCAnew use 

605 the SE module twice, the guessing entropy converges fastest. Therefore, the dimensional ratio of 

606 the SE module is 1/8 and the SE module is looped twice as a new benchmark for the parameters 

607 of the SE module in the CNNSCAnew structure.

608

609 6) Number of channels at the full link layer

610 The CNNSCA model in literature [12,16] uses 4096 channels in the fully connected layer, which 

611 is similar to the number of channels in the fully connected layer of the original VGGnet and 

612 Alexnet structures. Considering that the classification task of the ImageNet competition is 1000 

613 classifications, and only 256 classifications are needed in the SCA scene, the number of channels 

614 can be adjusted appropriately to reduce the training complexity of the model.

615

616 Experiment 8: Will test the model attack effect of the four cases where the number of channels in 

617 the fully connected layer is 4096, 3072, 2048, and 1024. The other parameters of these test 

618 models are the same as CNNSCAnew. The reason why the number of channels is not set lower 

619 than 1024 is that from the convolutional layer to the fully connected layer, if the vector 

620 dimension changes sharply, the feature points of the vector are greatly reduced, which will affect 

621 the training effect of the model. The result of experiment 8 is shown in Figure 14(Convergence 

622 of guessing entropy of the four channel number structure of FC layer).

623

624 It is found from Figure 14 that when the number of channels of the FC layer is 1024, the 

625 guessing entropy of its structure converges fastest and continues to be stable. Therefore, 1024 is 

626 selected as the reference for the number of channels in the FC layer of the CNNSCAnew 

627 structure.

628

629 In summary, the parameter benchmark of the CNNSCAnew structure has been optimized. The 

630 new structure parameters are shown in Table 4 (CNNSCAnew Configuration).

631

632 3 Selection and optimization of CNN training parameters for side-channel cryptanalysis
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633 Almost all experiments in Section Methods 2.2 use the three parameters of 75 iterations, 200 

634 batches of learning, and 1x10-4 learning rate for experiments. These training parameters have 

635 little effect on the experimental effects of optimizing various structural parameters, but It is not 

636 the optimal setting. The convolutional network of deep learning is applied to the side-channel 

637 attack, and these training parameters should also be tuned according to the actual processed side-

638 channel signal data. The order of training parameter tuning is usually learning rate, batch 

639 learning amount, and number of iterations[39-40]. In the experiment of training parameter 

640 optimization, the current CNNSCAnew structure is used. The training parameter optimization 

641 experiment process is as follows:

642

643 1) Learning rate

644 The learning rate is a hyperparameter that is artificially set. The learning rate is used to adjust the 

645 size of the weight change, thereby adjusting the speed of model training. The learning rate is 

646 generally between 0-1. The learning rate is too large, and the learning will be accelerated in the 

647 early stage of model training, making it easier for the model to approach the local or global 

648 optimal solution, but there will be large fluctuations in the later stage of the training, and even 

649 the value of the loss function may hover around the minimum value, which is always difficult to 

650 reach Optimal solution; the learning rate is too small, the model weight adjustment is too slow, 

651 and the number of iterations is too much.

652

653 Experiment 9: Will test the impact of five commonly used learning rates on the model's 

654 cryptanalysis effect, namely lr1=1x10-2, lr2=1x10-3, lr3=1x10-4, lr4=1x10-5, lr5=1x10-6 . The 

655 result of experiment 9 is shown in Figure 15(Convergence of model guessing entropy under five 

656 learning rates).

657

658 Figure 15 reflects that when the learning rate is lr2, the guessing entropy of CNNSCAnew 

659 converges fastest and is the most stable. Therefore, 1x10-3 is selected as the learning rate 

660 benchmark of the CNNSCAnew structure.

661

662 2) Batch size

663 The appropriate batch size is more important for the optimization of the model. This parameter 

664 does not need to be fine-tuned, just take a rough number, usually 2n (GPU can play a better 

665 performance for batches of the power of 2). A batch size that is too large will be limited by the 

666 GPU memory, the calculation speed will be slow, and it cannot increase indefinitely (the training 

667 set has 50,000 data); it cannot be too small, which may cause the algorithm to fail to converge.

668

669 Experiment 10: According to the size of the ASCAD data set in Section Materials 4, this 

670 experiment selects the batch size values: 32, 64, 128, and 256 for the experiment. The result of 

671 experiment 10 is shown in Figure 16(Convergence of model guessing entropy under four 

672 batches).
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673

674 It can be seen from Figure 16 that when the batch learning amount is 128, the guessing entropy 

675 of CNNSCAnew converges fastest and is the most stable. Therefore, 128 is selected as the batch 

676 size benchmark of CNNSCAnew structure.

677

678 3) Number of iterations (epoch)

679 The number of iterations is related to the fitting performance of the CNNSCA model. The model 

680 has been fitted (the accuracy rate reaches 1), and there is no need to continue training; on the 

681 contrary, if all epochs have been calculated, but the loss value of the model is still declining, and 

682 the model is still optimizing, then the epoch is too small. Should increase. At the same time, the 

683 number of iterations of model training also refers to the actual cryptanalysis effect of the model, 

684 which is measured by guessing entropy.

685

686 Experiment 11: In experiments 1-10, almost all use iteration number 75 to train the CNNSCA 

687 model. This experiment will center on iteration number 75, and train the CNNSCAnew model at 

688 10 intervals in the upper and lower intervals to further optimize the model parameter epoch. The 

689 interval number of 10 is chosen because the step interval is too small, and the error loss of model 

690 training is not much different, so the setting is meaningless; the interval is too large, and repeated 

691 experiments may be required to determine an appropriate number of iterations. Therefore, 

692 Experiment 11 will test 8 iteration parameters epoch1=15, epoch2=25, epoch3=35, epoch4=45, 

693 epoch5=55, epoch6=65, epoch7=75, epoch8=85. The current CNNSCAnew structure has 

694 achieved higher training accuracy and breaking performance, in order to reduce model 

695 calculation pressure and calculation time, lower iteration parameters are usually selected when 

696 the model performs better. Therefore, the upper limit of the epoch test parameter is set to 85. The 

697 result of experiment 11 is shown in Figure 17(Convergence of model guessing entropy under 

698 eight epochs).

699

700 From the results in Figure 17, it is found that the model of epoch1-4 guesses that the entropy 

701 does not converge. Separately recalculate the graph of epoch5-8 model. The result is shown in 

702 Figure 18(Convergence of model guessing entropy under four epochs). It can be clearly seen that 

703 the epoch5-8 model has a convergence trend. Among them, the epoch5 curve is closest to the 

704 position of ranking 0, and the epoch8 curve first converges to ranking 0, but afterwards it 

705 fluctuates more widely, and it is obviously over-fitting. The convergence of epoch6 and 7 is 

706 similar, the curve begins to fluctuate greatly, and it is close to ranking 0 in the later period.

707

708 Experiment 12: Continue to debug the epoch parameters in a smaller range, and test the other 

709 two iterations with an interval of only 5: epoch60=60, epoch70=70. The trained epoch60 and 

710 epoch70 models and the previously trained epoch5, epoch6, and epoch7 models are 

711 simultaneously attacked on the target set. The results of Experiment 12 are shown in Figure 

712 19(Convergence of model guessing entropy under five epochs).
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713

714 Figure 19 shows that the guessed entropy of the epoch70 model converges best, and its guessed 

715 entropy converges fastest and is the most stable. Therefore, 70 is selected as the training iteration 

716 benchmark of the CNNSCAnew structure.

717

718 Results

719 1 Get a new model CNNSCAnew for attacking ASCAD data set with known first-order mask 

720 protection.

721 According to the 12 sets of experiments in Section Methods 2 and Section Methods 3, the best 

722 benchmarks for CNNSCAnew structure parameters and training parameters are demonstrated. 

723 The CNNSCAnew model contains 5 convolutional blocks, 8 convolutional layers, and 3 fully 

724 connected layers. The size of the convolution kernel of each convolution layer is 3, the activation 

725 function is ReLU, and the padding is Same. Each convolutional block is equipped with a pooling 

726 layer, the pooling layer selects the average pooling mode, and the pooling window is (2, 2). The 

727 number of output channels of the convolution layer in the convolution block 1-5 starts from 32 

728 and increases by a multiple of 2 in turn. Two SE modules are added after the convolution layer 

729 of each convolution block in the convolution block 2-4, and the dimension ratio of the SE is set 

730 to 1/8. In the first two fully connected layers, set the number of output channels to 1024 and the 

731 activation function to ReLU. The output channel number of the third fully connected layer is the 

732 target classification number 256, and the classification function is Soft-max. The global 

733 configuration loss function is crossentropy, the optimization method is RMSprop, the number of 

734 training iterations is 70, the learning rate is 1x10-3, and the batch learning volume is 128. All 

735 parameters of the newly obtained CNNSCAnew are shown in Table 5(CNNSCAnew 

736 Configuration).

737

738 2 The CNNSCA model design method and the convolutional network hyperparameter 

739 optimization scheme for side-channel attack are refined.

740 The CNNSCA model design method is refined: comprehensively utilize the advantages of VGG-

741 CNNSCA model classification and fitting efficiency and Alex-CNNSCA model occupy less 

742 computing resources, while using SEnet's SE module to reduce the gradient dispersion problem 

743 of error back propagation in deep neural networks to save calculation time, a new basic model of 

744 CNNSCA was designed, named CNNSCAbase.

745

746 At the same time, the hyperparameter optimization scheme of the convolutional network used for 

747 side-channel attacks is refined: design the structural parameter optimization experiment and the 

748 training parameter optimization experiment, and use CNNSCAbase to implement the attack 

749 training. According to parameter selection rules, common sense of parameter optimization of 

750 CNN model, and data characteristics of actual application scenarios, the test parameters of each 

751 experiment are designed, and unnecessary test parameters are excluded. Each time, according to 

752 the cryptanalysis results of the experiment, the parameters that make CNNSCAbase's 
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753 cryptanalysis effect better are selected. Relying on two sets of experimental processes, a 

754 hyperparameter optimization scheme is formed, and the hyperparameters finally determined by 

755 the experiment are used as the parameters of the new model CNNSCAnew.

756

757 Discussion

758 Comparative analysis of CNNSCAnew and other profiling side-channel attack methods

759 1 Comparative analysis of CNNSCAnew, classic template attack and MLPSCA

760 Experiment 13: Compare the cryptanalysis’s performance of CNNSCAnew with the HW-based 

761 TA[1] and MLPSCA method proposed by Benadjila et al[12]. TA and MLPSCA are the profiling 

762 methods that performed better in the early traditional profiling methods and the later new 

763 profiling methods, respectively. Experiment 13 carried out an attack on the ASCAD data set with 

764 a known mask, which represents the realization of the encryption in an unprotected state. The 

765 result of experiment 13 is shown in Figure 20(TA, MLPSCA, CNNSCAnew guessing entropy 

766 convergence).

767

768 It can be seen from Figure 20 that CNNSCAnew's guessing entropy convergence is significantly 

769 better than TA and MLPSCA.

770

771 2 Comparative analysis with other existing CNNSCA

772 Experiment 14: Compare the breaking performance of CNNSCAnew model with VGG-

773 CNNSCA[12] and Alex-CNNSCA[16]. The latter two methods are the profiling methods with 

774 better performance among the latest profiling methods. Among them, VGG-CNNSCA in [12] 

775 uses the ASCAD public data set, and Alex-CNNSCA in [16] uses a self-collected data set. 

776 Experiment 14 carried out an attack on the ASCAD data set with a known mask, which 

777 represents the realization of the encryption in an unprotected state. The result of experiment 14 is 

778 shown in Figure 21(CNNSCAnew, VGG-CNNSCA, Alex-CNNSCA guessing entropy 

779 convergence).

780

781 It can be seen from Figure 21 that the CNNSCAnew proposed in this paper has a better guessing 

782 entropy convergence than other CNNSCAs. In [12], the guessing entropy of VGG-CNNSCA 

783 requires at least 650 power consumption traces to converge to rank zero, and the model training 

784 time takes 37 minutes. The CNNSCAnew method constructed in this paper only requires 61 

785 power consumption traces, and the model training time only needs about 28 minutes. The 

786 training time of CNNSCAnew and VGG-CNNSCA in this paper are shown in Figure 

787 22(CNNSCAnew and VGG-CNNSCA training time).

788

789 After comparing CNNSCAnew with VGG-CNNSCA and Alex-CNNSCA, the model 

790 comparison analysis and the cryptanalysis performance comparison analysis, the results are 

791 summarized in Table 6(Comparative analysis of CNNSCAnew, VGG-CNNSCA and Alex-

792 CNNSCA) to show.
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793

794 Conclusions

795 Among the profiling side-channel cryptography attack methods, the most popular one is 

796 CNNSCA, a side-channel attack method combined with deep learning convolutional neural 

797 network algorithms. Its cryptanalysis performance is significantly better than traditional profiling 

798 methods. Among the existing CNNSCA methods, the CNNSCA network models that achieve 

799 cryptanalysis mainly include CNNSCA based on the VGG variant (VGG-CNNSCA) and 

800 CNNSCA based on the Alexnet variant (Alex-CNNSCA). The learning capabilities and 

801 cryptanalysis performance of these CNNSCA models it is not optimal. The paper aims to explore 

802 effective methods to obtain the performance gains of the new side-channel attack method 

803 CNNSCA.

804

805 After studying the related knowledge, necessary structure and core algorithm of CNNSCA, the 

806 paper found that CNNSCA model design and hyperparameter optimization can be used to 

807 improve the overall performance of CNNSCA. In terms of CNNSCA model design, the 

808 advantages of VGG-CNNSCA model classification and fitting efficiency and the Alex-CNNSCA 

809 model occupying less computing resources can be used to design a new CNNSCA basic model. 

810 In order to better reduce the gradient dispersion problem of error back propagation in the deep 

811 network, it is a very effective method to embed the SE module in this basic model; in terms of 

812 the hyperparameter optimization of the CNNSCA model, the above basic model is applied to 

813 side-channel leakage A known first-order mask data set in the public database (ASCAD). In this 

814 specific application scenario, according to the model design rules and actual experimental 

815 results, unnecessary experimental parameters can be excluded to the greatest extent. Various 

816 hyperparameters of the model are optimized within the parameter interval to improve the 

817 performance of the new CNNSCA, and the final determination benchmark for each 

818 hyperparameter is given. Finally, a new CNNSCA model optimized architecture for attacking 

819 unprotected encryption devices is obtained——CNNSCAnew. The paper also verified through 

820 experimental comparison that CNNSCAnew's cryptanalysis effect is completely superior to 

821 traditional profiling methods and the new profiling methods in literature [12,16]. In the literature 

822 [12,16], the results of CNNSCA's guessing entropy are: convergence to 650 and oscillation. The 

823 result of CNNSCAnew's guessing entropy proposed in this paper is to converge to a minimum of 

824 61. Under the same experimental environment and experimental equipment conditions, literature 

825 [12] took 40 minutes from model training to attacking the key, while the total calculation time of 

826 CNNSCAnew was shortened to 30 minutes.

827

828 It should be noted that in practice, the results of each training of the CNNSCAnew model will 

829 have a slight deviation. This is a normal phenomenon during neural network training and will not 

830 affect the average performance of the model. While proposing the new CNNSCA method, the 

831 paper also provides a more comprehensive and detailed design plan and optimization method for 

832 the side-channel cryptanalysis researchers who need to design the CNNSCA model. In the 
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833 future, we can use these design schemes and optimization methods to continue to explore the 

834 CNNSCA model that is more suitable for attacking protected equipment to achieve efficient 

835 attacks on encrypted equipment with protection, which is of great significance to information 

836 security and encryption protection.

837
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Figure 1
SEnet module
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Figure 2
Convolution_calculation_process
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Figure 3
Pooling_calculation_process
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Figure 4
Convolutional network structure in a side-channel attack scenario
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Figure 5
Training_effect_of_CNNSCAnoSE_model_and_CNNSCAbase_model
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Figure 6
Convergence_of_guessing_entropy_of_Cnov1~3

Each curve represents the convergence trend of guessing entropy under the six model
structures of Cnov1~3 . The abscissa represents the number of energy traces used in the
attack, and the ordinate represents the ranking of the guessing entropy.
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Figure 7
Convergence_of_guessing_entropy_of_Cnov1~2,4~7

Each curve represents the convergence trend of guessing entropy under the six model
structures of Cnov1~2,4~7 . The abscissa represents the number of energy traces used in
the attack, and the ordinate represents the ranking of the guessing entropy.
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Figure 8
Convergence_of_guessing_entropy_of_filter1~4_(epochs=75)

Each curve represents the model guessing entropy of the four convolution kernel sizes. The
abscissa represents the number of energy trajectories used in the attack, and the ordinate
represents the order of guessing entropy.
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Figure 9
Convergence_of_guessing_entropy_of_filter1~3_(epochs=40)

Each curve represents the model guessing entropy of the three convolution kernel sizes. The
abscissa represents the number of energy trajectories used in the attack, and the ordinate
represents the order of guessing entropy.
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Figure 10
Convergence_of_guessing_entropy_of_AveragePool_and_MaxPool_structure

Each curve represents the model guessing entropy of two pooling methods. The abscissa
represents the number of energy trajectories used in the attack, and the ordinate represents
the order of guessing entropy.
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Figure 11
Convergence_of_guessing_entropy_of_different_convolution_kernel_size_structures

Each curve represents the model guessing entropy of 5 convolution kernel sizes structures.
The abscissa represents the number of energy trajectories used in the attack, and the
ordinate represents the order of guessing entropy.
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Figure 12
Convergence_of_guessing_entropy_for_different_SE_dimension_ratios

Each curve represents the model guessing entropy of the four SE dimension ratios . The
abscissa represents the number of energy trajectories used in the attack, and the ordinate
represents the order of guessing entropy.
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Figure 13
Convergence_of_guessing_entropy_for_different_number_of_SE_cycles

Each curve represents the model guessing entropy of the three SE cycles . The abscissa
represents the number of energy trajectories used in the attack, and the ordinate represents
the order of guessing entropy.
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Figure 14
Convergence_of_guessing_entropy_of_the_four_channel_number_structure_of_FC_layer

Each curve represents the model guessing entropy of the four FC layer structures. The
abscissa represents the number of energy trajectories used in the attack, and the ordinate
represents the order of guessing entropy.
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Figure 15
Convergence_of_model_guessing_entropy_under_five_learning_rates

Each curve represents the model guessing entropy of five learning rates . The abscissa
represents the number of energy trajectories used in the attack, and the ordinate represents
the order of guessing entropy.
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Figure 16
Convergence_of_model_guessing_entropy_under_four_batches

Each curve represents the model guessing entropy of the four training batches. The abscissa
represents the number of energy trajectories used in the attack, and the ordinate represents
the order of guessing entropy.
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Figure 17
Convergence_of_model_guessing_entropy_under_eight_epochs

Each curve represents the model guessing entropy of eight training epochs . The abscissa
represents the number of energy trajectories used in the attack, and the ordinate represents
the order of guessing entropy.
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Figure 18
Convergence_of_model_guessing_entropy_under_four_epochs

Each curve represents the model guessing entropy of four training epochs . The abscissa
represents the number of energy trajectories used in the attack, and the ordinate represents
the order of guessing entropy.
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Figure 19
Convergence_of_model_guessing_entropy_under_five_epochs

Each curve represents the model guessing entropy of five training epochs . The abscissa
represents the number of energy trajectories used in the attack, and the ordinate represents
the order of guessing entropy.
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Figure 20
TA,_MLPSCA,_CNNSCAnew_guessing_entropy_convergence

Each curve represents the model guessing entropy of TA, MLPSCA, and CNNSCAnew
respectively. The abscissa represents the number of energy trajectories used in the attack,
and the ordinate represents the order of guessing entropy.
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Figure 21
CNNSCAnew,_VGG-CNNSCA,_Alex-CNNSCA_guessing_entropy_convergence

Each curve represents the model guessing entropy of CNNSCAnew, VGG-CNNSCA and Alex-
CNNSCA respectively. The abscissa represents the number of energy trajectories used in the
attack, and the ordinate represents the order of guessing entropy.
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Figure 22
CNNSCAnew_and_VGG-CNNSCA_training_time
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Table 1(on next page)

CNN with outstanding performance in previous ILSVRC competitions
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Table 1 CNN with outstanding performance in previous ILSVRC competitions

Year Network / Ranking val top-1 val top-5 test top-5 Remarks

2012 Alexnet（Champion） 36.7% 15.4% 15.32% 7CNNs、Used data from 2011

2013 ZFnet（Champion） -- -- 13.51% The result on the ZFNet paper is 14.8

2014 VGG（Runner-up） 23.7% 6.8% 6.8% Post-race、2 nets

2014
Googlenet v4

（Champion）
16.5% 3.1% 3.08% Post-race、v4+Inception-Res-v2

2015 Resnet（Champion） -- -- 3.57% 6 models

2016
Trimps-Soushen

（Champion）
-- -- 2.99% Public Security III (additional data)

2017 SEnet（Champion） -- -- 2.25% Momenta and Oxford University

PeerJ Comput. Sci. reviewing PDF | (CS-2021:09:65519:1:1:NEW 20 Nov 2021)

Manuscript to be reviewedComputer Science



Table 2(on next page)

CNNSCAbase Configuration
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Table2 CNNSCAbase Configuration

ConvNet Configuration

Input(1x700 vector)

Block1 (Conv3-64)x1 Same\ReL

U

AveragePool 

(2,2)

Block2 (Conv3-128)x1

SE

Same\ReL

U

AveragePool 

(2,2)

Block3 (Conv3-256)x1

SE

Same\ReL

U

AveragePool 

(2,2)

Block4 (Conv3-512)x1

SE

Same\ReL

U

AveragePool 

(2,2)

Block5 (Conv3-

1024)x1

SE

Same\ReL

U

AveragePool 

(2,2)

(FC-4096)x2，ReLU

(FC-256)x1，Soft-max

Model compile（crossentropy、RMSprop）
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Table 3(on next page)

CNNSCAbase.Conv1-7 Configuration
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Table3 CNNSCAbase.Conv1-7 Configuration

Conv Configuration

Block Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7

Block1
(Conv3-

64)x1

(Conv3-

64)x2

(Conv3-

64)x2

(Conv3-

64)x1

(Conv3-

64)x1

(Conv3-

64)x1

(Conv3-

64)x1

Block2

(Conv3-

128)x1

SE

(Conv3-

128)x2

SE

(Conv3-

128)x2

SE

(Conv3-

128)x2

SE

(Conv3-

128)x1

SE

(Conv3-

128)x1

SE

(Conv3-

128)x1

SE

Block3

(Conv3-

256)x1

SE

(Conv3-

256)x2

SE

(Conv3-

256)x2

SE

(Conv3-

256)x2

SE

(Conv3-

256)x2

SE

(Conv3-

256)x1

SE

(Conv3-

256)x1

SE

Block4

(Conv3-

512)x1

SE

(Conv3-

512)x2

SE

(Conv3-

512)x2

SE

(Conv3-

512)x2

SE

(Conv3-

512)x2

SE

(Conv3-

512)x2

SE

(Conv3-

512)x1

SE

Block5

(Conv3-

1024)x1

SE

(Conv3-

1024)x2

SE

(Conv3-

1024)x3

SE

(Conv3-

1024)x2

SE

(Conv3-

1024)x2

SE

(Conv3-

1024)x2

SE

(Conv3-

1024)x2

SE
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CNNSCAnew Configuration
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Table4 CNNSCAnew Configuration

ConvNet Configuration

Input(1x700 vector)

Block1 (Conv3-32)x1 Same\ReLU
AveragePool 

(2,2)

Block2
(Conv3-64)x1

SEx2（1/8）
Same\ReLU

AveragePool 

(2,2)

Block3
(Conv3-128)x2

SEx2（1/8）
Same\ReLU

AveragePool 

(2,2)

Block4
(Conv3-256)x2

SEx2（1/8）
Same\ReLU

AveragePool 

(2,2)

Block5
(Conv3-512)x2

SEx2（1/8）
Same\ReLU

AveragePool 

(2,2)

(FC-1024)x2，ReLU

(FC-256)x1，Soft-max

Model compile（crossentropy、RMSprop）
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Table5 CNNSCAnew Configuration

ConvNet Configuration

Input(1x700 vector)

Block1 (Conv3-32)x1
Same\ReL

U

AveragePool 

(2,2)

Block2
(Conv3-64)x1

SEx2（1/8）
Same\ReL

U

AveragePool 

(2,2)

Block3

(Conv3-

128)x2

SEx2（1/8）

Same\ReL

U

AveragePool 

(2,2)

Block4

(Conv3-

256)x2

SEx2（1/8）

Same\ReL

U

AveragePool 

(2,2)

Block5

(Conv3-

512)x2

SEx2（1/8）

Same\ReL

U

AveragePool 

(2,2)

(FC-1024)x2，ReLU

(FC-256)x1，Soft-max

Model compile（crossentropy、RMSprop）

Training parameters（1x10-3、128、70）
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Table 6(on next page)

Comparative analysis of CNNSCAnew, VGG-CNNSCA and Alex-CNNSCA
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Table 6 Comparative analysis of CNNSCAnew, VGG-CNNSCA and Alex-CNNSCA

Three CNNSCA CNNSCAnew VGG-CNNSCA Alex-CNNSCA

Convol 

block1

(Conv3-32)x1

Same\ReLU

AveragePool (2,2)

(Conv11-64)x1

Same\ReLU

AveragePool (2,2)

(Conv11-96)x1

Same\ReLU

MaxPool (2,2)

Convol 

block2

(Conv3-64)x1

SEx2（1/8）
Same\ReLU

AveragePool (2,2)

(Conv11-128)x1

Same\ReLU

AveragePool (2,2)

(Conv5-256)x1

Same\ReLU

MaxPool (2,2)

Convol 

block3

(Conv3-128)x2

SEx2（1/8）
Same\ReLU

AveragePool (2,2)

(Conv11-256)x1

Same\ReLU

AveragePool (2,2)

(Conv3-384)x1

Same\ReLU

Convol 

block4

(Conv3-256)x2

SEx2（1/8）
Same\ReLU

AveragePool (2,2)

(Conv11-512)x1

Same\ReLU

AveragePool (2,2)

(Conv3-384)x1

Same\ReLU

Convol 

block5

(Conv3-512)x2

SEx2（1/8）
Same\ReLU

AveragePool (2,2)

(Conv11-512)x1

Same\ReLU

AveragePool (2,2)

(Conv3-256)x1

Same\ReLU

MaxPool (3,3)

dense layer
(FC-1024)x2，ReLU

(FC-256)x1，Soft-max

(FC-4096)x2，ReLU

(FC-256)x1，Soft-max

(FC-4096)x2，ReLU

(FC-256)x1，Soft-max

Learning 

rate
1x10-3 10-5 10-2

Batch size 128 200 10

CNNSCA 

Configuration

epoch 70 75 20

calculating 

time
28 minute 37 minute 2 hour

CNNSCA 

Performance Guess 

entropy
61 650 Did not converge
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