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ABSTRACT
Mixed Integer Linear Programs (MILPs) are usually NP-hard mathematical
programming problems, which present difficulties to obtain optimal solutions in a
reasonable time for large scale models. Nowadays, metaheuristics are one of the
potential tools for solving this type of problems in any context. In this paper, we focus
our attention on MILPs in the specific framework of Data Envelopment Analysis
(DEA), where the determination of a score of technical efficiency of a set of Decision
Making Units (DMUs) is one of the main objectives. In particular, we propose a new
hyper-matheuristic grounded on a MILP-based decomposition in which the
optimization problem is divided into two hierarchical subproblems. The new
approach decomposes the model into discrete and continuous variables, treating each
subproblem through different optimization methods. In particular, metaheuristics
are used for dealing with the discrete variables, whereas exact methods are used for
the set of continuous variables. The metaheuristics use an indirect representation that
encodes an incomplete solution for the problem, whereas the exact method is applied
to decode the solution and generate a complete solution. The experimental results,
based on simulated data in the context of Data Envelopment Analysis, show that the
solutions obtained through the new approach outperform those found by solving the
problem globally using a metaheuristic method. Finally, regarding the new hyper-
matheuristic scheme, the best algorithm selection is found for a set of cooperative
metaheuristics ans exact optimization algorithms.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Hyper-matheuristic, Metaheuristics, Exact methods, Mixed integer problems, MILP
decomposition, Mathematical optimization

INTRODUCTION
Mixed Integer Linear Programs (MILPs) address mathematical optimization problems
involving two families of variables: discrete and continuous ones. Both the objective
function as well as the constraints are linear. This family of optimization problems appears
for many real-life applications in various domains. Indeed, many real problems can be
formulated using MILP models, for example: packing, knapsack, inventory, production
planning, location, resource allocation, routing and scheduling problems, to name but a
few (Winston & Goldberg, 2004). This large applicability has led to an increased interest in
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the development of efficient algorithms for solving this general and popular class of
optimization problems.

MILP models are generally NP-hard problems. Approximation algorithms have
been developed in response to the impossibility of solving a great variety of important
optimization problems. Very often, one is confronted with the fact that the problem is
NP-hard, making it really difficult to obtain an optimal solution in a reasonable time
(Hochba, 1997). For all intents and purposes, we use two families of algorithms to solve
MILPs: exact algorithms and heuristics. The exact methods (e.g. branch and bound,
branch and cut, branch and price) are generally applicable, but they have been proven to be
laborious for large or more complex problems. When instances become too large or
difficult for exact methods, heuristics and particularly metaheuristics are often used.
A metaheuristic is a high-level procedure to select among different heuristics. We can
examine two types of metaheuristics: single solution algorithms (e.g. local search, tabu
search) and algorithms based on population (e.g. evolutionary algorithms, swarm
optimization) (Talbi, 2009). Metaheuristics do not, however, generally guarantee that the
best solutions are found. Thus, the combination of metaheuristics and exact optimization
algorithms can offer a more efficient and effective resolution method (Talbi, 2016).
A general classification of this hybridization is discussed by Jourdan, Basseur & Talbi (2009),
and some examples can be found in the literature (Pradenas et al., 2013; Li et al., 2012).

In this paper, a new hyper-matheuristic methodology, based on the matheuristic
previously introduced in González et al. (2017), is developed to find solutions for MILP
models in the context of Data Envelopment Analysis (DEA) (Vanderbeck &Wolsey, 2010).
Nowadays, DEA is one of the most used non-parametric techniques in Economics and
Engineering to measure technical efficiency from a data sample of firms. Regarding our
methodology, the matheuristic allows for MILP-based decomposition, where the main
problem is broken down into two hierarchical subproblems, since it is easier to solve them
separately using distinct categories of optimization algorithms (Raidl, 2015). This
breakdown is based on the characteristics of the continuous and discrete decision variables.
The hyper-matheuristic methodology is proposed from this matheuristic. The hyper-
heuristic concept (Pillay & Banzhaf, 2009) has been applied in the context of hybrid
heuristics (Wang et al., 2019; Li et al., 2020) to find the best combination of heuristics. In
this work, we propose a generalization of the hyper-heuristic methodology for
matheuristics that combines exact algorithms and metaheuristics, which is called the
hyper-matheuristic approach.

The aim of the proposed hyper-matheuristic methodology is to find the best
combination between metaheuristics and exact methods for a given type of MILP models
within the framework of DEA. For this, some input instances of the problem are evaluated
with several iterations of the algorithm, training the hyper-matheuristic and obtaining
a good solution for any problem. Within the hyper-matheuristic, several parameters
have been established to generate many different metaheuristics. The functionalities of
the generated metaheuristics, which depend on the values of these parameters, where
metaheuristics like Evolution Algorithm (EA) (Holland, 1973), Scatter Search (SS) (Glover,
Laguna & Marti, 2003), Tabu Search (TS) (Glover, 1997) or Greedy Randomized Adaptive
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Search Procedure (GRASP) (Resende & Ribeiro, 2003) can be generated automatically. All
of these parameters take different values. These values are studied in the experiments,
having set certain limit values, and they represent inputs for the algorithm.

The matheuristic method was designed by examining the various synergies between
metaheuristics and exact methods, in order to find the best combination for resolving
MILP problem. A list of existing approaches combining exact methods and metaheuristics
for MILP optimization can be found in Puchinger & Raidl (2005):

� Collaborative combinations: self-contained optimization algorithms exchange
information extracted from the search. The different algorithms are independent. There
is no direct relationship to the internal workings of the algorithms. Exact method and
heuristic algorithms can be executed sequentially, interwoven or in parallel.

� Integrative combinations: in these types of algorithms, hybridization addresses the
functional composition of a single optimization method. A given internal function of an
optimization algorithm is replaced by another optimization algorithm.

The matheuristic algorithm (González et al., 2017) used in this paper for the proposed
hyper-matheuristic employs an integrative combination, where by the metaheuristic
supplies information to the exact method, which solves the problem and returns some new
information to the metaheuristic. The basic concept is to break the problem down into
much smaller subproblems which can be accurately solved using cutting-edge
mathematical programming algorithms. The variables and the constraints are divided up
into two sets, which break the main problem down into two hierarchical subproblems:
the metaheuristic determines the decision variables in one set and the exact method
optimizes the problem in the other. In the literature, there are some works where certain
exact techniques are improved using approximation techniques (metaheuristics), as in the
case of Poojari & Beasley (2009), where Bender’s decomposition is optimized through a
genetic algorithm, integrating the latter as a seed generator for decomposition.

Moreover, a hyper-metaheuristic scheme has been included in the proposed
methodology for an autonomous design of metaheuristics. Certain design parameters
define the characteristics of each metaheuristic, and these are framed into different search
components: Initialize, Improvement, Selection, Combination and Stopping Criteria. In
this work, the hyper-metaheuristic methodology (González et al., 2017) has been
generalized to matheuristics, in which exact optimization is combined with a set of
metaheuristics.

The main contributions in this paper are based on the development of a general
methodology in terms of optimization algorithms, being capable of solvingMILP problems
in the context of DEA. A MILP-based decomposition is studied that combines
metaheuristics and exact methods in a single algorithm called a matheuristic. A final
algorithm is implemented to obtain the best combination of those algorithms previously
mentioned, called hyper-matheuristic.

The paper is organized as follows: In “MILP-Based Decomposition”, we present the
proposed breakdown of MILP problems. In “Matheuristic Methodology” we detail the
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matheuristic strategy that combines linear continuous programming and discrete
metaheuristics. “Hyper-Matheuristic Methodology”, focuses on the hyper-matheuristic
methodology in which an automatic design of optimization algorithms is carried out. In
“Experimental Results”, we provide some computational experiments on a MILP problem.
Finally, in “Conclusions and Future Works”, we conclude and point out some future
works.

MILP-BASED DECOMPOSITION
In this section, we will handle general notions within the field of MILP models and the
developments will be as general as possible. Nevertheless, our approach will be exclusively
tuned and tested with problems from Data Envelopment Analysis in “Experimental
Results”. We are aware that the technique could be used with other types of MILP models.
However, we cannot guarantee the validity of the new approach in those cases. In this
respect, further research in this line would be necessary. Let us consider the following
linear problem (LP) (1):

max cx : Ax � b; x � 0; x 2 Rnf g (1)

where A is a m × n matrix, c a n-dimensional row vector, b a m-dimensional column
vector, and x a n-dimensional column vector of continuous variables. If we add the
constraint that certain variables must take integer values, we have a MILP (2), that can be
written as:

max cx þ hy
Ax þ Gy � b
x � 0; x 2 Rn

y � 0; y 2 Zp

(2)

where A is again a m × n matrix, G is m × p matrix, h is a p row-vector, and y is a p
column-vector of integer variables.

An MILP problem is defined as one where discrete (y) variables, which are restricted to
integer values, and continuous variables (x), and which can be assigned any value on a
given continuous interval, are combined with integrality constraints. The integrality
constraints allow MILP models to capture the discrete nature of some decisions. For
example, a binary variable can be used to decide whether or not any action needs to be
taken.

Using MILP solvers to resolve large-scale and complex instances is inefficient in terms
of the time spent determining the solution to the problem. Indeed, large MILPs are often
difficult to resolve using exact methods, owing to the complexity of the combinatorial
nature of the discrete part of the problem. One way to solve large MILPs is to break them
down into smaller subproblems, so they can be solved individually. Problem
decomposition techniques comprise an approach that is particularly aimed at solving very
large and difficult problems. The basic idea is to solve such a large problem by solving a set
of smaller problems, combining their solutions to obtain an optimal one for the main
MILP problem. For each subproblem, if the optimality criterion is satisfied, the current
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feasible solution is judged to be the optimal solution of the original MILP problem. If the
optimality criterion is not satisfied, other values for the variable in the subproblems are
assumed, and the procedure is repeated (Yokoyama & Ito, 2000).

Popular decomposition techniques
The objective of decomposition techniques is to tackle large-scale problems which cannot
be solved by exact optimization algorithms such as MIP solvers (Ralphs & Gelati, 2010).
From the integer programming point of view, there are two types of decomposition
approaches that exploit the problem structure: constraint decomposition and variable
decomposition (Vanderbeck & Wolsey, 2010).

In constraint decomposition techniques, a compact problem is created by the insertion
of constraints to obtain a better approximation by eliminating a part of the feasible space
that does not contain integer solutions. Outer approximation (cutting plane methods)
(Kelley, 1960) or inner approximation (Dantzig-Wolfe method) (Vanderbeck, 2000;
Ruszczynski, 1989) are the most popular ones.

In variable decomposition techniques, the decision variables of the problem are
generally separated into two groups and the problem is solved in two steps. Bender’s
decomposition represents one of the most popular variable decomposition approaches for
solving integer programming problems (Bender’s, 1962), being less popular than branch-
and-cut, but really common in the literature. This decomposition technique is based on a
cycle of two steps in each iteration. At the first step, a subset of integer variables is selected
and their values are found. Then, the second step finds an optimal solution for the rest of
the continuous variables according to the values allocated to the first subset of variables. In
each iteration, some constraints are modified in the sub-problems to improve the solution.
This approach has been applied to many problems such as routing, scheduling, network
design and planning (Rahmaniani et al., 2017).

From the metaheuristic point of view, one can use either a variable or data
decomposition by using some problem features. In variable decomposition techniques, the
problem is decomposed into subproblems of similar size following a variable
decomposition (for example, time decomposition in scheduling problems). After the
resolution of the subproblems, the global solution is constructed from the sub-optimal
partial solutions obtained. The subproblems can be solved in independent or hierarchical
ways. In data decomposition techniques, the input data (e.g. geographical space) of the
general problem is divided into different partitions. Then, the problem is solved using all
the partitions and the final solutions are aggregated from the sub-solutions obtained from
the different partitions. For instance, some clustering algorithms can be applied to
partition a geographical space into different regions for routing problems (Reimann,
Doerner & Hartl, 2004; Taillard, 1993).

Variable-based decomposition of MILPs
The main drawback of data-based decomposition is its specificity to the target
optimization problem. In our work, a more general decomposition predicated on the type
of variables (discrete vs continuous) and the complexity of the generated subproblems is
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carried out. The main problem is decomposed into two different hierarchical subproblems,
following the principles of indirect encoding (Talbi, 2009). The master problem is
associated to the discrete variables. A solution is encoded using an incomplete solution for
the problem in which only the discrete variables are handled. For each solution of the
master problem, the subproblem will fix the continuous variables of the solution. It can be
seen as decoding the incomplete solution given by the master problem to generate a
complete solution for the problem. Then, the constraints associated to the optimization
problem are handled by the subproblem and will guarantee the validity of the solution that
is decoded. Compared to Bender’s decomposition approach, the master problem,
including the variables and the constraints, is not modified at each iteration. The
subproblems solved at each iteration depend on the sub-solution generated at the master
problem.

Figure 1 shows how a general MILP problem is broken down into two hierarchical
subproblems of different complexities:

� The master problem (P1) contains the discrete variables and is difficult to solve
efficiently with an exact method. Then, metaheuristic approaches are more efficient to
solve the master problem. In this paper, the hyper-heuristic methodology with a set of
adaptive metaheuristics Hi (i = 1,…,k) is used to solve the master problem.

� The subproblem (P2), including the continuous variables, is a linear continuous
problem (LP), and easy to solve using an exact linear solver. This subproblem decodes
the incomplete solution of the master problem to obtain a complete solution for the
problem.

MATHEURISTIC METHODOLOGY
The combination between metaheuristics and exact methods that is presented arises from
the need to simplify mathematical models that are difficult to solve by any of these
techniques. In this way, any mathematical model can be divided into different
subproblems, taking the nature of its variables as the main criteria. In this paper, we
propose to divide the model into two different subproblems where one of them must be a
linear problem. In this case, it is easier to solve the linear problem using exact methods, and
we can study the other subproblem using metaheuristic methods. Figure 2 shows how
the decomposition is developed and how both methods collaborate.

Figure 1 Variable decomposition of MILP problem into two subproblems.
Full-size DOI: 10.7717/peerj-cs.828/fig-1
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The matheuristic algorithm is designed to be mainly used by population-based
metaheuristics, in which a set of solutions are randomly generated and processed by
different steps such as selection, recombination and replacement. However, single
solution-based metaheuristics such as local search and tabu search can also be used.

After generating of the initial population using a metaheuristic, an exact method is
employed to solve the subproblems generated. This method involves the use of relaxation
or decomposition techniques of the mathematical model. Relaxation methods consist of
relaxing a strict requirement in the target optimization problem (Sadykov et al., 2019).
This method comprises disregarding the integrality constraints of an integer program and
solving it using LP solvers. To do so, the metaheuristic generates the discrete variables
(solving the subproblem P1), and provides this information to the exact method to fix
values for the continuous ones (solving the subproblem P2). Figure 2 shows how the main
problem is divided into two smaller problems.

All the functions incorporated in the metaheuristic are executed sequentially:

� Initial population: This step is used to generate the initial population (Population),
fixing values for the discrete variables in P1.

� Improvement: Some of the feasible solutions (TotalImprove) are modified to improve
the fitness value using the Variable neighborhood search algorithm proposed by
(Mladenović & Hanse, 1997). The infeasible solutions are improved trying to transform
them into feasible ones.

� Selection:We first sort the valid solutions, in decreasing order of fitness, followed by the
invalid ones, which are ordered randomly. We then select a percentage of solutions to be
used in the Crossover and Diversification function.

� Crossover: The algorithm includes a crossover function, which combines a certain
number of pairs of solutions (Combination), which are chosen randomly from those
previously selected.

� Diversification: A diversification based on edge recombination (ER) (Laporte, Potvin &
Quilleret, 1997) is included, where the aim of diversification methods is to drive the
search in new regions of the solution space. Here, the tabu search heuristic is periodically

Figure 2 Generation of metaheuristics and structure of the algorithm.
Full-size DOI: 10.7717/peerj-cs.828/fig-2
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restarted with a new solution obtained through recombination of two elite solutions
previously visited during the search (Diversification).

Depending on the metaheuristic selected, some internal functions may or may not be
executed. For example, an EA does not use the improvements, or a GRASP does not
employ the crossover function. At this point, a huge number of metaheuristics can be used
to solve the problem. There are many options to determine the metaheuristic used, but in
this article it has been decided to use a parameterized scheme, where certain parameters
give value to the internal functionalities. This technique will be further detailed in
“Experimental Results”. For each problem, the metaheuristic selected solves the problem
P1. Then, the exact method is used to solve the problem P2 and obtain the initial complete
population. Algorithm 1 shows how the algorithm works.

Of paramount importance is the handling of the constraints in the proposed
decomposition methodology. The feasibility of the solutions strongly depends on the
values obtained in the discrete variables of problem P1. That is because the constraints in
the problem P2 are created using the values of the discrete variables. Therefore, the
solutions of the problem P2 can be feasible or infeasible. A linear program is infeasible if
there is no solution that satisfies all of the constraints at the same time. We evaluated and
classified the infeasible solutions generated by the exact method by assigning them a value
based on certain parameters of the exact method. This parameter relates to the number of
restrictions not met by these solutions, and is modeled using a numeric value. We assign
this fitness penalty-based value to infeasible solutions. When this value is close to 0 it
means that the solution is close to being feasible, and implies that it needs fewer changes
than other infeasible ones.

From the initial population, a number of elements from both groups are selected
(feasible and infeasible solutions) and used to generate new solutions.

We first sort the valid solutions, in decreasing order of fitness, followed by the invalid
ones, which are ordered randomly. We select a percentage of solutions to be combined and
mutated. We select the best solutions (with the highest fitness) from the valid set while the
solutions from the invalid set are selected randomly.

The algorithm includes a combination function that combines pairs of solutions, which
are randomly chosen from those selected previously. The pair of solutions must belong to
the same group, whereby valid solutions are combined with valid solutions and invalid
solutions with invalid ones. These combinations generate new solutions that inherit some
characteristics from their parents, and, for all the combinations, the algorithm only uses
the discrete variables from P1. The remaining the variables are obtained by solving P1
using the exact method. To execute these combinations, a multi-point crossover operator
was developed which generates an offspring by copying its genes from the parents, and
which are chosen according to a randomly constructed crossover mask. We use this mask,
which contains ones and zeros randomly generated with the same probability to generate
new discrete variables. We determine the selected values from each of the two solutions by
the mask in each position, taking the value from the first solution if there is 1 in the mask,
or, if not, from the second one.
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Algorithm 1 Matheuristic algorithm.

REQUIRE: MILP problem (x,y)

ENSURE: Best solution [max f(x,y)]

1 //The selected metaheuristic could be that proposed in section 4 or another from the literature; 2 Fix the metaheuristic parameters (Population,
Combination, TotalImprove, Diversification)

3 //Create S set of solutions;

4 for j = 1 to Population do

5 Fix discrete variables yj of problem P1;

6 Obtain continuous variables xj solving P2 using the exact method;

7 S ½Solutionj :¼ ðyj; xjÞ�;
8 if Solutionj is not feasible then

9 Improve Solutionj using the Variable neighborhood search algorithm (Mladenović & Hanse, 1997);

10 end

11 end

12 do

13 //Crossover SS subset of S such as |SS| > 1;

14 for w = 1 to Combination do

15 Parents  RandomSelect(s1 and s2 from S);

16 yw  Crossover(y1 from s1, y2 from s2);

17 xw  ExactMethod(P2,yw);

18 sw: = (yw,xw);

19 if Fitness(sw) > Fitness(s1) or Fitness(sw) > Fitness(s2) then

20 SS sw;

21 end

22 end

23 //Improve SSI subset of SS;

24 for w = 1 to TotalImprove do

25 Select sw ∈ SS randomly;

26 REPEAT:;

27 Modify yw using the best neighbourhood algorithm and obtain xw solving P2 using the exact method;

28 UNTIL Fitness(sw) increase or achieve EndConditions;

29 end

30 //Diversify SSD subset of SSI;

31 for w = 1 to Diversification do

32 Select sw ∈ SSI randomly ;

33 Modify randomly yw of sw;

34 Obtain xw solving P2 using the exact method;

35 end

36 Include SSD in S

37 while not EndCondition;

38 ;

39 BestSolutionk  s ∈ S such as Fitness(s) ≥ Fitness(w) ∀ w ∈ S;
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We also evaluated and improved all these new generated solutions in order to maximize
the number of feasible solutions. Those steps of the algorithm are repeated a given number
of times. Algorithm 1 is a schematic representation of the main matheuristic algorithm.
This algorithm defines the extent to which the metaheuristic and the exact method are
involved.

HYPER-MATHEURISTIC METHODOLOGY
In this work, a hyper-matheuristic framework is developed to generalize the matheuristic
scheme proposed in González et al. (2017). We develop a hyperheuristic method on top of
the matheuristic to find the best Metaheuristic in terms of fitness (optimal solution).
For that, a set of metaheuristics (H) is created. In each iteration, the metaheuristic used in
the matheuristic (Hi) is updated in an adaptive way, obtaining new possible solutions and
time values.

We propose a hyper-matheuristic algorithm to find the best suited metaheuristics, that
combined with an exact method, generates the best solution for each problem in the
shortest time possible (Fig. 3). This algorithm searches the whole metaheuristic space to
find the best design. Then, two levels of metaheuristics are developed. One of them uses the
objective function for each problem to evaluate the solutions (matheuristic), and the
other one uses the average of all the objective values obtained and the time used to evaluate
all the metaheuristics used (hyper-matheuristic).

Figure 3 Algorithm to find the best matheuristic using the hyper-matheuristic method.
Full-size DOI: 10.7717/peerj-cs.828/fig-3
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The next subsections describe how the hyper-matheuristic framework works. First,
the parameterized scheme to generate all the metaheuristics is introduced. Then, the
hyper-matheuristic methodology is detailed.

A parameterized scheme of metaheuristics
This scheme is included in the hyper-matheuristic and offers the possibility of generating
and analyzing a large number of combinations between different metaheuristics.
Depending on the problem evaluated, there is a large number of metaheuristic algorithms
that can obtain good solutions. The objective of the scheme is to offer the possibility
of using different metaheuristics for each problem, as well as being able to generate hybrid
metaheuristics. This scheme is included in the work so as not to particularize a
complete metaheuristic, but to use its most interesting functionalities. According to certain
parameters, the parameterized scheme is able to generate hybrid metaheuristics that
shares information from general schemes, like EA, GRASP or SS. This scheme has the
possibility of designing a large number of metaheuristics in a general way, varying the
value of all the parameters inside.

In this work, the main search components used for the design of a metaheuristic are:
Initialize (i.e. initialization of the population), Improvements, Selection, Combinations
(e.g. crossover) and Stopping Criteria. For each search component, several parameters are
included. Table 1 summarizes the parameters used to generate some well-known and
diverse sets of metaheuristics automatically.

A parameterized scheme was already employed and tested in Almeida et al. (2013),
where other parameters such as combinations between feasible and infeasible solutions
were examined. The number and meaning of the parameters would vary if other basic
metaheuristics were evaluated or if the basic functions were executed differently, but the
parameters considered here allow us to automatically generate and experiment with

Table 1 Parameters used in each basic function of the parameterized metaheuristic scheme.

Function Parameters Description

Initialize INEIni Initial number of elements

FNEIni Final number of elements selected for the iterations

PEIIni Percentage of elements to improve in the initialization

IIEIni Intensification of the improvement in the initialization

End condition MNIEnd Maximum number of iterations

NIREnd Maximum number of iterations without improving

Selection NBESel Number of best feasible solutions selected

NWESel Number of infeasible solutions selected

Combination PBBCom Number of combinations between feasible solutions

PWWCom Number of combinations between infeasible solutions

Improve PEIImp Percentage of crossover elements to be improved

IIEImp Intensification of the improvement

PEDImp Percentage of elements to diversify

IIDImp Intensification of the improvement to diversify elements
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different metaheuristics and combinations of them in order to improve the results
obtained.

A large number of combinations can be considered simply by selecting different values
for the considered parameters. The best metaheuristic with the parameterized scheme can
be obtained by generating all the possible combinations of the parameters and by applying
them to some small training set of problem instances. In this way, the generated
combination of the various metaheuristics, given by the values of the parameters, is that
which gives the best results in terms of the training set and can be deemed to be a
satisfactory metaheuristic for the problem under consideration. There are many possible
combinations of the parameters in the parameterized metaheuristic scheme, obtaining the
best metaheuristic for the training set is an expensive optimization problem, and therefore
suitable for the hyper-matheuristic.

Hyper-matheuristic
To obtain the best metaheuristic that provides the best objective quality in less search time,
a metaheuristic has been developed at a higher level called hyper-matheuristic. This new
metaheuristic is developed to generate, evaluate and improve different types of
metaheuristics (setHi). The developed hyper-matheuristic makes it possible to design a set
of metaheuristics Hi automatically. Then, the hyper-matheuristic is a metaheuristic
included on top of the matheuristic algorithm that is able to select the best value of the
parameters in the Parameterized Scheme, with the aim of designing an efficient
metaheuristic that, combined with an exact method, provides the best objetive funcion
value. The generated metaheuristics depend on the value of the parameters in the
parameterized scheme. Depending on the solution quality obtained for each problem and
the search time used, the hyper-matheuristic is able to adapt itself modifying the next
metaheuristic to improve on the previous one. For that, this algorithm saves all the
information about all metaheuristics inHi, thus it learns every step online. In order to have
an initial reference, the EA, GRASP and SS methods have been established as diverse
metaheuristic prototypes, so that all the metaheuristics generated by the hyper-
matheuristic will have certain functionalities of those general metaheuristic frameworks.
To determine the number of metaheuristics evaluated for each problem, as well as the
number of applied improvements and changes, a certain number of parameters have been
designed to control these aspects:

� NIM_EA: Number of initial metaheuristics generated from evolutionary algorithms
(EA).

� NIM_SS: Number of initial metaheuristics generated from scatter search (SS).

� NIM_GRASP: Number of initial metaheuristics generated from greedy randomized
adaptive search procedure (GRASP).

� NIM: Total number of initial metaheuristics

� (NIM_EA+NIM_SS+NIM_GRASP).

� NFM: Number of new metaheuristics created by recombination.
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First, a given number of metaheuristics (NIM) based on EA, GRASP and SS are
generated in the reference set. In order to achieve the desired metaheuristic functionalities,
values are assigned to the parameters in Table 1, establishing values between 0 and a preset
limit that has been evaluated during the experiments. The established limits for each
parameter can be modified in each execution to study the variances in the solution quality
and the search time obtained. In each iteration, the MILP problem is solved using a
metaheuristic included in Hi, providing values of solution quality and search time.

When the initial population is created, all the created metaheuristics are selected to be
improved. Several improved functions are developed to modify the metaheuristic
parameters, increasing the parameters associated to some functionalities such as the initial
population, improvements or crossovers while decreasing others at the same time. With
these improved functions, the metaheuristics are evaluated and compared depending on
their functionalities. The new improved metaheuristics are added to the reference set. With
this reference set, the crossover function is executed. Hence, new metaheuristics are
created, where their parameters are selected from the metaheuristics in the reference set.
The parameters from the metaheuristics of a better quality have a higher probability of
being selected. Algorithm 2 shows how the proposed hyper-matheuristic methodology
works.

Algorithm 2 Hyper-matheuristic algorithm.

REQUIRE: Hyper-matheuristic parameters, MILP Problem

ENSURE: Hi, Best metaheuristic.

1 Fix limits for all the parameters in the scheme (upper and lower bound);

2 for i = 1 to NIM do

3 Generate matheuristic Hi;

4 End

5 for i = 1 to NIM do

6 Solve problem using the matheuristic in Hi;

7 for k = 1 to i do

8 if (Hi solution quality) < (Hk solution quality) then

9 Compare parameters between the metaheuristics;

10 Improve the matheuristic Hi modifying the parameters with more differences;

11 end

12 end

13 end

14 for i = NIM to NIM + NFM do

15 Select two matheuristics randomly from those generated in step 3;

16 Combine their parameters to create a new metaheuristic;

17 Execute steps from line 6 to 12;

18 end

19 Classify all the solutions by quality and time;

20 Select the best matheuristic (which maximize fitness/time), and save parameters;
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EXPERIMENTAL RESULTS
We performed various experiments to analyze the effectiveness of the hyper-matheuristic
methodology for a given MILP problem coming from the DEA literature. To be specific, the
aim of the solved problem is to ascertain the technical efficiency of a set of n firms (in general,
a set of DecisionMaking Units - DMUs), which usem inputs to generate s outputs. To that end,
we will apply a well-known non-parametric technique, called Data Envelopment Analysis
(DEA) (Charnes, Cooper & Rhodes, 1978). TheMILP problem to be solvedmust be executed for
each DMU of the sample of observations. Specifically, we focus our analysis on the Slacks-Based
Measure developed in Aparicio, Ruiz & Sirvent (2007), since it must be computed by the
MILP. With regard to the data, in our simulations the m inputs and s outputs of each of the n
DMUs are generated randomly but bearing in mind that the well-known Cobb-Douglas
function (Cobb & Douglas, 1928) is the function governing the production situation.

Let us assume that data onm inputs and s outputs for n DMUs are observed. For the jth
DMU these are represented by zij ≥ 0, i = 1,…,m and qrj ≥ 0, r = 1,…,s. The DEAmodel that
should be solved as follows:

max bk �
1
m

Xm
i¼1

t�ik
zik

( )
s:t:

bk þ
1
s

Xs

r¼1

tþrk
qrk
� 1 ðc:1Þ

�bk �
1
s

Xs

r¼1

tþrk
qrk
� �1 ðc:2Þ

�bkzik þ
Pn
j¼1

ajkxij þ t�ik � 0 8i ¼ 1; . . . ;m ðc:3Þ

bkzik �
Pn
j¼1

ajkxij � t�ik � 0 8i ¼ 1; . . . ;m ðc:4Þ

�bkqrk þ
Pn
j¼1

ajkyrj � tþrk � 0 8r ¼ 1; . . . ; s ðc:5Þ

bkqrk �
Pn
j¼1

ajkyrj þ tþrk � 0 8r ¼ 1; . . . ; s ðc:6Þ

�Pm
i¼1

mikzij þ
Ps
r¼1

lrkqrj þ djk � 0 8j ¼ 1; . . . ; n ðc:7Þ
Pm
i¼1

mikzij �
Ps
r¼1

lrkqrj � djk � 0 8j ¼ 1; . . . ; n ðc:8Þ
�mik � �1 8i ¼ 1; . . . ;m ðc:5Þ
�lrk � �1 8r ¼ 1; . . . ; s ðc:6Þ
�djk � �Mbjk 8j ¼ 1; . . . ; n ðc:7Þ
ajk � Mð1� bjkÞ 8j ¼ 1; . . . ; n ðc:8Þ

bjk ¼ 0; 1 8j ¼ 1; . . . ; n ðc:9Þ
�bk � 0 ðc:10Þ
�t�ik � 0 8i ¼ 1; . . . ;m ðc:11Þ
�tþrk � 0 8r ¼ 1; . . . ; s ðc:12Þ
�djk � 0 8j ¼ 1; . . . ; n ðc:13Þ
�ajk � 0 8j ¼ 1; . . . ; n ðc:14Þ

(3)
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where M is a large, positive number. For this specific MILP problem, the vector of
continuous variables x consists of (βk, t�ik , t

þ
rk, djk and αjk), while the vector of integer

variables consists exclusively of bjk.
The number of feasible solutions obtained in the initial population using the algorithm

put forward in this paper is studied for various population sizes and optimization methods.
In the first experiment, the methods proposed above for solving the main problem are
evaluated, comparing the results of solving the problem globally (heuristic) with those
obtained by applying the decomposition of the problem (matheuristic). In addition, a
hybrid method in which both techniques are executed in a cooperative way is added. After
that, the obtained solution quality with basic metaheuristics with parameters similiar of
those of EA, GRASP or SS is compared with hybrid metaheuristics generated automatically
with a hyper-matheuristic using the parameterized scheme shown in “A Parameterized
Scheme of Metaheuristics”. The hyper-matheuristic is trained with many instances to
obtain a satisfactory metaheuristic for any problem size.

Finally, we compare the solution quality and the execution time obtained using the
satisfactory metaheuristic with those obtained using other metaheuristics. For all the
experiments, we use the IBM ILOG CPLEX Optimization Studio (CPLEX). The
experiments are executed in a parallel NUMA node with 4 Intel hexa-core Nehalem-EX
EC E7530, with 24 cores, at 1.87 GHz and 32 GB of RAM. The environment used to run
the application is a Centos 8 operating system, using C code to develop the algorithm.
Additionally, the Intel C++ Compiler was used and the Intel MKL Libraries were included.

MILP-decomposition vs global problem solving
To evaluate the proposed decomposition strategy, several experiments have been carried
out, in which the focus is made on each of the algorithm stages. First, the generation of
the initial population was evaluated. Then the algorithm was executed using several
generation methods: heuristic method and matheuristic method. The heuristic method
used is proposed in González et al. (2015) where a problem dependent algorithm is
developed. This heuristic does not use a decomposition variable method. Therefore, it is a
good option to compare it with the matheuristic algorithm used in this paper. The hybrid
method is a combination of the proposed heuristic in González et al. (2015) and exact
methods, where the number of problems to evaluate (DMUs) is divided in two groups.
One of the groups is solved by the exact method, and the other is solved by the heuristic
method. In this experiment, the parameters have been fixed, being the same in all the
methods used. The population size (INEIni) is set by default to 100. In addition, another
implementation of the exact method has been included, where the number of initial
solutions (INEIni) has been increased to 1,000 to analyze the impact of this parameter.

Table 2 shows the average of the objective values and the percentage of feasible solutions
obtained in the Initialization step of Algorithm 1, according to the method used and using
several values for the initial population. The experiment shows that it is non-trivial to
obtain feasible solutions using the matheuristic method, because the search space is huge,
and the metaheuristic needs to make a great effort to obtain satisfactory values for the
discrete variables. When the initial population grows, the number of feasible solutions
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increases (comparison between matheuristic with population size of 100 and 1,000).
Moreover, the solution quality value greatly depends on the initial population. When the
matheuristic is used with a population size of 1,000 solutions, the value of the fitness of the
obtained solutions using the matheuristic improves compared to the other methods.
Thus, it can be observed that, for the same initial population value, the heuristic method
obtains a higher number of feasible solutions but with a lower quality. So, obtaining
feasible solutions is a really difficult task in terms of the solution space. Metaheuristics need
a huge effort to find feasible solutions in the set of discrete variables that satisfy all the
constraints in the continuous variables. Additionally, the quality of the solutions suggests
that only a few solutions are needed to obtain the optimal one. Now, it is the moment to
evaluate the complete matheuristic algorithm and compare fitness and the amount of
computational time required.

Matheuristic in the parameterized scheme of metaheuristics
Before executing the complete algorithm and developing the best-found hyper-matheuristic,
the algorithm has been evaluated with fixed parametrized scheme values. The metaheuristics
used for the two methods are configured to be as versatile as possible (with all internal
functions), using low values to improve the execution time. In order to make fair time
comparisons, the values of the various parameters for the different optimization methods are
set to the same values: INEIni = 100, FNEINI = 50, IIEIni = 10, PEIIni = 10 NBESel = 15,
NWESel = 15, PBBCom = 25, PWWCom = 25, PEEImp = 10, IIEImp = 5, PEDImp = 5,
IIDImp = 5, NIREnd = 5, MNIEnd = 10. The solution quality is shown in the Fig. 4, and the
execution time in Fig. 5.

The results obtained show that there is a high correlation between the execution time
and the quality of the obtained solutions. It can be observed that using the matheuristic
with a low number of initial solutions (INEIni), the solution quality obtained is the lowest,
but the solution is found in the least time. On the other hand, it is observed that the
matheuristic is much faster than the heuristic method (see Fig. 5). However, the solution
quality obtained by the heuristic method for these low initial population values is better
than those obtained by the matheuristic. This leads to the conclusion that, in order to
obtain an efficient hyper-matheuristic method in the following steps, the heuristic method
must be discarded. The heuristic method would only be optimal for small problem sizes.

Table 2 Average of percentage of feasible solutions and fitness solution obtained at the initialization step for the different optimization
methods and varying the INEIni parameter.

Size Matheuristic 100 Heuristic method Hybrid method Matheuristic (1,000)

m n s % val. Fitness % val. Fitness % val. Fitness % val. Fitness

2 100 1 185.16 0.7605 94.966.47 0.685 56.9468.24 0.413 6.0321.02 0.7609

3 50 1 1.321.61 0.4748 78.855.90 0.777 43.4417.82 0.5661 1.2210.77 0.7974

3 100 1 0.551.37 0.2713 66.125.17 0.6171 32.5395.23 0.48 0.7580.52 0.6662

4 100 1 0.290.54 0.1544 60.716.72 0.588 25.0156.12 0.414 0.3050.82 0.5515

5 100 1 0.330.81 0.1974 58.668.36 0.501 39.4859.08 0.398 0.3710.15 0.5164
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Since we want to make an algorithm independent of the type and size of problem, it was
preferred not to use this method and only design the hyper-matheuristic including the
matheuristic as such. This experiment concludes with the comparison between the fitness
obtained by the feasible solution and the computational costs required. The figures explain
that the initial population is a critical parameter, the computational time during which
the size of the problem grows being a great limitation. Both values (fitness and time) must
be evaluated and taken into account in the following experiments.

Hyper-matheuristic vs general metaheuristics
To develop the hyper-matheuristic methodology, some general metaheuristics are used.
The automatic design of the best hyper-matheuristic within this space of algorithms is the
main issue. All the metaheuristics generated by the hyper-matheuristics will inherit some
characteristics from the general metaheuristics, and will combine others. The proposed
metaheuristics to be executed in the experiments are shown in Table 3. The lowest and the
highest values of the parameters of these metaheuristics are used to limit the values of

Figure 4 Objective values obtained by the methods proposed in Table 2 using all the parameters of
Table 1. The methods compared are matheuristic (MATH), heuristic (HEU), hybrid method (HYB) and
matheuristic using a population size of 1,000 (Math1000). Full-size DOI: 10.7717/peerj-cs.828/fig-4

Figure 5 Comparison of the execution time function (in seconds) of the problem size. The methods
compared are matheuristic (MATH), heuristic (HEU), hybrid method (HYB) and matheuristic 1,000
(Math1000). Full-size DOI: 10.7717/peerj-cs.828/fig-5
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all the parameters within the hyper-matheuristic. Then, all the metaheuristics will
generated using these limits.

The aim of this experiment is to be able to set the values for all parameters using them
as default values for any problem size. A specific problem has been established (3/50/1)
to train the hyper-matheuristic and get a good configuration. This training has been
performed by running the hyper-matheuristic for this problem with 100 different
metaheuristics and 100 combinations of these, where each evaluated metaheuristic has
been tested 10 times for each model, obtaining the average value for each metaheuristic.
At the end of the experiment, the best average quality of the 200 parameter settings
(which means 200 different metaheuristics) has been obtained. For the solution quality
evaluation of each metaheuristic, the average quality of all executions and DMUs has been
taken into account, as well as the average time required to terminate the search. In
conclusion, a ratio between solution quality and search time (fitness/time) is used to rank
the metaheuristics according to the solution quality obtained and the search time. In Fig. 6,
all the obtained qualities are compared between the three general metaheuristics proposed
(EA, GRASP and SS), the best metaheuristic obtained by the hyper-matheuristic (Mbest)
and the matheuristic method with initial population of 1,000 solutions (Math1000).

Table 3 Values of the parameters for the three basic metaheuristics considered and the hyper-
matheuristic limits.

Metaheuristic IINEIni FNEIni PEIIni IIEIni NBESel NWESel PBBCom

EA 300 150 0 0 100 0 50

GR 500 1 100 20 0 0 0

SS 100 50 50 5 25 25 25

Hyper 100/500 1/150 0/100 0/20 0/100 0/25 0/50

Metaheuristic PWWCom PEIImp IIEImp PEDImp IDEImp MNIEnd NIREnd

EA 0 0 0 10 10 10 5

GR 0 0 0 0 0 10 5

SS 25 50 10 0 0 10 5

Hyper 0/25 0/50 0/10 0/10 0/10 0/10 0/5

Figure 6 Fitness values obtained by the three basic metaheuristics, an exact method and the hyper-
matheuristic (Mbest), varying the problem size. Full-size DOI: 10.7717/peerj-cs.828/fig-6

Gonzalez et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.828 18/24

http://dx.doi.org/10.7717/peerj-cs.828/fig-6
http://dx.doi.org/10.7717/peerj-cs.828
https://peerj.com/computer-science/


Figure 6 shows that the values obtained for the parameters in the hyper-matheuristics
always improve the solution quality obtained with the other metaheuristics. The results
obtained (Table 4) show that all the functions developed are used, but they do not need
high values. It can be observed that for the three proposed metaheuristics, the GRASP
strategy obtains better fitness solution. On the other hand, SS has the lowest initial
population solutions and then lower probability of obtaining the best solution, despite
incorporating all the functionalities. The fitness solution obtained with the Mbest is quite
similar to the quality obtained by the matheuristic using the value of 1,000 in the initial
solution set, but if the execution time is compared (Fig. 7), the Mbest is always faster
than the matheuristic with the default parameter values used in the previous experiments.
We can conclude that the trained hyper-matheuristic is able to obtain a good configuration
of parameters, improving the quality and time for any problem size.

Bender’s decomposition evaluation
In this subsection, our approach and that based on solving the MILP problem by the
optimizer and Bender’s decomposition are compared. For this, a last experiment was
carried out, where based on a fixed size (m = 3, s = 1, n = 100), different problems
generated have been evaluated obtaining, for both techniques, the optimal value of the
objective function. Figure 8 shows a comparison between these two techniques (Bender’s
and Mbest). In particular, it graphically illustrates the objective function value for 20
simulated problems by means of bars. The bar is not drawn if the corresponding technique
does not find any solution. Something that only happens for Bender’s decomposition.

Figure 7 Comparison of the execution time (in seconds) between the three basic metaheuristics, the
exact method and the hyper-matheuristic (Mbest) function of the problem size.

Full-size DOI: 10.7717/peerj-cs.828/fig-7

Table 4 Values of the parameters for the best metaheuristic (Mbest) found by the hyper-matheuristic
in the matheuristic.

Metaheuristic IINEIni FNEIni PEIIni IIEIni NBESel NWESel PBBCom

Hyper 310 61 13 17 12 10 22

Metaheuristic PWWCom PEIImp IIEImp PEDImp IDEImp MNIEnd NIREnd

Hyper 25 12 8 3 7 6 5
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Figure 8 shows how, when both techniques find an optimal solution, Bender’s and Mbest
get very similar values. For some problems, Bender’s decomposition does not find any
feasible solution. This contrasts with the Mbest technique, which is able to find solutions
for all the cases studied. From this, it can be deduced that the proposed technique is valid
for all the problems evaluated and that, in addition, it finds solutions very close to the
optimum, since very similar results are obtained when comparing them with those
obtained by an exact method through Bender’s decomposition. Therefore, we can see that
the hyper-matheuristic introduced fulfils the proposed objective satisfactorily, being a
complementary technique to those already known in the literature.

Our conclusions associated with the computational experience are limited by the type of
optimization problem that was analyzed, within the context of Data Envelopment
Analysis. Further evaluations of the new methodology on different types of optimization
problems (such as packing, knapsack, inventory, etc.) would be needed to lead to more
robust conclusions.

CONCLUSIONS AND FUTURE WORKS
In this paper, we have developed an efficient decomposition strategy for MILP
optimization problems in the context of Data Envelopment Analysis (DEA). We have
developed a hierarchical decomposition based on the nature of the decision variables
(continuous vs discrete) and the complexity of the subproblems. An incomplete encoding
representing only discrete decision variables is explored by the metaheuristics. The
encoding of solutions is completed for the continuous decision variables by solving a linear
problem exactly.

This matheuristic framework has shown its validity in solving MILP problems in the
framework of DEA. Moreover, we developed a hyper-matheuristic methodology on
top of the parameterized metaheuristic scheme. It allows the automatic design and
configuration of a flexible and generic template for population-based metaheuristics.
Satisfactory results have been obtained in terms of solution quality and execution time.
Other computational intelligence algorithms could be used to solve the problems, like the

Figure 8 Comparison of the objective function value in several problems with a fixed size (m = 3; s =
1; n = 100). The methods compared are Bender’s Decomposition (Bender’s) and the best matheuristic
found by the hyper-matheuristic (Mbest). Full-size DOI: 10.7717/peerj-cs.828/fig-8
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monarch butterfly optimization (MBO) (Wang, Deb & Cu, 2019) or the earthworm
optimization algorithm (EWA) (Wang, Deb & Coelho, 2018).

One of the future research lines of this paper is to apply this hyper-matheuristic
methodology to other real-life optimization problems formulated as MILP, such as unit
commitment problems in power energy systems and demand side management in smart
grids. Another perspective consists in the generalization of the proposed decomposition
scheme for other families of optimization problems, in which only the continuous part
of the problem is linear and easy to solve using an exact algorithm. Indeed, the most
important feature of the proposed decomposition scheme is the complexity of the
subproblems generated by metaheuristics and solved by exact algorithms. Another
interesting perspective is to investigate the parallel design and implementation of the
hyper-matheuristic methodology. Indeed, the proposed decomposition strategy is suitable
to be deployed on heterogeneous parallel architectures composed of clusters of multiple
cores and GPUs (Graphics Processing Units).

As a limitation, we point out that the proposed algorithm has been proved in only
one kind of MILP problem, within the Data Envelopment Analysis field. Also, the
algorithm developed in this paper is just applicable to MILP problems which include both
discrete and continuous variables. An interesting future line of research would be to apply
the new methodology to different specific types of optimization problems: packing,
knapsack, inventory, production planning, location, resource allocation, routing or
scheduling problems, to name but a few. This analysis would allow us to shed light on the
adequacy of the new approach for solving very different optimization problems with varied
structures. Another possible line of further research would consist of incorporating
Bender’s decomposition to our approach to improve the computational time or, even
consider Bender’s method as a new feature in the hyper-matheuristic.
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