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ABSTRACT
The rapid development of deep neural networks (DNN) has promoted the widespread
application of image recognition, natural language processing, and autonomous driv-
ing. However, DNN is vulnerable to adversarial examples, such as an input sample with
imperceptible perturbation which can easily invalidate the DNN and even deliberately
modify the classification results. Therefore, this article proposes a preprocessing defense
framework based on image compression reconstruction to achieve adversarial example
defense. Firstly, the defense framework performs pixel depth compression on the input
image based on the sensitivity of the adversarial example to eliminate adversarial
perturbations. Secondly, we use the super-resolution image reconstruction network
to restore the image quality and then map the adversarial example to the clean image.
Therefore, there is no need to modify the network structure of the classifier model, and
it can be easily combinedwith other defensemethods. Finally, we evaluate the algorithm
with MNIST, Fashion-MNIST, and CIFAR-10 datasets; the experimental results show
that our approach outperforms current techniques in the task of defending against
adversarial example attacks.

Subjects Artificial Intelligence, Computer Vision, Security and Privacy
Keywords Deep learning, Adversarial example, Image compression, Reconstruction,
Super-resolution

INTRODUCTION
Deep neural networks have been widely used in computer vision, natural language
processing, speech recognition, and other fields (Karen & Andrew, 2015). However, the
adversarial example proposed by Szegedy et al. (2013), as shown in Fig. 1, can easily
deceive the neural network by adding a minor perturbation to the ordinary image, i.e.,
the deep convolutional neural network will continuously amplify this perturbation,
which is sufficient to drive the model to make high confidence incorrect predictions
without being detected by the human eye. As a result, the adversarial example has a
minor perturbation than the normal noise. However, it brings more significant obstacles
to practical applications. Researchers usually input the pictures directly into the neural
network for the computer classification test when training the classifier model to solve
this problem. Kurakin, Goodfellow & Bengio (2016) found that a significant fraction of
adversarial images crafted using the original network are misclassified even when fed to the
classifier through the camera. Nowadays, the research and implementation of autonomous
driving (Deng et al., 2020) and person detection (Thys, Ranst & Goedemé, 2019) rely heavily
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Figure 1 The generation process of adversarial example.
Full-size DOI: 10.7717/peerjcs.811/fig-1

on deep learning technology. In addition to making the target model random errors, an
adversarial example can also conduct targeted attacks according to the attacker’s wishes
and generate specified results. Eykholt et al. (2018) show that adversarial examples bring
substantial security risks to the application of related technologies. Furthermore, by adding
adversarial perturbation to a road sign, the intelligent systemmay recognize the deceleration
sign as an acceleration sign, which will bring substantial hidden dangers to traffic safety.

Currently, the reasons for the adversarial examples are still controversial. Szegedy
et al. (2013) believed that it is caused by the nonlinearity of the model, while Kurakin,
Goodfellow & Bengio (2016) propose that the high-dimensional space’s linearity is sufficient
to generate adversarial examples. If the input samples have sufficiently large dimensions
for linear models, they are also attacked by adversarial examples. Adversarial attacks can be
divided into single-step attacks, which perform only one step of gradient calculation, such
as the FGSM (Goodfellow, Shlens & Szegedy, 2015), and iterative attacks, which perform
multiple steps to obtain better adversarial examples, such as BIM (Ren et al., 2020) or CW
(Carlini & Wagner, 2017). At the same time, adversarial example attacks can be categorized
into white-box, gray-box, and black-box attacks based on the attacker’s knowledge. A
white-box attack means that the attacker knows all the information, including models,
parameters, and training data. We can use it to calculate the attack distance and generate
adversarial examples. A gray-box attack means that the attacker knows limited target
model information. A black-box attack means that an attacker uses a similar model to
generate adversarial examples. The generated adversarial examples have a certain degree
of transferability, which can carry out transfer attacks on the model without knowing the
relevant information of the model, and it has a high success rate.

Furthermore, extreme samples can even deceive multiple different models. Generally,
adversarial examples not only exist in images, but also in speech and text (Xu et al.,
2020), which make the application of deep learning technology have huge uncertainty
and diversity, and there are potential threats at the same time. Therefore, it is urgent to
defend against them, which makes the application of deep learning technology have huge
uncertainty and diversity, as well as many potential threats.

With the endless emergence of attack methods, the defense of adversarial examples
has become a significant challenge. Many defense methods (Dong et al., 2018; Zhang &
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Wang, 2019; Hameed, György & Gündüz, 2020; Singla & Feizi, 2020; Jin et al., 2021) have
been proposed, such as adversarial training (Goodfellow, Shlens & Szegedy, 2015), which
increases model robustness by adding adversarial examples to the training process. Some
other defenses mainly rely on preprocessing methods to detect or transform the input
image before the target network without modifying the target model. For example, Xu,
Evans & Qi (2017) proposed that the input’s adversarial perturbation can be eliminated by
reducing the color bit depth of each pixel and spatial smoothing, and they create a defense
framework to detect adversarial examples in the input. Jia et al. (2019) introduced the
ComDefend defense model, which constructs two deep convolutional neural networks: the
one for compressing images and retaining valid information; the other for reconstructing
images. However, this method does not perform well under the attack of BIM.

On the other hand, if you only perform detection without other measures when
defending against adversarial examples, it will not be able tomeet actual needs. For example,
in an autonomous driving application scenario, the defense system recognizes a road sign
and detects that it is an adversarial example. At this time, the defense system refuses to
input the image, which will seriously affect its normal operation. In addition, convolutional
neural networks are used to extract image features and compress images. If the compression
rate is too low, the uncorrupted adversarial perturbation in the reconstruction network
will continue to expand, thereby significantly reducing the classifier’s accuracy.

To solve the above problems, we propose a defense framework based on image
compression reconstruction, which is a preprocessing method. Figure 2 clearly describes
the defense framework of this paper. The defense model in the figure can be divided into
two steps. The specific operation is to eliminate adversarial perturbations by compressing
images to defend against adversarial example attacks. Simultaneously, to ensure that the
standard and processed samples do not suffer from performance loss on the target model,
we use the deep convolutional neural network to repair the processed images. In short, this
paper makes the following contributions:

• To defend against various adversarial example attacks, we propose a defense framework
based on image compression and reconstruction with super-resolution. This framework
eliminates adversarial perturbations by compressing the input samples and then
reconstructs the compressed images using super-resolution methods to alleviate the
performance degradation caused by compression.
• As a preprocessing method, there is no need to modify the target model during the
defense process, i.e., our method has good performance for single-step and iterative
attacks and has a small calculation compared with other adversarial training methods.
In addition, it can be combined with different target models to have a protective effect
still.
• To verify the effectiveness, applicability, and transferability of the method, extensive
experiments of defense tests are carried out on three real data sets and multiple attack
methods. The results show that our approach can achieve better defense performance
for different adversarial example attacks and significantly reduce image loss.
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Figure 2 The defense framework uses input samples as pictures.
Full-size DOI: 10.7717/peerjcs.811/fig-2

The rest of this paper is organized as follows: ‘Background’ briefly introduces an
background of the existing attack and defense methods. ‘Our Approach’ discusses the
methodology and defense framework proposed in this paper in detail, followed by many
experiments to demonstrate the feasibility of this method in ‘Experiment’. Finally, the
conclusion is given in ‘Conclusion’.

BACKGROUND
In this section, we review related works from two aspects: the attack methods of generating
adversarial examples and the defensive techniques of resisting adversarial examples.

Attack methods
In order to verify the versatility of the proposed method, the following four different
methods are mainly used to generate adversarial examples.

Fast gradient sign method (FGSM)
Goodfellow, Shlens & Szegedy (2015)proposed the FGSM, a fast and straightforwardmethod
of generating adversarial examples. Given the input image, the maximum direction of
gradient change of the deep learning model is found, and adversarial perturbations are
added to maximize the cost subject to a L∞ constraint, resulting in the wrong classification
result. The FGSM adds the imperceptible perturbations to the image by increasing the
image classifier loss. The generated adversarial example is formulated as follows:

xadv = x+ε · sign(5x J (θ,x,ytrue)) (1)

where J (θ,x,y) denotes the cross entropy cost function, x is the input image, y is the true
label of the input image, and ε is the hyperparameter that determines the magnitude of the
perturbations.

Basic iterative method (BIM)
The problem of adversarial examples is constantly being studied. Kurakin, Goodfellow
& Bengio (2016) presented a more direct basic iterative method(BIM) to improve the
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performance of FGSM. In other words, BIM is an iterative version of FGSM. It uses the
basic idea of gradient descent to perform iterative training with small steps. Moreover,
clip the pixel values of the intermediate results after each step to ensure that they are in an
ε-neighborhood of the original image:

xadv0 = x,...,xadvN+1= clipx,ε{xadvN +α · sign(5x J (θ,x,ytrue))} (2)

Among them, x is the input image, ytrue is the true class label, J (θ,x,y) is the loss function,
and α is the step size, usually α= 1.

This method attempts to increase the loss value of the correct classification and does not
indicate which type of wrong class label the model should choose. Therefore, it is suitable
for data sets with fewer and different types of applications.

Carlini & Wagner (C&W)
Carlini & Wagner (2017) proposed an optimization-based attack method called C&W .
C&W can be a targeted attack or an untargeted attack. The distortion caused by the attack
is measured by three metrics: (L0,L2,L∞). There are three methods introduced by C&W ,
which aremore efficient than all previously-knownmethods in terms of achieving the attack
success rate with the smallest amount of imperceptible perturbation. A successful C&W
attack usually needs to meet two conditions. First, the difference between the adversarial
examples and the corresponding clean samples should be as slight as possible. Second, the
adversarial examples should make the model classification error rate as high as possible.
The details are shown in Eq. (3).

min‖
1
2
(tanh(xn+1)−Xn)‖22+ c · f (

1
2
tanh(xn)+1)

Where f (x
′

)=max(max{Z (x
′

)i : i 6= t }−Z (x
′

t ),−k) (3)

where the Z is the softmax function, the k is a constant used to control the confidence, the
t is the target label of misclassification, and c is constant chosen with binary search. In the
above formula, tanh(x) refers to the mapping of adversarial examples to tanh space. After
transformation, x belongs to (−inf ,+inf ), which is more conducive to optimization.

DeepFool
The DeepFool algorithm is proposed byMoosavi-Dezfooli, Fawzi & Frossard (2016), which
generates an adversarial perturbation of the minimum norm of the input sample through
iterative calculation. In each iteration, the DeepFool algorithm interferes with the image
through a small vector. It gradually pushes the images located within the classification
boundary to outside the decision boundary until a misclassification occurs. In addition,
DeepFool aggregates the perturbations added in each iteration to calculate the total
perturbations. Its perturbations are minor than FGSM, and at the same time, the classifier
has a higher rate of misjudgment.

Defense methods
At present, the defense is mainly divided into two aspects: improving the classifier model’s
robustness and preprocessing the input without changing the classifier model. Adversarial
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training (Goodfellow, Shlens & Szegedy, 2015) is currently a more effective defense method
proposed by Goodfellow et al. They use adversarial examples to expand the training set
and train with the original samples to increase the model’s fit to the adversarial examples,
thereby improving the robustness of the model. However, this increases the calculation cost
and complexity, and adversarial training has excellent limitations. When facing adversarial
attacks generated by different methods, the performance varies significantly.

Generally, the preprocessing process does not need tomodify the targetmodel, compared
with adversarial training and other methods, which is more convenient to implement.
Moreover, it has a smaller amount of calculation and can be used in combination with
different models. For instance, Xie et al. (2017) propose to enlarge and fill the input image
randomly. The entire defense process does not need to be retrained and is easy to use.
However, the results show that this method is only effective for iterative attacks such as
C&W and DeepFool (Moosavi-Dezfooli, Fawzi & Frossard, 2016), while for FGSM, the
defensive effect of this single-step attack is inferior. They believe that this is due to the
iterative attack to fitting the target model, resulting in low-level image transformation
that can destroy the fixed structure of the adversarial disturbance. In addition, Liao et al.
(2018) regard adversarial perturbation as a kind of noise, and they design a high-level
representation guided denoiser (HGD) model to eliminate the adversarial disturbance of
the input species.Das et al. (2017) used JPEG compression to destroy adversarial examples.

Similarly, Pixel Defend (Song et al., 2017) is a new method that purifies the image by
moving the maliciously perturbed image back to the training data to view the distribution.
Feature squeezing (Xu, Evans & Qi, 2017) is both attack-agnostic andmodel-agnostic. It can
reduce the image range from [0, 255] to a smaller value, merge the samples corresponding
tomany different feature vectors in the initial space, and reduce the search space available to
the opponent. Similar methods also include label smoothing (Warde-Farley & Goodfellow,
2016), which converts one-hot labels to soft targets. Besides, Zhang et al. (2021) proposed
a domain adaptation method, which gradually aligns the features extracted from the
adversarial example domain with the clean domain features, making DNN more robust
and less susceptible to spoofing by diverse adversarial examples.

OUR APPROACH
Motivation
The essence of adversarial examples is to deliberately add high-frequency perturbations to
clean input samples and amplify the noise through deep neural networks so that the model
gives the wrong output with high confidence. For example, when we input a clean image of
a cat, add an imperceptible perturbation, the classifier will misclassify it as a leopard with
high confidence. Through previous research, we have also learned that the classifier is robust
to ordinary noise. Simultaneously, the adversarial perturbation in the adversarial example
is very unstable and can be destroyed by some simple image transformation methods.
According to the currently known image characteristics, we use image processing methods
to eliminate the fixed structure of the adversarial perturbation before the adversarial
example is input to the target. At the same time, to ensure the system’s normal operation
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a b c

Figure 3 Changes in the defense effect of pixel compression on the three data sets.
Full-size DOI: 10.7717/peerjcs.811/fig-3

and the performance of the adversarial examples after converting the original image and
the target model, we combine image compression and image restoration neural networks
to form the entire defense model. This model can convert adversarial examples into clean
images to resist adversarial example attacks without significantly reducing the quality of
ordinary images.

Pixel depth reduce
An array of pixels represents a standard digital image in a computer, and each pixel is
usually represented as a number with a specific color. Since two common representations
are used in the test data set, they are 8-bit grayscale and 24-bit color. Grayscale images
provide 28= 256 possible values for each pixel; we use k to represent the maximum range
of pixel values. An 8-bit value represents a pixel’s intensity, where 0 is black, 255 is white,
and the average number represents different shades of gray. The 8-bit ratio can be expanded
to display color images with separate red, green and blue channels and provides 24 bits
for each pixel, representing 224≈ 16 million different colors. The redundancy of the image
itself offers many opportunities for attackers to create adversarial examples.

Compressed pixel bit depth can reduce image redundancy and destroy the fixed structure
of adversarial examples in the input while retaining image information without affecting
the image’s accuracy on the classifier model. As shown in Fig. 3, the defense capability is
tested on the MNIST, Fashion-MNIST, and CIFAR-10 datasets. In the sub-pictures (a),
(b), and (c), k refers to the maximum range of pixel value color depth. When ε is small,
the attack intensity is low, and reducing each pixel’s color depth can have an excellent
defense effect. On the contrary, as the attack intensity continues to increase, the defense
effect is also declining. At the same time, the situation becomes more complicated in the
face of more complex data sets (such as Cifar-10). Although a higher compression rate can
improve the defensive performance to a certain extent, it will also cause the loss of ordinary
image information and reduce the prediction accuracy of the classifier model. Therefore,
we need to repair the damaged image after compression.
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Figure 4 Implementation framework of our defense model.
Full-size DOI: 10.7717/peerjcs.811/fig-4

Image reconstruction
Super-resolution (Mustafa et al., 2019) image reconstruction is a typical application in
computer vision and deep learning development. Recently, super-resolution has made
significant progress, and this technology is often used to reconstruct high-resolution
images or repair damaged images. We also hope to use this deep neural network to repair
compressed images. Generally, the low-quality images used in the training process of the
image reconstruction network are obtained through down-sampling, blurring, or other
degradation methods. In this paper, we first collect low-quality images by compressing the
pixel depth and input them into the reconstruction network; then, we train the deep neural
network learning ability to restore low-quality images to high-quality images.

Without loss of generality, the deeper the network and the more parameters, the better
the performance for deep convolutional neural networks. Figure 4 shows the main process
of applying the input image to reconstruct the defense model based on image compression.
For reconstructing network structure, we refer to the excellent EDSR structure in the
super-resolution image reconstruction network (Lim et al., 2017) to build a very deep
neural network to ensure the recovery performance of the image. The chain-hopping
structure in the network (He et al., 2016) can help us build a deeper network to obtain
better performance without worrying about gradients’ disappearance. The entire defense
model is used to complete the conversion from adversarial examples to clean samples and
ensure the quality of the reconstructed image. Without considering the disappearance of
the gradient, to build a deeper network, we add the ResNet structure to the reconstruction
network, and use the ReLU activation function and a 3×3 filter. In the reconstruction
training process, we first train the low-multiple up-sampling model and then initialize the
high-multiple up-sampling model with the parameters obtained in training. This will make
the training time of the high-multiple upsampling model shorter and the training result
better. Finally, we get a picture SR_img that eliminates the perturbation of adversarial
examples.

In the experiment, we find that after compressing the high-strength adversarial
example, the classification result is different from the original image and the adversarial
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example. Because the high compression rate destroys the fixed structure of the adversarial
perturbation, it also causes a certain amount of information loss. Adding adversarial
examples in the training process can solve this problem well and improve the neural
network’s ability to repair compressed images. We use clean samples to generate adversarial
examples during the training process and keep the total number of training sets unchanged.
Then we use adversarial samples for training and use clean data sets as labels to narrow
the gap between adversarial samples and clean samples. To prevent the network from
overfitting and repair the compressed image of the adversarial example, we reduce the
repair effect of the ordinary sample after compression to a certain extent.

To better reconstruct clean samples, weminimize the distance between the reconstructed
SR_img and the original image HR_img . We use Mean Squared Error(MSE) to define the
loss function of the CNN:

L(θ)=
1
2N

∑
‖F(X ,θ)−Y ‖2 (4)

where F is the image restoration network, X is the compressed image, θ is the network
parameter, and Y is the original image.

After the training is completed, the reconstructed network has the ability to filter and
fight noise. We add the reconstructed network model before the classifier that needs to be
protected. When a batch of samples are input, they first pass through our reconstructed
network model. If these input images include adversarial examples, their adversarial
features will be destroyed, while normal samples will not be affected. In this way, we can
turn the input into a clean sample to defend against adversarial attacks.

EXPERIMENT
In this section, we use experiments to verify the effectiveness of the proposed algorithm.
The basic process of the experiment includes generating adversarial examples on different
datasets and training multiple classifier models to test the performance and transferability
of the defense model. In addition, we conduct a comprehensive theoretical analysis of the
experimental results.

Experimental setup
In our experiments, we use three different image datasets: MNIST (LeCun et al., 1998),
Fashion-MNIST (F-MNIST) (Xiao, Rasul & Vollgraf, 2017) and CIFAR-10 (Xiao et al.,
2018). The MNIST and F-MNIST datasets both contain 60,000 training images and 10,000
test images. Each example is a 28 × 28 grayscale image associated with one label in 10
categories. The difference is that MNIST is a classification of handwritten numbers 0–9,
while F-MNIST is no longer an abstract symbol but a more concrete clothing classification.
The CIFAR-10 dataset is a 32×32 color image associated with 10 category labels, including
50,000 training images and 10,000 test images. To prevent over-fitting, both the defense
model and the classifier target model in this paper are trained by the training set. The
classifier model’s accuracy and the defense model’s performance experiment are conducted
in the test set.
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To verify the generalization effect of the defense framework, this paper chooses FGSM,
BIM, DeepFool and C&W four methods to generate different types of adversarial examples
for defense testing. We preprocess the defense model and then input it into the classifier
model to get the experimental results. For FGSM and BIM, we use the L∞ norm to control
the perturbation’s intensity by changing the size of ε. Differently, we use the L2 norm
to implement the C&W model, and adjust the degree of perturbation by controlling the
maximum number of iterations. To preserve the original image information and eliminate
adversarial perturbations as much as possible, we set k= 2 (k denotes the maximum range
of pixel value color depths) on the MNIST dataset and k= 4 on the F-MNIST dataset.

Experiment results
In this section, the adversarial examples generated by FGSM, BIM, DeepFool, and C&W
on different datasets are applied to the defense framework of this paper. Simultaneously,
in the training process, to make the reconstructed network have selective noise reduction
and generalization capabilities, we use the FGSM with the most perturbation to generate
adversarial examples and input them into the neural network. Generally, simple images
need to add a significant perturbation to be effective. In this paper, for the MNIST dataset,
the value of ε is up to 0.3; for the F-MNIST dataset, the value of ε is from 0 to 0.1; for
the Cifar-10 dataset, the value of ε is taken from 0 to 0.01. When ε is equal to 0.01, the
adversarial example is enough to produce a higher error rate on the target classifier model
for the CIFAR-10 data set. The results of each step of the defense experiment process are
shown in the figure below.

From left to right, the different subgraphs in Fig. 5 are the adversarial examples generated
by FGSM, BIM, DeepFool, and C&W attack methods, respectively; from top to bottom
are normal examples, adversarial examples, compression examples, and reconstructed
examples. Figure 5A is the result of working on the MNIST data set. It can be seen that
only the pixel compression operation can eliminate most of the adversarial perturbations,
and the adversarial examples restore the accuracy of the classifier model. In addition, the
adversarial examples generated by different methods have different perturbation levels
to the image, and FGSM has the most massive perturbation level. When ε is 1.5, it has
already had a more significant impact on the image, and the human eye can already detect
it, but our method can still restore it to a clean sample. A few extreme adversarial examples
become other classification results after processing, as shown in the first column of Fig. 5A.
Still, after the reconstruction of the network, the recognition accuracy is also restored.

Figures 5B and 5C show the experimental results of the relatively complex of F-MNIST
and CIFAR-10 data sets. Since pixel depth reduction is a lossy compression, choosing
an appropriate compression level can eliminate the adversarial perturbation of the input
sample as much as possible while retaining the necessary information. Generally, a slight
loss of details does not affect the classifier model’s correct recognition of the image. The
following experiment will specifically show the defense effect of different data sets after
processed by our defense framework under different attack intensities.

Figures 6A–6D are the recognition accuracy rates of the model ResNet-50 with and
without defensive measures for different attack strengths (ε, iteration) on the MNIST
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a b c

Figure 5 Performance of defense models against multiple adversarial example attacks on different datasets.
Full-size DOI: 10.7717/peerjcs.811/fig-5

a b c d

Figure 6 Performance of the defense model on theMNIST dataset.
Full-size DOI: 10.7717/peerjcs.811/fig-6

dataset. Our algorithm is compared with four different types of adversarial samples in
defensive and non-defensive situations. After the defense model processes the data set in
this paper, the accuracy of the original image has almost no change. Furthermore, in the
face of different types of attacks from FGSM, BIM, DeepFool, and C&W , the operation can
eliminate adversarial perturbations in the input image. This is because the defense model
has certain image recovery capabilities, the MNIST image structure is relatively simple, and
the information is not easily damaged. For FGSM attacks, we can see that the accuracy can
be restored from 20% to 97% under high attack intensity, BIM can be restored from 5%
to 98%, DeepFool can be restored from 0% to 98%, and C&W can be restored from 0%
to 98%.

Figures 7A–7D are the recognition accuracy rates of the model ResNet-50 with and
without defensive measures for different attack strengths (ε, iteration) on the Fashion-
MNIST dataset. It can be seen from Fig. 7 that we have also achieved good results in the
face of a slightly complicated Fashion-MNIST defense model, i. e., the original image
recognition accuracy rate drops by 4% after preprocessing. For FGSM attacks, it recovery
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a b c d

Figure 7 Performance of the defense model on the F-MNIST dataset.
Full-size DOI: 10.7717/peerjcs.811/fig-7

a b c d

Figure 8 Performance of the defense model on the CIFAR-10 dataset.
Full-size DOI: 10.7717/peerjcs.811/fig-8

from 13% to 81%; for BIM, it recovery from 1% to 82%; for DeepFool, it recovery from
0% to 88%; and for C&W , it recovery from 0% to 88%.

Figures 8A–8D are the recognition accuracy rates of the model ResNet-50 with and
without defensive measures for different attack strengths (ε, iteration) on the Cifar-10
dataset. When processing the three-channel color dataset CIFAR-10, we find that it is more
complicated than the first two single-channel grayscale image data sets. Mainly because
it is difficult to balance the pixel compression rate and the defense rate, which makes the
defense effect appear to be reduced to a certain extent. It can be seen from Fig. 8, the
ordinary sample has a loss close to 5% in accuracy after compressed and reconstructed. For
FGSM attacks, the defense model can restore the accuracy from 23% to 71%, BIM from
2% to 70%, DeepFool from 18% to 87%, and CW from 0% to 87%.

Defense transferability
As a preprocessing method, we can combine different target models without modifying
them. To verify the defense model’s portability, we train three classifier models from weak
to strong performance. They are: LeNet (LeCun et al., 1998), GoogLeNet (Szegedy et al.,
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Table 1 The performance of the defense model combined with LeNet and GoogLeNet onMNIST.

Dataset Network Clean FGSM BIM DeepFool CW

ResNet50 (no defense) 99% 48% 9% 18% 3%
ResNet50 (defense) 99% 98% 99% 99% 99%

MNIST LeNet (no defense) 99% 38% 2% 9% 3%
(ε= 0.15) LeNet (defense) 99% 98% 98% 98% 98%

GoogLeNet (no defense) 99% 48% 26% 19% 15%
GoogLeNet (defense) 99% 98% 97% 98% 98%

Table 2 The performance of the defense model combined with ResNet and GoogLeNet on F-MNIST.

Dataset Network Clean FGSM BIM DeepFool CW

ResNet50 (no defense) 93% 22% 2% 0% 0%
ResNet50 (defense) 89% 85% 85% 89% 89%

F-MNIST GoogLeNet (no defense) 90% 35% 18% 2% 0%
(ε= 0.05) GoogLeNet (defense) 90% 81% 84% 88% 88%

ResNet101 (no defense) 93% 20% 2% 0% 0%
ResNet101 (defense) 89% 83% 84% 88% 88%

Table 3 The performance of the defense model combined with ResNet and GoogLeNet on Cifar-10.

Dataset Network Clean FGSM BIM DeepFool CW

ResNet50 (no defense) 84% 64% 23% 20% 39%
ResNet50 (defense) 79% 68% 59% 72% 72%

CIFAR-10 GoogLeNet (no defense) 98% 36% 34% 35% 0%
(ε= 0.005) GoogLeNet (defense) 94% 51% 52% 61% 60%

ResNet101 (no defense) 84% 64% 24% 22% 43%
ResNet101 (defense) 80% 69% 63% 74% 74%

2015), and ResNet101 (He et al., 2016). Besides, we combine the defense model trained
with these three classifier models to test the defense performance.

Tables 1 and 2 show in detail the experimental results of the transferability of the defense
model. On the MNIST and Fashion-MNIST datasets, we take the median value of 0.15
and 0.05 for ε, respectively. Due to the performance difference of the target model, the
effect will be slightly reduced when the defense model is combined with different models.
However, it can still defend well against adversarial example attacks. Table 3 shows the
transferability performance of our defense model combined with ResNet 50, ResNet101,
and GoogLeNet on the data set Cifar-10. We take the median value of 0.005 for ε. The
classification accuracy of the overall network model on the Cifar-10 data set has been
reduced compared to the performance of the MNIST and F-MNIST data sets. This is
because the Cifar-10 data set is relatively complex. In short, the classification accuracy of
the network model with defense is much higher than the network model without defense
when facing different attacks.
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Table 4 The result of comparisons with other defensive methods (F-MNIST).

Network Methods Clean FGSM BIM DeepFool CW

Normal 93%/93% 38%/24% 00%/00% 06%/06% 00%/00%
Adversarial FGSM 93%/93% 85%/85% 51%/00% 63%/07% 67%/21%
Adversarial BIM 92%/91% 84%/79% 76%/63% 82%/72% 81%/70%

Resnet50 Feature squeezing 84%/84% 70%/28% 56%/25% 82%/72% 83%/83%
Pixel defend 89%/89% 87%/82% 85%/83% 83%/83% 88%/88%
ComDefend 93%/93% 89%/89% 70%/60% 88%/88% 88%/89%
Our method 89%/89% 87%/86% 87%/86% 90%/89% 89%/89%

Performance comparison between similar defense models
This section uses fourmethods (FGSM, BIM,DeepFool, andC&W ) on the Fashion-MNIST
dataset to generate two adversarial examples of different strengths for the ResNet50 target
model and conduct defense tests. To better compare with other classic methods and verify
the effectiveness of our approach, all experiments use the same dataset, target model, and
related parameter settings as other methods. As shown in Table 4, our method performs
best compared with other methods under attack models such as BIM, DeepFool, and
C&W .

Although the ComDefendmethod is better at preserving the original image information,
it adds Gaussian noise during training to improve the network’s ability to resist noise. The
defense effect of some attacks, such as BIM, is not ideal. The impact of adding an FGSM
attack is only acceptable in the case of FGSM adversarial examples, and it performs poorly
for adversarial examples generated by other methods. In general, although the direct
pixel depth reduction has made a certain sacrifice in image information preservation, the
confrontation samples generated in the face of different attacks in the above experiments
can all play a good defense effect. Therefore, to the best of our knowledge, our method can
effectively defend against adversarial example attacks.

CONCLUSION
Finding a robust defense method for adversarial examples is an open problem, and many
researchers have carried out work in this area. This paper proposes an image compression
and reconstruction defense framework to defend against adversarial example attacks based
on the redundancy of images and the sensitivity of adversarial examples. We compress the
pixel bit depth in the image to destroy the adversarial perturbation of the image and then
use DNN to repair the image. On the premise of ensuring the image quality, the adversarial
examples are converted into clean samples to achieve the purpose of defense. In addition,
this method can be easily combined with other defense methods without modifying the
target classifier model. Extensive experiments have been applied to the three real datasets
of MNIST, F-MNIST, and CIFAR-10, showing the superiority of the proposed method
over some classic techniques to defend against adversarial examples, i.e., the defensive
framework we designed can resist different attacks. However, due to limited knowledge
and personal abilities, many issues need further research. We will study how to better
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balance the compression rate of complex images and preserve adequate information and
verify the method’s effectiveness on more complex datasets.
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