
Submitted 6 October 2021
Accepted 22 November 2021
Published 17 December 2021

Corresponding author
Anandan Chinnalagu,
anandanc@hotmail.com

Academic editor
Jude Duraisamy

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.813

Copyright
2021 Chinnalagu and Durairaj

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Context-based sentiment analysis on
customer reviews using machine learning
linear models
Anandan Chinnalagu and Ashok Kumar Durairaj
Computer Science, Government Arts College (Affiliated to Bharathidasan University, Tiruchirappalli),
Kulithalai, Karur, Tamil Nadu, India

ABSTRACT
Customer satisfaction and their positive sentiments are some of the various goals
for successful companies. However, analyzing customer reviews to predict accurate
sentiments have been proven to be challenging and time-consuming due to high
volumes of collected data from various sources. Several researchers approach this with
algorithms, methods, and models. These include machine learning and deep learning
(DL)methods, unigram and skip-gram based algorithms, as well as the Artificial Neural
Network (ANN) and bag-of-word (BOW) regression model. Studies and research have
revealed incoherence in polarity, model overfitting and performance issues, as well as
high cost in data processing. This experiment was conducted to solve these revealing
issues, by building a high performance yet cost-effective model for predicting accurate
sentiments from large datasets containing customer reviews. This model uses the
fastText library fromFacebook’s AI research (FAIR) Lab, as well as the traditional Linear
Support Vector Machine (LSVM) to classify text and word embedding. Comparisons
of this model were also done with the author’s a custommulti-layer Sentiment Analysis
(SA) Bi-directional Long Short-Term Memory (SA-BLSTM) model. The proposed
fastText model, based on results, obtains a higher accuracy of 90.71% as well as 20% in
performance compared to LSVM and SA-BLSTM models.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science, Natural Language and Speech
Keywords Sentiment analysis, Natural language processing, Text analytics, Machine learning,
Linear models

INTRODUCTION
Today, customer satisfaction plays a major role for a successful business providing products
and/or services. An analysis of consumer reviews is crucial to understand what a customer
wants in terms of sentiment, (Duyu, Bing & Ting, 2015) as well as the betterment of
a company or business to grow overtime. The phrase ‘‘what other people think’’ has
importance to a buyer’s decisionwhen purchasing products and services according to survey
(Pang & Li, 2008).Most companies handle customer service via call-centers with live agents,
and over the last few years, the availability of viewing opinions, reviews, testimonies, etc.
(Somasundaran et al., 2007) on the web has provided new avenues of research for automatic
subjectivity, understanding texts, and sentiment classification. Researchers would use ML
and DL models with the use of Natural Language Processing (NLP) techniques to process

How to cite this article Chinnalagu A, Durairaj AK. 2021. Context-based sentiment analysis on customer reviews using machine learning
linear models. PeerJ Comput. Sci. 7:e813 http://doi.org/10.7717/peerj-cs.813

https://peerj.com/computer-science
mailto:anandanc@hotmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.813
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.813

and classify datasets filled with various reviews in their study. However, the purpose
of NLP is to analyze, extract, and present information for better decision-making in
businesses. The level of granularity in the process of analyzing controversial texts vary
from individual characters to sub-word units or words forming (Conneau et al., 2017) a
sentence to sentences forming paragraphs. Early research and applied methods in text
analysis discriminates at a sentence and phrase level (Yu & Hatzivassiloglou, 2003) between
objective and subjective texts. Prime candidates for traditional solutions for a sentence
level classification of a document include the bag-of-words approach, SVM’s, or the
Adaboost classifier. Accurate scores in sentiment, detection of negation and sarcasm, as
well as challenges in word ambiguity and multi-polarization were taken into account
when making considerations to machine learning algorithms while building a sentiment
classifier. The evaluation of the models includes audio transcript, voice and text chats from
various internal sources along with publicly available social media data sources. We use
unigram, bigram, trigram and n-grams textual features in terms of multimodal sentiment
analysis. Our model’s training dataset includes customer sarcastic reviews in the context of
customer sentiment. In this experiment polarity, negation and sarcasm are considered and
classified as positive and negative sentiment.

Our main goal is to build a state-of-the-art learning model that utilizes proven binary
and multi-class algorithms, methods, and word embedding techniques for classification.
The following below are contributions made towards that goal:

• Solving issues with context-based sentiments through multi-layer SA model with
Bi-LSTM, fastText and LSVM. Data pre-processing is customized to fit the model
requirement for customer review and speech transcript dataset.
• Solving vocabulary issues with predictions made from datasets containing mixed
language texts by adding input and service layers to detect the baseline language,
translates them into English, and form a transcript.
• Transcript and Translate service layers are added to model input layer for train and
testing the domain-base mixed-language dataset to avoid out of vocabulary (OOV)
issues.
• Saving cost by providing new data pipeline techniques while having increased
performance to train models with large datasets.
• LSVM, fastText and SA-BLSTM models hyperparameters are fine-tuned based on
dataset.

This paper details several contributions from various researchers, such as relating
literature, published works, and research papers and are taken into review. The methods
used, as well as the pre-processing steps and flow of data are presented. This paper also
describes the approach taken for the ML and DL models, as well as the architecture
of various algorithms used for the model. Details of the experiment are documented
throughout, such as the setup and the results. In the end, the results of the concluding
model are shown, as well as a proposal for the future.

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813

RELATED WORKS
Reviewed recent research papers and researchers’ contributions towards text classification,
sentiment prediction. Our review focused on supervised ML, DL and SA research papers.

Kruspe et al. (2020) published a paper related to COVID-19 cross-language SA of
European Twitter messages from Italy, Spain, France, and Germany. Neural networkmodel
used with the pre-trained word or sentence embedding. A model was constructed with
a fully-connected Rectified Linear Unit (ReLu) layer to process output from embedded
vector and a regression output layer with sigmoid activation. In this experiment the
following pre-trained word embeddings models used: a skip-gram version of word2vec
(trained English-languageWikipedia data), and a multilingual version of BERT (trained on
Wikipedia data and 160 million COVID-19 tweets key-words). The result showed, based
on analysis, 4.6 million tweets in which 79,000 tweets contain one keyword of COVID-19.
In this paper, researchers took geolocation-based data, and trends were varying; this study
will be continued to collect tweet data, from other countries and compare the results, and
also move from the binary sentiment scale to a more complex model. Kumar et al., (2021)
published an article related to a machine learning scraping tool for a data fusion in the
analysis of sentiments about supporting business decisions with human-centric AI (HAI)
explanations. The multinomial Naïve Bayes (NB, k-nearest neighbours (KNN), SVMs
and multinomial Bayesian classifiers are used for sentiments analysis. This study results
revealed KNN outperformed other models.

Gaye, Zhang & Wulamu (2021) published an article related to employee sentiment using
employees’ reviews. This study used traditional classifiers and vector stochastic gradient
descent classifier (RV-SGDC) for sentiment classification. RV-SGDC is a combination
of Logistic Regression (LR), Support Vector Machines (SVM), and Stochastic Gradient
Descent (SGD) model. The study result showed RV-SGDC outperforms with a 0.97%
accuracy compare to other models due to its hybrid architecture.

Chinatalapudi, Battineni & Amenta (2021) published an article paper related to SA of
COVID-19 tweets using Deep Learning (DL) models. These researchers’ motto behind this
study to analyze tweets by Indian netizens during the lockdown, collected tweets between
23 March 2020 and 15 July 2020 and text has been labelled as fear, sad, anger and joy,
analysed data using the new deep learning model name called Bi-Directional Encoder
Representation from Transformers (BERT). The BERT model result was compared with
traditional Logistic Regression (LR), Support Vector Machines (SVM), Long Short-term
Memory (LSTM). The BERT model result shows more accuracy 89%, compare to other
model’s accuracy LR 75%, SVM 74.75% and LSTM 65%. This experiment classified
sentiment into fear, sad, anger and joy based on the key-words.

Most recently, Alharbi et al. (2021) published a research article related to evaluation of
SA using the AmazonOnline Reviews dataset. Researchers evaluated different deep learning
approaches to accurately predict the customer sentiment, categorized as positive, negative
and neutral. The variation of simple Recurrent Neural Network (RNN) such as Long
Short-Term Memory Networks (LRNN), Group Long Short-Term Memory Networks
(GLRNN), Gated Recurrent Unit (GRNN) and Updated Recurrent Unit (UGRNN).

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 3/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813

for Amazon Online Reviews. All evaluated RNN algothims were combined with word
embedding as feature extraction approach for SA including the following three methods
Glove, Word2Vec and fastText by Skip-grams. A combination of five RNN variants
with three feature extraction methode was evaluated; the evaluation result was measured
based on accuracy, recall, precision and F1 score. It was found that the GLRNN with
fastText feature extraction scored the highest accuracy of 93.75%. Researchers try to solve
programming problem for beginners to code and find next word, used conventional LSTM
modelwithword embedding, dropout layerwith an attentionmechanism. Thismodel result
showed the pointermixturemodel succeeded in predicting both the next within-vocabulary
word and the referenceable identifier with higher accuracy than the conventional neural
language model alone in both statically and dynamically typed languages.

Labhsetwar (2020) published a paper related to customer churn prediction, the
traditional Logistic Regression (LR), Gaussian Naïve Bayes (GNB), Adaptive Boosting
(AdaBoost), Extra Gradient Boosting (XGB), Stochastic Gradient Descent (SGD), Extra
Trees and SVM classifiers are used for this experiment. The results showed Extra Trees
classifier outperformed, SVM and XGB classifier performed well for Telecom (UCI
repository) dataset. Many researchers (Ikonomakis, Kotsiantis & Tampakas, 2005) have
shown combining multiple classifiers improve performance and classification accuracy of
model in the context of combining multiple classifiers for text categorization.

Gaye, Zhang & Wulamu (2021) published an article related to employee sentiment using
employees’ reviews using the traditional classifiers and vector stochastic gradient descent
classifier (RV-SGDC) for sentiment classification. RV-SGDC is a combination of Logistic
Regression (LR), Support Vector Machines (SVM), and Stochastic Gradient Descent
(SGD). The result showed RV-SGDC outperforms with a 0.97% accuracy compare to other
models due to its hybrid architecture.

Kumar & Chinnalagu (2020) presented a research study paper related to sentiment and
emotion in social media COVID-19 conversations. This research used variants of RNN
algorithms and evaluated a multi-class neural network model using Bi-directional Long
Short-term memory (Bi-LSTM) with additional layers to process the COVID-19 long text
social media posting, overcome model outfitting, accuracy and performance problems.
The experimental result showed SAB-LSTM model outperformed the traditional LSTM,
Bi-LSTM models and sentiment prediction was context-based. Authors planned to extend
their model for future research with domain-based dataset for customer SA problems,
comparing with other models to improve the prediction accuracy and performance.

Kowsari et al. (2019) presented a text classification survey paper. In this paper,
researchers discussed about existing classification algorithms, feature extraction,
dimensionality reduction, and model evaluation methods, and also addressed critical
limitation of each one of these components of the text classification pipeline. The following
components are discussed: algorithms such as Rocchio, bagging and boosting, logistic
regression (LR), Naïve Bayes Classifier (NBC), k-nearest Neighbor (KNN), Support
Vector Machine (SVM), decision tree classifier (DTC), random forest, conditional random
field (CRF), and deep learning. Feature’s extraction methods such as Term Frequency-
Inverse document frequency (TF-IDF), term frequency (TF), and word-embedding

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 4/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813

methods such as Word2Vec, contextualized word representations, Global Vectors for
Word Representation (GloVe), and fastText. Dimensionality reduction methods such as
Principal component analysis (PCA), linear discriminant analysis (LDA), non-negative
matrix factorization (NMF), random projection, Autoencoder, and t-distributed Stochastic
Neighbor Embedding (t-SNE). Evaluation methods such as Accuracy, Fβ, Matthew
correlation coefficient (MCC), receiver operating characteristics (ROC), and area under
curve (AUC).

Joulin et al. (2016) at Facebook’s AI research lab (FAIR) released and presented a linear
text classifier fastText library a paper. It proved that fastText library can be transformed into
a simpler equivalent classifier, and also proved that the necessary, sufficient dimensionality
of the word vector embedding space is exactly the number of document classes. Experiment
results show that combination of bag of words and linear classification methods fastText
accuracy is same or slightly lower than deep learning algorithms, fastText performs well in
normal environment setup, even without using high performance GPU servers.

Kowsari et al. (2017) employed deep learning methods to multi-class documents
classifications. The traditional multi-class classification works well for a limited number
classes and the performance drops when increasing the number of classes and documents.
To solve the performance problems, experimented combination of deep learning, recurrent
and convolutional neural network models. This combined neutral networks, hierarchical
DL classification model (HiDLTex) result showed more accuracy than traditional SVM
and Naïve bayes models.

Qu, Ifrim &Weikum (2010) presented a paper at the International Conference on
computational Linguistic related to Bag-of-Opinions method for review rating prediction
from sparse text patterns. Customers are writing their comments with implicitly expressing
their opinion polarities as positive, negative, and neutral, and also providing numeric
ratings of products. The numerical review rating prediction is harder than classifying by
polarity. In this paper discussed about a unigram-based regression model each unigram
gets a weight indicating its polarity and strength rating, for e.g., ‘‘This product is not very
good’’ Vs ‘‘This product is not so bad’’, in this e.g., unigram regression model consider
weight to ‘‘good’’ as positive and ‘‘bad’’ as negative, and it assigns the strong negative
weight to ‘‘not’’, combining this weight, it was not predicted the true intention of opinion
phrases. These models are not robust and referred unigram regression model as polarity
incoherence. To overcome these two models, introduced a novel kind of Bag-of-opinion
(BoO) with approach of cumulative linear offset (CLO) model representation, where an
opinion, within a review consists of the following three components, a root word, a set of
modifier words from the same sentence, and one or more negation words. For a phrase
e.g., ‘‘not very helpful’’ has opinion root word ‘‘helpful’’, modifier word ‘‘very’’ and a
negation word ‘‘not’’. Enforced polarity coherence by the design of a learnable function
that assigns a score to an opinion by ridge regression, from a large, domain-independent
corpus of reviews. All Amazon reviews datasets used for BoO model training and testing
regardless of domains.

Zhang & LeCun (2016) published a paper to determining the explicit or implicit
meaning of words, phrases, sentences and paragraphs, and making inferences about

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813

these properties such as words and sentence of these texts has been traditionally difficult
because of the extreme variability in language formation. The text understanding is another
area of research to understand the text formed in natural languages such as English,
Chinese, Spanish and others. To solve text understanding problem convolutional networks
(ConvNet) models were used for research studies. For English text understanding, model
was built using these 70 characters, including 26 English letters, 10 digits, new line and 33
other characters.

Methodologies and process flow
Recently, researchers are used deep learning and neural network models for SA problems,
however neural network approach cost more compare to traditional baseline methods
for both supervised and unsupervised learning. The combination of right methodologies
and text classification algorithms are contributed to overcome SA models accuracy and
performance problems. The following process flow diagrams in Fig. 1 show the steps
followed for this experiment. In general, the data pre-processing step, data obtain from
publicly available customers review data is very often incomplete, inconsistent and filled
with a lot of noise and it is likely contained errors not suitable for training and testing the
machine learning models.

The following minimal syntactical data preprocessing steps of lowercasing all words,
removing new lines, punctuation, special characters and stripping recurring headers are
needed for neural networks and embedding models. To improve data quality, introduced
additional steps which includes stop words removal, text standardization, spelling
correction, correcting the negation words, tokenization, stemming, and Exploratory
Data Analysis (EDA). Figure 2 shows the three proposed models input and output data
flow. These models are customized to fit the dataset. In this experiment, added additional
layers SA-BLSTM to handle large volume of customer reviews and speech transcript data.
fastText and SVMare linearmodels. All these pre-trainedmodels and developed algorithms
can be used for production purpose on real-time SA business applications.

PROPOSED MODELS
LSVM, fastText and SAB-LSTM models are used for this experiment, before building the
models, reviewed algorithms towards solving the short and long text classification and SA
problems. In these following sections, explained all these three custommodel architectures.

Support Vector Machine (SVM)
SVM is used for text classification problems, this algorithm is viewed as a kernel machine,
and the kernel functions can be changes based on the problem.Definition of Support Vector
Machines (SVM): It performs classification by finding the hyperplane that maximize the
margin between the two classes. The support vector is the vectors that define the hyperplane.
For instance: given pictures of apples and oranges, state whether the object in question
is an apple or an orange. Equally well, it can predict whether a customer is satisfied
or not satisfied given customers positive and negative sentiment data. SVM performs
classification by finding the hyperplane that maximize the margin between the two classes.

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 6/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813

Figure 1 Methodology and process flow diagram.
Full-size DOI: 10.7717/peerjcs.813/fig-1

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 7/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-1
http://dx.doi.org/10.7717/peerj-cs.813

Figure 2 Input andmodel output data flow.
Full-size DOI: 10.7717/peerjcs.813/fig-2

In other words, SVM is that the partition which segregate the classes. Figure 3 shows an
example and definition of a point and vector, plotted a point A(4,2) and any point,

x = (x1,x2),x 6= 0 (1)

A vector is an object that has both a magnitude and a direction. In geometrical term,
a hyperplane is a subspace whose dimension is one less than that of its ambient space. If a
space is in 3-dimensional then it’s a plane, if a space is in two dimensions, then it’s a line,
if the space in one dimension, then it’s a point. Figure. 4 shows the hyperplane definition.

The linear and non-linear classifier (Kowsari et al., 2019) data separation shown in
the Fig. 5 for the 2-dimensional dataset. If the dataset is separable then linear kernel works
well for classification. Because of the following reasons, the linear kernel is used for the text
classification. The most text categorization problems are linearly separable and the linear
kernel works well with lot of features and also less parameters to Joachims (1998) optimize
for training the model.

Figure. 6 shows the linear kernel (Crone, Lessmann & Stahlbock) SVM model. There
many kernel functions have been developed over the years; a kernel is a function, that

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 8/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-2
http://dx.doi.org/10.7717/peerj-cs.813

Figure 3 Representation of vector.
Full-size DOI: 10.7717/peerjcs.813/fig-3

returns the result of a dot product performed (Alexandre Kowalczyk, 2017) in another
space.

The linear kernel is simplest kernel function k(x,y), it is given by the inner product
<x,y >, and an optional constant c.

k
(
x,y

)
= xT + c . (2)

Linear kernel is used in this experiment for text classification. The Polynomial kernel,
RBF kernel and String kernel functions can be used for other classifications problems.

fastText
Facebook AI research (FAIR) lab release an open-source free library called fastText for
text representation and classification. It’s a lightweight method and work on standard
generic hardware with multicore CPU. fastText approach evaluated for tag prediction and
sentiment analysis by FAIR. fastText experiments (Joulin et al., 2016) show that it is often
on par with recently proposed DL methods in terms of accuracy, performance, faster for
training and evaluation. Facebook allows research community to build the models on top
of the fastText open-source code. fastText introduce a new word embedding approach
an extension of the continuous skipgram and Continuous Bag of Words (CBOW) model
like word2vec, where each word is represented as a bag of character n-grams. The original

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 9/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-3
http://dx.doi.org/10.7717/peerj-cs.813

Figure 4 Hyperplane.
Full-size DOI: 10.7717/peerjcs.813/fig-4

Figure 5 Data separation linear and non-linear.
Full-size DOI: 10.7717/peerjcs.813/fig-5

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 10/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-4
https://doi.org/10.7717/peerjcs.813/fig-5
http://dx.doi.org/10.7717/peerj-cs.813

Figure 6 Linear support vector machine.
Full-size DOI: 10.7717/peerjcs.813/fig-6

version of fastText is trained on (Nitsche & Halbritter 2019) Wikipedia and its available
for 294 languages. The main difference between word2vec and fastText is that fastText
sees words as the sum of their character n-grams and it treats a vector representation
is associated to each character n-gram and words being represented (Bojanowski et al.,
2017) as the sum of these representations. This new approach has clear advantages, as it
can calculate embeddings even for out-of-vocabulary (OOV) words. However, word2vec
embedding approach treat word as the minimal entity and try to learn their respective
embedding vector, in case if the word does not appear in the training corpus, then it
fails to get word vector representation. Figure 7 shows the CBOW and Skip-gram model
architecture, The CBOW is the distributed representation of context model, it predict
the words in middle of a sentence based on surrounding words. However, the Skip-gram
predicts context within a sentence (Mikolov, Le & Sutskever).

The Skip-gram maximize the average log probability for input of training words w ,

w1,w2,w3,wT . (3)

Eq. (4) is used for computing probability.

1
T

T∑
t=1

T∑
j=−k

logp(wt+j |wt). (4)

Here k represents the size of the training window and function for wt word in the
middle.

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 11/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-6
http://dx.doi.org/10.7717/peerj-cs.813

Figure 7 Graphical representation of the CBOW and Skip-grammodel.
Full-size DOI: 10.7717/peerjcs.813/fig-7

−k to k is the representation inner summation and it computes the log probability of
the word wt+j prediction for word in the middle wt . The outer summation words are based
on the corpus used for model training.

The skip-gram model consists of input uw, and output vw, vectors associated with each
word w. The following probability (Eq. 5) is used to predict the word ui, from wj .

p
(
wi|wj

)
=

exp(uwi>vwj)1∑V
l=1exp(uwl>vwj)

. (5)

Here, the total number V of words in the given vocabulary.
CBOW and skip-gram models are obtaining the semantic information during the

large datasets used for training. The words which are closely related has the similar
vector representation the words. For example, school, college, university, education
words are having similar context, similarly orange and apple are having similar context
representations.

The Fig. 8 shows the architecture (Joulin et al., 2016) of a simple linear model of fastText
with N gram features.

x1,x2,.....xN . (6)

The features are embedded and averaged to form the hidden variable. This model is a
simple neural network with only one layer. The bag-of-words representation of the text is

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 12/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-7
http://dx.doi.org/10.7717/peerj-cs.813

Figure 8 A simple linear fastText architecture.
Full-size DOI: 10.7717/peerjcs.813/fig-8

first fed into a lookup layer, where the embedding is fetched for every single word. Then,
those word embedding are averaged, so as to obtain a single averaged embedding for the
whole text. At the hidden layer we end up with n words x dim number of parameters,
where dimension is the size of the embedding and n words is the vocabulary size. After
the averaging, we only have a single vector which is then fed to a linear classifier: we
apply the softmax over a linear transformation of the output of the input layer. The linear
transformation is a matrix with dimension1 xN output, where N output is the number
output classes (Mestre, 2018). The following Eq. (7) is the negative log likelihood function
of fastText model.

−
1
N
=

N∑
n=1

yn log(f (BAxn)). (7)

Here, xn represents the n-gram feature of the word,
A represents the lookup matrix of the word embedding,
B represents the linear output of the model transformation,
f represents the softmax function.
The softmax function calculates the probabilities distribution of the event over n

different events. The softmax takes a class of values and converts them to probabilities
with sum 1. So, it is effectively squashing a k-dimensional vector of arbitrary real values to
k-dimensional vector of real values within the range 0 to 1. Eq. (8) is the softmax function
f of fastText.

softmax(z)=
exp(z)∑K
k=1exp(z)

. (8)

The fastText has the following tuning parameters: Epoch: By default, the model is trained
on each example for 5 epochs, to increase this parameter for better training specify the

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 13/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-8
http://dx.doi.org/10.7717/peerj-cs.813

number of epoch argument. Learning rate (lr): The learning rate controls how ‘‘fast’’ the
model updates during training. This parameter controls the size of the update that is applied
to the parameters of the models. Changing learning rate implies changing the learning
speed of our model is to increase (or decrease) the learning rate of the algorithm. This
corresponds to howmuch themodel changes after processing each example. A learning rate
of 0 would means that the model does not change at all, and thus, does not learn anything
(Mestre, 2018). Note that this calculation of the best model is going to be quite expensive.
There is no magic formula to find the hyperparameters for the best model. Just taking
one hyperparameter, the learning rate, would make the calculation impractical. This is a
continuous variable and it would need to feed in each specific value, compute the model,
and check the performance. Loss function: In this we are using softmax as loss function.
The most popular methods for learning parameters of a model are using gradient descent.
Gradient descent is basically an optimization algorithm that is meant for minimizing a
function, based on which way the negative gradient points toward. In machine learning,
the input function that gradient descent acts on is a loss function that is decided for the
model. The idea is that if we move towards minimizing the loss function, the actual model
will ‘‘learn’’ the ideal parameters and will ideally generalize to out-of-sample or new data
to a large extent as well. In practice, it has been seen this is generally the case and stochastic
gradient, which is a variant of gradient descent, has a fast-training time as well. Since it
needs to obtain the posterior distribution of words, the problem statement is more of a
multinomial distribution instead of a binary.

Figure 9 shows the text documents process flowusing fastText linearmodel. In thismodel
text classification pipe-line, raw text documents are processed using data pre-processing
steps described in Fig. 1 and processed text data tested using fastText model, the model
output classified the output into two classes (Satisfied and Not-Satisfied). fastText is a
classification algorithm and C++ used to compile fastText mode. It provides high accuracy
as well as good performance (Zolotov & Kung, 2017) during training and testing the model.

SA-BLSTM model
SA-BLSTM is a sequence processingmodel (Kumar & Chinnalagu, 2020). The Bidirectional
LSTM is used in this model. The extended LSTM architecture is shown in Fig. 10 with
Input, Output, multiplicative Forget gates and all the gates are using (Mikolov et al., 2013)
activation function f sigmoid.

The Constant Error Carousels (CEC) is the central feature of LSTM (Kumar &
Chinnalagu, 2020) and it solves the vanishing problem. CECs back flow is constant
when there are no input or error signals to the cell. Input and output gates protect CECs
error flow from forward and backward activation. If the gates are closed or the gates
activation is around 0 then the irrelevant input will not enter the cell. The Forward pass
LSTM computes the output of the network given the input data, the Backward pass LSTM
computes the output error with respect to the expected output and then go backward into
the network and update the weights using gradient descent. To compute (Tomas et al.,
2013) the network weight for a single input to output network, the back propagation (BP)

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 14/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813

Figure 9 fastText model text document process flow.
Full-size DOI: 10.7717/peerjcs.813/fig-9

uses the loss function to compute the gradient. The following are the equations for gates
and activation functions. LSTM Gates are the activation of sigmoid function, between 0
and 1 is output value of the sigmoid. When the gates are blocked the value is 0 and when
the value is 1 then gates allow the input to pass through.

sig(t)=
1

1+e−t
. (9)

Here are the equations for all three gates.
Input Gate

it = σ (ωi[ht−1,xt]+bi). (10)

Output Gate

ot = σ (ωf [ht−1,xt]+bo). (11)

Forget Gate

ft = σ (ωo[ht−1,xt]+bf). (12)

σ Represents sigmoid function, xt Represents input at current timestamp. ht−1
Represents LSTM block output of previous state at timestamp t −1. ωi, ωf ,andωo are
represents weight for the input, forget and output gates. bi, bo and bf are represents bias

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 15/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-9
http://dx.doi.org/10.7717/peerj-cs.813

Figure 10 Extended LSTMwith multiplicative Forget gate.
Full-size DOI: 10.7717/peerjcs.813/fig-10

for input, output, forget gates. The following are equations for cell state for gates (Kumar
& Chinnalagu, 2020).

Cell State of Input gate

c̃t = tanh(cω
[
ht−1,xt

]
+bc). (13)

Cell Sate of Output gate

ct = ft ∗ ct−1+ it ∗ c̃t . (14)

Cell Sate of Forget gate

ht = ot ∗ tanh(c t). (15)

c̃t Represents input gate cell state at timestamp (t). ct Represents memory cell state at
timestamp (t). ht Represents cell state of final output at timestamp (t).

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 16/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-10
http://dx.doi.org/10.7717/peerj-cs.813

This model (Kumar & Chinnalagu, 2020) consists of Input, Language detection and
translation, embedded, Bi-Directional LSTM neutral network layer, dropout, dense and
output layers. The input layers process themultilingual mixed customer reviews and speech
transcript dataset and vectorizing the data using word embedding technique, each post has
one or more sentences, and each sentence is composed with n number of words sequence.
Here x representing input during the language detection, language translation process.

x = x1,x2,x3,xT . (16)

In the detection layer, input text processed to detect the non-English text, here d
represents input to detection layer.

d = d1,d2,d3,dT . (17)

If the input text identified as non-English text, then the language translation layer
converts the text to English, here t represents the input of translation layer.

t = t1,t2,t3,tT . (18)

The output of the translation layer processed by embedding layer, each input word
converted to vector, here S represents vector value.

S=w1,w2,w3,wn. (19)

The Bi-Directional LSTM (BLSTM) is a sequence processing model, it consists of
two LSTM units, (Gopalakrishnan & Salem, 2020) one unit taking the input in a forward
direction and other unit taking the input in a backward direction. It effectively processes
the input and context available to the network. Figure 11 shows the mixed-language data
processing flow, the language detection and translation layers convert the non-English to
English and then it’s embedding the words.

Input layer fed the embedded dataset to Bi-LSTM model and it processes vector output
of the embedded layer. The following Fig. 12 shows the SA-BLSTM model architecture.
This model used for both binary and multiclass classifications and SA applications.

EXPERIMENT AND RESULTS
For models training and testing, used Windows 64-bit Operating System with Intel core
i7 processor, 16 GB Memory, and on-board GPU NVIDIA MX150 server environment.
Developedmodels using Python, Jupyter, Anaconda IDE and used Python libraries, Pandas
for data load processes, Numpy for mathematical operations, Seaborn and Matplotlib for
plotting graph, NLTK Tool kit, Wordcloud and Sklearn used for build, train and test the
models. This novel method uses a memory caching technique with automated custom
Python scripts to speed-up data preprocessing tasks during model training on large volume
dataset.

To compare various traditional models results for Twitter dataset, we collected related
(Mittal & Patidar, 2019) experimental results. Table 1 shows the various models accuracy.

Figure 13 shows the experiment result of fastText model with bigram.

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 17/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813

Figure 11 SA-BLSTMmixed-language text data process flow.
Full-size DOI: 10.7717/peerjcs.813/fig-11

Table 1 Comparison of related works.

Et.al Dataset Model Accuracy %

Geetika Gautam Twitter Customer Review SVM
Max Entropy
Naïve Bayes
Semantic Analysis (WordNet)

85.5
83.8
88.2
89.9

Seyed-Ali Bahrainaian Twitter data on smart phones Hybrid Approach- Unigram,
Naive Bayes, MaxEnt, SVM

89.78

Neethu M.S Twitter data on electronic products Naïve Bayes
SVM
Max Entropy
Essemble

89.5
90
90
90

Dhiraj Gurkhe Twitter Data Unigram
Bigram
Unigram-Bigram

81.2
15
67.5

The dataset was collected from publicly available Twitter information, IMDB movie
reviews, Amazon product review and Yelp sentiment analysis data source from kaggle.com,
for a total of 778,631 datasets, 70% (545041) of data used for training and 30% (233590)
of data used to test the models which includes Kaggle.com sentiment datasets, chat
conversations from chat application and transcript of sample audio files. These data
sources details and URLs are listed in Table 2.

Designed and developed fastText and Linear SVM (LSVM) models, used the linear
kernel setting for LSVM model and for fastText model used the epoch =10, lr =0.01 and
loss =softmax parameters. Both the models trained with unigram(n= 1), bigram(n= 2)

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 18/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-11
http://dx.doi.org/10.7717/peerj-cs.813

Figure 12 Sentiment analysis bi-directional LSTMmodel (SA-BLSTM).
Full-size DOI: 10.7717/peerjcs.813/fig-12

and trigram(n= 3) and n-grams parameters. The unigram (n= 1) model result shows
the polarity incoherence (Qu, Ifrim &Weikum, 2010) due to unigram model gets a weight
indicating its polarity and strength, for e.g., not so good Vs. not so bad, the fundamental
problem arises in unigram model when assign the weight to not. Analyzed the training
result, 3-gram showed the better performance of LSVM and fastText model for this
dataset. Tested with authors Pre-trained SBA-LSTM model using the same dataset. We
also combined the datasets of Amazon, Yelp, Twitter, IMDB, Chat and audio transcripts
for the LSVM and SA-BLSTM models.

During the model testing, captured the test results and tested n-gram features on both
the models. The result shows for example, customer wrote the following review about
phone purchase experience. e.g., ‘‘Even after three working days of phone purchase. Noticed
that phone Service was not good.’’

Based on the unigram method the above text considers only one word for instance, in
this case the above sentence ‘‘phone Service was not good’’, it can be written a

Probability(P) P(‘‘phone Service was not good ′′)

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 19/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-12
http://dx.doi.org/10.7717/peerj-cs.813

Figure 13 Comparison of related dataset.
Full-size DOI: 10.7717/peerjcs.813/fig-13

Table 2 Data Sources and URLs.

Sentiment analysis datasets Data Source URL

Twitter https://www.kaggle.com/c/twitter-sentiment-analysis/data
IMDB Movie Review https://www.kaggle.com/columbine/imdb-dataset-

sentiment-analysis-in-csv-format
Yelp https://www.kaggle.com/omkarsabnis/sentiment-analysis-

on-the-yelp-reviews-dataset/data
Amazon https://www.kaggle.com/saurav9786/amazon-product-

reviews
Chat Our internal team chat conversations dataset
Audio Transcript Our internal team audio recordings dataset

=P(‘‘phone ′′)∗P(‘‘Service ′′)∗P(‘‘was′′)∗P(‘‘not ′′)∗P(‘‘good ′′) (20)

From this equation here unigram n= 1 matches pattern word by word in this case
‘‘good’’ gets more weight considering it is an individual word so the SVM unigram predicts
32% as positive and fastText unigram predicts 19.37% as positive. So, to avoid this problem,
used Bigram n= 2, where the algorithm considers the ‘‘not good’’ as a single word while
learning the pattern, the probability of whole sentence can be written as follows;

Probability(P) P(‘‘phone Service was not good ′′)

=P(‘‘Service ′′|start of sentence)∗P(‘‘Service|phone ′′)

∗P(‘‘was|Service ′′)∗P(‘‘ not|is′′)∗P(‘‘good|not ′′) (21)

As per maximum likelihood estimation, the condition probability of something like
P(‘‘good|not ′′) can be given as the ratio of count of the observed occurrence of ‘‘not good’’

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 20/25

https://peerj.com
https://doi.org/10.7717/peerjcs.813/fig-13
https://www.kaggle.com/c/twitter-sentiment-analysis/data
https://www.kaggle.com/columbine/imdb-dataset-sentiment-analysis-in-csv-format
https://www.kaggle.com/columbine/imdb-dataset-sentiment-analysis-in-csv-format
https://www.kaggle.com/omkarsabnis/sentiment-analysis-on-the-yelp-reviews-dataset/data
https://www.kaggle.com/omkarsabnis/sentiment-analysis-on-the-yelp-reviews-dataset/data
https://www.kaggle.com/saurav9786/amazon-product-reviews
https://www.kaggle.com/saurav9786/amazon-product-reviews
http://dx.doi.org/10.7717/peerj-cs.813

Table 3 Models Training performance, tested the pre-trained model for the following parameters: set-
ting n= 3-gram, epoch= 10, lr= 0.01 and loss= softmax for fastText model. For the LSVMmodel,
kernel=linear, n= 3 gram.

Models Training duration

LSVM 1.2040 Minutes to train 545041 text documents
fastText 0.7699 Seconds to train 545041 text documents
SA-BLSTM 0.9093 Seconds to train 545041 text documents

together by the count of the observed occurrence of ‘‘not’’. These models can predict new
sentences. Similarly, trigram n= 3 to learn the probability of occurrence of pattern so that
model becomes more accurate. The trigram n= 3 results showed more accurate compare
to other unigram and bigram testing parameters for both the models LSVM and fastText.
The following metrics are used to evaluate the models training performance matrix based
on True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (TN).

Precision=
tp

tp+ fp
(22)

Recall =
tp

tp+ fn
(23)

F1Score = 2∗
Precision∗Recall
Precision+Recall

(24)

Accuracy % =
tp+ tn

tp+ fp+ tn+ fn
∗100 (25)

Table 3 shows the model training performance for 3-gram method for both fastText
and LSVM. This result shows both linear models were performed well during the model
training, fastText performed slightly better than LSVM.

Table 4 shows n-grams performance measures of model’s accuracy, Recall, Precision
and F1 Score.

The LSVM and fastText are showing similar model accuracy results. SAB-LSTM shows
less accuracy. Table 5 shows the % conversations express the positive and negative score of
customer sentiment.

CONCLUSIONS
The results from training the model revealed that fastText performed exceedingly well
compared to the LSVM and SA-BLSTM models, and that fastText is much more suitable
with large datasets within a server that has minimal configuration. The results revealed that
fastText provided a more accurate response within a small duration of time compared with
the other two models, obtaining a 90.71% rate in comparison to LSVM and SA-BLSTM

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 21/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813

Table 4 Models test and performance measures results with various parameters.

Model Parameters Accuracy Recall Precision F1

LSVM Unigram,
Bigram
Trigram
Kernel=linear

87.74%
89.96%
90.11%

0.88
0.90
0.90

0.88
0.90
0.90

0.88
0.895
0.896

fastText Unigram,
Bigram
Trigram
epoch= 10, r = 0.01,
loss= softmax

88.23%
90.55%
90.71%

0.876
0.896
0.896

0.886
0.907
0.910

0.868
0.901
0.902

SA-BLSTM epoch= 10,lr= 0.01,
loss= softmax

77.00% 0.74 0.79 0.76

Table 5 Models sentiment score.

Models Positive sentiment Negative sentiment

LSVM 48.31% 51.67%
fastText 48.49% 51.49%
SA-BLSTM 44.67% 55.31%

models. The authors concluded that the n-gram method had better compatibility with
both fastText and LSVM for the type of dataset used for the experiment, and noticed
that training domain-specific datasets improves the accuracy of the sentiment score when
tested with a particular domain. fastText shows much better performance during model
training compared to the LSVM and SA-BLSTM models. The fastText works well with
large dataset within a minimal configuration of server infrastructure setting. The results
of the experiment show fastText model training time duration is less, that it gives more
accuracy, and that response time is faster than in the LSVM and SA-BLSTM models. The
n-gram method works better for both fastText and LSVM, especially trigram n= 3 for
this dataset. It was noticed that a domain specific dataset training improves the accuracy
of the sentiment score when it tested with a particular domain. There is research that is
highly essential for the future to explore a framework to build generic models that would
be beneficial for industries such as healthcare, retail, and insurance. The SA-BLSTMmodel
the authors have built has the ability to integrate fastText for representation of words to
provide increased performance, and has the ability to be pre-trained for such industries
that could benefit from this. However, improvements should be made for the quality
of audio text files, as well as for the use of automation scripts to correct text errors in
conversations.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 22/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Anandan Chinnalagu conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Ashok Kumar Durairaj conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Python model files are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.813#supplemental-information.

REFERENCES
Alharbi NM, Alghamdi NS, Eman HA, Ali Amri JF. 2021. Evaluation of sentiment anal-

ysis via word embedding and RNN variants for Amazon online reviews. Hindawai,
Mathematical Problems in Engineering 2021:5536560.

Ashok Kumar D, Chinnalagu A. 2020. Sentiment and emotion in social media COVID-
19 conversations: SAB-LSTM approach. In: Sentiment and Emotion in social media
COVID-19 conversations: SAB-LSTM Approach in proceedings of the SMART–2020.
Piscataway: IEEE, DOI 10.1109/SMART50582.2020.9337098.

Bojanowski P, Grave E, Joulin A, Mikolov T. 2017. Enriching Word Vector with
Subword Information. ArXiv preprint. arXiv:1607.04606v2.

Chinatalapudi N, Battineni G, Amenta F. 2021. Sentimental analysis of COVID-19 Tweets
using deep learning models. Basel: MDPI.

Conneau A, Schwenk H, Barrault L, Lecun Y. 2017. Very deep convolutional networks
for text classification. ArXiv preprint. arXiv:1606.01781v2.

Crone SF, Lessmann S, Stahlbock R. 2015. Artificial neural network –new potential in
data mining for customer relationship management?. Lancaster, Hamburg: Lancaster
University, Humboldt-University, University of Hamburg.

Duyu T, Bing Q, Ting L. 2015. Document modeling with gated recurrent neural network
for sentiment classification. In: 2015 conference on empirical methods in natural
language processing. DOI 10.18653/v1/D15-1167.

Gaye B, Zhang D,Wulamu A. 2021. Sentiment classification for employees reviews using
regression vector-stochastic gradient descent classifier (RV-SGDC). PeerJ Computer
Science 7:e712 DOI 10.7717/peerj-cs.712.

Gopalakrishnan K, Salem FM. 2020. Sentiment analysis using simplified long short-term
memory recurrent neural network. ArXiv preprint. arXiv:2005.03993v1.

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 23/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.813#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.813#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.813#supplemental-information
http://dx.doi.org/10.1109/SMART50582.2020.9337098
http://arXiv.org/abs/1607.04606v2
http://arXiv.org/abs/1606.01781v2
http://dx.doi.org/10.18653/v1/D15-1167
http://dx.doi.org/10.7717/peerj-cs.712
http://arXiv.org/abs/2005.03993v1
http://dx.doi.org/10.7717/peerj-cs.813

Ikonomakis M, Kotsiantis S, Tampakas V. 2005. Text classification using machine
learning techniques.WSEAS Transactions on Computers 4(8):966–974.

Joachims T. 1998. Text categorization with Support Vector Machines: learning with
many relevant features. In: International conference on machine learning ICML.

Joulin A, Grave E, Bojanowski P, Mikolov T. 2016. Bag of tricks for efficient text
classification, Facebook AI research. [cs.CL]ArXiv preprint. arXiv:1607.01759v3.

Kowalczyk A. 2017. Support vector machine succinctly, Syncfusion Inc. Available at
https://www.svm-tutorial.com/2014/10/svm-linear-kernel-good-text-classification/
(accessed on 5 October 2021).

Kowsari K, Brown DE, Heidarysafa M, Meimandi KJ, Gerber MS, Barnes LE. 2017.
HDLTex: hierarchical deep learning for text classification. Charlottesville: University
of Virginia.

Kowsari K, Meimandi KJ, Heidarysafa M, Mendu S, Barnes L, Brown D. 2019. Text
classification algorithms: a survey. DOI 10.3390/info10040150.

Kruspe A, Haberle M, Kuhn I, Zhu XX. 2020. Cross-language sentiment analysis of
European Twitter messages during the COVID-19 pandemic. ArXiv preprint.
arXiv:2008.12172v1.

Kumar SA, Nasralla MM, Garcia-Magarino I, Kumar H. 2021. A machine-learning
scraping tool for data fusion in the analysis of sentiments about pandemics for
supporting business decisions with human-centric AI explanations. PeerJ Computer
Science 7:e713 DOI 10.7717/peerj-cs.713.

Labhsetwar SR. 2020. Predictive analysis of customer churn in telecom industry using
supervised learning, Department of Computer Engineering. Fr. C. Rodrigues
Institute of Technology, India. ICTACT Journal on Soft Computing 10(3):2054–2060.

Mestre M. 2018. FastText: stepping through the code. Available at https://medium.com/
@mariamestre/fasttext-stepping-through-the-code-259996d6ebc4 (accessed on 12
November 2021).

Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient estimation of word representa-
tions in vector space. ArXiv preprint. arXiv:1301.3781.

Mikolov T, Le QV, Sutskever I. 2012. ‘‘Exploiting Similarities aiming Languages for
Machine Translation’’, Google Inc.

Mittal A, Patidar S. 2019. Sentiment analysis on twitter data: a survey, Delhi Technological
University, New Delhi, India. ACM. New York: ACM.

NitscheM, Halbritter S. 2019. Comparison of neural document classification models.
Hamburg: Hamburg University of Applied Sciences, Department of Computer
Science.

Pang B, Li L. 2008. Opinion mining and sentiment analysis. Foundation and Trends in
Information Retrieval 2(1–2):1–135.

Qu L, Ifrim G,WeikumG. 2010. The Bag-of-Opinions method for review rating pre-
diction from sparse text patterns. In: 23rd International conference on computational
linguistics, Beijing, China.

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 24/25

https://peerj.com
http://arXiv.org/abs/1607.01759v3
https://www.svm-tutorial.com/2014/10/svm-linear-kernel-good-text-classification/
http://dx.doi.org/10.3390/info10040150
http://arXiv.org/abs/2008.12172v1
http://dx.doi.org/10.7717/peerj-cs.713
https://medium.com/@mariamestre/fasttext-stepping-through-the-code-259996d6ebc4
https://medium.com/@mariamestre/fasttext-stepping-through-the-code-259996d6ebc4
http://arXiv.org/abs/1301.3781
http://dx.doi.org/10.7717/peerj-cs.813

Somasundaran S,Wilson T,Wiebe J, Stoyanov V. 2007. In: QA with Attitude: exploiting
opinion type analysis for improving question answering in on-line discussions and the
news, ICWSM, Boulder, Colorado, USA. Year 2007.

YuH, Hatzivassiloglou V. 2003. Towards answering opinion questions: separating facts
from opinions and identifying the polarity of opinion sentences. In: Conference on
empirical methods in NLP.

Zhang X, LeCun Y. 2016. Text understanding from Scratch, New York University. ArXiv
preprint. arXiv:1502.01710v5 cs.LG.

Zolotov V, Kung D. 2017. Analysis and optimization of fastText linear text classifier.
ArXiv preprint. arXiv:1702.05531v1.

Chinnalagu and Durairaj (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.813 25/25

https://peerj.com
http://arXiv.org/abs/1502.01710v5 cs.LG
http://arXiv.org/abs/1702.05531v1
http://dx.doi.org/10.7717/peerj-cs.813

