
Submitted 13 July 2021
Accepted 22 November 2021
Published 17 December 2021

Corresponding author
Huwaida T. Elshoush,
htelshoush@uofk.edu

Academic editor
Leandros Maglaras

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.812

Copyright
2021 Elshoush et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Enhanced Serpent algorithm using
Lorenz 96 Chaos-based block key
generation and parallel computing for
RGB image encryption
Huwaida T. Elshoush1, Banan M. Al-Tayeb2 and Khalil T. Obeid1

1Department of Computer Science, Faculty of Mathematical Sciences and Informatics, University of Khartoum
Khartoum, Sudan

2Department of Pure Mathematics, Faculty of Mathematical Sciences and Informatics, University of Khartoum,
Khartoum, Sudan

ABSTRACT
This paper presents a new approach to enhance the security and performance of the
Serpent algorithm. The main concepts of this approach is to generate a sub key for each
block using Lorenz 96 chaos and then run the process of encryption and decryption
in ECB parallel mode. The proposed method has been implemented in Java, openjdk
version ‘‘11.0.11’’; and for the analysis of the tested RGB images, Python 3.6 was used.
Comprehensive experiments on widely used metrics demonstrate the effectiveness of
the proposed method against differential attacks, brute force attacks and statistical
attacks, while achieving superb results compared to related schemes. Moreover, the
encryption quality, Shannon entropy, correlation coefficients, histogram analysis and
differential analysis all accomplished affirmative results. Furthermore, the reduction in
encryption/decryption time was over 61%.Moreover, the proposed method cipher was
tested using the Statistical Test Suite (STS) recommended by the NIST and passed them
all ensuring the randomness of the cipher output. Thus, the approach demonstrated the
potential of the improved Serpent-ECB algorithm with Lorenz 96 chaos-based block
key generation (BKG) and gave favorable results. Specifically, compared to existing
encryption schemes, it proclaimed its effectiveness.

Subjects Algorithms and Analysis of Algorithms, Cryptography, Distributed and Parallel
Computing, Security and Privacy
Keywords Serpent, RGB image encryption, Lorenz 96, Chaotic map, Parallel computing

INTRODUCTION
Nowadays, securing sensitive data is one of the main concerns among researchers/industry
professionals. Although Serpent algorithm is secure, it faces limitations such as memory
requirement and execution time. The 32 rounds of Serpent affect the performance
directly (Odion, 2015). Multifarious image encryption techniques enhancing Serpent
algorithm were developed by researchers such as Ahmed, Ali & Hassin (2017), Shah, Haq
& Farooq (2018), Yousif (2019), Zagi & Maolood (2020), Ali & Ressan (2016), Kumar &
Girdhar (2021), Khan et al. (2012), Ali & Ressan (2016) and Elkamchouchi, Takieldeen
& Shawky (2018). In particular, researchers (Elkamchouchi, Takieldeen & Shawky, 2018)

How to cite this article Elshoush HT, Al-Tayeb BM, Obeid KT. 2021. Enhanced Serpent algorithm using Lorenz 96 Chaos-based block
key generation and parallel computing for RGB image encryption. PeerJ Comput. Sci. 7:e812 http://doi.org/10.7717/peerj-cs.812

https://peerj.com/computer-science
mailto:htelshoush@uofk.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.812
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.812

applied chaotic maps in improving Serpent. Specifically,Ahmed, Ali & Hassin (2017), Shah,
Haq & Farooq (2018), Yousif (2019), Zagi & Maolood (2020) revamp Serpent using S-box
based enhancements.

Chaos is considered a prodigious evolution in the field of securing data due to its assorted
applications in many areas such as computer science (Al-Hazaimeh et al., 2017). Being
unpredictable, random, ergodic and high sensitive to preliminary conditions, make chaotic
systems well suited to encryption and secure transmission. In particular, a chaos-based
image encryption is the precipitateway for hiding digital images and therefore, is widely used
in image encryption schemes (Elkamchouchi, Takieldeen & Shawky, 2018; Al-Hazaimeh et
al., 2017; Shah, Haq & Farooq, 2020; Fouda et al., 2014; Kumar & Chandrasekaran, 2009;
Kumar et al., 2012; Cavusoglu et al., 2018; Alanazi, 2021; Alkhe, El-Bakry & Fathalla, 2016;
Zou et al., 2020). Specifically, researches Al-Hazaimeh et al. (2017) and Zou et al. (2020)
utilized Lorenz to enhance the security to resist common attacks in encrypting image.
Fouda et al. (2014) utilized linear chaotic map in image block encryption algorithm. Their
method can generate large permutation and diffusion keys very fast also having faster and
higher security level. In particular, Kumar et al. (2012), which is an improvement to Kumar
& Chandrasekaran (2009), propound a fast encryption scheme using Lorenz Attractor.
Their work utilizes parallelism without weakening the security.

From another perspective, researchers Tayel, Dawood & Shawky (2018) proffer using
two keys to replace the one key used by Serpent. On the other hand, Singh & Singh
(2016) suggested applying a different key to every block to speed AES, which gave rise to
more unpredictable cipher. Pendli et al. (2016) utilized parallel computing to reduce the
execution time of AES. Reckon on their superb results of reduction in time up to 45%,
similar algorithms can benefit from parallel implementation (Nagendra & Sekhar, 2014).

In the quest of improving the Serpent performance and security, an enhanced Serpent-
256-ECB with Lorenz 96 BKG is proposed. It enhances the security by generating sub
keys for each block using the Lorenz 96 chaos-based BKG algorithm, and further run the
Serpent in parallel mode to speed it up. Moreover, all block keys can be generated prior
to the inception of Serpent, which makes it possible to encrypt each block in parallel and
furthermore hide plaintext patterns.

Our contribution can be summarized as follows:

• Speeding up Serpent by splitting the colored image into RGB layer blocks and generating
Lorenz 96 chaos-based sub-keys for every block, with parallel implementation.
• Serpent is strengthen, from a security facet, as generating Lorenz 96 chaotic map adds
more strength to the algorithm due to the intricate of the key. Moreover, deploying a
distinct key for each different block hides plaintext patterns.
• The proposal is tested in encrypting image and proved its efficacy as being fast and
secure.
• Furthermore, our proposed method achieved effectual results over the state-of-the-art
schemes.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

THE SERPENT ALGORITHM
Serpent encryption process
The Serpent cipher is a key block algorithm that uses a data block of 128 bits and features
three key sizes, including 128, 192, or 256 bits. Practically, it is a 32-round system that
operates on four 32-bit words, hence the 128-bits block size. Each round applies one of eight
4 × 4 S-boxes 32 times in parallel. It was designed so that all operations can be executed
in parallel (Anderson, Biham & Knudsen, 2005;Naeemabadi et al., 2015; Compton, Timm &
Van Laven, 2009; Biham, Knudsen & Anderson, 1998). It has three main functions:

Initial permutation (IP)
The initial permutation of bits is done by a lookup table to decide which bit to place
in which position as defined in the permutation table (Anderson, Biham & Knudsen,
2005; Naeemabadi et al., 2015; Compton, Timm & Van Laven, 2009; Biham, Knudsen &
Anderson, 1998).

Round function (R)
The algorithm has eight S-boxes (Si). The round function is performed 32 times on
data block Bi. Each round consists of three operations: key mixing XOR, 32 parallel
applications of the same 4 × 4 S-box substitution, and linear transformation (LT); except
in the last round, the linear transformation is replaced by an additional key mixing XOR
operation (Anderson, Biham & Knudsen, 2005; Naeemabadi et al., 2015; Compton, Timm &
Van Laven, 2009; Biham, Knudsen & Anderson, 1998; Hari, 2017).

Final permutation (FP)
A final permutation of bits is performed to place the bits back into the correct position, as
an inverse of the initial permutation. FP can be done via lookup table or algorithmically
by replacing the bit at position i with bit at position (i × 4) mod 127, leaving only bits
0 and 127 in place. The output of this final permutation is the final ciphertext of the
algorithm (Anderson, Biham & Knudsen, 2005;Naeemabadi et al., 2015; Compton, Timm &
Van Laven, 2009; Biham, Knudsen & Anderson, 1998; Hari, 2017).

Serpent key generation
To perform the 32 rounds of the Serpent algorithm for each block, 33 round keys must
be generated from the key provided by the user. Firstly, eight 32 bit keys, w1 to w8 will be
created by splitting the key provided by the user into 32 bits. After that, the 132 intermediate
keys are generated using the following pseudo code (Naeemabadi et al., 2015; Compton,
Timm & Van Laven, 2009; Biham, Knudsen & Anderson, 1998):

For i= 8 to 131
wi= (wi−8⊕wi−5⊕wi−3⊕wi−1⊕phi⊕ i)<<< 11
where phi is known as golden ratio (hexadecimal 0x9e3779b9), and <<< is a left

rotation
The next step is the generation of 33 round keys from the intermediate keys by running

them through the S-boxes, and combining them into 128-bit blocks (Naeemabadi et al.,
2015; Compton, Timm & Van Laven, 2009; Biham, Knudsen & Anderson, 1998).

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 3/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Serpent decryption process
For the decryption process, the inverse S-boxes, the inverse linear transformation and
reverse order of the subkeys are used Anderson, Biham & Knudsen (2005), Naeemabadi et
al. (2015), Compton, Timm & Van Laven (2009), Biham, Knudsen & Anderson (1998).

CHAOTIC MAP
Chaotic map has some good features; speed and low memory requirement. This make
it very suitable in encrypting data that needs high memory such as images and audio
encryption (Lin et al., 2018; Alwahbani & Elshoush, 2016; Alwahbani & Elshoush, 2018;
Audhkhasi, 2009; Kocarev, 2001; Xiao, Liao & Deng, 2005). Other characteristics that
make them valuable for cryptography are complex numerical patterns, unpredictably for
unknown initial conditions, strong dependence on the initial conditions, based on relatively
simple equations, confusion- and diffusion-like properties and determinism (Matthews,
1989; Marco, Martinez & Bruno, 2012; Al-Hazaimeh et al., 2017). Specifically, chaos
systems’ property of confusion and diffusion makes them resistant to statistical
attacks (Fouda et al., 2014; Kumar & Chandrasekaran, 2009; Kumar et al., 2012).

Lorenz 96 chaotic map
Lorenz 96 chaotic map is a dynamic system, which is used to generate block keys that
generates multiple pseudo numbers based on multiple numbers as input, using Eq. (1)
(Lorenz, 1996; Karimi & Paul, 2010):

dxi
dt
= (xi+1−xi−2)xi−1−xi+F . (1)

This simplest version of the model is described by a periodic system of N (i= 1, . . . , N).
where xi is the state of the system, and F is a forcing constant (usually 8). It is assumed

that x−1 = xN−1; x0 = xN ; xN+1 = x1.

RELATED WORK
A brief survey depicting the analysis and suggested Serpent modifications is scrutinized in
this section.

Some researchers (Osvik, 2000; Najafi et al., 2004; Taher, El_Deen & Abo-Elsoud, 2014;
Banerjee, 1982; Ivancic, Runje & Kovac, 2001) attempted enhancing the Serpent considering
hardware. Recently, the application of chaotic map in image block encryption was evolving.
Elkamchouchi, Takieldeen & Shawky (2018) enhance Serpent speed by using chaotic
mapping and cycling group instead of S-Box. With these modifications, the number
of rounds will become 10 instead of 32 rounds. Another research (Yousif, 2019) works
on reducing the number of rounds and time usage utilizing chaotic map. The author
propounds dynamic methods for permutation, substitution and key generation based
on chaotic maps to get more security, hence achieving best randomness and robustness
compared to classical Serpent. Moreover, it has sensitivity to any change in the key. Tayel,
Dawood & Shawky (2018) use Elliptic Hybrid Cryptosystem to improve the security of
Serpent utilizing two keys instead of one key. Conspicuously, Ali & Ressan (2016) split

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 4/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

an image into 512-bit blocks and divide every block into four 128-bit blocks. Next they
encrypt the last block using Serpent and expands it into 3 blocks, then runs the new blocks
with the other blocks in XOR function. This makes Serpent encryption/decryption process
faster than normal.

Noteworthy, working on another aspect, researchers Ahmed, Ali & Hassin (2017)
and Shah, Haq & Farooq (2018) ameliorated Serpent by working on its functionality.
Specifically, Shah, Haq & Farooq (2018) speed up Serpent by using 4× 4 S-box and
decreasing the number of rounds to 22 instead of 32. These enhancements make the
improved Serpent 31 % faster than the traditional but it decreases its security level. In
an extended version, Shah, Haq & Farooq (2020) use finite commutative chain ring-based
S-boxes that dealt with 8-bit vector instead of 4-bit. This enhances the algebraic complexity
of the cipher. Hence, their scheme consumes less time and has a great resistance against
statistical and differential attacks.

The above mentioned work clearly manifests that till date, Serpent has not been
modified in light of generating Lorenz 96 chaos-based sub-keys for every block, with
parallel implementation. Furthermore, from the security facet, Lorenz 96 chaotic map
adds more security, as deploying a distinct key for each block hides plaintext patterns and
strengthen the algorithm by adding extra intricate to the key. Consequently, this paper
proposes running Serpent in parallel in addition to generating different block keys using
Lorenz 96 chaotic map. The proposed Serpent is implemented in RGB image encryption
to ascertain its efficiency in being fast and secure.

THE PROPOSED METHOD
The proposed method, Serpent-256-ECB with Lorenz 96 BKG, enhances the Serpent
algorithm by taking advantage of the ECB mode by exploiting parallelism. Lorenz 96
chaotic map was used to generate 256-bit block keys using user input 256-bit key to resolve
the data pattern problem in ECB, as outlined in algorithm 1. Note that all of the block
keys can be generated prior to the inauguration of Serpent. Figure 1 depicts the encryption
process of the proposed method.

Encryption using serpent-256-ECB with Lorenz 96 BKG
The proposed encryption method starts with reading the input encryption key from the
user. The size of this key must be 256 bits, if it is less than 256 bit then the method adds 0’s
to complete the length. Otherwise, if the length is more than 256 bit, the system uses the
first 256 bit as key.

Then the proposed method reads the color image and extracts its Red (R), Green (G)
and Blue (B) layers. Each layer is then converted into binary and split it into n blocks of
128 bits.

Note that if the block number is 1, the image is encrypted using Serpent-256-EBCwith the
user input encryption key. Otherwise, the method uses Lorenz 96 chaotic map to generate
encryption block keys from the user key by calling algorithm 1, LorenzBlockKeysGeneration,
which has two parameters, namely the user key key and the block numbers n, where n >1.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Algorithm 1: Lorenz Key Generator
Input: key: Encryption key in array of 32 bytes

n: Number of blocks> 1
Output: Kn−Lorenz : an array of n block keys (in bytes) generated using Lorenz 96

1 Function LorenzBlockKeysGeneration(key,n):
2 Initialize keylist[n] array to 0 // Initializing array keylist
3 Initialize x[] array to 0 // Initializing array x
4 x[]← IntegerOf(key[]) // Convert key byte array into x integer array

5 L← Length(key) // L equals length of array key
6 keylist[0]← (x[1] - x[L-2])× x[L-1] - x[0] + 8 // Key for block no. 0
7 keylist[1]← (x[2] - x[L-1])× x[0] - x[1] + 8 // Key for block no. 1
8 keylist[L-1]← (x[0] - x[L-3])× x[L-2] - x[L-1] + 8 // Key for block no.

L-1
9 for i = 2 to L-2 do
10 keylist[i]← (x[i+1] - x[i-2])× x[i-1] - x[i] + 8 // Keys for block no. 2

to L-2
11 end
12 Kn−Lorenz ← ByteOf(keylist) // Convert keylist integer array into byte

array Kn−Lorenz

13 Return Kn−Lorenz

14 End Function

Algorithm 1 returns Kn−Lorenz which are n Lorenz 96 block keys. These are used to
encrypt each RGB layer (block) by calling function ParSerpentEnc(block[i],keylist[i]) in
algorithm 2. This function runs the Serpent encryption in parallel mode with the associated
block Lorenz 96 key. The initial permutation is applied to the RGB layers, then the output
is XORed with the round keys which are generated using the traditional Serpent round
key generation but with Lorenz 96 block key as input instead of the user key. The Serpent
operations continue as accustomed.

Finally, the encrypted data is collected and reconverted into bytes that will represent
cipher R, G and B layers. Ergo, the encrypted R, G and B layers are combined to produce
the encrypted color image, EncImage, see Fig. 1. Algorithm 2 outlines the steps.

Decryption using Serpent-256-ECB with Lorenz 96 BKG
Considering parallelism exploitation, the decryption process is quite similar to the
encryption. Nonetheless, the decryption function uses the reverse order of the sub-keys
after being generated by Lorenz 96 from the user key, the inverse S-boxes and the inverse
linear transformation.

EXPERIMENTAL RESULTS AND ANALYSIS
This section presents series of experiments for evaluating the performance and
demonstrating the efficacy of the proposedmethod in context of time analysis performance,

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 6/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Algorithm 2: The Encryption Algorithm Using Serpent-256-ECB with Lorenz 96
BKG
Input: key: The user encryption key

OrigImage: Image to be encrypted
Output: EncImage: the encrypted image

1 Function LorenzSerpentEncryption(key, OrigImage):
2 if LengthOf (key) 6= 256 then
3 setsize(key,256) // Add 0’s if less than 256 or get first 256

4 end
5 OrigImageRGB= Extract (OrigImage) // extract image RGB layers

6 BinaryOf (OrigImageRGB) // Each layer is then converted into binary

7 block[]← split (OrigImageRGB,128) // split image RGB layers into n
128-blocks

8 n←NumberOf (blocks)
9 if n> 1 then
10 LorenzBlockKeysGeneration(key,n) // algorithm generating

Kn−Lorenz n keys

11 for i = 0 to n-1 do
12 EncBlock[i]←ParSerpentEnc(block[i],keylist [i]) // Run

the Serpent in parallel to encrypt each block[i] with its

associated Ki−Lorenz block key

13 EncBlockRGB=ByteOf (EncBlock[i]) // encrypted data collected

and reconverted into bytes, representing the cipher R, G and

B layers

14 end
15 EncImage← combine(EncBlockRGB) // Unite all encrypted RGB layer

blocks

16 else
17 EncImage←ParSerpentEnc(blocks[0],key) // Encrypt the only block

using the Serpent with the original user encryption key

18 end
19 Return EncImage // encrypted image constructed by merging all

encrypted RGB blocks

20 End Function

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 7/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Figure 1 Flowchart depicting the encryption process of the proposed enhanced Serpent-256-ECB with
Lorenz 96.

Full-size DOI: 10.7717/peerjcs.812/fig-1

key space analysis, texture analysis, statistical analysis, differential analysis, image quality
and the cipher randomness. Among the statistical scrutiny, histogram analysis and adjacent
pixels correlation are eminent. NIST Statistical Test Suite was used to measure the
randomness. Moreover, the pros and cons together with comparisons with related schemes,
were also discussed.

Preliminaries
The proposed method has been implemented in Java, openjdk version ‘‘11.0.11’’; and for
the analysis of the tested images, Python 3.6 was used. All the experimental results were
tested on a laptop with an 8GB RAM, Intel R©CoreTM i7-4500U CPU @ 1.80 GHz ×
4 processor, and AMD R©Hainan/Intel R©HD Graphics 4400 (HSW GT2). The OS was a
64-bit Pop 21-OS 21.04.

Time execution performance
Table 1 presents the encryption and decryption times in seconds of the ten tested images,
together with their dimensions and sizes in Kb. Three different sizes of the Lena image,
and two of the Baboon image, were tested to compare their different running encryption
and decryption times.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 8/25

https://peerj.com
https://doi.org/10.7717/peerjcs.812/fig-1
http://dx.doi.org/10.7717/peerj-cs.812

Table 1 Time analysis of the proposed enhanced serpent.

Image File
dimension

File size
in Kb

Encryption time
in seconds

Decryption time
in seconds

Lena 512× 512 473.8 9.5804 9.4524
Lena 440× 439 338.0 8.056 7.5253
Lena 64× 64 188.6 4.099 4.219
Baboon 225× 225 160.1 2.1015 1.8971
Baboon 64× 64 49.5 0.98 0.988
Cat1 200× 200 101.1 1.7099 1.5076
Cat2 211× 185 66.7 1.6411 1.4627
Dog 240× 210 88.0 2.0665 1.8753
Eye 236× 225 92.0 2.1178 1.9119
Chameleon 252× 253 117.1 2.5541 2.3368
Pepper 512× 512 44.0 10.514 9.5481
Tree 200× 200 90.2 1.6912 1.5009
Lighthouse 279× 266 137.1 3.0437 2.7017

Key space analysis
The key space analysis, which is expressed by the number of probability of breaking the
key, is a crucial component for a security cryptosystem. Given n as the no. of blocks, the
key space is given by:

KeySpaceSerpent−Lorenze = n×2256. (2)

It is clear that the key space is large for the proposed method compared to the traditional
Serpent. This means a stronger key and hence higher security which proves its efficiency,
as its strength depends on the large key space, thus making the brute force attack more
difficult.

Statistical analysis
Statistical analysis has been performed to prove its robustness and resistance against
statistical attacks (Shah, Haq & Farooq, 2020; Tayel, Dawood & Shawky, 2018; Pareek,
2012). This is done by testing the Shannon entropy, the distribution of pixels (histograms)
of the cipher images, and the correlation coefficient between two adjacent pixels.

Shannon entropy
The output encrypted image should be highly random which is evaluated by entropy test.
For an ideal scheme, value of entropy should be close to 8. Thus, the values of Table 2
indicate that the proposed method is highly robust against statistical attacks. It is calculated
as Shah, Haq & Farooq (2020), Tayel, Dawood & Shawky (2018), Pareek (2012):

H (m)=
2N−1∑
i=1

P(mi)log2[P(mi)]. (3)

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 9/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Table 2 Shannon entropy of the proposed enhanced Serpent-256-ECB with Lorenz 96 BKG.

Image Shannon entropy

Lena 7.999705
Baboon 7.998538
Cat1 7.998401
Cat2 7.993051
Dog 7.998788
Eye 7.998824
Chameleon 7.989401
Pepper 7.999732
Tree 7.998420
Lighthouse 7.999253

Histogram analysis
The bars representation of each byte of an image form what is called image histogram. The
sharp edges of these bars represent a weak encryption technique whereas the uniformity
of pixels reveals a good encryption scheme that will resist all the statistical attacks (Shah,
Haq & Farooq, 2020; Tayel, Dawood & Shawky, 2018; Pareek, 2012). The histograms of
four images in Fig. 2 ensures that the proposed method resist statistical analysis attacks.
Nevertheless, baboon histograms show insignificant histogram error rate which is reflected
by using a scale of 1,000 in the decrypted images compared to 800 in the original RGB.

Correlation coefficients
This measures the robustness of a ciphered technique against several attacks. The value
1 is the maximum correlation coefficient, which indicates high correlation between the
adjacent pixels. Hence, for a secure ciphered scheme, it should be very low and close to zero
(Shah, Haq & Farooq, 2020; Arab, Rostami & Ghavami, 2019). To evaluate the correlation
between the two adjacent pixels, the following equations are used:

E(x)=
1
N

N∑
i

xi (4)

cov(x,y)=
1
N

N∑
i

(xi−E(x))(Yi−E(y)) (5)

D(x)=
1
N

N∑
i

(xi−E(x))(yi−E(y)) (6)

r(x,y)=
cov(x,y)

√
(D(x))

√
(D(y))

, D(x) 6= 0,D(y) 6= 0 (7)

where x and y denote the values of the two adjacent pixels, and

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 10/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Figure 2 Baboon histograms. (A) Lena histograms, (B) Baboon histograms, (C) Dog histograms, (D) Pepper histograms. (i), (ii), (iii)) shows the
histogram of RGB layers of the original images; (iv), (v) and (vi) histograms of the encrypted images, and finally, (vii), (viii) and (ix) depict those of
the decrypted Lena, Baboon, Dog and Pepper images respectively.

Full-size DOI: 10.7717/peerjcs.812/fig-2

N is the number of selected adjacent pixels for the correlation calculation.
Table 3 proffer the horizontal, vertical, and diagonal correlation for the proposed

method for 10 tested images. Clearly, the values of the encrypted images were all close
to 0, which affirms the efficiency of the proposed method. Figure 3 depicts the results
graphically.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 11/25

https://peerj.com
https://doi.org/10.7717/peerjcs.812/fig-2
http://dx.doi.org/10.7717/peerj-cs.812

Table 3 Horizontal, vertical, and diagonal correlation for the proposed method for 10 images.

Images Correlation coefficient

Original & decrypted image Original & encrypted image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.999986 0.999985 0.999989 −0.000021 0.001810 −0.000320
Baboon 0.999989 0.99998 0.999984 0.005448 0.00898 0.001163
Cat1 0.999992 0.999992 0.999991 −0.003417 0.007930 0.009331
Cat2 0.999993 0.999991 0.999991 −0.003819 −0.006017 −0.004573
Dog 0.999994 0.999990 0.999985 0.002306 −0.003334 0.004846
Eye 0.999997 0.999957 0.999985 0.005482 −0.004911 −0.004043
Chameleon 0.999999 0.999989 0.999994 0.002088 −0.001019 −0.003147
Pepper 0.999989 0.999996 0.9999819 0.000040 0.000926 −0.003259
Tree 0.999988 0.9999854 0.999984 −0.010450 0.005445 0.004829
Lighthouse 0.999973 0.999981 0.999984 0.009882 −0.000692 −0.006864

Differential analysis
NPCR is the number of pixels change rate of two encrypted images, their original images
are exactly the same except in one pixel. UACI is the average change in intensity between
the two encrypted images. They are used to reduce the probability of the differential attack,
hence evaluating if the proposed method is vulnerable against the chosen encrypted text
attack or an attacker has access to a known plain and encrypted text pair. The terms NPCR
and UACI can be calculated by using Eqs. (8) and (9), respectively (Shah, Haq & Farooq,
2020; Tayel, Dawood & Shawky, 2018; Pareek, 2012):

NPCR=

∑
ijD(i,j)

M×N
(8)

where, D(i,j) =
0, if E1(i,j)= E2(i,j)
1, if E1(i,j) 6= E2(i,j)

UACI =
1

M×N

∑
ij

|
E1(i,j)−E2(i,j)

255
| (9)

Table 4 demonstrates the results of the differential analysis for the ten tested images,
which manifest the effectiveness of the proposed method.

Encryption quality
Table 5 presents the encryption quality results for each RGB image.

Mean square error MSE)
MSE is the cumulative squared difference between the original image P(x,y) and encrypted
image C(x,y). A greater value for MSE is perceived as better first-rate (Shah, Haq & Farooq,

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 12/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Figure 3 Pepper adjacent pixels correlation. (A) Lena adjacent pixels correlation, (B) Baboon adjacent pixels correlation, (C) Dog adjacent pixels
correlation, (D) Pepper adjacent pixels correlation. (i), (ii) and (iii) Represent horizontal, vertical and diagonal correlation of RGB layers of Lena,
Baboon, Dog and Pepper original image and (iv), (v) and (vi) depict the horizontal, vertical and diagonal of encrypted Lena, Baboon, Dog and Pep-
per respectively.

Full-size DOI: 10.7717/peerjcs.812/fig-3

2020; Tayel, Dawood & Shawky, 2018; Pareek, 2012).

MSE =
1

MN

M∑
y=1

N∑
x=1

[P(x,y)−C(x,y)]2. (10)

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 13/25

https://peerj.com
https://doi.org/10.7717/peerjcs.812/fig-3
http://dx.doi.org/10.7717/peerj-cs.812

Table 4 NPCR and UACI of the proposed enhanced Serpent-256-ECB with Lorenz 96 BKG.

Image NPCR% UACI%

Lena 99.617761 32.786420
Baboon 99.600988 29.231451
Cat1 99.605833 31.922925
Cat2 99.626831 34.793702
Dog 99.619709 29.990035
Eye 99.583176 31.992903
Chameleon 99.653366 37.082537
Pepper 99.609756 32.156716
Tree 99.610833 30.697134
Lighthouse 99.602950 29.044188

Peak signal to noise ratio (PSNR)
PSNR is the ratio of maximum intensity value (MAX) of the original image, which is 255,
to that of the encrypted image. For a good crypto-system, a low value of PSNR is required,
which depicts a significant difference between plain and encrypted images (Shah, Haq
& Farooq, 2020; Tayel, Dawood & Shawky, 2018; Pareek, 2012). The effectiveness of the
proposed technique is evaluated using PSNR in decibel, using Eq. (11), thus indicating a
higher quality of encryption, see Table 5.

PSNR= 10log10
MAX 2

MSE
. (11)

Structural similarity index measure (SSIM)
For n× n size of image having X and Y parts, the SSIM is calculated as Shah, Haq & Farooq
(2020); Tayel, Dawood & Shawky (2018); Pareek (2012):

SSIM (c,s)=
(2µX2µY +v1)(2σXY +v2)

(µX 2+µY 2+v1)(σX 2+σY 2+v2)
(12)

where µX = average of X, µY = average of Y, σ 2X = variance of X, σ 2Y = variance of
Y, σXY = covariance of X and Y, c1 =(k1 L)2, and c2 =(k2 L)2 (variables to stabilize the
division with small value of denominator), and L = vibrant range of the pixel values, (k1,
k2) = (0.01, 0.03) by default.

Image quality Index (IQI)
IQI is used to figure out any change in the image correlation, luminance, and contrast.
Its values range from −1 to 1 (Shah, Haq & Farooq, 2020; Tayel, Dawood & Shawky, 2018;
Pareek, 2012).

Maximum difference (MD)
MD is the maximum difference between pixels of two images, 0 means no difference (Shah,
Haq & Farooq, 2020; Tayel, Dawood & Shawky, 2018; Pareek, 2012).

MD=MAX(P(x,y)−C(x,y)) (13)

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 14/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Table 5 Encryption quality test values for the proposed method.

Images MSE PSNR (in dB) SSIM IQI MD

Red Green Blue Red Green Blue Red Green Blue Red Green Blue Red Green Blue

Lena 11897.1 10735.7 8796.5 7.3764 7.8225 8.6877 0.00692 0.00730 0.00891 0.999998 0.999996 0.99998 246 240 238

Baboon 8857.7 7263.2 8376.2 8.6576 9.5195 8.9004 0.0103 0.0111 0.0075 0.99999 0.99998 0.99998 255 237 250

Cat1 10345.7 9790.4 9688.4 7.9832 8.2228 8.2683 0.0023 0.0097 0.0106 0.99999 0.99999 0.99999 255 255 255

Cat2 11322.6 11445.3 12637.5 7.5913 7.5445 7.1142 0.0074 0.0093 0.0089 0.99998 0.99998 0.99998 255 255 255

Dog 8922.2 8565.8 8499.7 8.6261 8.8031 8.8368 0.0087 0.0092 0.0103 0.99999 0.99999 0.99998 255 250 250

Eye 14541.2 6859.3 8540.9 6.5048 9.7680 8.8157 0.0055 0.0109 0.0089 0.99999 0.99998 0.99997 255 255 255

Chameleon 17154.8 10852.1 11914.8 5.7869 7.7757 7.3699 0.0047 0.0083 0.0080 0.99999 0.99998 0.99999 255 255 255

Pepper 11035.1 11075.4 8045.8 7.7030 7.6872 9.0751 0.0076 0.0078 0.0089 0.99999 0.99998 0.99998 251 255 255

Tree 9908.8 8806.4 8699.0 8.1706 8.6828 8.7361 0.0049 0.0083 0.0118 0.99997 0.99997 0.99997 237 237 235

Lighthouse 8374.8 7683.1 8024.7 8.9011 9.2754 9.0865 0.0122 0.0110 0.0074 0.99999 0.99999 0.99999 255 251 255

Elshoush
etal.(2021),PeerJ

C
om

put.Sci.,D
O
I10.7717/peerj-cs.812

15/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Figure 4 The NIST Statistical Test Suite (STS) for an input of zeros and ones.
Full-size DOI: 10.7717/peerjcs.812/fig-4

The NIST statistical test suite (STS)
The Statistical Test Suite (STS) recommended by the NIST has 16 different tests. The cipher
passes any particular test if the calculated probability P-value is in the range 0.01 ≤P ≤1
(Bassham et al., 2010; Sỳs & Řìha, 2014; Marton & Suciu, 2015). The tests were repeated
several times and all different inputs passed all the NIST tests, as depicted in Fig. 4, which
advocate that it is statistically indistinguishable from a random output.

Advantages and disadvantages of the proposed method
The results of testing the proposed method yields the following pros and cons:

Advantages
1. This method enhanced the performance by speeding up Serpent. This is achieved by

splitting the colored image into RGB layer blocks and generating Lorenz 96 chaos-based
block sub-keys, then running it in parallel mode.

2. All of the block keys can be generated prior to the inception of Serpent.
3. Using EBC mode and running Serpent RGB layers in parallel mode hide plaintext

patterns.
4. The generation of block sub-keys by Lorenz 96 enhances the security as chaos systems’

property of confusion and diffusion makes them resistant to statistical attacks.
5. Chaotic map suits encrypting data that needs high memory such as images encryption

due to its speed and low memory requirement.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 16/25

https://peerj.com
https://doi.org/10.7717/peerjcs.812/fig-4
http://dx.doi.org/10.7717/peerj-cs.812

Table 6 Time execution performance efficiency comparison.

Image
(128-bit block size)

Method Encryption time
in seconds

Decryption time
in seconds

Reduction in
encryption time

Reduction in
decryption time

Baboon Serpent-256-ECB 0.98 0.988 61.25% 61.37%
(50640 bytes) Traditional Serpent 1.60 1.61
Lena Serpent-256-ECB 4.099 4.219 67.55% 71.35%
(193168 bytes) Traditional Serpent 6.068 5.913

Table 7 Comparison of key space for the proposed method and related encryption schemes.

Proposed
method

Tayel, Dawood & Shawky (2018) Yousif (2019) Shah, Haq & Farooq (2020) Zou et al. (2020) Traditional
serpent

Key space n×2256 2256 10112 2264 2232 2256

(n = no. of blocks)

6. Complex numerical patterns and unpredictably for unknown initial conditions makes
Lorenz 96 chaotic map ameliorate the Serpent’s security.

Disadvantages
1. Noise attacks may affect the image quality.
2. Cropping will possibly affect the retrieval of the original image.

Comparison with related schemes
In order to highlight the overall potential of the proposed method, it is juxtaposed with
related schemes and compared in terms of time execution, key space, statistical analysis,
NPCR and UACI, and encryption quality.

Comparing the time execution performance
Table 6 shows the time taken by the proposed method for encrypting and decrypting the
RGB Baboon and Lena image of different sizes. The execution of the proposed method,
compared to traditional Serpent, shows a reduction 61.25 % in encryption time and 61.37
% in decryption time for Baboon. Lena encryption time was reduced by 67.55 % and
decryption time by 71.35 %.

Comparison of key space analysis
Table 7 shows key space analysis for different encryption schemes. Ourmethod outperforms
the related schemes especially for large images (more than one block). Undoubtedly, this
ascertains that the proposed encryption method is robust and resistant against brute force
attack.

Comparison of shannon entropy values
Considering Lena, Baboon and Pepper images, Table 8 presents a comparison of some
related schemes Shannon Entropy values and the proposed method. In particular (Kumar
et al., 2012) work uses chaos theory and parallelism achieving 7.9934 entropy whereas
ours has a value of 7.999705 for Lena image. For instance, the Serpent improvement of

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 17/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Table 8 Comparison of shannon entropy values between the proposed enhanced serpent and existing
image encryption schemes.

Images Image encryption algorithm Reference Shannon entropy

Proposed 7.999705
Ali & Ressan (2016) 7.5975
Tayel, Dawood & Shawky (2018) 7.2341
Shah, Haq & Farooq (2020) 7.9992

Serpent-
based

Traditional Serpent 7.2341
Kumar et al. (2012) 7.9934

Lena

Annadurai, Manoj & Jathanna (2017) 7.9997Others

Cavusoglu et al. (2018) 7.9577
Zou et al. (2020) 7.9991
AES 7.8693
Proposed 7.998538

Baboon
Ali & Ressan (2016) 7.6310
Tayel, Dawood & Shawky (2018) 7.2216

Serpent-
based

Traditional Serpent 7.2216
Others Zou et al. (2020) 7.9991
Serpent-based Proposed 7.999732
Others AES 7.8734Pepper

Zou et al. (2020) 7.9991
Alanazi (2021) 7.999049

Shah, Haq & Farooq (2020) attained a value of 7.9992 for the same image. Evidently, our
proposed method surpasses the related schemes.

Comparative analysis of the adjacent pixels correlation
Using Lena, Baboon and Pepper images, Table 9 presents a comparative analysis of the
correlation coefficient of the proposed method with some related schemes, standard AES
and the traditional Serpent. Compared to Serpent enhancement of Shah, Haq & Farooq
(2020) and the chaotic-based with parallelism scheme of Kumar et al. (2012), our method
achieved far better values of correlation coefficient which ensures the resistance of the
proposed method to statistical attacks. Referring to Table 9, blatantly the proposed method
coefficients are very low in the encrypted image and approaching zero, hence excelling the
related image encryption schemes.

Differential analysis comparison
Considering NPCR and UACI, the juxtaposition of the results of the proposed method
and related schemes is displayed in Table 10. The optimal NPCR value should be near
to 99.6094%, while our method’s value is 99.6178, which is far better than Shah, Haq &
Farooq (2020) and Tayel, Dawood & Shawky (2018) proclaiming its effectual results and
resistance to differential attacks.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 18/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Table 9 Comparison of the proposed method’s horizontal, vertical, and diagonal correlation with existing image encryption schemes.

Images Image encryption
algorithm

Reference Correlation coefficient between

Original & decrypted image Original & encrypted image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Serpent-based Proposed 0.999986 0.999985 0.999989 −0.00002 0.001810 −0.00032
Shah, Haq & Farooq (2020) 0.9371 0.9464 0.8391 0.007 −0.0009 0.0088
Elkamchouchi, Takieldeen & Shawky (2018) – – – 0.042 −0.043 0.074
Tayel, Dawood & Shawky (2018) 0.9752 0.9859 0.9623 0.0080 −0.00001 0.0146
Ali & Ressan (2016) – – – 0.01252 0.01594 0.01348

Lena

Traditional Serpent – – – −0.084 0.125 −0.09
Others Zou et al. (2020) 0.9765 0.9606 0.9356 0.0032 −0.0004 0.0059

Annadurai, Manoj & Jathanna (2017) 0.9503 0.9655 0.9373 −0.00097 0.000902 0.00225
Alkhe, El-Bakry & Fathalla (2016) 0.9900 0.9858 – 0.0037 0.0045 –
Kumar et al. (2012) 0.9681 0.9821 0.9819 0.0219 0.0230 0.0208
AES – – – 0.07 −0.064 0.121

Baboon Serpent-based Proposed 0.999989 0.99998 0.999984 0.005448 0.00898 0.001163
Shah, Haq & Farooq (2020) 0.9229 0.7461 0.8431 0.0062 0.0008 0.0046
Tayel, Dawood & Shawky (2018) 0.8631 0.7675 0.7335 0.00028 0.0201 0.0042
Ali & Ressan (2016) – – – 0.01521 0.0110 0.0182

Pepper Serpent-based Proposed 0.999989 0.999996 0.999982 0.00004 0.000926 -0.00326
Tayel, Dawood & Shawky (2018) 0.9800 0.9825 0.9703 0.00048 −0.0387 −0.0062

Elshoush
etal.(2021),PeerJ

C
om

put.Sci.,D
O
I10.7717/peerj-cs.812

19/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

Table 10 Comparison of NPCR and UACI test values between the proposed enhanced serpent and ex-
isting image encryption schemes.

Images Image encryption algorithm Reference NPCR% UACI%

Lena Serpent-based Proposed 99.6178 32.7864
Shah, Haq & Farooq (2020) 99.6206 30.53
Tayel, Dawood & Shawky (2018) 99.4190 33.3553

Others Zou et al. (2020) 99.6246 33.5118
Cavusoglu et al. (2018) 99.6198 31.58
Annadurai, Manoj & Jathanna (2017) 99.49 33.4475

Baboon Serpent-based Proposed 99.6010 29.2315
Yousif (2019) 99.8022 33.3382
Tayel, Dawood & Shawky (2018) 99.2149 33.2084

Others Zou et al. (2020) 99.5885 33.4590
Pepper Serpent-based Proposed 99.6098 32.1567

Others Zou et al. (2020) 99.6048 33.3828

Table 11 Comparison of encryption quality test values for the proposed method and Shah, Haq & Fa-
rooq (2020) for the Lena image.

Quality measure Proposed method Shah, Haq & Farooq (2020)

Red Green Blue Red Green Blue

MSE 11897.1 10735.7 8796.5 10630 9155.2 7196.8
PSNR 7.3764 7.8225 8.6877 7.8653 8.5141 9.5593
SSIM 0.00692 0.00730 0.00891 0.0103 0.0092 0.0096
MD 246 240 238 255 247 211

Encryption quality comparison
Table 11 demonstrates the encryption quality test values compared to Shah et al. Shah, Haq
& Farooq (2020) image encryption scheme. Concerning the PSNR and SSIM, the lower
values are better, conversely MSE values should be high. Ergo, our proposed method were
superior to Shah, Haq & Farooq (2020) in all values achieved.

CONCLUSION AND FUTURE WORK
Enhancing the security and performance of the Serpent algorithm is proposed. The
Serpent algorithm is run in parallel ECB mode and a key is generated for every block using
Lorenz96 Chaotic map. Based on the experimental results, it was concluded that the parallel
implementation of Serpent algorithm is an appropriatemethodwhen the performance is the
main concern. The proposedmethodwas implemented on the image. The image encryption
implementation on ten tested colored images showed high reductions in encryption time
of over 61% and 71% for decryption time compared to traditional Serpent. A very large key
space provides higher security and assured the strength against brute force attacks. Entropy
analysis of the encrypted images gives a value close to the theoretical value 8, and moreover
better results when compared with prevailing methods. Concerning the statistical attacks,
the analysis of the adjacent pixels correlation and the histogram analysis of the proposed

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 20/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812

method were scrutinized. It is evident from the close to zero correlation coefficients of
the encrypted RGB images that the enhanced Serpent achieved great results and surpass
existing schemes. The histogram analysis shows a uniform distribution of pixel intensities,
also confirming the effectiveness of the proposed method. The differential analysis for the
proposed Serpent-ECB with Lorenz96 shows that NPCR and UACI exceed the expected
values, so even a slight change in the original image results in a significant change in
the encrypted image. Additionally, it performed better than related schemes NPCR and
UACI. In the encryption quality test, the resulted values for the proposed method reflects
that the encrypted data is not similar to the original one. Furthermore, the proposed
cipher passed all the Statistical Test Suite (STS) recommended by the NIST which ensures
the randomness of the cipher output. Thus, the outcome proved the effectiveness of the
proposed approach and the Serpent algorithm’s performance and security are significantly
improved. Furthermore, it surpasses prevailing encryption schemes. Moreover, the results
show excellent potential for practical encryption applications, specifically real time image
encryption.

For future work, we recommend to test the proposed method against noise attacks,
cropping and rotating the original image. Furthermore, running the Serpent with Lorenz
96 block key generation in CTR cipher mode should be tested, as it is expected to achieve
better results.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Huwaida T. Elshoush conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, proofreading, and approved the
final draft.
• BananM.Al-Tayeb conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, and approved the final draft.
• Khalil T. Obeid performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at GitHub: https://github.com/khalileibad/Serpent_MSC?files=1.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 21/25

https://peerj.com
https://github.com/khalileibad/Serpent_MSC?files=1
http://dx.doi.org/10.7717/peerj-cs.812

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.812#supplemental-information.

REFERENCES
Ahmed I, Ali G, Hassin S. 2017. New approach for serpent block cipher algorithm based

on multi techniques. Iraqi Journal of Information Technology 7(3):1–13.
Alanazi AS. 2021. A dual layer secure data encryption and hiding scheme for color

images using the three-dimensional chaotic map and lah transformation. IEEE Access
9:26583–26592 Digital Object Identifier DOI 10.1109/ACCESS.2021.3058112.

Al-Hazaimeh OM, Al-Jamal MF, Alhindawi N, Omari A. 2017. Image encryption
algorithm based on lorenz chaotic map with dynamic secret keys. Neural Computing
& Applications 31:2395–2405 DOI 10.1007/s00521-017-3195-1.

Ali YH, Ressan HA. 2016. Image encryption using block cipher based serpent algorithm.
Engineering and Technology Journal 34(2):278–286.

Alkhe AA, El-Bakry HM, Fathalla SM. 2016. Securing images using chaotic-based image
encryption cryptosystem. International Journal of Electronics Communication and
Computer Engineering 7(2):2249-071X.

Alwahbani SMH, Elshoush HTI. 2018. Hybrid audio steganography and cryptography
method based on high Least Significant Bit (LSB) layers and one-time pad—a novel
approach. In: Bi Y, Kapoor S, Bhatia R, eds. Intelligent systems and applications.
IntelliSys 2016. Studies in computational intelligence, vol 751, Cham: Springer.

Alwahbani SMH, Elshoush HTI. 2016. Chaos-based audio steganography and cryptog-
raphy using LSB method and one-time pad. In: Proceedings of SAI intelligent systems
conference. Berlin, Heidelberg: Springer, 755–768.

Anderson R, Biham E, Knudsen L. 2005. Serpent: a candidate block cipher for the
advanced encryption standard. Página oficial do SERPENT, disponível em. Available
at http://www.cl.cam.ac.uk/~rja14/serpent.html .

Annadurai S, Manoj R, Jathanna RD. 2017. A novel self-transforming image encryption
algorithm using intrinsically mutating PRNG. In: The international conference on
smart system, innovations and computing, SSIC 2017, Jaipur, India.

Arab A, RostamiMJ, Ghavami B. 2019. An image encryption method based on
chaos system and AES algorithm. The Journal of Supercomputing 75:6663–6682
DOI 10.1007/s11227-019-02878-7.

Audhkhasi K. 2009. Chaos-based cryptography. Available at https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.90.8715&rep=rep1&type=pdf .

Banerjee SK. 1982.High speed implementation of serpent algorithm. Amirkabir
University of Technology 1(3):261–267.

Bassham LE, Rukhin AL, Soto J, Nechvatal JR, SmidME, Leigh SD, LevensonM, Vangel
M, Heckert NA, Banks DL. 2010. A statistical test suite for random and pseudoran-
dom number generators for cryptographic applications. Special Publication 800-22.
Available at https://www.nist.gov/manuscript-publication-search.cfm?pub_id=151222.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 22/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.812#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.812#supplemental-information
http://dx.doi.org/10.1109/ACCESS.2021.3058112
http://dx.doi.org/10.1007/s00521-017-3195-1
http://www.cl.cam.ac.uk/~rja14/serpent.html
http://dx.doi.org/10.1007/s11227-019-02878-7
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.8715&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.8715&rep=rep1&type=pdf
https://www.nist.gov/manuscript-publication-search.cfm?pub_id=151222
http://dx.doi.org/10.7717/peerj-cs.812

Biham E, Knudsen L, Anderson R. 1998. Serpent: a new block cipher proposal. In: Vau-
denay S, ed. Fast Software Encryption. FSE 1998. Lecture Notes in Computer Science.
vol. 1372. Berlin, Heidelberg: Springer, 222–238 DOI 10.1007/3-540-69710-1_15.

Cavusoglu U, Kaçar S, Zengin A, Pehlivan I. 2018. A novel hybrid encryption algorithm
based on chaos and S-AES algorithm nonlinear dynamics. 92(4):1745–1759.

Compton KJ, TimmB, Van Laven J. 2009. A simple power analysis attack on the serpent
key schedule. IACR Cryptology EPrint Archive 2009:473.

Elkamchouchi HM, Takieldeen AE, ShawkyMA. 2018. A modified Serpent based
algorithm for image encryption. In: 2018 35th National Radio Science Conference
(NRSC). Piscataway: IEEE, 239–248 DOI 10.1109/NRSC.2018.8354369..

Fouda JSAE, Effa JY, Sabat SL, Ali M. 2014. A fast chaotic block cipher for image encryp-
tion. Communications in Nonlinear Science and Numerical Simulation 19(3):578–588
DOI 10.1016/j.cnsns.2013.07.016.

Ivancic D, Runje D, Kovac M. 2001. Implementation of serpent encryption algorithm
on 24-bit DSP processor. In: ISPA 2001. in Proceedings of the 2nd international
symposium on image and signal processing and analysis. In Conjunction with 23rd
international conference on information technology interfaces. Piscataway: IEEE,
411–416 DOI 10.1109/ISPA.2001.938665.

Izevbizua PO. 2015. Data security in the cloud using serpent encryption and distributed
steganography. European Scientific Journal 11(18):5845.

Karimi A, Paul MR. 2010. Extensive chaos in the Lorenz-96 model. Chaos 20:043105
DOI 10.1063/1.3496397.

KhanM, Shah T, Mahmood H, Gondal MA, Hussain I. 2012. A novel technique for
the construction of strong S-boxes based on Chaotic Lorenz Systems. Nonlinear
Dynamics 70(3):2303–2311 DOI 10.1007/s11071-012-0621-x.

Kocarev L. 2001. Chaos-based cryptography: a brief overview. IEEE Circuits and Systems
Magazine 1(3):6–21.

Kumar GMBSS, Chandrasekaran V. 2009. A novel image encryption scheme using
lorenz attractor. In: Proceedings of the 4th IEEE conference on industrial electronics and
applications, China. Piscataway: IEEE, 3662–3666 DOI 10.1109/ICIEA.2009.5138890.

Kumar V, Girdhar A. 2021. A 2D logistic map and lorenz-rossler chaotic system based
RGB image encryption approach.Multimedia Tools Applications 80(3):3749–3773
DOI 10.1007/s11042-020-09854-x.

Kumar KP, Nagendra Prasad BV, Kumar GMBSS, Chandrasekaran V, Baruah PK.
2012. FIELA: a fast image encryption with lorenz attractor using hybrid computing.
In: Proceedings of the 9th IEEE international conference on high performance comput-
ing, student research symposium. Piscataway: IEEE.

Lin Z,Wang G,Wang X, Yu S, Lü J. 2018. Security performance analysis of a chaotic
stream cipher. Nonlinear Dynamics 94:1003–1017 DOI 10.1007/s11071-018-4406-8.

Lorenz EN. 1996. Predictability: a problem partly solved. In: Seminar on Predictability,
4-8 September 1995. Reading: ECMWF.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 23/25

https://peerj.com
http://dx.doi.org/10.1007/3-540-69710-1_15
http://dx.doi.org/10.1109/NRSC.2018.8354369.
http://dx.doi.org/10.1016/j.cnsns.2013.07.016
http://dx.doi.org/10.1109/ISPA.2001.938665
http://dx.doi.org/10.1063/1.3496397
http://dx.doi.org/10.1007/s11071-012-0621-x
http://dx.doi.org/10.1109/ICIEA.2009.5138890
http://dx.doi.org/10.1007/s11042-020-09854-x
http://dx.doi.org/10.1007/s11071-018-4406-8
http://dx.doi.org/10.7717/peerj-cs.812

Marco AG, Martinez AS, Bruno OM. 2012. Fast, parallel and secure cryptography
algorithm using Lorenz’s attractor. International Journal of Modern Physics C
DOI 10.1142/S0129183110015166.

Marton K, Suciu A. 2015. On the interpretation of results from the NIST statistical test
suite. Science and Technology 18(1):18–32.

Matthews R. 1989. On the derivation of a chaotic encryption algorithm. Cryptologia
13(1):29–42 DOI 10.1080/0161-118991863745.

Naeemabadi M, Ordoubadi B, Dehnavi AM, Bahaadinbeigy K. 2015. Comparison of
serpent, twofish and rijndael encryption algorithms in teleophthalmology system.
Advances in Natural and Applied Sciences 9(4):137–149.

NagendraM, Sekhar MC. 2014. Performance improvement of advanced encryption
algorithm using parallel computation. International Journal of Software Engineering
and Its Applications 8(2):287–296 DOI 10.14257/ijseia.2014.8.1.25.

Najafi B, Sadeghian B, Zamani MS, Valizadeh . 2004.High speed implementation of
serpent algorithm. In: ICM 2004 Proceedings of the 16th international conference on
microelectronics (ICM 2004). Piscataway: IEEE, 718–721.

Osvik DA. 2000. Speeding up serpent. In: AES candidate conference. 317–329.
Pareek NK. 2012. Design and analysis of a novel digital image encryption scheme. ArXiv

preprint. arXiv:1204.1603.
Pendli V, Pathuri M, Yandrathi S, Razaque A. 2016. Improvising performance of

advanced encryption standard algorithm. In: 2016 second international conference on
mobile and secure services (MobiSecServ). Piscataway: IEEE, 1–5.

Priya H. 2017. Enhancing cloud security with the implementation of serpent encryption
algorithm. Imperial Journal of Interdisciplinary Research 3:5.

Shah T, Haq TU, Farooq G. 2018. Serpent algorithm: an improvement by 4× 4 S-Box
from Finite Chain Ring. In: 2016 Second International Conference on Mobile and
Secure Services (MobiSecServ). Piscataway: IEEE, 1–6.

Shah T, Haq TU, Farooq G. 2020. Improved SERPENT Algorithm: design to RGB image
encryption implementation. IEEE Access 8:52609–52621
DOI 10.1109/ACCESS.2020.2978083.

Singh H, Singh P. 2016. Enhancing AES using novel block key generation algorithm and
key dependent S-boxes. Cyber-Security and Digital Forensics 5:30–45.

Sỳs M, Řìha Z. 2014. Faster randomness testing with the NIST statistical test suite. In:
International conference on security, privacy, and applied cryptography engineering.
272–284.

Taher MH, El_Deen AET, Abo-ElsoudME. 2014.Hardware implementation of the
serpent block cipher using FPGA technology. IAEME 5(10):34–44.

Tayel M, Dawood G, Shawky H. 2018. A proposed serpent-elliptic hybrid cryptosystem
for multimedia protection. In: 2018 international conference on advances in comput-
ing, communications and informatics (ICACCI). Piscataway: IEEE, 387–391.

Xiao D, Liao X, Deng S. 2005. One-way hash function construction based on the
chaotic map with changeable-parameter. Chaos, Solitons & Fractals 24(1):65–71
DOI 10.1016/S0960-0779(04)00456-4.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 24/25

https://peerj.com
http://dx.doi.org/10.1142/S0129183110015166
http://dx.doi.org/10.1080/0161-118991863745
http://dx.doi.org/10.14257/ijseia.2014.8.1.25
http://arXiv.org/abs/1204.1603
http://dx.doi.org/10.1109/ACCESS.2020.2978083
http://dx.doi.org/10.1016/S0960-0779(04)00456-4
http://dx.doi.org/10.7717/peerj-cs.812

Yousif IA. 2019. Proposed A permutation and substitution methods of serpent
block cipher. Ibn AL- Haitham Journal For Pure and Applied Sciences 32(2):131
DOI 10.30526/32.2.2120.

Zagi HR, Maolood AT. 2020. A novel serpent algorithm improvement by the key
schedule increase security. Tikrit Journal of Pure Science 25(6):114–125.

Zou C, Zhang Q,Wei X, Liu C. 2020. Image encryption based on improved lorenz
system. IEEE Access 8:75728–75740 DOI 10.1109/ACCESS.2020.2988880.

Elshoush et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.812 25/25

https://peerj.com
http://dx.doi.org/10.30526/32.2.2120
http://dx.doi.org/10.1109/ACCESS.2020.2988880
http://dx.doi.org/10.7717/peerj-cs.812

