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ABSTRACT
Microservice-based Web Systems (MWS), which provide a fundamental
infrastructure for constructing large-scale cloud-based Web applications, are
designed as a set of independent, small and modular microservices implementing
individual tasks and communicating with messages. This microservice-based
architecture offers great application scalability, but meanwhile incurs complex and
reactive autoscaling actions that are performed dynamically and periodically based
on current workloads. However, this problem has thus far remained largely
unexplored. In this paper, we formulate a problem of Dynamic Resource Scheduling
for Microservice-based Web Systems (DRS-MWS) and propose a similarity-based
heuristic scheduling algorithm that aims to quickly find viable scheduling schemes
by utilizing solutions to similar problems. The performance superiority of the
proposed scheduling solution in comparison with three state-of-the-art algorithms is
illustrated by experimental results generated through a well-known microservice
benchmark on disparate computing nodes in public clouds.

Subjects Algorithms and Analysis of Algorithms, Distributed and Parallel Computing,
Optimization Theory and Computation
Keywords Microservice, Dynamic resource scheduling, Problem similarity, NSGA-II

INTRODUCTION
As a new computing paradigm, Microservices have been increasingly developed and
adopted for various applications in the past years. Driven by this trend, Microservice-based
Web Systems (MWS), which have emerged as a prevalent model for distributed
computing, are designed as a set of independent, small and modular microservices
implementing individual tasks and communicating with messages. MWS facilitate fast
delivery and convenient update of web-based applications, with auto-scalability for the
provisioning of virtualized resources, which could be schedule-based, event-triggered, or
threshold value-based (Guerrero, Lera & Juiz, 2018b). These condition-triggered auto-
scaling mechanisms are reactive, meaning that the decision on autoscaling actions is made
dynamically and periodically based on the current workload. Another important
characteristic of MWS is that they are often deployed in a multi-cloud environment (Fazio
et al., 2016); this is because modern Web-based applications are often across
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organizational boundaries. For example, a common on-line shopping scenario typically
involves an e-commence company, a manufacturer, and a bank, all of which host their
information systems on their own cloud.

Applications deployed on the cloud need to meet performance requirements, such as
response time, and also need to reduce the cost of cloud resource usage. Generally,
Web-based application service requests are submitted by users and run in cloud service
providers’ cluster environments. Resource scheduling requires instance scheduling and
auto-scaling within a restricted time limit to determine the number of instances for each
microservice and decide how to deploy each instance to the appropriate VM, achieving
the goal of minimizing resource consumption and best service performance as well as
meeting user dynamic requests. However, the problem of Dynamic Resource Scheduling
for Microservice-based Web Systems (DRS-MWS) is extremely challenging mainly due to
the following factors:

� NP-hard. The instance scheduling problem in cloud environment has long been proved
to be a typical NP-hard problem (Salleh & Zomaya, 2012). Due to the dynamic
arrival of microservice requests, resource scheduling algorithms are required to adapt to
rapidly changing requirements and environments. Under strict time constraints, it
becomes more difficult to find a approximate optimal solution.

� Multi-objective optimization. DRS-WMS is a complex multi-objective optimization
problem. In this problem, the solution may involve many conflicting and influencing
objectives, and the researcher should obtain the best possible optimization of these
objectives simultaneously. For example, resource scheduling algorithms need to provide
sufficient service performance for users while maintaining system robustness to prevent
system failure.

Existing methods for resource scheduling for MWS include rule-based, heuristic, and
learning-based, as discussed in the Related Work section. Among them, evolutionary
algorithms (EA), which are heuristic in nature, have recently received a great deal of
attention. EA-based approaches are effective in solving complex microservice scheduling
problem (Fazio et al., 2016), but suffer from inefficiency and thus fail to satisfy the
requirement for reactive and dynamic scheduling. This is mainly because they do not
consider a priori knowledge about the solution, and often start from a randomly generated
initial population. Due to the dynamic nature and the hard time constraint in the
microservice scheduling problem, starting with a random population may lead to non-
convergence and hence jeopardize the exploration for better solutions (Wang et al., 2009).

To address the challenge of dynamic scheduling, we propose Similarity-based
Dynamic Resource Scheduling, referred to as Sim-DRS, which aims to quickly find viable
scheduling schemes for MWS under a certain time constraint. We tackle the problem of
Dynamic Resource Scheduling for Microservice-based Web Systems based on one key
hypothesis that solutions to similar problems often share certain structures. Therefore,
instead of starting from a random population indiscriminately at each initial iteration
in a typical EA approach, we focus on finding solutions to similar problems as part of the
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initial population to improve the quality of population initialization. This strategy has been
shown to be powerful for producing better solutions in the literature (Rahnamayan,
Tizhoosh & Salama, 2007; Wang et al., 2009) and in our practical experiments.

In summary, our work makes the following contributions to the field:

� We formulate DRS-MWS as a combinatorial optimization problem.

� We propose Sim-DRS to solve DRS-MWS, which finds promising scheduling schemes
by directly utilizing viable solutions to similar problems, hence obviating the need for a
fresh start.

� We evaluate the performance of Sim-DRS through extensive experiments using the
well-known microservice benchmark named TeaStore under different scheduling time
constraints. We show that Sim-DRS outperforms three state-of-the-art scheduling
algorithms by 9.70–42.77% in terms of three objectives, and achieves more significant
improvements under stricter time constraints.

The remainder of this paper is organized as follows. The “RelatedWork” section surveys
related work and the Problem Statement presents the analytical models of a microservice-
based application and formulates the DRS-MWS problem. The “Resource Scheduling
Algorithm” section designs Sim-DRS, a dynamic resource scheduling algorithm based on
similarity. The “Experiments” section describes the experimental setup and evaluates the
scheduling algorithm. In the end, the “Conclusion and Future Work” section presents a
discussion of our approach and a sketch of future work.

RELATED WORK
Resource scheduling for MWS is an active research topic (Fazio et al., 2016) and has
received a great deal of attention from both industry and academia. Previous studies can be
classified into three categories: rule-based, heuristic, and learning-based approaches, as
discussed below.

Rule-based approach
Yan, Chen & Shuo (2017) proposed an elastically scalable strategy based on container
resource prediction and message queue mapping to reduce the delay of service
provisioning. Leitner, Cito & Stöckli (2016) proposed a graph-based model for the
deployment cost of microservices, which can be used to model the total deployment
cost depending on the call patterns between microservices. Magalhaes, Rech & Moraes
(2017) proposed a scheduling architecture consisting of a Web server powered by a soft
real-time scheduling engine. Gabbrielli et al. (2016) proposed JRO (Jolie Redeployment
Optimiser) tool to generate a suggested SOA (service-oriented architecture) configuration
from a partial and abstract description of a target application. Filip et al. (2018) proposed a
mathematical formulation for describing an architecture that includes heterogeneous
machines to handle different microservices. Zheng et al. (2019) presented SmartVM, a
business Service-Level-Agreement (SLA)-aware, microservice-centric deployment
framework to handle traffic spikes in a cost-efficient manner. Fard, Prodan & Wolf (2020)
proposed a general microservice scheduling mechanism and modeled the scheduling
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problem as a complex variant of the knapsack problem, which can be expanded for
various resource requests in queues and solved by multi-objective optimization methods.
Mirhosseini et al. (2020) developed a scheduling framework called Q-Zilla from the
perspective of solving the end-to-end queue delay, and the SQD-SITA scheduling
algorithm was proposed to minimize the delay caused by microservice distribution.

Rule-based approaches are straightforward and are efficient in simple environments.
The scheduling problem can be solved by constructing rules through domain knowledge,
using software architecture and simple data modeling theory, which is effective in an
environment that meets certain assumptions. However, they rely heavily on prior domain
knowledge, have a low degree of mathematical abstraction, and may be labor-intensive,
imprecise, and have poor results in high variability scenarios.

Heuristic approach
Li et al. (2018) proposed a prediction model for microservice relevance using optimized
artificial bee colony algorithm (OABC). Their model takes into account the cluster load
and service performance, and has a good convergence rate. Stévant, Pazat & Blanc
(2018) used a particle swarm optimization to find the best placement based on the
performance of microservices evaluated by the model on different devices to achieve
the fastest response time. Guerrero, Lera & Juiz (2018b) presented an NSGA-II algorithm
to reduce service cost, microservice repair time, and microservice network latency
overhead. Adhikari & Srirama (2019) used an accelerated particle swarm optimization
(APSO) technique to minimize the overall energy consumption and computational time of
tasks with efficient resource utilization with minimum delay. Lin et al. (2019) proposed an
ant colony algorithm that considers not only the utilization of computing and storage
resources but also the number of microservice requests and the failure rate of physical
nodes. Guerrero, Lera & Juiz (2018a) proposed an NSGA-II-based approach to optimize
system provisioning, system performance, system failure, and network overhead
simultaneously. Bhamare et al. (2017) presented a fair weighted affinity-based scheduling
heuristic to reconsider link loads and network delays while minimizing the total
turnaround time and the total traffic generated. Lin et al. (2019) used an ant colony
algorithm to solve the scheduling problem. It considered not only the computing and
storage resource utilization of physical nodes, but also the number of microservice requests
and failure rates of the nodes, and combined multi-objective heuristic information to
improve the probability of choosing optimal path.

These approaches generally abstract resources scheduling into an optimization problem
through appropriate modeling methods and solve the problem in a certain neighborhood.
And heuristic approaches have been proven to be efficient in finding good scheduling
solutions in a high-dimensional space (Guerrero, Lera & Juiz, 2018a), especially under the
circumstances of balancing many conflicting objectives. However, they suffer from low
performance and search from a random state, which lead to noneffective use of a priori
knowledge of existing good solutions.
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Learning-based approach
Alipour & Liu (2017) presented a microservice architecture that adaptively monitors
the workload of a microservice and schedules multiple machine learning models to learn
the workload pattern online and predict the microservice’s workload classification at
runtime. Nguyen & Nahrstedt (2017) proposed MONAD, a self-adaptive microservice-
based infrastructure for heterogeneous scientific workflows. MONAD contains a feedback
control-based resource adaptation approach to generate resource allocation decisions
without any knowledge of workflow structures in advance. Gu et al. (2021) proposed a
dynamic adaptive learning scheduling algorithm to intelligently sorts, allocates, monitors,
and adjusts microservice instances online. Yan et al. (2021) used the neural network
and attention mechanism in deep learning to optimize the passive elastic scaling
mechanism of the cloud platform and the active elastic mechanism of microservices by
accurately predicting the load of microservices, and finally realized the automatic
scheduling of working nodes. Lv, Wei & Yu (2019) used machine learning methods in
resource scheduling in microservice architecture, pre-trained a random forest regression
model to predict the requirements for the microservice in the next time window based
on the current unload pressure, and the number of instances and their locations were
adjusted to balance the system pressure.

The learning-based solutions are still in their infancy. The main advantage of these
approaches is that they can generate scheduling decisions adaptively and automatically,
without any human intervention. However, these approaches require a considerable
number of samples to build a reasonable decision model for a microservice system (Alipour
& Liu, 2017). The high demand of samples is always challenging because only a very
limited set of samples can be acquired during a short time period for resource scheduling
in production systems.

PROBLEM STATEMENT
We study a Dynamic Resource Scheduling problem for Microservice-based Web Systems,
referred to as DRS-MWS. As is shown in Fig. 1, a microservice-based Web system is often
deployed in a multi-cloud environment consisting of a set of interconnected virtual machines.
This system acts as a real-time streaming data pipeline that delivers data and messages to
microservices. Users can send requests to microservices once deployed according to their own
requirements. Each type of microservice provides a unique function, and multiple
microservices collectively constitute an integrated service system. Given a batch of dynamic
requests at runtime, the goal of DRS-MWS is to find an optimal provisioning policy to
improve the system’s service quality and robustness while ensuring the high quality.

System components
Specifically, DRS-MWS has the following components.

Microservice
A microservice-based Web System (MWS) contains many kinds of microservice, and
each type provides a specific functionality, which can be modeled as a three tuple
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ms ¼ Cms;Rms; gh i, where Cms and Rms represent the normalized CPU and memory
resource demand for deploying ms on VMs, respectively; g denotes the full capacity of ms
to achieve its functionality.

Application

Each application, which consists of many microservices and represents a useful business
functionality, can implement a corresponding type of requests from users. In this
paper, we model an application as a directed acyclic graph (DAG) A =〈VA, EA〉, where
vertices VA represent a set of m microservices VA = {ms1,ms2,⋯, msm}. The execution
dependency between a pair of adjacent microservices msi and msj is denoted by a directed
edge (msi,msj) ∈ EA between them.

Workload
By definition, workload often represents the requests to an application from different users
at a given time point t. For clarity, we use microservice workload (short for workload) here
instead of application workload because we need to track the details of microservice
requests in the DRS-MWS problem. Given a set ofmmicroservices, we model workload as

WðtÞ ¼ fwðtÞ1 ;wðtÞ2 ; � � � ;wðtÞm g, where each integer wðtÞi denotes the total number of user

requests for msi at t, which can reflect the duration the requests are queued in msi waiting
to be executed.

Running environment
We consider a set of cloud providers P = {p1,p2,⋯} hosting n virtual machines (VMs).
Typically, different types of VMs with different computing capabilities characterized by the
number of virtual CPU cores, CPU frequency, RAM and disk size are provisioned to satisfy

Figure 1 An overview of the DRS-MWS problem. Full-size DOI: 10.7717/peerj-cs.824/fig-1
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different application needs. For simplicity, we define a normalized scalar p ¼ hCvm;Rvmi to
describe such computing capability for a given VM, where Cvm and Rvm represents the
virtual CPUs and memory allocated to VM. To model the communication time or
latency overhead among different cloud providers, we define a matrix Ln×n where the
element li,j represents the latency between the VM vi and vj. Note that we assume that
the latency within the same VM is negligible, i.e. li,i = 0, and the latency within the different
cloud providers is larger than in the same provider. As shown in Fig. 1, there are three VMs
(v1, v2, and v3), and the latency can be expressed as:

L ¼
0 50 50
50 0 20
50 20 0

2
4

3
5: (1)

Microservice Instance
To implement a business function, each microservice needs to be deployed in a container
to create a microservice instance. Without loss of generality, we follow the popular
“service instance per container” (Richardson, 2020) deployment pattern in this paper and
use the term microservice instance to denote both the software and the container
infrastructure of a specific microservice. Specifically, we use msi,j to represent the j-th
instance of microservice msi. As illustrated in Fig. 1, function f1 is mapped to ms1,1 and
ms1,2, which means the 1-st instance of microservice ms1 and the 1-st instance of
microservice ms2 work cooperatively to implement f1.

Optimization objectives
At any time point t, we wish to optimize three objectives: (i) the resource consumption
(C(t)) for supporting users’ requests; (ii) the system jitter (J(t)) due to the deploying
adjustment of the microservice instances; and (iii) the invocation expense (E(t)) for calling
different microservice instances along the microservice invocation chain of an application.
It is worth mentioning that we treat a microservices as a black-box function, and the
latency of queueing and executing requests within the microservice is not considered in
this paper.

To achieve this optimization, we define our resource scheduling first by managing the
number of instances for each microservice and then deciding how to deploy each
microservice instance to an appropriate VM. More specifically, suppose that an MWS has
n VMs and m different microservices, and a workload WðtÞ ¼ fwðtÞ1 ;wðtÞ2 ; � � � ;wðtÞm g is
generated at a time point t. We define a matrix Sm×n to denote our scheduling decision,
where each element sij ∈ S indicates the number of instances for microservice msi that will
be deployed to VM vj, and for example, we have three VMs (v1, v2, and v3) and three
microservices (ms1, ms2, and ms3) in Fig. 1, and the current resource scheduling at time
point t can be defined as:

SðtÞ ¼
1 1 0
1 0 1
0 1 1

2
4

3
5: (2)
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Resource consumption, denoted by C(t), is measured as the sum of the resource
demands for deploying each microservice instance on its target VM:

CðtÞ ¼
Xm
i¼1

Xn
j¼1
ðsðtÞi;j �msi:rÞ; (3)

where sðtÞi;j denotes the number of microservice instances msi deployed on VM vj, and msi.r
represents the normalized resource demand for deploying msi on a VM.

System jitter, denoted by J(t), is an important performance metric used to measure the
robustness of the system at time point t, which can be further defined as the change
degree of microservice instances’ deployment for an MWS environment. For example,
given any two continuous time points t and t − 1, J(t) results from subtracting scheduling
decisions S(t) and S(t − 1):

JðtÞ ¼Pm
i¼1

Pn
j¼1

sðtÞi;j � sðt�1Þi;j

��� ��� : (4)

Invocation expense, denoted by E(t), is defined as the associated cost for considering
both the microservice invocation chains of applications and the latency overhead among
different cloud providers. Because the latency has been defined in the previous section, we
need to define the former as microservice invocation expense.

Given a set of applications A = {A1, A2, ⋯} in an MWS, we define the correlation,
denoted as cor(msi,msj), between any two microservices msi and msj as:

corðmsi;msjÞ ¼ 1 if ðmsi;msjÞ 2 EAk ;8Ak 2 A
0 otherwise

;

�
(5)

where EAk represents the microservices required to implement Ak.
The microservice invocation distance, denoted by a matrix Dm×m, is thus defined to

indicate the alienation between any two microservices, and each element di,j in D is
defined as:

di;j ¼ e�corðmsi;msjÞ if i 6¼j
0 otherwise:

�
(6)

As shown in Fig. 1, there is only one application A = {ms1, ms2, ms3} that belongs to the
MWS, and the microservice distance D is thus represented as:

D ¼
0 e�1 1
1 0 e�1

1 1 0

2
4

3
5: (7)

Based on the latency Ln×n among different VMs, the scheduling decision S(t)m×n at time
point t, and the microservice distanceDm×m, we now define the invocation expense E(t) as a
scalar value:

EðtÞ ¼ U � ðD � SðtÞ � LÞ � UT ; (8)
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where U1×n is an auxiliary matrix whose elements are all equal to 1. For example, as shown
in Fig. 1, given L defined in Eq. (1), S(t) defined in Eq. (2), andD defined in Eq. (7), we have:

EðtÞ ¼ 1 1 1½ �
0 e�1 1
1 0 e�1

1 1 0

2
4

3
5 1 1 0

0 1 1
0 1 1

2
4

3
5 0 50 50

50 0 20
50 20 0

2
4

3
5

0
@

1
A 1

1
1

2
4

3
5¼ 280e�1þ 520 (9)

Problem formulation
We formally define DRS-MWS as a three-objective optimization problem:

min
8SðtÞ

CðtÞðA;MS;V ; SðtÞÞ
min
8SðtÞ

JðtÞðA;MS;V; SðtÞÞ
min
8SðtÞ

EðtÞðA;MS;V ; SðtÞÞ

8>>><
>>>:

(10)

s:t: scheduling time � c � Dt (11)
Pm
j¼1
ðsðtÞi;j �msj:rÞ � d � vi:r 8t; i ¼ 1; 2; � � � ; n (12)

Pn
j¼1

sðtÞi;j ¼ d
wi

msi:g
eðtÞ 8t; i ¼ 1; 2; � � � ;m (13)

where Eq. (10) states that at any time point t, given an MWS consisting of a set of
applications (A), a set of microservices (MS), and a set of VMs (V), the goal of DRS-MWS
is to find a resource scheduling policy S among all valid policies under workload W(t)

to minimize the resource consumption (C(t)), system jitter (J(t)), and invocation expense
(E(t)) simultaneously. The constraint Eq. (11) is that any solution to the problem must
terminate after a γ · Δt amount of time. The constraint Eq. (12) states that the
resource consumption of any VM for deploying microservices must not exceed a certain
proportion of its total resource capacity. Finally, the constraint Eq. (13) states that the
workload on each microservice needs to be served appropriately.

RESOURCE SCHEDULING ALGORITHM
In this section, we introduce Sim-DRS—a similarity-based dynamic resource scheduling
algorithm to solve DRS-MWS. Its key idea is to accelerate the convergence of the
scheduling algorithm by adopting previously-known good solutions as the initial
population whose optimization situation is similar to the current one. We first analyze
existing scheduling algorithms and their limitations. We then present similarity
estimation, which determines an appropriate initial population for the scheduling
algorithm at each time point. Finally, we discuss the details of the Sim-DRS algorithm.

Motivation
Evolutionary algorithms (EA) are among the most popular for solving the DRS-MWS
problem (Guerrero, Lera & Juiz, 2018a). EA implementation requires a definition of the
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solution and the construction of several technical components including initial population,
genetic operators such as crossover and mutation, fitness function, selection operator,
offspring generation, and execution parameterization (Mitchell, 1998). Most of the
previous approaches assume that no a prior information about the solution is available,
and often use a random initialization method to generate candidate solutions (i.e., the
initial population). According to (Rahnamayan, Tizhoosh & Salama, 2007), population
initialization is a crucial step in evolutionary algorithms because it can affect the
convergence speed and also the quality of the final solution. Due to the dynamics and the
hard time constraint in the DRS-MWS problem, previous studies have shown that
adopting a random initial population often leads to non-convergence in the optimization
process and eventually a low-quality solution (Wang et al., 2009).

Instead of using a complete randomization technique for initial population generation,
we attempt to leverage existing solutions to similar problems to compose the initial
population. The rationale behind this idea is that good solutions to similar problems
may share some common structures. Figure 2 illustrates the optimization process of
Sim-DRS, which contains two phases: offline training and online scheduling. In the
training phase, it first generates a set of synthetic workloads, and then applies a
Non-dominated Sorting Genetic Algorithm II (NSGA-II) to reach the pareto optimality
for three optimization objectives mentioned in Eq. (10). It constructs a database of
good solutions by adding such one-to-one <workload-solution> pairs. In the scheduling
phase, given a real workload W(t) generated by users at each time point t, Sim-DRS
first applies a similarity-based algorithm to generate an initial population mixed with
random and previously-known similar solutions from the database by calculating the
similarities between W(t) and existing synthetic workloads. It then uses a standard
NSGA-II algorithm to optimize three objectives defined in Eq. (10) and select the best one.

Figure 2 An overview of the proposed Sim-DRS approach.
Full-size DOI: 10.7717/peerj-cs.824/fig-2
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Solution database construction
To measure the correlation between any two workloads Wi ¼ fwi

1;w
i
2; � � � ;wi

mg
and Wj ¼ fwj

1;w
j
2; � � � ;wj

mg, we first define workload similarity (or similarity in short):

�ðWi;WjÞ ¼ e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1
ðwi

k�w
j
kÞ

2

r
: (14)

As shown is Fig. 2, we need to construct a solution database containing previously-
known good solutions for different workloads in the training phase. The solution database
construction (SDC) algorithm is provided in Algorithm 1.

As shown in Algorithm 1, for every workload Wi in the synthetic workload set W, we
randomly generate p different solutions as the initial population (line 3), and then apply a
Non-dominated Sorting Genetic Algorithm II (NSGA-II) to find the optimal solution
(line 4). The <workload-solution> pair is added to the database as a known fact (line 5).
Note that the training phase is conducted offline, which allows an extensive execution
of the NSGA-II algorithm without any time constraint. Based on the definition of
similarity, we then apply a k-Means clustering algorithm to these pairs by clustering the
workloads and generate k different groups, where k, which is often designated based on an
empirical study, is used to characterize different workload patterns (line 7).

Figure 3 illustrates an example of the solution database containing three groups of
workloads G1, G2, and G3, each of which consists of three workloads. Three centers,
namely W3, W5, and W7 in this example, represent their clusters, respectively.

Similarity-oriented initial population generation
Given a workload W(t) generated by users at each time point t during the dynamic
scheduling phase, the similarity-based initial population generation algorithm in our
Sim-DRS approach aims to find good solutions from the solution database according to the
distance measurement, as shown in Algorithm 2.

Algorithm 1 Solution database construction algorithm: SDC(W, k).

Input: W = {W1,W2,⋯,Wn}: the workload set consisting of n synthetic workloads; k: the number of
clusters.

Output: SD: the solution database containing k groups.

1: SD [;

2: for i = 1:n do

3: Randomly generate an initial population with p different solutions;

4: Find the optimal solution Si for Wi using an NSGA-II algorithm;

5: SD  (Wi,Si);

6: end for

7: SD k -means(SD,k);

8: return SD;
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Figure 3 An example of the solution database. Full-size DOI: 10.7717/peerj-cs.824/fig-3

Algorithm 2 Similarity-oriented initial population generation algorithm: GenSimPop(W(t), SD, p).

Input: W(t): the real workload arriving at time point t; SD: the solution database; p: the number of desired
individuals in the set of good solutions.

Output: GS: the set of good solutions for composing the initial population.

1: GS ) [;

2: G�  argmax
G2SD

�ðWðtÞ;Wc
GÞ;

3: Construct a roulette wheel selection process PS with G* ;

4: for i = 1: p do

5: (Wi, Si) ) RWS(G* , PS);

6: for j = 1: m do

7: diff ) w(t)
j − wi

j;

8: adj d diff
msj:g

e;
9: if adj ≠ 0 then

10: k ) |adj|;

11: while k > 0 do

12: Randomly select a VM index x ∈ [1,n];

13: if sij;x þ
jadjj
adj
� 0 then

14: sij;x  sij;x þ
jadjj
adj

;

15: k ) k − 1;

16: end if

17: end while

18: end if

19: end for

20: GS )GS ∪ Si;

21: end for

22: return GS;
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The similarity-based initial population generation algorithm begins with searching for
the group G* in the solution database that has the largest similarity with W(t) (line 2),
where Wc

G represents the cluster center of any workload group G. For example, given a
workload W(t) in Fig. 3, we need to calculate γ(W(t),W3) for G1, γ(W

(t),W5) for G2, and
γ(W(t),W7) for G3, respectively.

Given G *, we construct a roulette wheel selection (RWS) process, a proportional
selection strategy which has a similar selection principle as roulette wheel, to construct
a population with good solutions (line 3). More specifically, suppose that group G *
contains k different <workload-solution> pairs G* = {a1,a2,⋯,ak}, and an individual
pair ai = <Wi,Si> has the distance value of C(W(t),Wi). Then, the probability for ai to be
selected is:

psðaiÞ ¼ �ðWðtÞ;WiÞ
Pk
j¼1

�ðWðtÞ;WjÞ
i ¼ 1; 2; � � � ; k:

(15)

After obtaining the roulette wheel: PS = {ps(a1),ps(a2), ⋯,ps(ak)}, we repeatedly select
candidate workload-solution pairs p times from G* using the RWS strategy with PS
(line 5).

Once a solution Si to the workload Wi is selected, we need to adjust it to the current
workload W(t) if W(t) ≠ Wi (lines 6–19). More specifically, for each microservice msj, we
calculate the difference diff between the workload wt

j for W
(t) and wi

j for Wi (line 7),
and then convert the workload difference (diff) into the microservice instance difference
(adj) (line 8). To adjust the scheduling decision sij,* for msj on every VM, we randomly
choose a VM indexed by x (x∈ [1,n]) and add/remove a microservice instance to/from vx
(lines 12–16). This process repeats multiple times until |adj| times of adjustments have
been performed successfully (lines 11–17). After each adjustment on Si, we add it to the
set of good solutions GS for the initial population (line 20). The algorithm stops after
p times of selections and adjustments, and finally returns the set of good solutions GS.

Sim-DRS algorithm
The pseudocode of Sim-DRS is provided in Algorithm 3. Sim-DRS initially generates hs
(α · populationSize) number of good solutions using our similarity-based initial population
generation algorithm (line 2), and generates hr ((1 − α) · populationSize) number of
solutions using the standard random algorithm (line 3). Finally, hs and hr are merged
together to form the initial population (line 4).

Our Sim-DRS approach is based on the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II) (Deb et al., 2002) (lines 5–25) as introduced in the previous section. The
crossover operation randomly exchanges the same number of rows of two individuals
to produce new ones (line 12). To avoid the local minimum value and cover a larger
solution space, a mutation operator is also used (line 14). Note that in order to satisfy the
constraint stated in Eq. (11), we need to randomly adjust the values of an individual after
applying the crossover and mutation operations (line 16–17).

Li et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.824 13/23

http://dx.doi.org/10.7717/peerj-cs.824
https://peerj.com/computer-science/


According to the problem formulation, Sim-DRS considers three objective functions,
namely, C(t), J(t), and E(t), as the fitness functions to measure the quality of a solution
(lines 5 and 22). It sorts the solutions at Pareto optimal front levels, and all the solutions in
the same front level are ordered by the crowding distance (lines 22–25). Once all the
solutions are sorted, a binary tournament selection operator is applied over the sorted
elements (line 11): two solutions are selected randomly, and the first one on the ordered list
is finally selected (line 27).

Algorithm 3 The Sim-DRS algorithm: SimDRS(W(t), SD).

Input: W(t): the real workload arriving at time point t; SD: the solution database.

Output: S: the optimal scheduling strategy.

1: Initialize populationSize, generationNumber, mutationProb;

2: hs ← GenSimPop(W(t), SD, α · populationSize);

3: hr ← GenRandomPop((1 − α) · populationSize);

4: h ← hs + hr;

5: fitness ← CalculateFitness(h);

6: fronts ← CalculateFronts(h, fitness);

7: distance ←CalculateCrowd(h, fitness, fronts);

8: for i = 1 : generationNumber do

9: hoff ← Ø;

10: for j = 1 : populationSize do

11: fa1,fa2 ← BinarySelect(h, fitness, distance);

12: ch1,ch2 ← Crossover(fa1, fa2);

13: if Random() < mutationProb then

14: Mutate(ch1, ch2);

15: end if

16: ch1 ← RandomAdjustment(ch1);

17: ch2 ← RandomAdjustment(ch2);

18: hoff ← hoff ∪ {ch1, ch2};

19: end for

20: hoff ← hoff ∪ h;

21: end for

22: fitness ← CalculateFitness(hoff);

23: fronts ← CalculateFronts(hoff, fitness);

24: distance ← CalculateCrowd(hoff, fitness, fronts);

25: hoff ← OrderElements(hoff, fronts, distance);

26: h hoff ½1 . . . populationSize�;
27: S ← fronts[1];

28: return S;
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EXPERIMENTS
We implemented our algorithm and conducted extensive experiments under different
testing scenarios. The source code and data can be found in the online public
repository (https://github.com/xdbdilab/Sim-DRS). In this section, we first describe our
experiment setup, and then present the experimental results to illustrate the efficiency and
effectiveness of the proposed approach.

Experimental setup
Benchmark
We choose TeaStore (von Kistowski et al., 2018) as our benchmark application to
evaluate the performance of different algorithms including Sim-DRS. TeaStore is a
state-of-the-art microservice-based test and reference application, and has been
widely used for performance evaluation of microservice-based applications. It allows
evaluating performance modeling and resource management techniques, and also offers
instrumented variants to enable extensive run-time analysis.

As shown in Fig. 4, the TeaStore consists of five distinct services and a registry service.
All services communicate with the registry for service discovery and load balancing.
Additionally, the WebUI service issues calls to the image provider, authentication,
persistence and recommender services. The image provider and recommender are both
dependent on the persistence service. All services communicate via representational state
transfer (RESTful) calls, and are deployed as Web services on the Apache Tomcat Web
server.

Workload
To characterize user requests to a production microservice-based web system in a daily
cycle, we implemented a workload generator using JMeter (https://jmeter.apache.org/) to
generate requests according to Poisson and random distribution, and each request
corresponds to some kind of application calling the corresponding microservices. For each
cycle of workload, we use every algorithm to make scheduling decisions for 20 times
under a fixed time constraint. We observed that it usually takes 5 to 10 s for Kubernetes to

Figure 4 The architecture of TeaStore benchmark. Full-size DOI: 10.7717/peerj-cs.824/fig-4
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create a new container or destroy an existing container in our experiment environment, so
the time constraint should be smaller then 10 s in order to minimize the influence on
MWS. Based on this observation, we set five different time intervals for resource
scheduling, i.e., 2 s, 4 s, 6 s, 8 s, and 10 s, in our experiment.

Execution environment
The experiment was carried out on a cluster of VMs provisioned on public clouds, each of
which runs CentOS Linux release 7.6.1810 (core) X86-64. The specifications of these
five VMs are provided in Table 1. Specifically, v1 deploys the Nginx gateway and the
complete set of TeaStore test benchmarks, including the database and the registry. The
other four virtual machines (v2–v5) are used for the deployment of microservice instances.
More specifically, v2, v3 and v4 are deployed in one public cloud, and v5 is deployed in the
other public cloud.

Performance metrics
We consider three objectives in our experiments for performance evaluation, namely,
resource consumption (C(t)), system jitter (J(t)), and invocation expense (E(t)), as formally
defined in Eq. (10). The performance improvement of an algorithm over a baseline
algorithm in comparison is defined as:

ImpðbaselineÞ ¼ P � Pbaseline
Pbaseline

� 100%; (16)

where Pbaseline is the performance of the baseline algorithm, and P is that of the algorithm
being evaluated.

For each run in our experiments, every algorithm is executed under the same time
constraint and stops once the constraint is met. To ensure consistency, we run each
workload five times and calculate the average of these five runs.

Baseline algorithms and hyperparameters

To evaluate the performance of Sim-DRS, we compare it with three state-of-the-art
algorithms, namely, Ant Colony Algorithm (ACO) (Merkle, Middendorf & Schmeck,
2002), Particle Swarm Optimization (PSO) (Kumar & Raza, 2015), and Non-dominated
Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002). Table 2 summarizes the
hyperparameters for each algorithm (including Sim-DRS).

Table 1 Specifications of virtual machines.

VMs CPU cores Memory size Disk size

v1 4 16 GiB 30 GB

v2 4 8 GiB 30 GB

v3 4 8 GiB 30 GB

v4 4 8 GiB 30 GB

v5 8 16 GiB 30 GB
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Experimental results
Given fixed time constraints, we run four different scheduling algorithms independently.
Table 3 tabulates the objective values when the workload subjects to the Poisson
distribution. As expected, Sim-DRS has better performance than the three comparison
algorithms in terms of three objectives. Specifically, in terms of resource consumption,
our algorithm achieves an average performance improvement of 10.91% over ACO,
11.40% over PSO, and 10.55% over NSGA-II; in terms of system jitter, our algorithm

Table 2 Hyperparameters for each algorithm.

Algorithms Parameter name Value

ACO pheromone volatilization rate 0.5

pheromone initial concentration 700

pheromone releasing factor 1

information heuristic factor 3

expectation heuristic factor 1

number of ants 50

PSO iteration 50

NSGA-II mutation probability 0.3

cross probability 0.3

population 50

Sim-DRS mutation probability 0.3

cross probability 0.3

population 50

the number of clusters 5

the proportion of good solutions (α) 0.4

Table 3 Objective measurements of different algorithms under Poisson distribution.

Objectives Time (s) ACO (Imp%) PSO (Imp%) NSGA-II (Imp%) Sim-DRS

Resource consumption 2 21.534 (10.58%) 21.890 (12.41%) 21.660 (11.23%) 19.474

4 21.702 (11.67%) 21.534 (10.75%) 21.286 (9.47%) 19.444

6 21.732 (12.86%) 21.706 (12.72%) 21.674 (12.56%) 19.256

8 21.256 (10.09%) 21.396 (10.81%) 21.218 (9.89%) 19.308

10 21.018 (9.33%) 21.206 (10.31%) 21.070 (9.60%) 19.224

System jitter 2 8.80 (51.72%) 8.80 (51.72%) 7.60 (31.03%) 5.80

4 7.80 (56.00%) 7.60 (32.00%) 6.40 (28.00%) 5.00

6 5.40 (28.57%) 6.50 (54.76%) 6.40 (52.38%) 4.20

8 5.80 (38.10%) 6.00 (42.86%) 6.20 (47.62%) 4.20

10 5.30 (39.47%) 4.80 (26.32%) 5.00 (31.58%) 3.80

Invocation expense 2 20.080 (9.25%) 20.990 (14.20%) 20.340 (10.66%) 18.380

4 20.330 (9.30%) 20.380 (9.03%) 20.730 (11.45%) 18.600

6 20.540 (9.61%) 20.680 (10.35%) 20.700 (10.46%) 18.740

8 20.260 (10.47%) 20.080 (9.49%) 20.140 (9.81%) 18.340

10 19.580 (9.88%) 19.570 (9.82%) 19.890 (11.62%) 17.820
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achieves an average performance improvement of 42.77% over ACO, 41.53% over PSO,
and 38.12% over NSGA-II; in terms of invocation expense, our algorithm achieves an
average performance improvement of 9.70% over ACO, 10.58% over PSO, and 10.80%
over NSGA-II. It is worth noting that Sim-DRS shows significant improvements over the
other algorithms for the system jitter objective, which indicates that the solutions
generated by our algorithm are more stable with a higher level of robustness of the
MWS. Another important observation from Table 3 is that Sim-DRS achieves more
significant improvements over the other algorithms when the time constraint is stricter
(i.e., tighter scheduling time). This is consistent with our similarity assumption stated in
the Motivation section.

For a better illustration, we plot the performance measurements of ACO, PSO,
NSGA-II, and Sim-DRS in terms of three objectives when the workload subjects to the
random distribution in Figs. 5A–5C, respectively. In each figure, the x-axis lists the
scheduling time constraint and the y-axis represents the measurements of the three

Figure 5 Performance comparison of different algorithms under random distribution (A–C).
Full-size DOI: 10.7717/peerj-cs.824/fig-5
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objectives. We can also conclude from Fig. 5 that Sim-DRS achieves stable improvements
compared with the other three algorithms.

In summary, we can safely draw the conclusion from the experimental results that
our algorithm outperforms all other algorithms in terms of three objectives, namely
resource consumption, system jitter, and invocation expense, in both workloads that
follow Poisson and random distribution. Note that the improvement is much significant in
terms of system jitter, which means that our algorithm is more practical in the production
WMS. This is because our algorithm requires less deployment efforts and is able to
make the system more stable.

Figure 6 illustrates the objective measurements of different algorithms with the time
constraint of 2 s for 20 scheduling decisions. We observe from Fig. 6 that Sim-DRS
outperforms all other three algorithms under every scheduling decision point, followed by
ACO, PSO, and NSGA-II. The difference between these algorithms is not significant at
the beginning and end of the decision time points, but the difference at the middle points
is. Since the workloads follow the Poisson distribution, such results indicate that Sim-DRS

Figure 6 Objective measurements of different algorithms with the time constraint of 2 s for 20
scheduling decisions (A–C). Full-size DOI: 10.7717/peerj-cs.824/fig-6
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is more stable and robust under different circumstances in comparison with other
algorithms.

Finally, Fig. 7 shows the response time of user requests for different algorithms with
the workload following Poisson distribution. We observe from Fig. 7 that the response
time measurements also follow Poisson distribution for all four algorithms, which is
reasonable because there should be a positive correlation between the response time and
the number of user requests. We also observed that our algorithm is better at responding to
requests when the workload is heavier, which means that Sim-DRS can obtain a better
performance in terms of three objectives while still ensuring a good response time.

CONCLUSION AND FUTURE WORK
In this paper, we proposed Sim-DRS, a similarity-based dynamic resource scheduling
algorithm that quickly finds promising scheduling decisions by identifying and
incorporating previously-known viable solutions to similar problems as the initial
population, hence obviating the need of a fresh start. We conducted extensive experiments
on a well-known microservice benchmark application on disparate computing nodes on
public clouds. The superiority of Sim-DRS was illustrated with various performance
metrics in comparison with three state-of-the-art scheduling algorithms.

It is of our future interest to make Sim-DRS more reactive by learning previous
request patterns and supporting automatic adjustments according to future workload
prediction. We will also explore the possibility of using reinforcement learning-based
algorithms to make more intelligent and adaptive scheduling decisions.

Figure 7 Response time measurements of different algorithms with the time constraint of 2 s for 20
scheduling decisions. Full-size DOI: 10.7717/peerj-cs.824/fig-7
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