
Equity distribution of quality evaluation
reports to doctors in health care
organizations
Mahdi Jemmali1,2,3, Loai Kayed B. Melhim4, Abdullah Alourani1 and
Md. Moddassir Alam4

1 Computer Science, Majmaah University, Zulfi, Riyadh, Saudi Arabia
2 Computer Science, Mars Laboratory, Sousse, Tunisia
3 Computer Science, Higher Institute of Computer Science and Mathematics, University of
Monastir, Monastir, Monastir, Tunisia

4 Computer Science, Hafr Batin University, Hafr Batin, Saudi Arabia

ABSTRACT
There are volumes of patient reports generated in any healthcare organization daily.
The reports can be very lengthy or of few pages. Maintaining records of patients is
essential for ensuring quality medical care. Doctors, apart from their routine
activities, are also responsible to sort, examine and archive the generated reports.
However, this process consumes doctors’ time, who are already hard-pressed for
time. The objective of this study is to search for a method that can assign reports to
doctors to ensure equitable and fair distribution of the overall workload. As a part
of the solution, a mathematical model will be proposed to perform different
developed heuristics. An experimental evaluation using different classes with a total
of 2,450 different instances will be tested to measure the performance of the
developed heuristics in terms of, elapsed time and gap value calculations. The
clustering heuristics which is based on two groups is the best heuristic with 96.1% for
the small instances and 98% for the big scale instances. The contribution of this work
is based on employing dispatching rules with several variants; randomization
approach, clustering methods; probabilistic method, and iterative methods approach
to assign all given reports to doctors while ensuring the equitable distribution of the
paper workload.

Subjects Algorithms and Analysis of Algorithms, Distributed and Parallel Computing,
Optimization Theory and Computation
Keywords Load balancing, Load work, Health care, Optimization

INTRODUCTION
Doctors time in a healthcare organization is very precious. They spend time in face-to-face
interaction with patients’ gathering information, doing administrative work such as
paper tasks related to visits, quality, etc. Furthermore, a doctor spending more time with a
patient is a requirement for value and efficiency in health care delivery. Assigning excess
paperwork tasks has to be compensated with the allotted time for patient–doctor
interaction. Further, it may affect their performance, elevate stress, lead to job
dissatisfaction, may cause disruptive behavior and may also affect how doctors provide
health care. This can also lead to medical errors, deficiencies in safety and low-quality
health care services.

How to cite this article Jemmali M, B. Melhim LK, Alourani A, Alam MM. 2022. Equity distribution of quality evaluation reports to
doctors in health care organizations. PeerJ Comput. Sci. 8:e819 DOI 10.7717/peerj-cs.819

Submitted 2 September 2021
Accepted 29 November 2021
Published 21 January 2022

Corresponding author
Loai Kayed B. Melhim,
l.banimelhim@uhb.edu.sa

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.819

Copyright
2022 Jemmali et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.819
mailto:l.�banimelhim@�uhb.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.819
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Thus managing the workload of doctors is very imperative. As doctors differ in the
way they work based on their specializations, experience, job position and other functional
or administrative considerations. Keeping this into consideration, fair distribution of
doctor workload is very essential. Although studies have been conducted on optimization
of doctor’s workload, to the best of the authors’ knowledge, none of the available studies
has stressed the equity distribution of paper workload to doctors. Based on the above
arguments, the present research aims at searching the problem of distributing paperwork
load between doctors by developing a suitable algorithm to equitably distribute these paper
works. The proposed study will have several positive implications such as suitable load
distribution will ensure adequate time for patient–doctor interaction, helping the doctor to
understand the patient disease state and prescribe better treatment and care. It will also
allow doctors to spend their time updating their medical knowledge and devoting more
time to clinical research.

Load balancing or equity distribution is defined as: the effective distribution of task
loads among a group of workers, whether they are people, computers or applications
(Jemmali & Alquhayz, 2020). Load balancing helps ensuring scalability and availability
of services, which enable organization to provide more services with less efforts (Alharbi &
Jemmali, 2020; Jemmali, 2019b; Alquhayz, Jemmali & Otoom, 2020). It is important to note
that the term equitable distribution here does not mean equal distribution, but rather
committing to a set of preferences during the distribution of tasks in a way that ensures
fairness among the group of workers according to given preferences. The problem of
maximization of the minimum aim for the load balancing on machines is treated in several
research works (Haouari & Jemmali, 2008; Jemmali, Otoom & al Fayez, 2020).

The problem of load balancing was discussed by many researchers who aimed to
present a suitable solution for this problem. For example, Jemmali (2019a) presented
several approximate solutions for the problem of load balancing. While mathematical
modeling of load balancing with a new proposed objective function that determines the
indicator to select among the proposed heuristics was presented by Jemmali (2019b,
2021c). In the same context, the exact solution of the load balancing problem applied on
the distribution of projects was presented in Alharbi & Jemmali (2020) and Jemmali
(2021b). The machine-learning technique (decision tree) and the application of particle
swarm optimization (PSO) presented by Bany Taha et al. (2020) can be utilized to extend
some meta-heuristics for the load balancing problem. Another application of the load
balancing approach is proposed in Jemmali (2021a) to develop new solutions for the smart
parking problem.

The importance of load balancing emerged through the different areas that utilized this
concept. Load balancing algorithms were presented for the aviation sector to be applied
for gas turbines engine in Jemmali et al. (2019) and Jemmali, Melhim & Alharbi (2019).
Recently, Alquhayz, Jemmali & Otoom (2020) utilized load balancing to present solutions
for the dispatching files to different disc spaces. Moreover, equity distribution was
implemented by Jemmali & Alquhayz (2020) where the authors proposed new network
architecture by adding a new component called “scheduler”. This component is

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 2/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

responsible to find the better schedule that ensures the best load balancing of packets to be
forwarded to routers.

Also, Taha & Chowdhury (2020) proposed a new load balancing algorithm for E-
Health system called (GALB) based on Genetic Algorithm (GA). To reduce latency and
overhead while sending E-health encrypted data to the cloud, the tasks received by GALB
algorithm will be distributed between main gateway and E-health nearby devices based on
distance, task complexity and encryption policy length. In the area of health care, load
balancing was employed by Friesen et al. (2011) to control the number of patients flow in
six emergency departments within a mid-sized Canadian city. While Kolomvatsos,
Panagidi & Hadjiefthymiades (2015) presented load balancing model that was oriented to
distribute health care workers into a finite number of resources in a post-emergency
scenario for both indoor or outdoor applications. Similarly, Stock et al. (2021) used load
balancing to assist patients’ load across 12 hospitals.

Utilizing load balancing in healthcare organizations to derive equitable or fair
distribution, was adopted by many researchers. For example, Schaus, Van Hentenryck &
Régin (2009) presented constraint programming models to balance the workload of
assigning daily tasks of newborn infant patients to nurses, while satisfying many other
constraints. The presented approach produces an approximate solution with an accepted
performance and it did not consider the different nurse qualifications that would affect the
ability to perform the assigned tasks, which in turn can affect the performance of the
whole system. The concept of load balancing in health organizations to balance the loads of
health care assigned tasks and paperwork loads, was presented by Zhong et al. (2018)
where the authors investigated the staffing proper ratio of doctors and support staff to
provide the required quality of the health care services.

The impact of load balancing on doctors’ performance and on the quality of the
delivered health care, was presented by many authors. For example, Christino et al. (2013)
presented a discussion of an online survey, where they reported that paper workloads were
recognized as potential barriers to doctors performance, provided services, health care
quality, resident education and on the medical profession in general i.e. more workloads
mean more interruptions and less productivity in health services. To reduce doctor’s
unnecessary interruptions, Weigl et al. (2012) investigated the relation between workflow
interruptions and doctors’ ability to manage their workload in a guarded and productive
style. The objective of their study was to help doctors focus more on providing proper
health care services by suggesting the smooth distribution of workloads within healthcare
institutions. The smooth distribution may reduce unnecessary interruptions but it will not
indicate clearly the amount of the workload assigned to each doctor. The answer to
this was by attempted by Woolhandler & Himmelstein (2014), who proposed a method
to quantify the number of administrative tasks and paper workload assigned to each doctor
in the healthcare organizations. The researchers utilized an online-survey that was
distributed to more than 4,720 doctors in the United States. The authors stated
that doctors assigned administrative tasks are likely to have more paper workloads, which
may decrease their career satisfaction and productivity. The reviewed researches showed
that the most common complaints among doctors working on health organizations was

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 3/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

the amount of paper workloads assigned to them. There are many proposed solutions for
such problems, such as the equitable distribution of tasks especially the paper workloads or
the load-balancing. Equitable distribution means the fair distribution or the load balancing
of the assigned tasks among doctors in health organizations.

But no previous studies, till the writing of these lines utilize the load balancing
techniques to equitably distribute paper workloads to achieve fair distribution of paper
workloads among doctors in health organizations.

For the performance and safety of healthcare delivery, an equitable distribution of paper
workload should be applied in health care organizations to give the doctors more space and
more time, so that they have the ability to focus more on their clinical duties. The fair
distribution of paperwork loads may be achieved by carefully distributing managerial
workloads. In the proposed work, a set of main ideas will be presented, which are
summarized as follows: The first idea, is to divide the doctors into groups based on the
nature of the tasks assigned to them. The second idea, is the distribution of paperwork to
the doctors in these groups, based on criteria that will be determined later. Finally,
distribute the paperwork within the same group fairly among the group members so that
the members of one group are equal in terms of the papers count for each of them.
The nature of the paperwork assigned to each doctor must be taken into consideration
in terms of specialization and in terms of the type of the required paperwork, as there is
some paperwork that cannot be divided and requires completion by the same doctor who
start processing it.

The rest of this paper will be organized as follows, “Methods” presents methods and the
problem description, while the proposed heuristics will be presented in “Heuristics”.
Discussion of the experimental results will be presented in “Experimental Results”. Finally,
the conclusion will be presented in “Conclusion”.

METHODS
This section presents the main stages that are used to solve the problem of entity paper
workload distribution, which will be discussed in details in the coming sections.

Solution road map
A set of main ideas will be presented In this work, which can be summarized as
follows: The first stage is to divide the doctors into groups based on the nature of the tasks
assigned to them. The second stage is the distribution of paperwork to the doctors in
these groups, based on criteria that will be determined later. Finally, distribute the
paperwork within the same group fairly among the group members so that the members
of one group are equal in terms of the number of papers required to be executed by each
of them. The nature of the paperwork assigned to each doctor must be taken into
consideration in terms of specialization and in terms of the type of the required report, as
there is some paperwork that cannot be divided and requires completion by the same
doctor who start processing it.

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 4/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

Problem description
The problem of paper workload distribution is described as follows. The paper work load is
in the form of reports, let R be the set of reports that will be assigned to different
doctors. These reports will be processed by the assigned doctors then will be sent to the
concerned committees for final confirmation. While, the number of independent reports
is denoted by nr and the number of doctors in the concerned health organization is
denoted by nd. The set of doctors D is defined as follows fD1; � � � ;Dndg. The index of each
doctor is specified by i. Each report is characterized by the estimated processing time. This
time depends on the number of pages of the assigned report. In this research the
report pages count will be used as an indicator for the time estimation calculations.
Therefore, each report j is defined by its pages count and will be denoted by npj. All reports
have pages counts that are defined in the set denoted by fnp1; � � � ; npnrg. The total
number of pages assigned to each doctor i is denoted by NDi , while the number of pages
assigned to doctor i when report j is assigned is defined as Cnj. The objective of this
research is to ensure the equity distribution of reports pages between doctors. To achieve
this goal, this work should present an indicator that can calculate the efficiency of the
distribution process. This indicator will be known as T and will be expressed in Eq. (1). T is
the gap value between each total number of pages assigned to every doctor i and the
minimum number of the assigned pages. This gap is the measure of the equity distribution
process. A large gap value indicates that the equity distribution is not reached, while a
small gap values indicates that a fair distribution is reached. Thus, the objective of this
work, is to find a schedule that minimizes the gap values i.e. The goal is to minimize T.

T ¼
Xnd

i¼1

ðNDi � NminÞ: (1)

where Nmin is the minimum number of assigned pages. N ¼ mini¼f1;...;ndgNDi . Table 1
represents all notations used in this paper.

Example 1 Let nr = 7 and nd = 2. The number of pages for each report is displayed in
Table 2.

Figure 1 presents a schedule to show the reports assignment to each doctor.
Figure 1 shows that the minimum total number of pages ðND2 ¼ 52Þ is assigned to

Doctor 2. However, the maximum total number of pages ðND1 ¼ 74Þ is assigned to
Doctor 1. The gap of total number of pages T between doctors, is calculated by applying
Eq. (1) as T ¼ Pnd

i¼1ðNDi � NminÞ ¼ ð74� 52Þ þ ð52� 52Þ ¼ 22. The main objective is
to develop another schedules that should ameliorate the gap between the doctors
paperwork. For the same example if another schedule is applied then a different scenario
will be obtained as shown in Fig. 2.

Figure 2 shows that the minimum total pages ðND1 ¼ 59Þ is assigned to Doctor 1, while
the maximum total number of pages ðND2 ¼ 67Þ is assigned to Doctor 2. Thus, the
new calculated gap between doctors after applying Eq. (1) is (67 − 59) + (59 − 59) = 8.
Comparing with scheduling result shown in Fig. 1, it is clear that the schedule in Fig. 2 is

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 5/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

better that schedule presented in Fig. 1. The gained gap between the two schedules is
22 − 8 = 14.

Therefore, improving the calculated gap will enhance the fair distribution of reports to
different doctors, which will gain more free time to doctors, more resting time and more

Table 1 Notations used in this paper with their definitions.

Symbols Explanation

R set of reports that will 104 assigned to different doctors

nr number of independent reports

nd number of doctors in the concerned health organization

D ¼ fD1; � � � ;Dndg set of doctors

i index of each doctor

j index of each report

npj number of pages

NDi
total number of pages assigned to each doctor i

Cnj number of pages assigned to doctor i when report j is assigned

Nmin minimum number of assigned pages

limit number of iteration

H* the minimum T values returned after the execution of all heuristics H1 to H8.

H represents the T values returned by the heuristics H1 to H8.

Perc is the percentage for each heuristic to reach H*.

G ¼ H � H�

H
if H = 0 then G = 0. gap value between H* and H

Ag average of G for a fixed number of instances.

Time running time in seconds, or the result of “-” if the time is less than 0.001 s.

Table 2 7-2 instance of pages’ number reports.

j 1 2 3 4 5 6 7

npj 20 25 14 12 30 15 10

Figure 1 7-2 reports-doctors finishing time distribution.
Full-size DOI: 10.7717/peerj-cs.819/fig-1

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 6/20

http://dx.doi.org/10.7717/peerj-cs.819/fig-1
http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

time to deliver improved health care services to patients. Considering the number of
processed reports throughout the doctor’s service period and the number of doctors
involved in this process, will demonstrate the amount of time that can be saved and the
benefits that can be achieved for doctors, patients and for the health care organizations,
if proper scheduling is been adopted. This goal motivates us to present this research and to
develop the required heuristics to achieve this goal.

HEURISTICS
In order to solve the proposed problem several heuristics is developed and will be
presented in this section. The first two heuristics H1 and H2 are based on the dispatching
rules. The heuristic H3 is based on the randomization of the doctor choice, where the
choice of the doctor will be performed randomly. Heuristic H4 will apply the same
steps of H3, except that it will exclude the doctor whose report j − 1 has been assigned.
While H5 is obtained after excluding the doctor who has the most workload of reports. For
heuristic H6, it will be responsible for calling H3, H4 and H5 heuristics with iteration and
then selecting the best of the returned results. The iteration process will be performed
separately for the invoked heuristics H3, H4 and H5. Finally, heuristic H8 is constructed
based on the clustering method. Which means that the classification of reports into groups
give us the possibility to find a good solution.

For iteration based heuristics, the choice of 2,000 times was selected based on an
experimental test. Indeed, we tested the heuristics for several iterations number. When the
iteration number is larger than 2,000, it consumes more time without any significant
effect on the results. However, if the iteration number is less than 2,000, for example
(50–1,000), this will consume less time, but with a remarkable difference in the results
when compared with the 2,000 iterations.

Non-increasing order heuristic (H1)
This heuristic is based on the arranging of all given reports in a non-increasing order,
according to their number of pages. After that, assign the report that has the biggest
number of pages count to the doctor who has the minimum number of total pages’ count.
The complexity of H1 heuristic is O(nlogn).

Figure 2 Max–min ameliorated schedule. Full-size DOI: 10.7717/peerj-cs.819/fig-2

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 7/20

http://dx.doi.org/10.7717/peerj-cs.819/fig-2
http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

Non-decreasing order heuristic (H2)
This heuristic is based on arranging all the given reports in a non-decreasing order
according to their number of pages. After that, assign the report that has the lowest
number of pages count to the doctor who has the minimum number of total pages’ count.
The complexity of H2 heuristic is O(nlogn).

Iterative random doctor choice without excluding heuristic (H3)
This heuristic adopts the randomization method. In this heuristic, when there is a need
to assign a report, the required doctor to process that report will be chosen randomly. After
finishing the schedule of all reports, an iteration loop will be executed to repeat the choice
of doctors, this will generate a different schedule for each iteration. For this type of
heuristics, three variants are considered. The first variant is the choice of the report to be
scheduled according to report index. The second variant is the choice of the report to
be scheduled according to the increasing order of the report’s pages count. The third
variant is the choice of the report to be scheduled according to the decreasing order of
the report’s pages count. After the execution of these variants the best solution is selected.
In practice the iteration loop is executed 2,000 times. The complexity of H3 heuristic is O
(n2).

The function random(x,y) returns a random integer between x and y. Schedule(r,j) is the
function that assigns the report j to the doctor r. While, Incs() is the function that
sorts the given reports in an increasing order based on their number of pages. Moreover,
Decs() is the function that sorts the given reports in a decreasing order based on their
number of pages. In practice the number of iterations is fixed with a value of limit = 2,000.

This heuristic is denoted by H3 and the related heuristic is described in Algorithm 1.

Iterative random doctor choice excluding the last doctor heuristic (H4)
This heuristic applies the same ideas described in H3. However, there is a difference in the
choice of the assigned doctor. At a given time t when there is a need to assign the report j,
select randomly any doctor from the list of the available doctors excluding the doctor
whose report j − 1 has been assigned. The three variants described in H3 are also
applied in this heuristic. After execution of these variants the best solution is selected. In
practice the iteration loop is done 2,000 times. The complexity of H4 heuristic is O(n

2).

Iterative random doctor choice excluding the most loaded doctor
heuristic (H5)
This heuristic applies the same ideas described in H3 with a difference the choice of the
assigned doctor. At a given time t when there is a need to assign the report j, select
randomly any doctor from the list of available doctors excluding the doctor who has the
highest load. The three variants described in H3 are also applied in this heuristic. After
execution of these variants the best solution is selected. In practice the iteration loop is
done 2,000 times. The complexity of H5 heuristic is O(n

2).

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 8/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

Iterative random doctor choice heuristic (H6)
This heuristic is based on the iterative method. For each iteration and for each type of
report pages sorting, apply the heuristic H3, H4, and H5 with some modifications.
These modifications are based on the functions of these heuristics as described below. The
best obtained value is returned. The complexity of H6 heuristic is O(n

2).
H3() is the function of the heuristic H3 without the 2,000 iterations loop. H4() is the

function of the heuristic H4 without the 2,000 iterations loop. H5() is the function of the
heuristic H5 without the 2,000 iterations loop. V() is the value returned by the applied
heuristic. Indeed, Vit

k represents the value returned by Hk() for the iteration it. In practice
the number of iterations is fixed to limit = 2,000. The instructions of the heuristic H6 are
described in Algorithm 2.

Randomly repeating iteratively doctor choice heuristic (H7)
This heuristic is based on the iterative method. For each iteration and for each type of
report pages sorting, apply the heuristics H3, H4, and H5 with the modifications that are
based on the functions of these heuristics as described below. Compared to H6 the
difference will be in the nature of performing the loop iterations. Indeed, for H6, a loop
of limit iteration is performed on all heuristics H3(), H4() and H5() for 1 time. However,
for H7, the iteration will be performed limit iterations for each heuristic separately.
The best value is returned. The complexity of H7 heuristic is O(n

2).

Algorithm 1 Iterative random doctor choice without excluding heuristic (H3).

1: Initialize k = 1 and it = 1

2: for (k = 1 to 3) do

3: if (k = 2) then

4: Incs(R)

5: else if (k = 3) then

6: Decs(R)

7: end if

8: for (it = 1 to limit) do

9: for (j = 1 to nr) do

10: Set r = random(1, nd)

11: Call schedule(r, j)

12: end for

13: Calculate Tit
k

14: end for

15: Calculate Tk ¼ min
1�it�limit

Tit
k

16: end for

17: Calculate T ¼ min
1�k�3

Tk

18: Return T

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 9/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

H�
3ðÞ is the function of the heuristic H3 with only one sorting choice. H�

4ðÞ is the
function of the heuristic H4 with only one sorting choice. H�

5ðÞ is the function of the
heuristic H5 with only one sorting choice. W() is the value returned by the applied
heuristic. Indeed,Wit

k represents the value returned by Hk() for the iteration it. In practice
the number of iterations is fixed by limit = 2,000. The instructions of heuristic H7 are
described in Algorithm 3.

Clustering-based heuristic (H8)
This heuristic is based essentially on the classification method. This research identifies two
groups of reports. These groups are denoted by G1 and G2. The first phase of this heuristic
is to choose the reports sorting method. The sorting methods will be in three variants.
The first variant will consider to assign a report directly after it is initiated. The second
variant will consider to sort the reports ascending based on their number of pages.
The third variant will consider to sort the reports descending based on their number of
pages. The second phase of this heuristic is the construction of G1 and G2 groups. Initially
G1 and G2 are empty.

The third phase is to initiate G1 and G2 groups by distributing the set of reports R. The
first step is to choose the first report and to distribute it to either G1 or G2, then the second
report will be sent to the most available group between G1 and G2. The most available
group will be the group that has the minimum pages count. After that assign the next
report to the most available group and so on until all reports in R are distributed.

The fourth phase is the scheduling of the reports to the available doctors. This phase is
based on the randomly selection between G1 and G2, by generating a probability α to select
a report from the two groups. The selected report will be assigned to the doctor who

Algorithm 2 Iterative random doctor choice algorithm (H6).

1: for (k = 1 to 3) do

2: if (k = 2) then

3: Incs(R)

4: else if (k = 3) then

5: Decs(R)

6: end if

7: for (it = 1 to limit) do

8: Call H3() and calculate Vit
3

9: Call H4() and calculate Vit
4

10: Call H5() and calculate Vit
5

11: end for

12: Calculate Tk ¼ min
3�i�5

ð min
1�it�limit

Vit
i Þ

13: end for

14: Calculate T ¼ min
1�k�3

Tk

15: Return T

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 10/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

has the minimum total number of pages. This procedure will be repeated many times. In
practice the number of iterations is fixed to limit = 2,000.

Finally, the heuristic is repeated again with another sorting method variant and iterated
for limit = 2,000 times, after all sorting variants are chosen the best final results are
considered. The complexity of H8 heuristic is O(n

2).

EXPERIMENTAL RESULTS
This section describes the performance of the developed heuristics. All heuristics proposed
in this paper were implemented in Microsoft Visual C++ and executed on an Intel(R) Core
(TM) i5-3337U CPU @ 1.8 GHz and 8 GB RAM. Several classes of instances were
being tested in this paper to measure the performance of the developed heuristics.
These classes were generated by methods derived from Jemmali (2019b). The number of
pages npj for each report are generated by using two different distributions. The first
distribution is the uniform distribution which is denoted by U() and the normal
distribution that is denoted by N().

The generated classes are as follows:

� Class A: npj ∈ U(10, 20).

� Class B: npj ∈ U(20, 30).

� Class C: npj ∈ U(10, 30).

Algorithm 3 Randomly repeating iteratively doctor choice heuristic (H7).

1: for (k to 3) do

2: if (k = 2) then

3: Incs(R)

4: else if (k = 3) then

5: Decs(R)

6: end if

7: for (it = 1 to limit) do

8: Call H�
3 ðÞ and calculate Wit

3

9: end for

10: for (it = 1 to limit) do

11: Call H�
4 ðÞ and calculate Wit

4

12: end for

13: for (it = 1 to limit) do

14: Call H�
5 ðÞ and calculate Wit

5

15: end for

16: Calculate Tk ¼ min
3�i�5

ð min
1�it�limit

Wit
i Þ

17: end for

18: Calculate T ¼ min
1�k�3

Tk

19: Return T

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 11/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

� Class D: npj ∈ N(20, 5).

� Class E: npj ∈ N(20, 10).

Two types of instances are adopted for the experimental part. The small instances type
and the big scale type. Both types were used to generate the npj for all the classes above. For
the small type instances, several values for the pair (nr, nd) were selected as Table 3
illustrates.

For each tuple (nr, nd, class), this work will generate 10 different instances of the
number of pages. Therefore, the total number of the generated instances will be (3 + 2 × 5 +
5 × 4) × 10 × 5 = 1,650. For the big scale instances, generate 800 instances as detailed in
the end of this section. So, in total 2,450 instances were tested. Now, we start the analyses of
results related to the 1,650 small instances.

To assess the performance of the proposed heuristics, the metrics Perc, Ag and Time
are defined in Table 1. Hereafter, the analyses of the experimental results are concerning
the small instances type.

The overall performance of the developed heuristics is shown in Table 4. As it can be
noticed from the table, the best performance was obtained by the heuristic H8. The
obtained percentage for this heuristic was 96.1% which is the highest among all heuristics.
The gap calculations for H8 gained zero results for most of the instances except for 64
instances out of 1,650 leading to an average gap of 0.02, while the elapsed time was 0.006 s.
For heuristicH7 the percentage was 59.1% with an average gap of 0.29 and an average time
of 0.021s, which makes it the second best heuristic. However, the heuristic that has the
worst performance measurements was H2, with the highest average gap of 0.74 and the
lowest percentage of 0.8%.

Table 5 represents the variation of Ag and Time according to nr for all developed
heuristics. This table shows that the highest gap was obtained for heuristic H2 when
nr = 35, while the lowest gab of 0 was obtained by H8, H7, H6 and H3 for nr = 5 and nr = 7.
As it can be noticed from Table 5, most of the heuristics perform well when nr = 5, nr = 7
and nr = 10 and the performance values was close to each other, but for nr = 35 the
developed heuristics showed a different performance. So, based on gap calculations
heuristic H2 showed the worst performance while heuristic H8 showed the best
performance even for high nr values such as 30 and 35. Based on time calculations heuristic
H6 showed the worst performance at nr = 35 then heuristicH7 also at nr = 35. For heuristics
H3 to H7 time increases as nr is increases. The remarkable performance was shown by
heuristic H8 as it can be noticed by the results shown in Table 5 the gap values = 0 and the
running time was 0.001 for all nr values.

Table 6 represents the variation of Ag and Time according to nd for all developed
heuristics. The 0 gap values were obtained by many heuristics at different nd values,
even heuristic H1 had a zero gap value at nd = 6. But in general as the value of nd increases,
the gap value and the elapsed time increases for all heuristics except for heuristic H8,
where it again shows a better performance values than the rest of the heuristics even with
large nd values. So, based on gap values heuristic H2 shows the worst performance and

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 12/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

Table 3 Generation of (nr, nd).

nr nd

5 2, 3, 4

7, 10 2, 3, 4, 5, 6

15, 20, 25, 30, 35 3, 5, 7, 10

Table 4 Overall performance of all heuristics.

H1 H2 H3 H4 H5 H6 H7 H8

Perc 45.2% 0.8% 48.1% 37.5% 50.7% 57.6% 59.1% 96.1%

Ag 0.39 0.74 0.40 0.45 0.34 0.30 0.29 0.02

Time – – 0.003 0.005 0.014 0.022 0.021 0.006

Algorithm 4 Randomly repeating iteratively doctor choice heuristic (H7).

1: for (k = 1 to 3) do

2: if (k = 2) then

3: Incs(R)

4: else if (k = 3) then

5: Decs(R)

6: end if

7: Determine G1 and G2

8: for (it = 1 to limit) do

9: for (j = 1 to nr) do

10: r =random(1,2)

11: if (r = 1) then

12: schedule the first report in G1

13: else

14: schedule the first report in G2

15: end if

16: end for

17: Calculate Tit
k

18: end for

19: Calculate Tk ¼ min
1�it�limit

Tit
k

20: end for

21: Calculate T ¼ min
1�k�3

Tk

22: Return T

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 13/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

Table 5 Time and Ag variations according based on nr for all heuristics.

nr

5 7 10 15 20 25 30 35

H1 Ag 0.14 0.21 0.34 0.27 0.49 0.64 0.42 0.57

Time – – – – – – – –

H2 Ag 0.46 0.51 0.73 0.73 0.84 0.86 0.89 0.90

Time – – – – – – – –

H3 Ag 0.00 0.00 0.08 0.42 0.61 0.67 0.73 0.74

Time 0.001 0.002 0.002 0.003 0.004 0.004 0.005 0.006

H4 Ag 0.24 0.21 0.29 0.37 0.57 0.62 0.67 0.69

Time 0.002 0.003 0.003 0.004 0.005 0.006 0.007 0.009

H5 Ag 0.10 0.13 0.10 0.31 0.46 0.53 0.58 0.59

Time 0.003 0.005 0.006 0.012 0.015 0.019 0.023 0.027

H6 Ag 0.00 0.00 0.01 0.29 0.46 0.49 0.60 0.60

Time 0.006 0.008 0.011 0.019 0.025 0.030 0.036 0.041

H7 Ag 0.00 0.00 0.00 0.28 0.43 0.49 0.59 0.60

Time 0.007 0.008 0.010 0.018 0.024 0.029 0.035 0.040

H8 Ag 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Time 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 6 Time and Ag variations according based on nd for all heuristics.

nd

2 3 4 5 6 7 10

H1 Ag 0.52 0.54 0.18 0.33 0.00 0.51 0.28

Time – – – – – – –

H2 Ag 0.80 0.83 0.51 0.80 0.36 0.81 0.70

Time – – – – – – –

H3 Ag 0.00 0.19 0.05 0.62 0.01 0.72 0.69

Time 0.002 0.003 0.002 0.004 0.002 0.005 0.005

H4 Ag 0.73 0.18 0.11 0.58 0.04 0.68 0.68

Time 0.003 0.006 0.002 0.005 0.002 0.006 0.006

H5 Ag 0.44 0.03 0.00 0.49 0.01 0.62 0.65

Time 0.004 0.008 0.005 0.012 0.006 0.020 0.031

H6 Ag 0.00 0.02 0.00 0.48 0.00 0.61 0.63

Time 0.009 0.017 0.008 0.021 0.011 0.031 0.043

H7 Ag 0.00 0.01 0.00 0.46 0.00 0.61 0.63

Time 0.008 0.017 0.007 0.020 0.010 0.029 0.041

H8 Ag 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Time 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 14/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

heuristic H8 showed the best performance. Heuristics H1 and H2 have the minimum
average time, while heuristic H8 showed an average time of 0.001 for all nd values.

Table 7 illustrates the variation of Ag and Time according to Class for all developed
heuristics. As was noticed in the results shown in Tables 6 and 5, the performance
measurement of heuristic H2 showed the worst performance compared to the rest of the
heuristics, heuristic H2 returned the highest average gap when class = 5 with a value equal
to 0.83. The rest of the heuristics showed comparable performance for all used classes
except for heuristic H8. The average gap values ranged from 0.23 to 0.52, the highest gap
values were obtained for classes 3 and 5. But for heuristic H8, again it shows the best
performance measures with average gap value = 0.01 with an elapsed time of 0.001 s.

The experimental results show that the maximum average gap reaches 0.97 for H2

when (nr = 20, nd = 3), (nr = 25, nd = 3), and (nr = 35, nd = 3). The 0.00 average gap was
obtained by H3, H6, H7 and H8 for nr = 5 and nr = 7 for all nd values, but when nr
values begin to be larger than 10 the average gap results, start to increase for most of the
heuristics except for H8 where the heuristic shows a 0.00 average gap results for all nr and
nd values.

Hereafter, Ind is the index of each pair (nr, nd). In total we have 33 different pairs.
Figure 3 illustrates the variation of the average gap for heuristicsH1 andH2 according to

Ind. The behavior of the gap variations for both heuristics shows a similar behavior for
most of Ind. This behavior is expected, because of the similarity in the way the two
heuristics work. Despite the similar behavior, H1 performs better than the H2, there are

Table 7 Time and Ag variations according based on Class for all heuristics.

Class

1 2 3 4 5

H1 Ag 0.34 0.24 0.43 0.47 0.45

Time 0.000 0.000 0.000 0.000 0.000

H2 Ag 0.72 0.61 0.79 0.76 0.83

Time 0.000 0.000 0.000 0.000 0.000

H3 Ag 0.39 0.35 0.40 0.40 0.44

Time 0.003 0.003 0.003 0.003 0.003

H4 Ag 0.43 0.39 0.48 0.45 0.52

Time 0.005 0.005 0.005 0.005 0.005

H5 Ag 0.32 0.26 0.38 0.36 0.40

Time 0.014 0.013 0.014 0.014 0.013

H6 Ag 0.27 0.25 0.32 0.30 0.35

Time 0.022 0.022 0.022 0.022 0.022

H7 Ag 0.26 0.23 0.31 0.30 0.34

Time 0.021 0.021 0.021 0.021 0.021

H8 Ag 0.01 0.01 0.01 0.01 0.01

Time 0.001 0.001 0.001 0.001 0.001

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 15/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

some points where H1 gap values reaches 0.00 while H2 gap values never reaches 0.00 for
all Ind.

Figure 4 illustrates the variations of the average gap for heuristics H3 and H4 according
to Ind. From the figure it can be noticed that H3 and H4 shows similar behavior variations
starting from Ind = 9, while before that point H4 has 0.00 gap values. The similar
behavior is expected as both heuristics, mostly use the same technique most of the time
with a difference in the choice of the assigned doctor.

Figure 5 illustrates the variations of the average gap for heuristics H5 and H6 according
to Ind. It can be noticed that H6 has a better performance measures with a gap value
of 0.00 till Ind = 14 and beyond this point, both heuristics have similar behavior variations.

Figure 6 illustrates the variations of the average gap for heuristics H7 and H8 according
to Ind. Both heuristics show a similar variation behavior with a gap value of 0.00 till
Ind = 14m after this point the variations changed for H7 and has different gap values

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Ag

Ind

H3 H4

Figure 4 The average gap for H3 and H4 according to Ind.
Full-size DOI: 10.7717/peerj-cs.819/fig-4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Ag

Ind

H1 H2

Figure 3 The average gap for H1 and H2 according to Ind.
Full-size DOI: 10.7717/peerj-cs.819/fig-3

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 16/20

http://dx.doi.org/10.7717/peerj-cs.819/fig-4
http://dx.doi.org/10.7717/peerj-cs.819/fig-3
http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

reaches to 0.90 at some points, while the gap variations of H8 continues to have a 0.00 gap
values for all Ind, which shows the dominance performance of H8 over all the used
heuristics.

The results presented above, indicate that the developed heuristics were capable to
derive an accepted approximate solution with a good execution time, but none of the given
heuristics were capable to produce exact or optimal solution, which requires more
work and research to enable these heuristics to produce optimal solutions for the given
problem. Besides, the algorithms presented by Taha, Ould-Slimane & Talhi (2020) can
inspire these heuristics to develop new algorithms for the studied problem.

Moreover, the developed heuristics can be used as an initial solution for other meta
heuristics, such as, genetic algorithm, particle swarm optimization algorithms to enhance
the given solution.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Ag

Ind

H5 H6

Figure 5 The average gap for H5 and H6 according to Ind.
Full-size DOI: 10.7717/peerj-cs.819/fig-5

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Ag

Ind

H7 H8

Figure 6 The average gap for H7 and H8 according to Ind.
Full-size DOI: 10.7717/peerj-cs.819/fig-6

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 17/20

http://dx.doi.org/10.7717/peerj-cs.819/fig-5
http://dx.doi.org/10.7717/peerj-cs.819/fig-6
http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

The performance of the developed heuristics was compared across each other, since to
the best of our knowledge this problem was not studied previously in any of the literature
that was within our reach.

Other type of instances regarding the big scale of number of reports. Indeed, for this
type of instances the number of reports nr will be in {50, 100, 200, 500} and the number of
doctors nd will be in {3, 5, 10, 15}. Therefore, we generate 800 instances of this type.
The overview of the proposed heuristics according to Perc, Ag and Time, is shown in
Table 8.

Table 8 shows that the heuristics H1, H2 and H8 keep the same range of percentages
comparing with the small instances illustrated in Table 4. However, for the other heuristics
the percentages range are remarkably increased. Indeed, forH3 the percentage for the small
instances is 48.1% (see Table 4), while for the big scale Perc = 6%. The H8 heuristic is
always the best, with 98%.

CONCLUSION
This work presented the solution to the problem of paper workload distribution between
doctors in healthcare organizations to ensure fair distribution of the overall workload
based on the total number of pages of patients’ reports assigned to each doctor. This
problem was solved by developing eight heuristics based on dispatching rules with several
variants, randomization approach, clustering methods, probabilistic method and iterative
methods approach. The performance of the developed heuristics was measured
experimentally based on different classes with 2,450 instances. The obtained results
showed a clear variation in the performance measurements of the developed heuristics
based on the elapsed time and the gap value calculations. The given results showed
that heuristic H8 was dominant among all the developed heuristics with remarkable
performance and 0.00 gap values for all the used instances. For future work, the developed
heuristics can be adopted in other domains like education, finance, industry, aviation, and
many others. Also, it can be used in branch and bound for exact methods.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Deanship of Scientific Research, University of Hafr
Al-Batin under Project Number No. G-114-2020. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Table 8 Overview of heuristics according to Perc, Ag and Time for the big scale instances.

H1 H2 H3 H4 H5 H6 H7 H8

Perc 44.4% 0.0% 6.0% 10.9% 28.6% 28.1% 28.3% 98.0%

Ag 0.41 0.90 0.88 0.82 0.63 0.64 0.63 0.02

Time 0.000 0.000 0.036 0.049 0.209 0.302 0.291 0.068

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 18/20

http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

Grant Disclosures
The following grant information was disclosed by the authors:
Deanship of Scientific Research, University of Hafr Al-Batin: G-114-2020.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Mahdi Jemmali conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Loai Kayed B. Melhim analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

� Abdullah Alourani performed the experiments, performed the computation work,
authored or reviewed drafts of the paper, and approved the final draft.

� Md. Moddassir Alam performed the computation work, authored or reviewed drafts of
the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data and code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.819#supplemental-information.

REFERENCES
Alharbi M, Jemmali M. 2020. Algorithms for investment project distribution on regions.

Computational Intelligence and Neuroscience 2020(4):1–13 DOI 10.1155/2020/3607547.

Alquhayz H, Jemmali M, OtoomMM. 2020. Dispatching-rule variants algorithms for used spaces
of storage supports. Discrete Dynamics in Nature and Society 2020:1–9
DOI 10.1155/2020/1072485.

Bany Taha M, Talhi C, Ould-Slimane H, Alrabaee S. 2020. Td-pso: task distribution approach
based on particle swarm optimization for vehicular ad hoc network. Transactions on Emerging
Telecommunications Technologies 37(10):e3860 DOI 10.1002/ett.3860.

Christino MA, Matson AP, Fischer SA, Reinert SE, DiGiovanni CW, Fadale PD. 2013.
Paperwork versus patient care: a nationwide survey of residents’ perceptions of clinical
documentation requirements and patient care. Journal of Graduate Medical Education
5(4):600–604 DOI 10.4300/JGME-D-12-00377.1.

Friesen MR, McLeod R, Strome T, Mukhi S. 2011. Load balancing at emergency departments
using ‘crowdinforming’. In: 2011 IEEE 13th International Conference on e-Health Networking,
Applications and Services. Piscataway: IEEE, 364–370.

Haouari M, Jemmali M. 2008. Maximizing the minimum completion time on parallel machines.
4OR 6(4):375–392 DOI 10.1007/s10288-007-0053-5.

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 19/20

http://dx.doi.org/10.7717/peerj-cs.819#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.819#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.819#supplemental-information
http://dx.doi.org/10.1155/2020/3607547
http://dx.doi.org/10.1155/2020/1072485
http://dx.doi.org/10.1002/ett.3860
http://dx.doi.org/10.4300/JGME-D-12-00377.1
http://dx.doi.org/10.1007/s10288-007-0053-5
http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

Jemmali M. 2019a. Approximate solutions for the projects revenues assignment problem.
Communications in Mathematics and Applications 10(3):653–658 DOI 10.26713/cma.v10i3.1238.

Jemmali M. 2019b. Budgets balancing algorithms for the projects assignment. International
Journal of Advanced Computer Science and Applications 10(11):574–578
DOI 10.14569/issn.2156-5570.

Jemmali M. 2021a. Intelligent algorithms and complex system for a smart parking for vaccine
delivery center of covid-19. Complex & Intelligent Systems 368(6494):1–13
DOI 10.1007/s40747-021-00524-5.

Jemmali M. 2021b. An optimal solution for the budgets assignment problem. RAIRO: Recherche
Opérationnelle 55(2):873–897 DOI 10.1051/ro/2021043.

Jemmali M. 2021c. Projects distribution algorithms for regional development. Advances in
Distributed Computing and Artificial Intelligence Journal 10(3):293–305
DOI 10.14201/ADCAIJ2021103293305.

Jemmali M, Alquhayz H. 2020. Equity data distribution algorithms on identical routers. In:
International Conference on Innovative Computing and Communications. Berlin: Springer,
297–305.

Jemmali M, Melhim LKB, Alharbi M. 2019. Randomized-variants lower bounds for gas turbines
aircraft engines. In: World Congress on Global Optimization. Berlin: Springer, 949–956.

Jemmali M, Melhim LKB, Alharbi SOB, Bajahzar AS. 2019. Lower bounds for gas turbines
aircraft engines. Communications in Mathematics and Applications 10(3):637–642
DOI 10.26713/cma.v10i3.1218.

Jemmali M, Otoom MM, al Fayez F. 2020. Max-min probabilistic algorithms for parallel
machines. In: Proceedings of the 2020 International Conference on Industrial Engineering and
Industrial Management. 19–24.

Kolomvatsos K, Panagidi K, Hadjiefthymiades S. 2015. A load balancing module for
post-emergency management. Expert Systems with Applications 42(1):657–667
DOI 10.1016/j.eswa.2014.07.055.

Schaus P, Van Hentenryck P, Régin J-C. 2009. Scalable load balancing in nurse to patient
assignment problems. In: International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems. Berlin: Springer, 248–262.

Stock C, Cocchi M, Clardy P, Liesching T, Nesto R, Talmor D. 2021. 103: How a healthcare
system leveraged ICU patient load balancing to manage the covid-19 pandemic surge. Critical
Care Medicine 49(1):35 DOI 10.1097/01.ccm.0000726300.38763.1c.

Taha MB, Chowdhury R. 2020. Galb: Load balancing algorithm for CP-ABE encryption tasks in
e-health environment. In: 2020 Fifth International Conference on Research in Computational
Intelligence and Communication Networks (ICRCICN). Piscataway: IEEE, 165–170.

Taha MB, Ould-Slimane H, Talhi C. 2020. Smart offloading technique for CP-ABE encryption
schemes in constrained devices. SN Applied Sciences 2:274 DOI 10.1007/s42452-020-2074-z.

Weigl M, Müller A, Vincent C, Angerer P, Sevdalis N. 2012. The association of workflow
interruptions and hospital doctors’ workload: a prospective observational study. BMJ Quality &
Safety 21(5):399–407 DOI 10.1136/bmjqs-2011-000188.

Woolhandler S, Himmelstein DU. 2014. Administrative work consumes one-sixth of us
physicians’ working hours and lowers their career satisfaction. International Journal of Health
Services 44(4):635–642 DOI 10.2190/HS.44.4.a.

Zhong X, Lee HK, Williams M, Kraft S, Sleeth J, Welnick R, Hauschild L, Li J. 2018. Workload
balancing: staffing ratio analysis for primary care redesign. Flexible Services and Manufacturing
Journal 30(1):6–29 DOI 10.1007/s10696-016-9258-2.

Jemmali et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.819 20/20

http://dx.doi.org/10.26713/cma.v10i3.1238
http://dx.doi.org/10.14569/issn.2156-5570
http://dx.doi.org/10.1007/s40747-021-00524-5
http://dx.doi.org/10.1051/ro/2021043
http://dx.doi.org/10.14201/ADCAIJ2021103293305
http://dx.doi.org/10.26713/cma.v10i3.1218
http://dx.doi.org/10.1016/j.eswa.2014.07.055
http://dx.doi.org/10.1097/01.ccm.0000726300.38763.1c
http://dx.doi.org/10.1007/s42452-020-2074-z
http://dx.doi.org/10.1136/bmjqs-2011-000188
http://dx.doi.org/10.2190/HS.44.4.a
http://dx.doi.org/10.1007/s10696-016-9258-2
http://dx.doi.org/10.7717/peerj-cs.819
https://peerj.com/computer-science/

	Equity distribution of quality evaluation reports to doctors in health care organizations
	Introduction
	Methods
	Heuristics
	Experimental results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

