
WildMinnie: compression of
software-defined networking (SDN) rules
with wildcard patterns
Hamed Khanmirza

Department of Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran

ABSTRACT
Software-defined networking (SDN) enables fast service innovations through
network programmability. In SDN, a logically centralized controller compiles a set
of policies into the network-level rules. These rules are inserted in the TCAM
memory of SDN-enabled switches enabling high-speed matching and forwarding of
packets. Unfortunately, TCAMs are available in limited capacities and fall short of
accommodating all intended rules, especially in networks with large distinct flows
like datacenters. Rule compression is a technique that reduces the number of rules by
aggregating them with some similarity factors. This paper introduces WildMinnie,
a new rule compression method that aggregates rules based on their common address
non-prefix wildcards derived from a group of rules with the same output port
number. We explore rule conflict issues and provide solutions to resolve them. We
demonstrate the capability of WildMinnie in various datacenter topologies with
traffics having different diversity of source-destination addresses and show that
WildMinnie outperforms the best-known compression method by 20%, on average.

Subjects Computer Networks and Communications, Distributed and Parallel Computing
Keywords Software-defined networking, OpenFlow, Rule compression, Data center networks

INTRODUCTION
Software-Defined Networking (SDN) enabled a significant shift from distributed
autonomous network elements to centrally programmable elements. Such a shift facilitated
better monitoring and faster innovation of new services (Feamster, Rexford & Zegura,
2014; Kreutz et al., 2015). In SDN, switches are still the main elements of the network
data plane, but they work passively. The controller, a logically central software-based
element, gets high-level policies from the administrator of a network and compiles them
into the network-level rules (Fig. 1). These low-level rules are installed in switches using
special communication protocols compliant with southbound API such as OpenFlow
(McKeown et al., 2008). The southbound API provides a clean abstraction between the
different implementations of network controllers and the technology employed in the data
plane and makes possible independent development of both sides.

SDN switches usually use TCAM memories to speed up the time-consuming operation
of matching rules with packet headers. Unfortunately, these memory types are costly and
energy-hungry and come in limited capacities of a few thousands or tens of thousands
(Stephens et al., 2012). This limitation causes switches not to keep rules of all passing flows,
especially in networks with a high count of distinct flows.

How to cite this article Khanmirza H. 2022. WildMinnie: compression of software-defined networking (SDN) rules with wildcard patterns.
PeerJ Comput. Sci. 8:e809 DOI 10.7717/peerj-cs.809

Submitted 12 November 2020
Accepted 18 November 2021
Published 8 February 2022

Corresponding author
Hamed Khanmirza,
h.khanmirza@kntu.ac.ir

Academic editor
Robert Winkler

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj-cs.809

Copyright
2022 Khanmirza

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.809
mailto:h.�khanmirza@�kntu.�ac.�ir
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.809
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

To come up with this issue, earlier SDN architectures (Gude et al., 2008; Casado et al.,
2009; Erickson, 2013; FloodLight, 2014) keep recently used rules in TCAM and force
switches to contact the controller upon receiving the first packet of an unknown flow. Such
a reactive behavior creates initial flow set-up delays and imposes a significant overhead on
the controller in a rather dynamic network.

Meanwhile, some researchers such as Yu et al. (2011) believe that the routing task
should be accomplished collectively by switches in the data plane to make the network
scalable. They use sophisticated rule placement algorithms to distribute rules in the
data plane such that all packets, eventually, find their path toward their intended
destinations without communicating with the controller (Casado et al., 2009; Kang et al.,
2013; Nguyen et al., 2015a; Huang et al., 2015; Ashraf, 2016; Kosugiyama et al., 2017;
Galan-Jimenez, Polverini & Cianfrani, 2018; Zhang et al., 2018; Bera, Misra & Jamalipour,
2019; Zhao et al., 2020). The rule distribution and placement in these works are performed
through innovative routing methods.

Rule compression is another line of solutions in which researchers, using various
techniques, try to reduce the number of effective rules in each switch (Giroire, Moulierac &
Phan, 2014). Rule compression may be used as a complement to other solutions to provide
more space in rule tables and is not necessarily tied to any specific routing mechanism.
Among compression approaches, Minnie (Rifai et al., 2017) introduces a powerful and
more general multi-field aggregation method and achieves a 70–99% compression ratio in
all-to-all scenarios, reportedly. In a nutshell, Minnie groups rules using the exact values of
one field1. Then, the most-used output ports within each group and among all groups
are found. Finally, all rules with the globally most-used output port are substituted with the
default rule. Other rules with the group-wide mostly used output ports are replaced with an
applicable wildcard rule.

N
or

th
bo

un
d

A
P

I
S

ou
th

bo
un

d
A

P
I

Figure 1 Logical and layered view of an SDN architecture.
Full-size DOI: 10.7717/peerj-cs.809/fig-1

1 Theoretically, it is not important which
field is used for compression. However,
authors have only used source or desti-
nation address fields in their
experiments.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 2/30

http://dx.doi.org/10.7717/peerj-cs.809/fig-1
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

This paper proposes WildMinnie compression that works principally similar to Minnie;
however, it groups rules with their common wildcard values instead of their exact values.
In WildMinnie, at first, we group rules according to their output port numbers. Then,
within each group, we derive common wildcard patterns for the selected address field. We
insert patterns in a pattern tree structure formed by a new pattern dominance relation to
detect and avoid rule conflicts. At last, we choose the best set of address patterns by a
ranking function. On the one hand, using common wildcards provides a better chance of
aggregating rules and achieving higher compression ratios, but on the other hand, it
considerably increases the complexity of the compression algorithm due to the growth of
conflicting rules with different output port numbers. WildMinnie strongly outperforms
Minnie when rule sets have a wide diversity of source and destination addresses, and it is
guaranteed that the performance of WildMinnie, in the worst case, is reduced to the
performance of Minnie.

The main contributions of this paper are summarized as follows:

� To the best of our knowledge, this is the first paper explicitly and thoroughly explores
the conflict issues in general wildcard addresses and provides practical solutions to
resolve them.

� We define a new pattern dominance relation as a generalized form of the longest prefix
relation, which is used in legacy IPv4 networks to resolve conflicts between wildcard
patterns with wildcard bits only at their ending.

� We propose a pattern tree structure to speed up conflict detection and resolution based
on pattern dominance relation.

� This paper proposes WildMinnie, a new heuristic solution to compress the rule table
of an SDN switch. WildMinnie works with general non-prefix wildcard addresses
without particular assumption or limitation and provides solutions to detect and resolve
conflicts. WildMinnie algorithm focuses only on the compression concept and does not
include routing or rule distribution practices.

The rest of the paper is organized as follows: In the next section, we briefly review the
research related to the TCAM space limitation issue. In “Network Model and Problem
Statement”, we define the network and the problem model. “Minnie Compression
Principles” gives a detailed description of the Minnie algorithm and the philosophy behind
it. In “Preliminaries” we study issues related to the rules with general wildcard fields
and introduce their various conflict types. We also define a new set of operators and
relations to detect and resolve the conflicts and derive common patterns. In “Wildminnie
Algorithm”, we explain WildMinnie compression algorithm step-by-step. “Simulations”
describes our simulation settings and presents the performance results of WildMinnie with
different settings. Finally, “Conclusion” concludes the paper.

RELATED WORK
Compressing rules with prefix-only wildcards has a very old and rich literature in
IPv4 networks. To mention a few, we can indicate to one-dimensional solutions

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 3/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

(Draves et al., 1999; Rétvári et al., 2013), a two-dimensional approach (Rottenstreich
et al., 2013), and multidimensional approaches like TCAM unification framework
(Norige, Liu & Torng, 2013) and TCAM Razor (Liu, Meiners & Torng, 2009). Further
references could be found in Braun & Menth (2014a).

SDN Rule placement and compression methods are also surveyed in several papers like
Rawat & Reddy (2016) and Nguyen et al. (2015b). We review the related researches in four
categories. Some researchers distribute all network rules in the table of the switches in
the data plane with a rule placement algorithm. When switches receive an unknown
packet, they hand it to each other in a pre-planned path, usually employing a default or an
aggregated rule until a matching rule is found for the packet inside a table of a switch
(Yu et al., 2011; Nakagawa et al., 2013; Kang et al., 2013; Kanizo, Hay & Keslassy, 2013;
Sheu, Lin & Chang, 2018). These approaches mainly route some of the flows through
non-optimized paths or discard flows if they do not find a suitable path. In fact, in these
approaches, the path dictates the rule placement (Assefa & Özkasap, 2019). Compressing
methods can be used along with these approaches to make extra room for better rule
placement.

Several works suggest having software switches or some slower storage inside switches
(Mimidis-Kentis et al., 2018; Katta et al., 2014) to keep a large number of rules in the data
plane. They use cache management algorithms to smartly detect the important flows
and fetch them to the TCAM beforehand. Such side memories reduce the delay of handling
new flows and significantly decrease the controller’s overhead. However, they need a new
type of hardware and require special treatment from the controller (Rifai et al., 2017)
and also increase the computational complexity due to the rule dependency problem
between software and hardware switches (Mimidis-Kentis et al., 2018; Bera, Misra &
Jamalipour, 2019). Compression algorithms may be used as a complement for these
approaches to provide compressed caching storage.

The next group of studies provide an optimization model of the network and suggest
simultaneous routing and aggregating methodologies to distribute rules and satisfy specific
characteristics. Officer (Nguyen et al., 2015a) provides a general framework for the rule
allocation problem in resource-constrained networks with a relaxing routing policy.
However, the relaxation of the routing policy causes the drawback of longer paths. The
researches presented in Huang et al. (2015) and Kosugiyama et al. (2017) propose heuristic
algorithms to reduce the total number of flows while respecting the end-to-end QoS.
Ashraf (2016) and Galan-Jimenez, Polverini & Cianfrani (2018) focus on minimizing the
number of update messages through smart rule aggregation. A new line of researches also
considers the two crucial but opposing characteristics of a network: the flow visibility
problem and the rule compression. To have the best flow visibility, controllers must
use exact-match rules, which means installing one rule for each flow in each switch
through its path to the destination. On the contrary, for compressing, rules must be
aggregated into wildcard rules. Researches in Bera, Misra & Jamalipour (2019), and Zhao
et al. (2020) propose a balanced approach to keep a sufficient amount of network visibility
while reducing the total number of installed rules. Another compression scheme
(Zhang et al., 2018) proposes multiplexing of rules with the same destination by VLAN ID

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 4/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

field in the core of the network. This paper reports an average 15.7% compression ratio and
needs special SDN switches.

The last group of approaches, more aligned with our proposed method, reduce the
number of rows in rule tables by aggregating them according to some factors. BitWeaving
(Meiners, Liu & Torng, 2011) attempts to squeeze several policies into fewer rules to
reduce the required TCAM memory and is close to our problem formulation and
assumptions. Authors convert non-prefix wildcards into a prefix wildcards and use bit-
swapping and bit-merging techniques to combine rules with the same decision where they
differ in only one bit. BitWeaving search space is limited and reports only a 23.6%
compression ratio. A faster version of BitWeaving is also presented in Luo, Yu & Li (2014).
Giroire, Moulierac & Phan (2014) consider compression of rules using the default rule
only in the context of energy-aware routing. XPath (Hu et al., 2015) is mainly an
explicit path control system that aggregates convergent paths. Braun & Menth
(2014b) suggests a longest-prefix-based rule compression, which succeeds in getting only a
17% compression ratio. Our method is similar to theirs in using wildcards, but we use
general wildcards instead of only prefixes. Minnie compression is introduced in Rifai et al.
(2015) and extensively simulated and tested in Rifai et al. (2017). They report Minnie can
compress rules up to 99% in all-to-all scenarios that is the best ratio reported among
compression methods, to the best of our knowledge. However, as we will explain in
“Minnie Compression Principles” and show with simulations in “Simulations”, Minnie
is very sensitive to traffic distribution and works only with the non-wildcard rules. Giroire,
Havet & Moulierac (2016), which can be considered as the base of the Minnie algorithm,
proved that the rule compression problem is NP-hard.

These solutions suffers from the following weaknesses:

� Some approaches fail to compress efficiently in edge nodes due to the diversity of
source-destination pairs in edges (Rifai et al., 2017).

� They do not clearly define the aggregation methodology or use only the default rule
aggregation, so their compression ratio usually remains around 20% (Giroire, Moulierac
& Phan, 2014; Nguyen et al., 2015a; Hu et al., 2015; Zhang et al., 2018).

� Some of the approaches are not capable of handling wildcard or non-prefix addresses
(Braun & Menth, 2014b; Rifai et al., 2017; Assefa & Özkasap, 2019).

� Finally, most of the proposed routing methods do not consider rule conflict issues in
aggregation (Huang et al., 2015; Kosugiyama et al., 2017; Bera, Misra & Jamalipour,
2019; Zhao et al., 2020).

This paper presents a new compression algorithm, WildMinnie, which works with
Minnie’s principle in its heart but uses general wildcard address patterns for grouping and
compressing rules. It handles wildcard rules and also detects and resolves all types of
rule conflicts. WildMinnie is proposed for aggressive compression in any layer of the
network and only focuses on the ruleset of one individual switch and performs
compression based on general wildcard pattern laws defined by OpenFlow standard
(OpenFlow Switch Specification ver. 1.4.1, 2015). In this regard, the operation of

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 5/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

WildMinnie is not tied to any particular routing method and does not consider the path of
flow or other properties like QoS for compression. Moreover, since WildMinnie aggregates
rules for compression, it inevitably reduces the flow visibility.

NETWORK MODEL AND PROBLEM STATEMENT
We model an SDN network with a graph G(S, E) in which S is a set of SDN-enabled
switches, and E is the set of edges that connects them. We use symbols Ts and |Ts| to
refer to the rule table of switch s and its current number of rules. We also show the
maximum capacity of a rule table with Tmax. Each flow is known with a tuple (s, t, d) where
s, t ∈ S, are the source and destination, and d ∈ R+ is the load of the flow. To route packets
of a flow, a rule is installed in all switches of the flow path toward the destination.
Each rule in the rule table is shown by (s, t, p, L) in which s, t are the source and destination
addresses, p is the output port number, and L is the precedence of the rule. In OpenFlow
standard (OpenFlow Switch Specification ver. 1.4.1, 2015), the default or table-miss
rule (�, �, p, 0) has the lowest precedence which is 0. This rule matches all packets of
all flows. Although in OpenFlow, several other packet header fields can be used for
matching apart from these four fields, they are mostly not maskable. Since we heavily use
masking and wildcards for compression, we do not consider other fields in our model to
keep brevity.

Problem Statement: The problem is finding the aggregate-able rules in the given set of
rules, R, such that the aggregated rules comply with the dictated routing policy by the
controller.

The above problem statement emphasizes that aggregation of rules must not violate the
flows’ routing path which means the output port of rules must be preserved.

MINNIE COMPRESSION PRINCIPLES
In this section, we explain the core principles of Minnie compression. To find the best
compression ratio, Minnie executes the compression process twice, once based on the
source address and the next time based on the rules’ destination address. Due to the
high similarity of source-based and destination-based procedures, we only explain the
source-based procedure as depicted in Algorithm 1. Minnie starts with grouping a set
of rules based on their source addresses. (i.e. Gs ¼ fGs1 ;Gs2 ;…;Gsng;Gsi ¼ fðs; t; p; lÞ
js ¼ sig, assuming n different source addresses). Since all rules in a group have an equal
source address, each rule belongs to only one group (i.e. 8i,j≤ n, Gsi ∩ Gsj =[). In the next
step, Minnie finds the most frequently used output port in each group and among all
groups, denoted by p�si and p�, respectively.

8ðsi; tj; pj; ljÞ 2 Gsi ;CiðpÞ ¼
X
Gsi

fðsi; tj; pj; ljÞjpj ¼ pg

p�si ¼ arg max
p

CiðpÞ
p� ¼ arg max CðpÞ

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 6/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

Finally, all rules with p� output port are replaced with the default rule (�, �, p�, 0) and all
rules with p�si 6¼ p� are substituted with aggregate rules like ðsi; �; p�si ; 1Þ. Other rules within
each group with different output ports than the most-used output ports are copied to
the table with priorities higher than 1.

The optimum compression ratio is obtained if 8i ∈ [0,n], 8(si, tj, pj, lj), pj = p�, which
means in all rules output port number is equal to p� and they can be replaced with only one
default rule. Of course, there is no need for a switch in such a condition.

The best compression ratio in a rather realizable scenario will be achieved if all rules in a
group have an equal output port (i.e. 8ðsi; tj; pj; ljÞ 2 Gsi ; pj ¼ p�si). In this condition, all
rule groups reduce to only one aggregate rule of the form ðsi; �; p�si ; 1Þ and the total number
of rules will be the number of groups that directly is related to the number of different
source addresses.

Algorithm 1 Minnie source-based compression procedure based on Rifai et al. (2017).

1: procedureMinnie(R, T) #R: set of rules

#T: compressed rules

2: Cr: {} # list of rules

3: for each s ∈ V do

4: Ps
� := set of most occurring ports p in {(s,t,p)|8t ∈ V}

5: p� := most occurring port in all Ps
�

6: end for

7: for s ∈ V do

8: if p� ∈ Ps
� then

9: p�s := p�

10: else

11: p�s := most occurring port in Ps
�

12: end if

13: end for

14: for (s,t,p) ∈ R do

15: if p ≠ p�s then

16: Cr[¼ ðs; t; pÞ
17: end if

18: end for

19: for s ∈ V do

20: if p ≠ p� then

21: Cr[¼ ðs; �; p�s Þ
22: end if

23: enf for

24: Cr[¼ ð�; �; p�Þ
25: end procedure

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 7/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

Minnie limitations
It is not hard to conclude that Minnie fails to compress when there is only one flow for
each pair of source and destination addresses. In this regard, Minnie is very traffic sensitive
and has efficient compression when flows are initiated from limited sources or destined to
a limited set of destinations.

Another serious limitation of Minnie is the inability to handle wildcard rules since it
works based on exact equality of addresses and has no conflict resolution mechanism.
As an example, consider a rule table shown in Fig. 2. In this rule table p� = 0, p�11� ¼ 1 and
p�100� ¼ 2. Consequently, all rules with the output port of 0 are replaced with the default

rule, and the other two groups are reduced to two rules. Now consider a packet with
the source address of s = 11,100. This packet matches with (111�, �, 0) rule in the
uncompressed table, while in the compressed table matches with (11�, �, 1, 1) rule.
This happens because Minnie does not consider the conflict of rule spaces when addresses
are in the wildcard form. According to this limitation, Minnie obligates using only non-
wildcard, host addresses which means subnet addresses could not be used in rule tables,
whereas using subnet addresses is very common, especially in the network core.

Our suggested solution is also based on the same grouping philosophy used in Minnie;
however, instead of using exact values of addresses, we drive and use wildcard patterns for
grouping, which helps put more rules in one group and get more compression ratio.
Besides, using wildcard patterns makes compression performance noticeably independent
of the traffic pattern.

PRELIMINARIES
The main idea in WildMinnie is to group the rules with wildcard patterns of the addresses
having the same output port. Like Minnie, an aggregate rule is inserted into the table
instead of all rules of a group. We are interested in minimizing the number of patterns to
minimize the final number of rules. However, to minimize the number of patterns, we have
to use more general patterns with the high count of wildcard bits, increasing the
conflict with other rules having different output port numbers. Rule space conflicts

Figure 2 An example rule table and its compressed form resulted from source-address-based Minnie
compression. Full-size DOI: 10.7717/peerj-cs.809/fig-2

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 8/30

http://dx.doi.org/10.7717/peerj-cs.809/fig-2
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

severely reduce the final compression ratio. The most critical part of WildMinnie deals
with this trade-off by detecting and avoiding the conflicts. Before describing the algorithm
of WildMinnie, the following section reviews the specification of the wildcard address
format defined in OpenFlow standard and the issues related to their usage.

OpenFlow wildcard rules
OpenFlow standard, like IPv4, allows expressing source and destination address of rules in
the form of wildcards. Wildcard patterns make it possible defining of aggregate rules that
match with several flows. In IPv4 standard (Fuller et al., 2008; Rekhter & Li, 1993),
wildcard rules could only be in the prefix form (i.e. 0111�). With this standard, we can
define aggregate rules for flows with a common sequence of 0s and 1s at the start of their
source or destination addresses. Usually, the length of the prefix is shown in pattern/len
form, like 0111�/4.

Wildcard definition in the OpenFlow Switch Specification ver. 1.4.1 (2015) is more
general and allows wildcard bits to be defined in any number and anywhere in the address.
For example, 011?101??0� pattern includes all addresses beginning with 011, then any
0 or 1 bits, followed by 101 bit sequence, then have two other wildcard bits lead to a 0 bit. ‘�’
indicates that the address’s remaining bits do not matter and can be any sequence of 0s and
1s. Naturally, more complicated patterns can be defined according to this scheme
compared with prefix-only wildcards.

Generally, wildcard patterns may have rule conflicts or overlaps; that means it is
possible an address matches with several wildcard patterns. Assuming 6-bit addresses for
simplicity and having three rules: (110110, �, 6), (110100, �, 6) and (111100, �, 5), all
three source addresses match with the wildcard pattern 11?1?0 while they have different
output ports. When facing such conflicts, two questions should be addressed: which rules
are the best set to be aggregated using the specified wildcard pattern, and how to place
the other rules in the table to preserve the original forwarding policy.

For the first issue, we use the strategy of Minnie. The matching rules with the output
port having the highest count are aggregated by the wildcard pattern to gain the best
compression ratio.

The precedence of rules solves the second issue. In legacy IPv4 routers, the precedence
of rules is determined implicitly by the Longest Prefix Matching (LPM) law. According to
the LPM, if a packet matches several wildcard patterns, it will be forwarded using the
rule that has the longest prefix. In the OpenFlow standard, it is possible to assign a 16-bit
precedence value for each rule. Although OpenFlow does not explicitly specify any
precedence assignment mechanism, it is possible to implement almost any precedence
assignment system in the network controller. For instance, to have an LPM mechanism, it
is sufficient to assign the precedence of rules according to the length of their source or
destination wildcard prefix. The condition in which a packet matches several rules with
the same precedence but different output ports is undefined in OpenFlow specification.

According to these explanations, we can compress the three example rules as:
(110100, �, 5, 2) and (11?1?0, �, 6, 1). The more specific the address pattern, the higher the

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 9/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

precedence. Thus, it is forwarded with the highest precedence rule (110100, �, 5, 2) rule
when a packet matches both rules.

Using general wildcards creates more complicated conflict types like (11?1?0, �, 5, 1),
(111??0, �, 5, 1), and (1111??, �, 6, 1), (11?00?1, �, 6, 1) where the old LPM mechanism
does not help us to determine which pattern is more specific than the other. This
necessitates defining a new set of operators and relations for wildcard patterns to help us
assign priorities correctly.

Definitions and operators
We define B� system in which variables can have three values of {0, 1, �}. A � bit indicates
that bit may have any of 0 and 1 values. Pure and wildcard addresses, shown by upper case
letters, are vectors of B� bits: 8i ∈ [0,k], ai ∈ B� A = [ak, …,a1, a0]. We define Mask
operator (⊛) as follows:

8i; j; k 2 B�; k ¼ i⊛j ¼ 1; i ¼ j
�; i 6¼ j

�
(1)

The mask vector always includes sequence of 1s and �s. The common wildcard is
obtained by applying a mask vector to a wildcard address using Derivation op(�):

8i;m; k 2 B�; k ¼ i�m ¼ i; m ¼ 1
�; m ¼ �

�
(2)

Two bits in B� match if both bits are the same or one of the bits is �.
8a; b 2 B�; a � b ifða ¼ bÞ _ ða ¼ �Þ _ ðb ¼ �Þ (3)

We say an address A matches with a wildcard pattern W if they match bit by bit:

A � W ¼ 8
k

i¼0
ai � wi (4)

A wildcard pattern W is dominant (�) of A if:

W � A if 8
k

i¼0
wi ¼ ai _ wi ¼ � (5)

Based on the dominance relation, the parent pattern always has more � bits than
the child, and therefore, has more matching addresses. In contrast, the child pattern
is more specific and matches with a limited set of addresses. As a result, if Ac and Ap

are the set of addresses that match with the patterns Wc and Wp, respectively, and
Wp � Wc) Ac � Ap.

Dominance relation can be considered as a generalization for the longest prefix in which
wildcard bits can be anywhere, not just at the pattern’s tail. Employing this relation, we will
build a tree structure for wildcard patterns to detect and solve conflict problems.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 10/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

WILDMINNIE ALGORITHM
WildMinnie compresses rules in three steps as shown in Algorithm 2. In the first step,
WildMinnie finds common wildcard patterns. In the next step, WildMinnie puts patterns
in a tree-shaped data structure called pattern tree. This structure helps WildMinnie to trim
and rank patterns and also detect and avoid conflicts. In the third phase, WildMinnie
iteratively selects the best patterns and assigns their priorities based on two factors: the
position of a rule in the pattern tree and its ranking. In the following subsections, we
explain each step in more detail.

Step 1: finding initial common wildcard patterns
In the first step, WildMinnie finds common wildcard patterns between addresses using
⊛ (Eq. (1)) and� (Eq. (2)) operators shown in lines 6–22 of Algorithm 2. As final patterns
are formed by the output port number, it searches for common patterns among rules

Algorithm 2 WildMinnie main procedure and finding common patterns function.

1: procedure wildminnie(R, Ts) #R: set of rules

#Ts: rule table of switch s

2: W := find_common_patterns(R) #Step 1, finding patterns

3: Bs := build_pattern_tree(W) #Step 2, processing patterns

4: copy_to_switch_table(Bs, Ts) #Step 3, Writing prioritized rules to the
switch table

5: end procedure

6: function find_common_patterns(R)

7: W : {} #wildcard pattern set

8: Gp := group_rules_by_outport(R)

9: for each Gpi ∈ Gp do

10: L :¼ [jGpi j
j¼0 ðGpi ;j; pi; fGpi;jgÞ #L(A,p,M): a set of tuples

11: for REPEAT_COUNT do

12: for j := 0 to |L| − 2 do

13: A := L[j].A � (L[j].A ⊛ L[j+1].A)

14: M := L[j].M ∪ L[j+1].M

15: L [¼ fðA; L½j�:p;MÞg
16: end for

17: shuffle_set(L)

18: end for

19: W [¼ L

20: end for

21: return W

22: end function

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 11/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

with equal output ports. Therefore, in the beginning, all rules are grouped by their output
ports. Assuming m ports for a switch, we have:

Gp ¼ fGp1 ;Gp2 ; . . . ;Gpmg where Gpi ¼ fðs; t; p; lÞjp ¼ pig (6)

The group with the most rule count is handled by one default rule and needs no
further processing. For the remaining groups, to get the best compression ratio, we should
find a set of patterns that collectively match all initial addresses, while each pattern should
have the minimum conflict with patterns of other groups.

Finding all common patterns needs checking of all address pairs, which is in the order of
O(|Gpi|

2). For addresses of length 32 bits, this exhaustive process may produce 332 patterns.
In an experiment, about 4 million unique patterns were found for only 4,000 rules.
Exhaustive searching for all patterns and optimizing the large quantity is unacceptable
from both processing and timing aspects.

As an approximation, we derive the common patterns from the adjacent rule pairs in
the rule list. Then, the combined list of initial and new patterns is shuffled, and the
derivation process is done again. This process is repeated REPEAT_COUNT times which
makes this step of order O(Gpi). In our experiments, we set this parameter to 2. Although
the random approach may not generate the optimum set of patterns, we observed that
throughout the WildMinne procedure, a considerable percent of patterns are removed due
to low rank, and new high-ranked patterns take precedence. Additionally, more repetition
of this process often generates patterns with many star-bits having higher conflicts and
minor ranks such that they do not affect the final pattern list. In this regard, the starting
random phase provides only a limited set of patterns as initial seed, since new high-ranked
patterns are generated during the second step of WildMinnie in a more targeted way.
In “Simulations”, we investigate the effect of more repeat counts by a set of simulations.

Initial and derived wildcard patterns are saved as a tuple of (A, p, M) where the first
element is the pattern, the second element is the output port number, and the last element
is the set of merged initial patterns. The initial pattern set is the set of distinct addresses
obtained from the ruleset, which is Minnie’s output, too. The central part of the
WildMinnie algorithm operates on this set instead of individual rules. When a pair of
patterns are combined and generate a new pattern, initial matching patterns are saved
along with the new pattern. This practice accelerates the rules’ processing and helps
WildMinnie consider the initial patterns only once. Intuitively, the third element of
all initial addresses has only one member, which is the same as the first element
(see Algorithm 2 line 10). All derived patterns from all output ports are saved in a global
list of pattern tuples (see Algorithm 2 line 21).

Figure 3 illustrates the steps of finding common patterns for a group of rules with
output port number 1. In this example, for completeness and showing conflicts, we also
assume a group of rules with output port number 2. In each step, the merge set and conflict
set of each pattern are presented under the pattern.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 12/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

Step 2: building pattern tree
In the second step, WildMinnie builds a tree structure using patterns and ranks them. The
pseudo-code of this step is shown in Algorithm 3. To compute rank and build the tree,
WildMinnie processes all patterns to achieve more information about them. This is done at
line 4. After processing, a three-element pattern tuple, w(A, p, M), is expanded into a
seven-element tuple, K(A, p, M, I, V, S, r). K.I is the set of rules matching the pattern and
having the same port as K.p. K.V is the set of conflicting rules that match K.A but have a
different port number than K.p. The last two elements K.S and K.r are the set of sub-
patterns and pattern rank, respectively. At this step, K.S is empty and K.r = 0. We will
explain these two parameters later.

If a pattern has no conflicting rules (i.e. k.V = ϕ), its rank can be computed and it is also
eligible to be inserted in the pattern tree (lines 5–7). Such patterns substitute all of their K.I
set in the table. As we will explain, a pattern without conflicting rules is a leaf node.

If a pattern has conflicting rules, it can also replace all rules in K.I, but its conflicting
rule set can not be compressed and must be written as-is to the switch table, adversely
affecting the compression ratio. To decrease the number of generated rules, WildMinnie

Figure 3 An example of finding common patterns in WildMinnie with two repeats for an initial list
of patterns [11111, 11110, 10101, 10111, 11001] having output port = 1. This example assumes
another set of initial patterns with output port = 2 as [11101, 11001, 10110]. The list in brackets [] shows
the merge set (k.M) and the list inside {} indicates the conflicting list (k.V) of a pattern.

Full-size DOI: 10.7717/peerj-cs.809/fig-3

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 13/30

http://dx.doi.org/10.7717/peerj-cs.809/fig-3
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

recursively finds common patterns between conflicting rule sets. The resulting
sub-patterns are saved in K.S of the pattern tuple. Each sub-pattern substitutes a set of
rules in the conflicting set (K.V), which results in a more compressed rule table. In the
pattern tree, sub-patterns of K.S are inserted as the children of the initial pattern.
Sub-patterns are not necessarily tied to their resulting patterns and are processed
independently (lines 12–14). As we will discuss in “Step 3. Assigning Priorities”, the final
set of patterns are selected based on a ranking function (Wildcard Pattern Ranking).
Therefore, when a child node’s rank is higher than its parent, it is used alone in the final list
of rules. However, if a parent pattern in the tree has a better rank than its children, all
children must be written in the final rule list to resolve conflicts.

This recursive step to find sub-patterns is, in fact, a part of finding patterns, but instead
of discovering the whole pattern set at the beginning, WildMinnie starts with an initial
pattern seed and seeks for other patterns in a more targeted way. As another advantage,
we should note that processing and selecting the best sub-patterns is done for a limited
set of children of a pattern, and unselected ones are trimmed at that level. If the whole
pattern set is discovered and found in the first phase, the memory footprint can be very
high.

Algorithm 3 Step 2 of WildMinnie.

1: function build_pattern_tree(R,W)

2: B: PatternTree

3: for each w(A, p, M) ∈ W to

4: k(A, p, M, I, V, S, r) := process(w, R)

5: if k.V = ϕ then

6: k.r := compute_rank(k)

7: Insert_Tree(B,k)

8: else if k. S � B then

9: Insert_Tree(B,k)

10: choose_best(k)

11: k.r := compute_rank(k)

12: else

13: k.S := find_common_patterns(k.V)

14: W ∪ = k.S

15: end if

16: end for

17: return B

18: end function

19: function compute_rank(k)

20: gen :¼ 1þ P
s2k:S

s:jV j � C þP
q2s:S compute rankðqÞ

� �
21: return jk:Ij

gen

22: end function

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 14/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

A pattern is ready to be ranked and inserted into the pattern tree if all of its sub-patterns
are in the tree and ranked (line 8). At this stage, a pattern may have several overlapping
sub-patterns. To accurately compute the rank of a pattern, the best set of its non-
overlapping sub-patterns is selected based on their rank.

In the subsequent sections, we explain the details of the pattern tree data structure and
ranking function. Since choose_best procedure is very similar to the Algorithm 5, it is not
listed separately.

Pattern tree
For the correct operation of WildMinnie, we have to handle the rule conflicts. Three types
of conflicts may occur when using general wildcard patterns. The first type of conflict is
when similar patterns are found in different groups having different port numbers. For
instance, 1����� pattern is found in both groups of Gp1 and Gp2. In this case, the
group with the largest rule count is selected for compression, and the other rules are used
intact or may be compressed and saved in the sub-pattern set. In this way, the conflict is
removed.

The second type of conflict occurs when addresses match with several patterns in
different groups. As an instance, address 111000 matches with patterns 1����� in Gp1 and
�11��0 in Gp2. We resolve this type of conflict with a precise precedence assignment
procedure, explained in “Step 3. Assigning Priorities”.

The last type of conflict occurs when a pattern is a parent of other patterns with different
outport numbers—as an instance, having two rules (101��, �, 3) and (10���, �, 2), a
packet with the source address 10100 matches both rules. The detection and priority
assignment of such conflicts in legacy IPv4 networks are far more straightforward than
OpenFlow due to prefix-only wildcard patterns and the LPM mechanism. To resolve the
third type of conflict, we introduce the Pattern Tree data structure. A Pattern tree,
essentially, is an m-ary tree in which parent nodes have dominance relation (�, Eq. (5))
with their children. The root of the tree is the all-star pattern. Sibling nodes in a pattern
tree have no particular relation but may have conflicting rule sets.

Figure 4A shows the pattern tree for the table of patterns in Fig. 3. In this example,
we assume the rules are compressed with the all-star pattern and inserted as the root node
has port number 3 and has no conflict with the current patterns. Figure 4B shows the
same pattern tree when patterns of rule group with outport of 2 is added to the tree after
finding their common patterns. These nodes are colored in red. As it is clear from the
figure, conflicts of patterns, especially with different outport numbers, are easily detected
in this structure. The pattern tree structure also considerably simplifies the computation
and update of patterns’ rank in the last phase of WildMinnie (Step 3. Assigning
Priorities) since the rank of a pattern (Wildcard Pattern Ranking) strongly depends on its
sub-patterns.

Algorithm 4 shows the procedure of inserting a new node in the pattern tree. Insert_tree
encapsulates a pattern tuple in a tree node structure and starts searching a proper position
for the new node from the tree root by calling the add_pattern. The add_pattern is a
recursive function. In each recursion, it moves one level toward the leaves. In the first step,

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 15/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

it is checked if the given pattern can be a parent for some of the current node’s children. If
this condition is met, the new node is inserted as a child of the current node (line 10),
and all matching children are removed from the current node and added as children of
the new node. Otherwise, it is checked if any child of the current node can be a parent for
the new node. In this condition, add_pattern function is called for every eligible child,
which causes a pattern to be added as a child of one or several nodes (line 16). The last
phase of WildMinnie ensures only one of these redundant nodes is used in the final rule list
of the switch table (Step 3. Assigning Priorities). When the new node can neither be a
child nor a parent for any of the current node’s children, it is appended as a child of the
current node (line 18).

In the worst case, the height of a pattern tree can be as much as the address length when
all possible patterns are available, or patterns are linearly the child of each other. Since
WildMinnie deliberately keeps a limited number of patterns, the worst-case condition
barely happens in practice. Even with more than 200 K flows in our simulations, tree
height does not exceed more than six levels. Therefore, the insertion or deletion operations

1111*

11***

11110 11111 1111010101

11111 11110 10111 10101

1***1 1*1**

1**01

1111*

11***

11110 11111

1111010101

11111 11110 10111 10101

1*1**

11*01

1110111001

11*01

1***1

1110111001

10110

1**01

(a)

(b)

Figure 4 Pattern tree of pattern tuples computed in Fig. 3 with outport of 1, before and after
addition of tuples with outport of 2. The root node with the default all-star pattern has a different
outport number and has no conflict with the current patterns of the tree. (A) Pattern tree of pattern tuples
with k.p = 1 after finding common patterns. (B) Pattern tree of pattern tuples with k.p = 1 and k.p = 2 after
finding patterns for tuples with k.p = 2. Tuples with outport number 2 are colored in red.

Full-size DOI: 10.7717/peerj-cs.809/fig-4

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 16/30

http://dx.doi.org/10.7717/peerj-cs.809/fig-4
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

on the pattern tree are efficient regardless of the rules or the selected patterns count in
practice.

Wildcard pattern ranking
The rank of a pattern is directly related to the number of rules it compresses and the
number of rules it generates. The ranking function is implemented in compute_rank
function shown in Algorithm 3 at line 19. This function, at first, computes the count of the
rules a pattern generates (line 20). Each pattern inevitably generates at least one aggregated
rule in replacement of its K.I set. As stated before, all of the rules in K.V set must be
inserted into the table without change. If a pattern has any sub-patterns, they are also used
in conjunction with the root pattern. The next part of the formula in line 20 recursively
computes the number of rules generated by the sub-patterns. To avoid using patterns
with a large conflicting set, we multiply the number of conflicting rules with a large
constant (C). The rank of a pattern is obtained by dividing the number of replaced rules

Algorithm 4 Inserting a pattern in a pattern tree.

1: procedure Insert_Tree(B, k)

2: if k.A is ALL_STAR then

3: return

4: end if

5: n := node(k)

6: add_pattern(B.root, n)

7: end procedure

8: procedure add_pattern(b, n)

9: Y :¼ fyjy∈b:S ^ n:A � y:Ag
10: if Y ≠ [then

11: n.parent := b

12: b.S −=Y

13: 8
y2Y

y:parent :¼ n

14: else

15: Z :¼ fzjz 2 b:S ^ z:A � n:Ag
16: if Z ≠ [then

17: 8
z2Z

add_pattern(z, n)

18: else

19: b.S ∪ = n

20: n.parent := b

21: end if

22: end if

23: end procedure

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 17/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

(|K.I|) by the generated rules. The higher rank value indicates the pattern substitutes a
larger number of rules with lesser aggregated rules.

Step 3: assigning priorities
In the last step of WildMinnie, presented in Algorithm 5, rules of the pattern tree are
written in the rule table of the switch in their rank order. Procedure copy_to_switch_table
in a loop selects the highest rank pattern tuple from the tree. If the output port is the same
as the most frequently used port number, it is discarded, as all of these rules will be
replaced by the default rule. Then, wildcard patterns of the selected tuples are copied
into the switch table, recursively using the add_rules procedure (line 14). Inside this
procedure, sub-patterns are added to the table, first with higher priority, and then the
node’s pattern is added. The priority of rules is decremented by the addition of each rule to
prevent the second type of conflicts as explained in “Pattern Tree”.

All initial patterns in k.M of the copied pattern are marked (line 18) as covered. Having
a coverage log helps WildMinnie to discard patterns that have a high rank, but their
merging set has been covered previously (line 8).

WildMinnie analysis
WildMinnie finds common patterns in the first step. If we want to visit each address once,
the time complexity of finding patterns will be from the order of O(|Ts|). If |Ts| unique

Algorithm 5 Assigning precedence to rules.

1: procedure copy_to_switch_table(B, Ts)

2: priority := HIGHEST_PRIORITY

3: M : {}

4: while B ≠ [do

5: b := highest_rank_node(B)

6: if b.p = p� then

7: continue

8: else if b.M � M then

9: continue

10: end if

11: add_rules(b,Ts, priority,M)

12: end while

13: end procedure

14: procedure add_rules(b, Ts, priority, M)

15: 8s∈b.S add_rules(s, Ts, priority)

16: add_rule(Ts, (b.A, �, b.p, priority))
17: priority −= 1

18: M ∪= b.M

19: end procedure

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 18/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

patterns are found, their insertion in the pattern tree will be from the order of O(|Ts|
2).

Similarly, the last step of WildMinne involves sorting and searching the handled merge set,
which is in the same order. Of course, the worst-case scenarios are absolutely rare cases
and may not happen in practice. The following theorem defines a lower bound for the
compression ratio of WildMinnie.

Theorem 1 WildMinnie in the worst case performs as Minnie.
Proof. WildMinnie, as illustrated in Algorithm 2, for each pattern keeps a merge list.

The merge set have a set of patterns that are directly obtained from the ruleset without
masking and derivation process. In this way, the initial patterns set are the same as
the final grouping of Minnie. During masking and derivation process in procedure
find_common_patterns (Algorithm 2 line 6), WildMinnie keeps track of initial pattern set,
too. Therefore, for each pattern generated in any step of the algorithm, it is clear which
initial patterns formed that pattern. We also should note that, in the last step of
WildMinnie, in Algorithm 5 a pattern is discarded when all of its merge set members
are covered by previous patterns. By the above explanation, we can conclude that each
initial pattern is used at most once in the final rule set copied to the table. An initial
pattern may be used in the original form or merged with other patterns and form a new
pattern.

Now, suppose that for a rule set, Minnie compression ratio is better than WildMinnie.
This necessitates that some initial patterns are used more than once in various derived or
non-derived forms, which contradicts the WildMinnie algorithm.

Incremental updates
It should be noted that after the network initial start-up, generally, rules will be added to
the network in small batches. If the address field of a new rule matches an existing wildcard
rule and their output port is also equal, then no change is required in the rule table.
Otherwise, a new non-wildcard rule should be inserted in the table with the highest
precedence. For a not-too-large set of rules, this approach is fast and has zero overhead. As
the WildMinnie compression ratio is good enough, one should not be concerned about
several hundreds of new rules. However, the compression ratio will be decreased over time
by using this approach.

The alternative approach runs the completeWildMinnie procedure for the limited set of
rules that did not match the existing rules. We should keep a pattern tree for each switch
and apply incremental updates on it in this method. For incremental deletions, we
check the pattern tree’s corresponding nodes for the set of rules intended for deletion. All
nodes and their corresponding rules with the condition |n.I| = 0 are removed from the tree
and the rule table.

SIMULATIONS
In this section, we first explain our simulation settings and then show the performance of
WildMinnie using several configurations.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 19/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

Simulation settings
We implemented WildMinnie with Java, which is the language for most of the well-known
controllers. In simulations, we consider several factors to study the performance of
WildMinnie from various aspects. In all simulations, we report the compression ratio on
destination address; there was no remarkable difference between the results of sources and
destination addresses. We also assume that all flows are active during the simulation
time, so switches must have rules of all flows. This assumption is the worst condition for
the rule placement.

As WildMinnie does not have an integrated routing method, we use the simple
routing method introduced in Minnie, which we call it MinnieRouting. MinnieRouting
defines a weight parameter for each link, updated after every rule placement according to
the total load of passing flows and the filled ratio of its source switch’s rule table.
MinnieRouting distributes flows’ load in the whole network to avoid overloading of some
core switches.

Topologies
Similar to Rifai et al. (2017), simulations have been done on well-known data center
topologies: Fat-tree (k = 4, 8, 12, 16) (Al-Fares, Loukissas & Vahdat, 2008), VL2(k = 2, 4, 8,
12) (Greenberg et al., 2009), DCell((2,1), (3,1), (4,1), (5,1), (6,1)) (Guo et al., 2008). These
topologies include 9 to 320 switches where each switch has at most 24 ports. With this
assumption, some topologies cannot be set up like VL2(k = 16). Figure 5 shows an example
of these topologies. Fattree and VL2 belong to the family of architectures in which
only switches participate in forwarding. In other families of architectures like DCell and
BCube, servers also cooperate in forwarding. One purpose of experimenting on various
topologies is to produce different mixes of flows to study the compression behavior.
Datacenter topologies usually have a standard and efficient count of links and produce
balanced mixes of flows. Meanwhile, data centers receive large diversity of source-
destination pairs, making them a pretty perfect target for testing compression algorithms.
To show the stability of WildMinnie’s performance in extreme scenarios, we also test the
shortest path routing instead of MinnieRouting. The general shortest path routing does
not balance the flows over links and switches and produces hot points in the network.

Test subnet and flow sets
We assume IPv4 addresses with a length of 32 bits. To generate random flows, we produce
a determined number of random subnet addresses with prefixes of length 8 up to 32 bits
and assign them to the edge nodes by random. In the flow generation process, we
rigidly try to use all the subnets assigned to the edge nodes to produce varying pairs of
source and destination addresses. Then, we produce different flow sets with 10,000 flows.
The number of flows is deliberately chosen to contain enough variety of subnets. We
strictly believe that the number of flows in simulations does not transparently reflect the
compression performance since one can produce hundreds of flows between a pair of

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 20/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

addresses with varying port numbers and achieve a 99.9% compression ratio. Instead of
flow count, we consider the following two parameters:

1. Number of subnets per edge node (SPE): this parameter determines the minimum
number of unique subnet addresses that should be assigned to each edge node. In
other words, SPE controls the diversity of source or destination addresses of flows
originated or destined to one edge switch. We generate flow sets with SPEs of 1, 10, 20,
40, and 80.

2. Stickiness: this parameter determines the probability of using previously used addresses
as a source or destination instead of using new ones in the flow generation process.
We generate flow sets with three stickiness of 0.25, 0.5, 0.75.

Since Minnie has a severe issue with wildcard addresses, as explained in “Minnie
Compression Principles”, all generated flow sets are conflict-free for a fair comparison.

(a)

(b) (c)

Figure 5 Example of data center topologies used in simulations (A) VL2 topology, k = 4 (16 TOR, 8 aggregate, 4 intermediate switches)
(B) Fattree topology, k = 4 (8 access, 8 aggregation, 4 core switches) (C) DCell(4,1) topology composed of five DCell(4,0).

Full-size DOI: 10.7717/peerj-cs.809/fig-5

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 21/30

http://dx.doi.org/10.7717/peerj-cs.809/fig-5
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

Performance metrics
For performance comparison, we use two measurements. The first measurement denoted
by Ctotal is defined as follows:

T ¼
X
s2S

jTsj

Ctotal ¼ 100 � Told 	 Tnew

Told

T is the total number of rules installed in all switches of a network and Ctotal indicates
what percent of total rules reduced by a compression method. This parameter is also a
good indicator for the average compression ratio of individual switches. The second
measurement, Cmax, shows the effectiveness of a compression method in reducing the
maximum size of rule tables.

Tmax ¼ MAX
s2S

jTsj

Cmax ¼ 100 � T
max
old 	 Tmax

new

Tmax
old

A compression method can reduce some rule tables, but it may fail to compress large or
special tables. In this condition, average compression may be satisfactory; however, few
tables remain with a large count of rules.

WildMinnie performance
This section provides a performance comparison of WildMinnie and Minnie based on
topology, SPE, and stickness parameters.

By subnet-per-edge (SPE)
Figures 6A, 6D and 6G show the performance of algorithms with increasing number of
subnets per-edge in thee topologies. In all of these experiments, we use 10K flow sets with
stickiness of 0.5.

As expected, the performance of Minnie compression quickly drops with increasing
SPE. Especially in VL2 and Fattree topologies, Minnie loses 20–70% of its performance
with only 10 subnets per edge. Higher SPEs decrease its compression ratio by less than
30%, but it is not as sharp as the SPE = 10. The sharp beginning drop happens because the
first compression ratio is achieved in an unreal condition of having only one subnet-per-
edge. In the continue, compression ratio decreases with a reasonably monotone rate of
10–20%. This was pretty predictable since Minnie’s compression strongly depends on
equal addresses, and with higher SPE values, the variety of destination addresses destined
to the same switches grows.

WildMinnie also loses its compression performance with SPE, but the loss slope is
slower than Minnie. The compression ratio gap between Minnie andWildMinnie grows as
SPE increases, in a way that in SPE = 80, the compression ratio of WildMinnie is twice
Minnie’s approximately.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 22/30

http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

The compression ratio also decreases when graphs get larger in all types of topologies.
This performance loss is natural since the flow set size remains constant while the
number of nodes is increased. Therefore, flows are distributed in more paths over a
high count of nodes which causes less compression. For instance, in smaller graphs like
Fattree k = 4, VL2 k = 4, and most of the DCELL topologies compression rate is around
99%, since a small number of switches bear a large percent of rules.

These facts are also approved by Cmax charts in Figures 6B, 6E, and 6H. According to
these figures, WildMinnie, independent of the topology or graph size, successfully reduces
the max table size by 80–99%. These statistics confirm that the spread of the rule set in

Figure 6 Ctotal and Cmax of WildMinnie and Minne in different topologies with varying SPE and
stickiness values. SPE charts use stickiness = 0.5 and Stickiness charts use SPE = 40 (A) Ctotal vs. SPE
in DCell graphs. (B) Cmax vs. SPE in DCell graphs. (C) Ctotal vs. stickiness in DCell graphs. (D) Ctotal vs.
SPE in VL2 graphs. (E) Cmax vs. SPE in VL2 graphs. (F) Ctotal vs. stickiness in VL2 graphs. (G) Ctotal vs.
SPE in Fattree graphs. (H) Cmax vs. SPE in Fattree graphs. (i) Ctotal vs. stickiness in Fattree graphs.

Full-size DOI: 10.7717/peerj-cs.809/fig-6

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 23/30

http://dx.doi.org/10.7717/peerj-cs.809/fig-6
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

more nodes and smaller table sizes is the main reason for the performance reduction in
large graphs. This is in contrast with the behavior of Minnie, which fails to keep the
high Cmax ratio in large graphs. A diverse set of addresses scattered in more nodes reduces
the probability of address equality in switches which again confirms the strong dependency
of Minnie to traffic distribution.

By flow stickiness
In Figs. 6C, 6F, and 6I, total compression evaluated against stickness parameter with flow
sets of size 10 K and SPE of 40. High stickness directly affects the probability of having
equal addresses. Increasing stickness from 0.25 to 0.75 improves the compression ratio in
both methods by 2–10%. More significant improvements are achieved in larger graphs
where nodes have a small set of rules, and equality or similarity of rules has decreased
by the load balancing feature of the routing. In this condition, stickness increases the
probability of having similar rules. From the architectural view, DCell has the least, and
VL2 has the highest percentage of improvement. The reason for this behavior is clarified in
the next section.

By topology
Figure 7 gives a detailed view of how WildMinnie and Minnie operate in each layer of
architectures. Each chart displays the average difference between the total compression

Figure 7 Average of CWildMinnie
total 	 CMinnie

total in various layers of data center architectures (A) DCell-edge
nodes. (B) DCell-non-edge nodes. (C) VL2-edge nodes. (D) VL2-aggregate nodes. (E) VL2-core nodes.
(F) Fattree-edge nodes. (G) Fattree-aggregate nodes. (H) Fattree-core nodes.

Full-size DOI: 10.7717/peerj-cs.809/fig-7

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 24/30

http://dx.doi.org/10.7717/peerj-cs.809/fig-7
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

ratios of WildMinnie and Minnie based on different SPE values with a flow set size of 10 K
and stickiness of 0.5.

In DCell architecture, since there are no aggregate or core layers, we categorized
nodes to edge and non-edge nodes. WildMinnie and Minnie in this architecture have the
lowest performance difference, as both of them achieve high compression ratios. In DCell,
plenty of paths exists between each pair of nodes, and MinnieRouting performs a good
load balance on links and switches. Thus, when the graph size grows, the distribution of
rules is not changed significantly. However, with high SPEs, the diversity of addresses
increases, and the difference of compression ratio between WildMinnie and Minnie grows
slowly.

VL2 and Fattree architectures present a more clear view of Minnie and WildMinnie’s
behavior. According to Figs. 7C–7H, the least difference of performance is achieved in edge
nodes where the diversity of destination addresses is high, and the most significant
performance gap is in the core nodes. In core and aggregate nodes, a good mix of flows
with the same destination switch exists; however, WildMinnie gets the most out of this
mix by finding the common patterns. In both architectures, graphs of size k = 8 show the
rising threshold. In the beginning, with SPE = 1, both methods have similar results, but
with the growth of SPE and reduction of address equality, WildMinnie takes advantage of
its pattern weaving approach and achieves a better compression ratio. VL2, compared
with Fattree, has more interconnections between its pods and has better potential for
balancing. Therefore, in VL2, the performance gap is lower, and its rising threshold is
higher than Fattree.

By deeper search

The next simulation set examines the performance of WildMinnie with the number of
rounds it searches for the common patterns. For testing, the process of combining and
shuffling of address patterns is repeated with different values of REPEAT_COUNT
parameter in function find_common_patterns (Algorithm 2, line 6). Simulations were
carried out with flow sets of size 10K, SPE = 40, and stickness = 0.5 on FatTree architecture
as WildMinnie has its least performance on FatTree. We continued the simulations until
we received the out-of-memory error. Figure 8A doesn’t show a meaningful relation

Figure 8 Performance of WildMinnie on FatTree networks with no load balancing and deeper search
for finding common patterns. (A) Ctotal on Fattree networks with different number of rounds for
searching of common patterns. (B) Ctotal with default shortest path routing and no load balance.

Full-size DOI: 10.7717/peerj-cs.809/fig-8

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 25/30

http://dx.doi.org/10.7717/peerj-cs.809/fig-8
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

between the final compression ratio and REPEAT_COUNT. The variation of Ctotal for this
simulation is around 5%, which most probably happens due to the randomness in the
process of generating and assigning subnets. We draw two important results from this
simulation. First, increasing the search rounds increases the number of patterns
exponentially. Second, due to the generation of a large number of low-ranked patterns, an
exhaustive search to find a better set of patterns needs a tremendous number of rounds and
a huge memory size.

By routing method
In this simulation set, we use the simple shortest path routing. With this routing, only
one path is always selected between a pair of given source-destination. As a result, most of
the switches in the network have a rule table size of zero, while all flows pass through a
small set of switches with very large rule tables. In previous experiments, we showed
that when rules are distributed on more nodes and switches receive fewer rules, the
compression performance of WildMinnie and Minnie is reduced. In contrast, when
multiple flows pass a switch, the possibility of finding equal or similar address patterns is
increased. With the simple shortest path routing, the second condition occurs in its
extreme state. From Fig. 8B we observe the expected behavior from WildMinnie where it
successfully compresses rules by more than 99% despite SPE of 80. We did not test
Minnie’s performance with the simple shortest path since it is integrated with its routing
method.

Running time
The execution of WildMinnie includes two main time-consuming parts: finding common
patterns and building the pattern tree. For measurement, we choose the FatTree (K = 4)
network, which has a high rules-per-switch parameter. Measurements have been done on a
commodity PC with Intel Core i5-4460 CPU2 and 8 GB of RAM.

Figure 9A shows the minimum, average, and maximum running time of finding a
certain number of unique patterns. Due to the random selection of address pairs, the
number of explored pairs for finding a certain number of unique patterns is not constant.
For instance, for 2,000 unique patterns, it may be necessary to visit 25,000 pairs, while in
another switch with only 10,000 address pairs, the same count of patterns is found.

Figure 9 WildMinnie running time measurements (A) Min, average and max time of finding specific
number of patterns. (B) Min, average and max time of inserting a pattern into the pattern tree with
the specified size. Full-size DOI: 10.7717/peerj-cs.809/fig-9

2 This CPU, released in 2014, has four 3.2
GHz cores with 6M cache.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 26/30

http://dx.doi.org/10.7717/peerj-cs.809/fig-9
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

Search time in WildMinnie with REPEAT_COUNT = 2 increases linearly with a slight
slope. According to the Fig. 9A, in the worst case, it takes 3–5 ms by average to find 3,000
unique patterns that are quite a large count in our experiments. The next Fig. 9B shows the
minimum, average, and maximum time for processing plus inserting a pattern in the
pattern tree with the specified size. By average, it takes about 0.2–1 ms to process and insert
a pattern in a tree with 1,200 nodes.

Based on these figures, the total execution time of WildMinnie for one switch takes only
several milliseconds on a commodity PC, and it can be used in larger networks with a
higher number of flow sets without any concern.

CONCLUSION
In this paper, we introduced WildMinnie, a new rule compression algorithm for SDN
networks. WildMinnie principally compresses rules by deriving common general
wildcards of address fields. We explored rule conflict issues using general non-prefix
wildcards defined by OpenFlow standard and introduced solutions for each type of
conflict. We tested WildMinnie on well-known data center topologies using flow sets
with different source-destination pair diversities controlled by two sub-per-edge and
stickiness parameters. We showed that WildMinnie performs better than Minnie, which is
the only compression method that claims compression ratios higher than 90%. Especially,
WildMinnie is successful in compressing rule sets having large source-destination
diversity where Minnie fails to compress effectively.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Hamed Khanmirza conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source code is available at figshare: Khanmirza, Hamed (2022): WildMinnie Source
Code. figshare. Journal contribution. https://doi.org/10.6084/m9.figshare.15131676.v1.

REFERENCES
Al-Fares M, Loukissas A, Vahdat A. 2008. A scalable, commodity data center network

architecture. ACM SIGCOMM Computer Communication Review 38(4):63–74
DOI 10.1145/1402946.1402967.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 27/30

https://doi.org/10.6084/m9.figshare.15131676.v1
http://dx.doi.org/10.1145/1402946.1402967
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

Ashraf U. 2016. Rule minimization for traffic evolution in software-defined networks. IEEE
Communications Letters 21(4):793–796 DOI 10.1109/LCOMM.2016.2636212.

Assefa BG, Özkasap Ö. 2019. A survey of energy efficiency in SDN: software-based methods and
optimization models. Journal of Network and Computer Applications 137(4):127–143
DOI 10.1016/j.jnca.2019.04.001.

Bera S, Misra S, Jamalipour A. 2019. Flowstat: adaptive flow-rule placement for per-flow statistics
in SDN. IEEE Journal on Selected Areas in Communications 37(3):530–539
DOI 10.1109/JSAC.2019.2894239.

Braun W, Menth M. 2014a. Software-defined networking using openflow: protocols, applications
and architectural design choices. Future Internet 6(2):302–336 DOI 10.3390/fi6020302.

Braun W, Menth M. 2014b. Wildcard compression of inter-domain routing tables for openflow-
based software-defined networking. In: 2014 Third European Workshop on Software Defined
Networks. Piscataway: IEEE, 25–30.

Casado M, Freedman MJ, Pettit J, Luo J, Gude N, McKeown N, Shenker S. 2009. Rethinking
enterprise network control. IEEE/ACM Transactions on Networking 17(4):1270–1283
DOI 10.1109/TNET.2009.2026415.

Draves RP, King C, Venkatachary S, Zill BD. 1999. Constructing optimal IP routing tables. In:
Proceedings of the Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, IEEE INFOCOM’99. Vol. 1. Piscataway: IEEE, 88–97.

Erickson D. 2013. The beacon openflow controller. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking. New York: ACM, 13–18.

Feamster N, Rexford J, Zegura E. 2014. The road to SDN: an intellectual history of programmable
networks. ACM SIGCOMM Computer Communication Review 44(2):87–98
DOI 10.1145/2602204.2602219.

Floodlight. 2014. Floodlight OpenFlow Controller. Available at https://github.com/floodlight/
floodlight (accessed 29 January 2022).

Fuller V, Li T, Yu J, Varadhan K. 2008. Rfc 1519: classless inter-domain routing (CIDR): an
address assignment and aggregation strategy, September 1993. Obsoletes RFC1338. Available at
https://www.frameip.com/rfc-1519-classless-inter-domain-routing-cidr-an-address-assignment-
and-aggregation-strategy/.

Galan-Jimenez J, Polverini M, Cianfrani A. 2018. Reducing the reconfiguration cost of flow tables
in energy-efficient software-defined networks. Computer Communications 128(2):95–105
DOI 10.1016/j.comcom.2018.07.022.

Giroire F, Havet F, Moulierac J. 2016. Compressing two-dimensional routing tables with order.
Electronic Notes in Discrete Mathematics 52:351–358 DOI 10.1016/j.endm.2016.03.046.

Giroire F, Moulierac J, Phan TK. 2014. Optimizing rule placement in software-defined networks
for energy-aware routing. In: 2014 IEEE Global Communications Conference. Piscataway: IEEE,
2523–2529.

Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA, Patel P, Sengupta S.
2009. Vl2: a scalable and flexible data center network. In: Proceedings of the ACM SIGCOMM,
2009 Conference on Data Communication. 51–62.

Gude N, Koponen T, Pettit J, Pfaff B, Casado M, McKeown N, Shenker S. 2008.Nox: towards an
operating system for networks. ACM SIGCOMM Computer Communication Review
38(3):105–110 DOI 10.1145/1384609.1384625.

Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S. 2008. Dcell: a scalable and fault-tolerant network
structure for data centers. In: Proceedings of the ACM SIGCOMM, 2008 Conference on Data
Communication. New York: ACM, 75–86.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 28/30

http://dx.doi.org/10.1109/LCOMM.2016.2636212
http://dx.doi.org/10.1016/j.jnca.2019.04.001
http://dx.doi.org/10.1109/JSAC.2019.2894239
http://dx.doi.org/10.3390/fi6020302
http://dx.doi.org/10.1109/TNET.2009.2026415
http://dx.doi.org/10.1145/2602204.2602219
https://github.com/floodlight/floodlight
https://github.com/floodlight/floodlight
https://www.frameip.com/rfc-1519-classless-inter-domain-routing-cidr-an-address-assignment-and-aggregation-strategy/
https://www.frameip.com/rfc-1519-classless-inter-domain-routing-cidr-an-address-assignment-and-aggregation-strategy/
http://dx.doi.org/10.1016/j.comcom.2018.07.022
http://dx.doi.org/10.1016/j.endm.2016.03.046
http://dx.doi.org/10.1145/1384609.1384625
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

Hu S, Chen K, Wu H, Bai W, Lan C, Wang H, Zhao H, Guo C. 2015. Explicit path control in
commodity data centers: design and applications. In: 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI15). 15–28.

Huang H, Guo S, Li P, Ye B, Stojmenovic I. 2015. Joint optimization of rule placement and traffic
engineering for QoS provisioning in software defined network. IEEE Transactions on Computers
64(12):3488–3499 DOI 10.1109/TC.2015.2401031.

Kang N, Liu Z, Rexford J, Walker D. 2013. Optimizing the one big switch abstraction in software-
defined networks. In: Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies. New York: ACM, 13–24.

Kanizo Y, Hay D, Keslassy I. 2013. Palette: distributing tables in software-defined networks. In:
Proceedings of the IEEE, INFOCOM, 2013. Piscataway: IEEE, 545–549.

Katta N, Alipourfard O, Rexford J, Walker D. 2014. Infinite cacheflow in software-defined
networks. In: Proceedings of the Third Workshop on Hot Topics in Software Defined Networking.
New York: ACM, 175–180.

Kosugiyama T, Tanabe K, Nakayama H, Hayashi T, Yamaoka K. 2017. A flow aggregation
method based on end-to-end delay in SDN. In: 2017 IEEE International Conference on
Communications (ICC). Piscataway: IEEE, 1–6.

Kreutz D, Ramos FM, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S. 2015. Software-
defined networking: a comprehensive survey. Proceedings of the IEEE 103(1):14–76
DOI 10.1109/JPROC.2014.2371999.

Liu AX, Meiners CR, Torng E. 2009. Tcam razor: a systematic approach towards minimizing
packet classifiers in tcams. IEEE/ACM Transactions on Networking 18(2):490–500
DOI 10.1109/TNET.2009.2030188.

Luo S, Yu H, Li LM. 2014. Fast incremental flow table aggregation in SDN. In: 2014 23rd
International Conference on Computer Communication and Networks (ICCCN). Piscataway:
IEEE, 1–8.

McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S,
Turner J. 2008. Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review 38(2):69–74 DOI 10.1145/1355734.1355746.

Meiners CR, Liu AX, Torng E. 2011. Bit weaving: a non-prefix approach to compressing packet
classifiers in TCAMs. IEEE/ACM Transactions on Networking 20(2):488–500
DOI 10.1109/TNET.2011.2165323.

Mimidis-Kentis A, Pilimon A, Soler J, Berger M, Ruepp S. 2018. A novel algorithm for flow-rule
placement in SDN switches. In: 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft). Piscataway: IEEE, 1–9.

Nakagawa Y, Hyoudou K, Lee C, Kobayashi S, Shiraki O, Shimizu T. 2013. Domainflow:
practical flow management method using multiple flow tables in commodity switches. In:
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and
Technologies. New York: ACM, 399–404.

Nguyen X-N, Saucez D, Barakat C, Turletti T. 2015a. Officer: a general optimization framework
for openflow rule allocation and endpoint policy enforcement. In: 2015 IEEE Conference on
Computer Communications (INFOCOM). Piscataway: IEEE, 478–486.

Nguyen X-N, Saucez D, Barakat C, Turletti T. 2015b. Rules placement problem in openflow
networks: a survey. IEEE Communications Surveys & Tutorials 18(2):1273–1286
DOI 10.1109/COMST.2015.2506984.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 29/30

http://dx.doi.org/10.1109/TC.2015.2401031
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1109/TNET.2009.2030188
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/TNET.2011.2165323
http://dx.doi.org/10.1109/COMST.2015.2506984
http://dx.doi.org/10.7717/peerj-cs.809
https://peerj.com/computer-science/

Norige E, Liu AX, Torng E. 2013. A ternary unification framework for optimizing tcam-based
packet classification systems. In: Architectures for Networking and Communications Systems.
Piscataway: IEEE, 95–104.

Rawat DB, Reddy SR. 2016. Software defined networking architecture, security and energy
efficiency: a survey. IEEE Communications Surveys & Tutorials 19(1):325–346
DOI 10.1109/COMST.2016.2618874.

Rekhter Y, Li T. 1993. An architecture for IP address allocation with CIDR. IETF. Technical
Report, September 1993. RFC 1518.

Rétvári G, Tapolcai J, Körösi A, Majdán A, Heszberger Z. 2013. Compressing ip forwarding
tables: towards entropy bounds and beyond. In: Proceedings of the ACM SIGCOMM, 2013
Conference on SIGCOMM. 111–122.

Rifai M, Huin N, Caillouet C, Giroire F, Lopez-Pacheco D, Moulierac J, Urvoy-Keller G. 2015.
Too many SDN rules? Compress them with minnie. In: 2015 IEEE Global Communications
Conference (GLOBECOM). Piscataway: IEEE, 1–7.

Rifai M, Huin N, Caillouet C, Giroire F, Moulierac J, Pacheco DL, Urvoy-Keller G. 2017.
Minnie: an SDN world with few compressed forwarding rules. Computer Networks
121(4):185–207 DOI 10.1016/j.comnet.2017.04.026.

Rottenstreich O, Radan M, Cassuto Y, Keslassy I, Arad C, Mizrahi T, Revah Y, Hassidim A.
2013. Compressing forwarding tables. In: 2013 Proceedings IEEE INFOCOM. 1231–1239.

Sheu J-P, Lin W-T, Chang G-Y. 2018. Efficient tcam rules distribution algorithms in software-
defined networking. IEEE Transactions on Network and Service Management 15(2):854–865
DOI 10.1109/TNSM.2018.2825026.

Stephens B, Cox A, Felter W, Dixon C, Carter J. 2012. Past: scalable ethernet for data centers. In:
Proceedings of the 8th International Conference on Emerging Networking Experiments and
Technologies. New York: ACM, 49–60.

Yu M, Rexford J, Freedman MJ, Wang J. 2011. Scalable flow-based networking with difane. ACM
SIGCOMM Computer Communication Review 41(4):351–362 DOI 10.1145/1851275.1851224.

Zhang X, Yu S, Zhang J, Xu Z. 2018. Forwarding rule multiplexing for scalable SDN-based
internet of things. IEEE Internet of Things Journal 6(2):3373–3385
DOI 10.1109/JIOT.2018.2882855.

Zhao G, Xu H, Fan J, Huang L, Qiao C. 2020. Achieving fine-grained flow management through
hybrid rule placement in sdns. IEEE Transactions on Parallel and Distributed Systems
32(3):728–742 DOI 10.1109/TPDS.2020.3030630.

Khanmirza (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.809 30/30

http://dx.doi.org/10.1109/COMST.2016.2618874
http://dx.doi.org/10.1016/j.comnet.2017.04.026
http://dx.doi.org/10.1109/TNSM.2018.2825026
http://dx.doi.org/10.1145/1851275.1851224
http://dx.doi.org/10.1109/JIOT.2018.2882855
http://dx.doi.org/10.1109/TPDS.2020.3030630
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.809

	WildMinnie: compression of software-defined networking (SDN) rules with wildcard patterns
	Introduction
	Related work
	Network model and problem statement
	Minnie compression principles
	Preliminaries
	Wildminnie algorithm
	Simulations
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

