
Real-time DDoS flood attack monitoring
and detection (RT-AMD) model for cloud
computing
Omaimah Bamasag1, Alaa Alsaeedi2, Asmaa Munshi3, Daniyal
Alghazzawi4, Suhair Alshehri5 and Arwa Jamjoom4

1 Department of Computer Science, Faculty of Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia

2 Department of Computer Science, University of Jeddah, Jeddah, Saudi Arabia
3 Cybersecurity Department, University of Jeddah, Jeddah, Saudi Arabia
4Department of Information Systems, Faculty of Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia

5 Department of Information Technology, Faculty of Computing and Information Technology,
King Abdulaziz University, Jeddah, Saudi Arabia

ABSTRACT
In recent years, the advent of cloud computing has transformed the field of
computing and information technology. It has been enabling customers to rent
virtual resources and take advantage of various on-demand services with the lowest
costs. Despite the advantages of cloud computing, it faces several threats; an example
is a distributed denial of service (DDoS) attack, which is considered among the most
serious. This article presents real-time monitoring and detection of DDoS attacks on
the cloud using a machine learning approach. Naïve Bayes, K-nearest neighbor,
decision tree, and random forest machine learning classifiers have been selected to
build a predictive model named “Real-Time DDoS flood Attack Monitoring and
Detection RT-AMD.” The DDoS-2020 dataset was constructed with 70,020 records
to evaluate RT-AMD’s accuracy. The DDoS-2020 contains three protocols for
network/transport-level, which are TCP, DNS, and ICMP. This article evaluates the
proposed model by comparing its accuracy with related works. Our model has shown
improvement in the results and reached real-time attack detection using incremental
learning. The model achieved 99.38% accuracy for the random forest in real-time on
the cloud environment and 99.39% on local testing. The RT-AMD was evaluated on
the NSL-KDD dataset as well, in which it achieved 99.30% accuracy in real-time in a
cloud environment.

Subjects Computer Networks and Communications, Security and Privacy
Keywords Machine learning, Distributed denial of service attack, Cloud computing, Incremental
learning

INTRODUCTION
The emergence of cloud computing has gained much attention due to its various features
such as cost-effectiveness and on-demand service provision. Cloud computing is a shared
environment (multi-tenancy) between more than one user, using the same physical
resources. Despite its advantages, the shared environment concept may threaten the
security and availability of provided services. A cloud services provider (CSP) must have
the ability to ensure the security and availability of resources to maintain the commitment

How to cite this article Bamasag O, Alsaeedi A, Munshi A, Alghazzawi D, Alshehri S, Jamjoom A. 2021. Real-time DDoS flood attack
monitoring and detection (RT-AMD) model for cloud computing. PeerJ Comput. Sci. 7:e814 DOI 10.7717/peerj-cs.814

Submitted 17 August 2021
Accepted 22 November 2021
Published 13 June 2022

Corresponding author
Alaa Alsaeedi,
aalsaeedi0034.stu@uj.edu.sa

Academic editor
Leandros Maglaras

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.814

Copyright
2022 Bamasag et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.814
mailto:aalsaeedi0034.�stu@�uj.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.814
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


to customers, called the service level agreement (SLA). Cloud computing is becoming more
popular as more people and companies are attracted to employing it in their businesses.
Its utilization is of high benefit; however, security remains a serious problem, especially in
the public cloud environment.

This study will investigate current work in DDoS attacks targeting cloud services and
propose an efficient model to detect DDOS flooding attacks at the network/transport-level.
This model is called the Real-Time DDoS flood Attack Monitoring and Detection
(RT-AMD) Model, which aims to enhance cloud services security by protecting all
resources in a cloud environment from DDoS attacks. It is characterized by being real-time
as it monitors the cloud environment and alerts any attempted attack in real-time. The
administrator will be notified of this incident with a timely alert message. The notification
message contains all the information on the attack to facilitate the administrator in
dealing with it.

The contribution of this research is twofold: the first is to evaluate machine learning
algorithms for the collected dataset; the second is to improve the performance to reach
real-time attack detection.

BACKGROUND
Recently, cloud computing has gained much attention as it has widespread impacts across
different fields such as information technology, business, software engineering, and data
storage. The cloud environment provides resources to customers in a virtual way with high
efficiency and low cost. For example, it enables the users to experiment with software
products before purchasing them and use storage capacity at a low cost compared to
buying it in traditional ways. The National Institute of Standards and Technology (NIST)
defines cloud computing as “a model for enabling convenient, resource pooling,
ubiquitous, on-demand access which can be easily delivered with different types of service
provider interaction” (Zissis & Lekkas, 2012).

A cloud environment is characterized by many features such as manageability,
scalability, availability, security, on-demand service, expedience, ubiquity, multitenancy,
elasticity, and stability. The services delivery in a cloud environment was categorized into
three main models: infrastructure as a service (IaaS), platform as a services (PaaS),
software as a service (SaaS), and everything as a service (XaaS) either in public, private,
community, or hybrid cloud as defined by NIST (Singh, Jeong & Park, 2016). Figure 1
shows the services delivery model details with examples.

Many security challenges are faced by CSP, of which the main one is the trust that must
be in place between CSP and the cloud customers. Trust is how the provider can protect
the customer data from any breach (Ghaffari, Gharaee & Arabsorkhi, 2019). One of the
popular features of the cloud environment is multi-tenancy and virtualization. Many
customers share physical resources, which constitutes a considerable challenge in making
such an environment secure (Singh, Jeong & Park, 2016).

Shared data in the cloud can create risks of customers’ data being lost or used by an
unauthorized third party. There are many other types of cyberattacks on cloud security
allowed by system and application vulnerabilities, such as account hijacking, malicious

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 2/21

http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


insiders, data loss, denial, and distributed denial of service. These attacks have a substantial
negative impact on confidentiality, integrity, and availability of data.

The availability of cloud services is one of the most critical CSP goals. Unavailability
adversely affects CSP and cloud customers. DoS and DDoS attacks are the main threats
leading to a cloud service’s unavailability. DoS is a cyberattack where an attacker aims to
make the systems and servers unavailable, preventing customers from accessing the servers
and resources (Douligeris & Mitrokotsa, 2004). DoS attacks launched in a distributed
manner to speed up the consumption of the resources for one or many targets are called
distributed denial of service attacks (DDoS) (Douligeris & Mitrokotsa, 2004). DDoS attack
types are explained in the following subsection.

DDoS attack types
DDoS attacks are classified based on targeted protocols such as the network/transport or
application level.

� Network/Transport level DDoS attacks: These attacks occur mostly when using network
and transport layer protocols such as TCP, UDP, and ICMP. These attacks are further
categorized into three types:

1. Volume attacks: The attacker aims to consume all the resources of the target servers
and make them unavailable by sending many packets (bandwidth/flooding attack)
such as TCP flood, ICMP flood, etc.

2. Protocol attacks: In this type, the attack consumes all resources and intermediate
connection media as a firewall by exploiting protocol vulnerabilities and bugs as TCP
SYN flood, TCP SYN-ACK flood, etc.

Figure 1 Cloud services delivery models. Full-size DOI: 10.7717/peerj-cs.814/fig-1

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 3/21

http://dx.doi.org/10.7717/peerj-cs.814/fig-1
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


3. Reflection and amplification attacks: Attempts to consume the victim’s resources by
sending fake request messages (such as ping requests) through spoofing the victim’s
IP address to the reflectors. The reflectors send a high volume of response messages to
the victim’s IP address such as Smurf attacks.

� Application-level DDoS attacks: These attacks aim to consume services’ resources or
cause starvation of resources to disrupt customers through establishing requests,
overloading the application servers. The most popular type of attack at this level is
HTTP flooding attacks. Many studies have classified DDoS attack at the application level
based on the following categories (Jaafar, Abdullah & Ismail, 2019):

1. Session flooding attack: Servers’ resources are disabled from being launched when
session request rates are high. These requests usually are higher than those generated by
valid users.

2. Request flooding attack: Sends sessions that contain more requests than the valid users.

3. Asymmetric attack: Wastes resources such as CPU and memory of the server by sending
sessions with high-workload requests.

4. Slow request/response attack: Uses all server resources by sending incomplete requests
slowly to keep the servers in the waiting state to receive data.

Intrusion detection system
An intrusion detection system (IDS) is a device or software tool that identifies unusual
events by monitoring the network traffic to distinguish the normal from abnormal
behaviors (Kaur, Kumar & Bhandari, 2017). IDS is classified into three main categories
based on the analysis method. The choice between methods depends on several factors,
such as the anomaly type, applied environment, security level required, and the cost (Kaur,
Kumar & Bhandari, 2017).

The IDS methods classifications are signature-based, anomaly-based, and hybrid
detection (Alzahrani & Hong, 2017). Signature-based detection, also called knowledge-
based or rule-based detections, is suitable for detecting known attacks by comparing
captured behavior. Anomaly-based detection, also known as behavior-based, is useful to
detect unknown attacks. These techniques compare the observed behavior with normal
behavior to detect abnormal events. Hybrid-based detection works by combining the
detection techniques mentioned above. The performance of this detection depends on the
types of techniques chosen. Table 1 shows the advantage and limitations of these detection
methods (Alzahrani & Hong, 2017).

LITERATURE REVIEW
This section presents and critically analyzes existing research studies to detect the attacks
in the three categories of IDS methods mentioned above.

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 4/21

http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


Signature-based detection
Tanrıverdi & Tekerek (2019), Bakshi & Dujodwala (2010), andModi et al. (2013) proposed
a signature-based detection method. Tanrıverdi & Tekerek (2019) presented the
detection of web attacks using a blockchain-based attack detection model. The signatures
listed in this study are automatically updated by blockchain technology. An additional
advantage of this proposed method is that it can be used against zero-day attacks. Bakshi &
Dujodwala (2010) presented a method to distinguish between the normal and abnormal
traffic in VMs. It uses Snort to analyze the collected traffic to determine the attack.
The virtual server then drops packets coming from the specified IP address. Modi et al.
(2013) presented a method to detect known attacks and derivatives of known attacks. It also
uses a Snort tool to detect the known attacks from network traffic. The detected attack is input
to a signature DB to predict derivatives of the attack by using signature as a priority.

Anomaly-based detection
Hong et al. (2017) and Kemp, Calvert & Khoshgoftaar (2018) presented an anomaly-based
solution to detect slow HTTP attacks, a type of DDoS attack.Hong et al. (2017) developed a
software-defined networking (SDN) controller; however, Kemp, Calvert & Khoshgoftaar
(2018) deployed the proposed model using machine learning techniques. It selected eight
classification algorithms for predictive models: random forest, decision trees, K-nearest
neighbor, multilayer perceptron, RIPPER (JRip), support vector machines, and Naïve
Bayes. The authors used the Weka machine learning toolkit to build these models.
ANOVA was used to compare the values of slow attack detection among the eight models.
They evaluated the models by area under the receiver operating characteristic curve
(AUC), receiver operating characteristic (ROC) curve graphs, true positive rate (TPR), and
false positive rate (FPR).

Singh, Jeong & Park (2016), Lima Filho et al. (2019),Wang et al. (2014), and Sreeram &
Vuppala (2019) presented anomaly-based solutions to detect HTTP attacks. Singh, Jeong &
Park (2016) used a multilayer perceptron with a genetic algorithm (MLP-GA)-based
method for detecting DDoS attacks on incoming traffic. Authors in Singh, Jeong & Park
(2016) identified four features to detect application-layer attacks; first is the number of
HTTP counts, referring to the count number of requests per IP address. It is assumed that
any single IP address that sends more than 15–20 HTTP GET/POST requests is an attack.
Second is the number of IP addresses, referring to the number of IP addresses in small

Table 1 Summary of IDS techniques.

Methods Signature-based Anomaly-based Hybrid-based

Advantage ✓ Easy to implement in real-time

✓ Low cost

✓ Effective against unknown attacks

✓ Effective against new attacks without database update

✓ High accuracy
rating

Limitation ✓ Ineffective against zero-day attacks

✓ Must update the database for new
attacks

✓ Difficult to implement at run-time

✓ Detection accuracy affected by the number of collected features in
dataset

✓ Cost is high

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 5/21

http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


windows time. It is assumed the attacks have more than 20 IPs in windows time. The third
was the constant mapping function; the attacker’s ports are different from legitimate users’
as the one used by the attacker is varied and remains open. The fourth is fixed frame
length; codes with fixed frame length are considered as an attack.

In comparison, Lima Filho et al. (2019) proposed an online smart detection system for
DoS/DDoS attack detection. The detection approach used the random forest tree
algorithm to classify various types of DoS/DDoS attacks such as flood TCP, flood UDP,
flood HTTP, and slow HTTP. However, Wang et al. (2014) proposed a detection scheme
for HTTP-flooding (HTTP-Soldier) based on web browsing clicks. HTTP-soldier used the
large-deviation principle of webpage popularity to be able to distinguish between normal
and abnormal traffic. The large-deviation probability-based detection may affect some
normal users. The authors mentioned that their proposed scheme could not detect a single
uniform resource locator (URL) attack. The false positive of a Multi-URL attack with
the most popular webpages is 12.2%, but the false positive of Multi-URL attack with the
least popular webpages is at 17.1%. This solution can achieve high performance in Multi-
URL attacks with the most popular web pages. Sreeram & Vuppala (2019) used bio-
inspired machine learning metrics to detect HTTP flood attacks to achieve fast and early
detection. Authors in Sreeram & Vuppala (2019) adopted the Bat algorithm, which has low
process complexity, as a bio-inspired approach.

Choi et al. (2014), Aborujilah & Musa (2017), and Sahi et al. (2017) presented a cloud-
based flood attack detection method. Choi et al. (2014) proposed a method to integrate the
detection of DDoS flood attacks and MapReduce processing in a cloud computing
environment. The proposed framework consists of three parts: first is the packet and
log collection module (PLCM), which analyses packet transmission and web server logs in
the first part. Second is the pattern analysis module (PAM), which produces the pattern for
DDoS attack detection. Finally is the detection module (DM), which detects DDoS
attacks by comparing them with a normal behavior model. However, Aborujilah & Musa
(2017) presented the detection based on the covariance matrix approach. The proposed
detection was divided into training and testing phases. A training phase aimed to construct
a normal network traffic profile. The testing phase was to detect any abnormal traffic
by the deviation between the normal and any other network traffic. The normal traffic is
captured from end-users browsing the Internet in their cloud, whereas the flooding
attack traffic is generated using the PageRebooter tool. It was evaluated by using the
confusion matrix and present results for an internal and external cloud environment, while
Sahi et al. (2017) proposed a detection model for TCP flood DDoS attacks. This model
selected different classifiers, the least squares support vector machine (LS-SVM), Naïve
Bayes, K-nearest, and multilayer perceptron.

Lin, Ye & Xu (2019), Li et al. (2019), and Nawir et al. (2019) presented an anomaly-based
detection method for detecting DDoS attacks. The proposal of Lin, Ye & Xu (2019)
and Li et al. (2019) used deep learning techniques. Lin, Ye & Xu (2019) used long
short-term memory (LSTM) to build the neural network model, which is a specific
recurrent neural network structure (RNN). Li et al. (2019) used LSTM and gated recurrent
units (GRU) recurrent neural networks. It used BGP and NSL-KDD datasets. The best

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 6/21

http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


accuracy achieved was using the BGP dataset in the range of 90–95%. However, the proposed
of Nawir et al. (2019) used machine learning algorithms. The authors in [Reff9+] selected
five machine learning algorithms to include Naïve Bayes (NB), averaged one dependence
estimator (AODE), radial basis function network (RBFN), multi-layer perceptron (MLP),
and J48 trees. A comparison was drawn between these algorithms based on accuracy and
processing time. A UNSW-NB15 dataset was selected in this experiment.

Haider et al. (2020) proposed a deep convolutional neural network (CNN)
framework for efficient DDoS attack detection in SDN. This proposed framework has been
evaluated using hybrid state-of-the-art algorithms on CICIDS2017 dataset. Hwang et al.
(2020) proposed an unsupervised deep learning model for early network traffic
anomaly detection, namely D-PACK based on CNN. The experimental results show low
false-positive rate and high accuracy. Novaes et al. (2020) proposed using short-term
memory and fuzzy logic for DDoS attack detection and mitigation in SDN. The proposed
system consists of three phases: Characterization, anomaly detection, and mitigation.
The evaluation of this system has been conducted using CICDDoS2019 dataset with
archived accuracy of 96.22%.

Hybrid-based detection
Hatef et al. (2018), Zekri et al. (2017), and Novaes et al. (2020) proposed a hybrid-based
detection system. While Hatef et al. (2018) and Zekri et al. (2017) deployed cloud
environment approaches. Hatef et al. (2018) is a hybrid intrusion detection approach in
cloud computing (HIDCC). The applied detection was a combination of signature-based
and anomaly-based detection techniques. The Snort tool is used for known attacks
(signature-based detection) by employing the Apriori algorithm to generate a pattern from
derived attacks. Both clustering and classification algorithms are applied for the
undetectable attack through Snort. The clustering module receives and determines the
input packet based on the sample vector. Then the classifier module determines the final
class of the packet through algorithm C4.5 as a decision tree classifier according to the
found cluster. However, Zekri et al. (2017) proposed using machine learning for anomaly
detection and Snort technique for signature detection. Three algorithms were selected:
decision tree, Naïve Bayes, and K-means algorithms. The decision tree achieved the best
accuracy. The proposed Saleh, Talaat & Labib (2019) was applied in real time and
deployed in three stages. First, the Naïve Bayes feature selection (NBFS) technique was
employed to reduce the dimensionality of sample data. Second, optimized support vector
machines (OSVM) were used to reject the noisy input sample as it might have caused
misclassification. Finally, the attacks were detected by prioritized K-nearest neighbors
(PKNN) classifier. This proposed scheme takes time in the first and second stages at
feature selection and outlier rejection before attack detection.

This study will explore the use of data mining techniques (classification) in real-time
detection. We will focus on the network/transport level as it is the core layer of network
architecture. There are few existing studies on volume-based network/transport-level
DDoS attack detection in the cloud environment. Moreover, there are very few studies that
have proposed online detection with a high detection rate. This study will employ different

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 7/21

http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


classification algorithms (machine learning) that suit our needs to build detection models.
We will then evaluate these models by comparing them against two main factors: efficiency
of detection and detection rate.

PROPOSED FRAMEWORK
This section explains the RT-AMD model framework by presenting its components and
the employed data mining classification methods.

Main components
The proposed RT-AMDmodel consists of two main components: monitoring and detection.

1. The monitoring component is responsible for monitoring the network traffic for
requests coming to the webserver on the cloud and extracting the traffic from the
network log. If the traffic from the log is found in the Blacklist, an alert with
corresponding information is sent to the cloud admin. If it is not in the Blacklist, it will
move into the next component, detection.

2. The detection component uses trained classifiers to detect if the incoming traffic
behavior is normal or abnormal. When abnormal behavior occurs, it will alert the
system, send information to the admin, then update the Blacklist with the new traffic
information. Otherwise, it can access the cloud and benefit from its services. An
overview of the proposed environment is shown in Fig. 2.

At the beginning, the admin needs to log in/register to benefit from the RT-AMD tool.
Once the registration is done, RT-AMD will send a verification code for the entered
email to ensure that the email address is correct. The tool will then start monitoring the
network traffic to detect any malicious behavior. Once an attack occurs, the RT-AMD
will detect it, then send all information assigned to this traffic to the admin email. This
makes it easier for the admin to act on any malicious behavior. A flowchart of the
proposed detection framework is shown in Fig. 3.

Figure 2 Overview of RT-AMD framework. Full-size DOI: 10.7717/peerj-cs.814/fig-2

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 8/21

http://dx.doi.org/10.7717/peerj-cs.814/fig-2
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


Data mining classification methods
Data mining analyzes large volumes of data to identify and predict any threats; this helps to
solve problems and reduce risks. Data mining can answer questions that have typically
been time-consuming to address manually by using several statistical techniques to analyze
data in various ways.

Recently, high arrival rates of online data streams have imposed high resource
requirements on data mining processing systems. Datastream mining (also known as
stream learning) is a technique of extracting knowledge structures from an unbounded and
ordered sequence of data that exists over time (stream data) (Gomes et al., 2017). Some
differences between stream data mining and traditional data mining are shown in the
following (Ramírez-Gallego et al., 2017):

1. Machine learning of streaming scenarios cannot retrieve all of the data of the dataset in
advance. Data chunks are available in a stream, one by one, or bundle by block.

2. Data arriving over time in streams may be unlimited in their number, resulting in
difficulty storing all arrival data in the memory.

3. Data from streams need to be analyzed quickly to provide real-time response and
prevent data waiting.

4. Some incoming stream data may lack accurate class labels because of the label query’s
high cost for each data stream.

Figure 3 Flowchart of RT-AMD framework. Full-size DOI: 10.7717/peerj-cs.814/fig-3

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 9/21

http://dx.doi.org/10.7717/peerj-cs.814/fig-3
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


Building knowledge from stream data mining is called incremental learning (Ramírez-
Gallego et al., 2017). Incremental learning has received much attention from both
academia and industry. It is a machine learning approach where knowledge is applied as
new instances arrive, and what has been learned is updated according to the new instances
(Xie & Lam, 2006).

There are several techniques in data mining, such as regression, clustering association,
and classification. Different techniques serve different purposes. However, most data
mining techniques usually applied for this area are classification techniques. Classification
is a type of supervised learning that predicts the class label to which data belongs. The
classifier works by obtaining a training dataset containing several attributes and class
labels. The classifier then tests the dataset to evaluate the model.

The proposed framework will employ the classifiers in the detection component of the
framework with two class labels. The attributes assigned to normal behavior are labelled
“normal” and those to abnormal behavior “anomaly.” Some classifiers were found to have
better detection results than others based on the recommendations in the related works
(Kemp, Calvert & Khoshgoftaar, 2018; Lima Filho et al., 2019; Saleh, Talaat & Labib, 2019).
We selected the following: Naïve Bayes, decision trees, K-nearest neighbor, and random
forest. These classifiers have been selected to build the predictive models.

DATASET COLLECTION
ADDoS-2020 dataset is a network/transport-level dataset that authors have assembled and
that contains of two types of traffic: attack and normal, with 70,020 records of traffic.
Attack traffic consists of 27,169 instances, and the normal traffic consists of 42,851
instances. We have collected attack traffic from the CAIDA DDoS Attack 2007 dataset and
collected normal traffic by capturing packets using Wireshark. The Center for Applied
Internet Data Analysis Dataset “DDoS Attack 2007” (CAIDA: Center for Applied Internet
Data Analysis, in press) contains an approximately one-hour collection of anonymized
(abnormal) traffic from a DDoS attack on August 4, 2007 (CAIDA: Center for Applied
Internet Data Analysis, in press). Wireshark is one of the most popular open-source
network analyzer tools under the GNU General Public License (GPL) (Munz & Carle,
2008). Wireshark captures packets using the “pcap” library and different network media
types, including Ethernet, Wi-Fi, Bluetooth, and others (Wireshark, in press).

The DDoS-2020 dataset contains information corresponding to each packet: source IP
address, destination IP address, protocol type (ICMP, TCP, and DNS), packet length,
packet timestamp, and label to determine whether the traffic is normal (“0”) or attack
(“1”). We have 29,554 instances of TCP, 20,727 instances of ICMP, and 19,739 instances of
DNS with 0% missing value. Figure 4 shows the distribution of TCP, ICMP, and DNS
protocols in the dataset.

The dataset contains two types of traffic: attack traffic consists of 27,169 instances and
normal traffic consists of 42,851 instances. The label for normal traffic is = 0 and the label
for attack traffic is = 1. The protocol’s distribution ratio on normal traffic and the dataset’s
attack traffic are shown below in Fig. 5.

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 10/21

http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


The timestamp range in the dataset is between 89.981 and 11,045.6567 seconds and 0%
missing value. Each timestamp has a range of instances for each type of traffic (attack,
normal). The timestamp distribution ratio on normal traffic and attack traffic in the
dataset is shown below in Fig. 6.

The range of length is between 46 and 1,800 with 1,190 distinct and 0% missing value.
Each length ranges across a group of instances for each type of traffic (attack, normal). The
length distribution ratio on normal traffic and the attack traffic in the dataset is shown
below in Fig. 7.

During the collection and cleaning of the DDoS-2020 dataset, we were determined to
distribute the elements’ ratio in a balanced manner. The balance is considered in the
distribution of traffic between instances (normal and attack) and the distribution of
individual protocol that has range of instances for attack and normal traffic. Figure 8 shows
the distribution ratio of attacks and normal traffic for each TCP, ICMP, and DNS protocol.

Figure 9 shows the distribution ratio of attacks and normal traffic for each timestamp.

Figure 5 The protocol’s distribution ratio on normal and attack traffic.
Full-size DOI: 10.7717/peerj-cs.814/fig-5

Figure 4 The distribution of protocols in the dataset. Full-size DOI: 10.7717/peerj-cs.814/fig-4

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 11/21

http://dx.doi.org/10.7717/peerj-cs.814/fig-5
http://dx.doi.org/10.7717/peerj-cs.814/fig-4
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


Figure 6 Distribution of timestamp over labels. Full-size DOI: 10.7717/peerj-cs.814/fig-6

Figure 7 Distribution of length over labels. Full-size DOI: 10.7717/peerj-cs.814/fig-7

Figure 8 Traffic distribution of protocols. Full-size DOI: 10.7717/peerj-cs.814/fig-8

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 12/21

http://dx.doi.org/10.7717/peerj-cs.814/fig-6
http://dx.doi.org/10.7717/peerj-cs.814/fig-7
http://dx.doi.org/10.7717/peerj-cs.814/fig-8
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


Figure 10 shows the distribution ratio of attacks and normal traffic for each length
range.

The timestamp and the length of traffic is also notable; the distribution ratio of the
timestamp and length for each protocol should be semi-balanced. Figures 11 and 12 show
the distribution ratio of timestamp and length over protocols sequentially.

EVALUATION RESULTS
RT-AMD model is implemented using the Python programing language, SQLite, and
GCP. Python is a powerful language; it contains many libraries for machine learning. One
of the libraries that is well-known for real-time learning purposes is Scikit multi-flow. The
evaluation of this model was in the GCP environment.

Figure 9 Traffic distribution of timestamp. Full-size DOI: 10.7717/peerj-cs.814/fig-9

Figure 10 Traffic distribution of length. Full-size DOI: 10.7717/peerj-cs.814/fig-10

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 13/21

http://dx.doi.org/10.7717/peerj-cs.814/fig-9
http://dx.doi.org/10.7717/peerj-cs.814/fig-10
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


As mentioned above, the RT-AMD tool was evaluated by the selected machine learning
algorithms. Naïve Bayes, decision tree, K-neighbors, and random forest were selected for
this evaluation. We experimented with the RT-AMD tool in three situations: offline
localhost, online localhost, and online remote virtual host created by GCP. Configuration
of localhost was with Microsoft Windows 10 Pro operating system, 24.0 GB RAM, and
Intel(R) Core(TM) i7-7500 processor, and the remote virtual host was configured with
e2-medium machine type, 2 vCPUs, and 4 GB memory.

The evaluation measured accuracy and performance. The random forest achieved the
best accuracy in incremental learning either on localhost or remote virtual host at around
99.38%. However, K-neighbors achieved the best accuracy in offline learning. Table 2 and
Fig. 13 show the details for each experiment. The Naïve Bayes achieved the efficient

Figure 11 Distribution of timestamp over protocols. Full-size DOI: 10.7717/peerj-cs.814/fig-11

Figure 12 Distribution of length over protocols. Full-size DOI: 10.7717/peerj-cs.814/fig-12

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 14/21

http://dx.doi.org/10.7717/peerj-cs.814/fig-11
http://dx.doi.org/10.7717/peerj-cs.814/fig-12
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


execution-time for online learning: 12.08 s for cloud testing and 22.32 s for local testing.
Table 3 shows the details of execution time for local online testing and online cloud testing.

The proposed tool is tested with different datasets; our DDoS-2020 dataset and
NSL-KDD dataset (University of New Brunswick, in press). The NSL-KDD dataset
contains 125,964 samples, among which 67,343 are normal and 58,621 attacks. The
NSL-KDD is a useful dataset and popularly used in previous studies (Haider et al., 2020;
Saleh, Talaat & Labib, 2019). It is a new version of the KDD’99 dataset. Table 4 and Fig. 14
show the details of accuracy for each dataset in cloud testing.

Table 2 RT-AMD accuracy for each experiment.

Algorithms Local offline testing accuracy (%) Local online testing accuracy (%) Online cloud testing accuracy (%)

Naïve bayes 77.20 81.88 81.86

Decision tree 92.99 97.90 97.89

K-neighbors 93.87 98.48 98.49

Random forest 92.37 99.39 99.38

Figure 13 RT-AMD accuracy for each experiment. Full-size DOI: 10.7717/peerj-cs.814/fig-13

Table 3 Execution time details.

Algorithms Local online testing execution time Online cloud testing execution time

Naïve bayes 22.32 s 12.08 s

Decision tree 27.28 s 14.81 s

K-neighbors 297.94 s 260.84 s

Random forest 567.64 s 741.84 s

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 15/21

http://dx.doi.org/10.7717/peerj-cs.814/fig-13
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


DISCUSSION
As we mentioned above, the experimental RT-AMD tool was used in three different
situations; offline localhost, online localhost, and online remote virtual host created by
GCP. We achieved 99.38% accuracy with real-time detection in a cloud environment for
the random forest. The accuracy for online detection is much higher than offline detection;
this is because of Scikit-multi-flow library incremental learning characteristics. The
execution time of random forest on the cloud was worst for many reasons, such as the
virtual machine’s abilities and the way random forest algorithms work.

Our model achieved the best accuracy with a real-time response on the cloud
environment in comparison with related work. This is due to the model work and the
machine learning algorithm’s efficiency using the Scikit-multi-flow library. We have seen
above the same model results offline using a Scikit-learn and online using the Scikit-multi-
flow library. The latter library features incremental learning that gradually improves the
algorithms’ performance with runtime, thus improving results. Table 5 and Fig. 15 show
the details of this comparison.

Figure 14 Accuracy and execution time for each dataset in cloud testing.
Full-size DOI: 10.7717/peerj-cs.814/fig-14

Table 4 Accuracy and execution time for each dataset in cloud testing.

Algorithms DDoS-2020_Dataset accuracy (%) NSL-KDD_Dataset accuracy (%)

Naïve bayes 81.86 89.42

Decision tree 97.89 97.25

K-neighbors 98.49 95.23

Random forest 99.38 99.30

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 16/21

http://dx.doi.org/10.7717/peerj-cs.814/fig-14
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


CONCLUSION AND FUTURE WORK
This study discusses the issues surrounding DDoS attacks on cloud environments,
presenting the main types of DDoS attacks and the challenges and risks faced. Further, it

Table 5 Comparison of the result with related work.

Related work Detection method Dataset Accuracy
(%)

Cloud-
based

Online

Singh, Jeong & Park
(2016)

Anomaly-based detection using random forest tree algorithm Customized dataset 96.5 × ✓

Lima Filho et al.
(2019)

Anomaly-based detection using genetic algorithm CAIDA2007 98.04 × ×

Wang et al. (2014) Anomaly-based detection based on web browsing clicks Used the weblog of CDU website
(www.cdu.edu.cn) as a
simulation dataset and
replayed the dataset with NS-
34

94.9 × ×

Sreeram & Vuppala
(2019)

Anomaly-based detection using bio-inspired CAIDA 2007 94.8 × ×

Sahi et al. (2017) Anomaly-based detection using four different classifiers LS-
SVM, Naïve Bayes, K-nearest, and multilayer perceptron

N/A 97 ✓ ×

Lin, Ye & Xu (2019) Anomaly-based detection used deep learning techniques
LSTM

CSE-CIC-IDS2018 96.2 × ×

Li et al. (2019) Anomaly-based detection used deep learning techniques
LSTM and GRU

BGP 95.21 × ×

Nawir et al. (2019) Anomaly-based detection using machine learning algorithms
including Naïve Bayes, averaged one dependence estimator,
radial basis function network, multi-layer perceptron, and
J48 trees

UNSW-NB15 97.26 × ×

Hwang et al. (2020) Hybrid-based detection using machine learning for anomaly
detection and Snort technique for signature detection

N/A 98.8 ✓ ×

Novaes et al. (2020) Hybrid-based detection using K-nearest neighbors classifier
for detection

NSL-KDD 95.77 ✓ ✓

RT-AMD (our
proposed)

Anomaly-based detection using machine learning algorithms
including Naïve Bayes, decision tree, K-neighbors, and
random forest

DDoS-2020 99.38 ✓ ✓

Figure 15 Comparison of the result with related work. Full-size DOI: 10.7717/peerj-cs.814/fig-15

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 17/21

www.cdu.edu.cn
http://dx.doi.org/10.7717/peerj-cs.814/fig-15
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


reviews some of the previous techniques detecting DDoS attacks. Machine learning is one
of the most common techniques used to detect DDoS attacks. Furthermore, incremental
learning is one of the best strategies to learn and classify in real-time. This study’s main
contributions are to evaluate machine learning algorithms for the dataset collected and
investigate the results with related works. Furthermore, we improve outcomes and reach
real-time attack detection by using incremental learning.

The RT-AMD model is proposed to detect DDoS attacks on the cloud environment
using machine learning techniques. Four machine learning algorithms were selected to
evaluate this model: Naïve Bayes, decision tree, K-neighbors, and random forest. The
RT-AMD model was developed by python, SQLite databases, and GCP to detect and alert
of the DDoS attacks and test on the cloud environment platform. It was evaluated by using
two datasets, the DDoS-2020 and NSL-KDD dataset. The DDoS-2020 dataset has been
collected with two ranges of traffic (attack and normal), with three distinct network/
transport protocols: TCP, ICMP, and DNS. The attack traffic were obtained from CAIDA
DDoS Attack 2007 and the normal traffic were obtained by using Wireshark.

As a result, the RT-AMD model achieved high accuracy in DDoS-2020 dataset testing
and NSL-KDD dataset testing. The random forest algorithm obtained the best accuracy,
reaching 99.38% with the DDoS-2020 dataset and 99.30% with the NSL-KDD dataset. This
model achieved real-time detection without the negative effect on accuracy by using an
incremental learning strategy, and without needing pre-training machine learning.

There are various ways to extend the study presented in this research. These include
extending dataset samples to include different types of DDoS, and evaluating and testing
this model on other cloud computing-related environments such as mobile cloud
computing (MCC), a combination between cloud computing and mobile computing.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Institutional Fund Projects under grant number
(IFRPC-114-612-2020). Technical and financial support was received from the
Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Institutional Fund Projects: IFRPC-114-612-2020.
Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia.

Competing Interests
The authors declare that they have no competing interests.

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 18/21

http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


Author Contributions
� Omaimah Bamasag conceived and designed the experiments, performed the
experiments, prepared figures and/or tables, and approved the final draft.

� Alaa Alsaeedi conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.

� Asmaa Munshi conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, and approved the final draft.

� Daniyal Alghazzawi analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

� Suhair Alshehri analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

� Arwa Jamjoom analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Raw data and code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.814#supplemental-information.

REFERENCES
Aborujilah A, Musa S. 2017. Cloud-based DDoS HTTP attack detection using a covariance matrix

approach. Journal of Computer Networks and Communications 2017(38):1–8
DOI 10.1155/2017/7674594.

Alzahrani S, Hong L. 2017. A survey of cloud computing detection techniques against DDoS
attacks. Journal of Information Security 9(1):45–69 DOI 10.4236/jis.2018.91005.

Bakshi A, Dujodwala YB. 2010. Securing cloud from DDoS attacks using intrusion detection
system in virtual machine. In: 2010 Second International Conference on Communication
Software and Networks. 260–264.

CAIDA: Center for Applied Internet Data Analysis. in press. Data collection, curation and
sharing. Available at https://www.caida.org/data/.

Choi J, Choi C, Ko B, Kim P. 2014. A method of DDoS attack detection using HTTP packet
pattern and rule engine in cloud computing environment. Soft Computing 18(9):1697–1703
DOI 10.1007/s00500-014-1250-8.

Douligeris C, Mitrokotsa A. 2004. DDoS attacks and defense mechanisms: classification and
state-of-the-art. Computer Networks 44(5):643–666 DOI 10.1016/j.comnet.2003.10.003.

Ghaffari F, Gharaee H, Arabsorkhi A. 2019. Cloud security issues based on people, process and
technology model: a survey. In: 2019 5th International Conference on Web Research (ICWR).
Piscataway: IEEE, 196–202 DOI 10.1109/ICWR.2019.8765295.

Gomes HM, Bifet A, Read J, Barddal JP, Enembreck F, Pfharinger B, Holmes G, Abdessalem T.
2017. Adaptive random forests for evolving data stream classification. Machine Learning
106(9):1469–1495 DOI 10.1007/s10994-017-5642-8.

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 19/21

http://dx.doi.org/10.7717/peerj-cs.814#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.814#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.814#supplemental-information
http://dx.doi.org/10.1155/2017/7674594
http://dx.doi.org/10.4236/jis.2018.91005
https://www.caida.org/data/
http://dx.doi.org/10.1007/s00500-014-1250-8
http://dx.doi.org/10.1016/j.comnet.2003.10.003
http://dx.doi.org/10.1109/ICWR.2019.8765295
http://dx.doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


Haider S, Akhunzada A, Mustafa I, Patel TB, Fernandez A, Choo KKR, Iqbal J. 2020. A deep
CNN ensemble framework for efficient DDoS attack detection in software defined networks.
IEEE Access 8:53972–53983 DOI 10.1109/ACCESS.2020.2976908.

Hatef MA, Shaker V, Jabbarpour MR, Jung J, Zarrabi H. 2018. HIDCC: a hybrid intrusion
detection approach in cloud computing. Concurrency and Computation: Practice and Experience
30(3):e4171 DOI 10.1002/cpe.4171.

Hong K, Kim Y, Choi H, Park J. 2017. SDN-assisted slow HTTP DDoS attack defense method.
IEEE Communications Letters 22(4):688–691 DOI 10.1109/LCOMM.2017.2766636.

Hwang RH, Peng MC, Huang CW, Lin PC, Nguyen VL. 2020. An unsupervised deep learning
model for early network traffic anomaly detection. IEEE Access 8:30387–30399
DOI 10.1109/ACCESS.2020.2973023.

Jaafar GA, Abdullah SM, Ismail S. 2019. Review of recent detection methods for HTTP DDoS
attack. Journal of Computer Networks and Communications 2019(4):1–10
DOI 10.1155/2019/1283472.

Kaur P, Kumar M, Bhandari A. 2017. A review of detection approaches for distributed denial of
service attacks. Systems Science & Control Engineering 5(1):301–320
DOI 10.1080/21642583.2017.1331768.

Kemp C, Calvert C, Khoshgoftaar T. 2018. Utilizing netflow data to detect slow read attacks. In:
2018 IEEE International Conference on Information Reuse and Integration (IRI). Piscataway:
IEEE, 108–116.

Li Z, Rios ALG, Xu G, Trajković L. 2019. Machine learning techniques for classifying network
anomalies and intrusions. In: 2019 IEEE International Symposium on Circuits and Systems
(ISCAS). Piscataway: IEEE, 1–5.

Lima Filho FSD, Silveira FA, de Medeiros Brito Junior A, Vargas-Solar G, Silveira LF. 2019.
Smart detection: an online approach for DoS/DDoS attack detection using machine learning.
Security and Communication Networks 2019(December):1–15 DOI 10.1155/2019/1574749.

Lin P, Ye K, Xu CZ. 2019. Dynamic network anomaly detection system by using deep learning
techniques. In: International Conference on Cloud Computing. Berlin: Springer, 161–176.

Modi C, Patel D, Borisaniya B, Patel A, Rajarajan M. 2013. A survey on security issues and
solutions at different layers of cloud computing. The Journal of Supercomputing 63(2):561–592
DOI 10.1007/s11227-012-0831-5.

Munz G, Carle G. 2008. Distributed network analysis using TOPAS and wireshark. In: NOMS
Workshops 2008-IEEE Network Operations and Management Symposium Workshops.
Piscataway: IEEE, 161–164.

Nawir M, Amir A, Yaakob N, Lynn OB. 2019. Effective and efficient network anomaly detection
system using machine learning algorithm. Bulletin of Electrical Engineering and Informatics
8(1):46–51 DOI 10.11591/eei.v8i1.1387.

Novaes MP, Carvalho LF, Lloret J, Proença ML. 2020. Long short-term memory and fuzzy logic
for anomaly detection and mitigation in software-defined network environment. IEEE Access
8:83765–83781 DOI 10.1109/ACCESS.2020.2992044.

Ramírez-Gallego S, Krawczyk B, García S, Woźniak M, Herrera F. 2017. A survey on data
preprocessing for data stream mining: current status and future directions. Neurocomputing
239(1):39–57 DOI 10.1016/j.neucom.2017.01.078.

Sahi A, Lai D, Li Y, Diykh M. 2017. An efficient DDoS TCP flood attack detection and prevention
system in a cloud environment. IEEE Access 5:6036–6048 DOI 10.1109/ACCESS.2017.2688460.

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 20/21

http://dx.doi.org/10.1109/ACCESS.2020.2976908
http://dx.doi.org/10.1002/cpe.4171
http://dx.doi.org/10.1109/LCOMM.2017.2766636
http://dx.doi.org/10.1109/ACCESS.2020.2973023
http://dx.doi.org/10.1155/2019/1283472
http://dx.doi.org/10.1080/21642583.2017.1331768
http://dx.doi.org/10.1155/2019/1574749
http://dx.doi.org/10.1007/s11227-012-0831-5
http://dx.doi.org/10.11591/eei.v8i1.1387
http://dx.doi.org/10.1109/ACCESS.2020.2992044
http://dx.doi.org/10.1016/j.neucom.2017.01.078
http://dx.doi.org/10.1109/ACCESS.2017.2688460
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/


Saleh AI, Talaat FM, Labib LM. 2019. A hybrid intrusion detection system (HIDS) based on
prioritized k-nearest neighbors and optimized SVM classifiers. Artificial Intelligence Review
51(3):403–443 DOI 10.1007/s10462-017-9567-1.

Singh S, Jeong YS, Park JH. 2016. A survey on cloud computing security: issues, threats, and
solutions. Journal of Network and Computer Applications 75(7):200–222
DOI 10.1016/j.jnca.2016.09.002.

Singh S, Jeong YS, Park JH. 2016. A survey on cloud computing security: issues, threats, and
solutions. Journal of Network and Computer Applications 75(7):200–222
DOI 10.1016/j.jnca.2016.09.002.

Sreeram I, Vuppala VPK. 2019. HTTP flood attack detection in application layer using
machine learning metrics and bio inspired bat algorithm. Applied Computing and Informatics
15(1):59–66 DOI 10.1016/j.aci.2017.10.003.

Tanrıverdi M, Tekerek A. 2019. Implementation of blockchain based distributed web attack
detection application. In: 2019 1st International Informatics and Software Engineering
Conference (UBMYK). 1–6.

University of New Brunswick. in press. NSL-KDD. Available at https://www.unb.ca/cic/datasets/
nsl.html.

Wang J, Yang X, Zhang M, Long K, Xu J. 2014. HTTP-SoLDiER: an HTTP-flooding attack
detection scheme with the large deviation principle. Science China Information Sciences
57(10):1–15 DOI 10.1007/s11432-013-5015-2.

Wireshark. in press. Introduction. Available at https://www.wireshark.org/docs/wsug_html_
chunked/ChapterIntroduction.html.

Xie X, Lam KM. 2006. An efficient illumination normalization method for face recognition.
Pattern Recognition Letters 27(6):609–617 DOI 10.1016/j.patrec.2005.09.026.

Zekri M, El Kafhali S, Aboutabit N, Saadi Y. 2017. DDoS attack detection using machine learning
techniques in cloud computing environments. In: 2017 3rd International Conference of Cloud
Computing Technologies and Applications (CloudTech). 1–7.

Zissis D, Lekkas D. 2012. Addressing cloud computing security issues. Future Generation
Computer Systems 28(3):583–592 DOI 10.1016/j.future.2010.12.006.

Bamasag et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.814 21/21

http://dx.doi.org/10.1007/s10462-017-9567-1
http://dx.doi.org/10.1016/j.jnca.2016.09.002
http://dx.doi.org/10.1016/j.jnca.2016.09.002
http://dx.doi.org/10.1016/j.aci.2017.10.003
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
http://dx.doi.org/10.1007/s11432-013-5015-2
https://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html
https://www.wireshark.org/docs/wsug_html_chunked/ChapterIntroduction.html
http://dx.doi.org/10.1016/j.patrec.2005.09.026
http://dx.doi.org/10.1016/j.future.2010.12.006
http://dx.doi.org/10.7717/peerj-cs.814
https://peerj.com/computer-science/

	Real-time DDoS flood attack monitoring and detection (RT-AMD) model for cloud computing
	Introduction
	Background
	Literature review
	Proposed framework
	Dataset collection
	Evaluation results
	Discussion
	Conclusion and future work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


