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Epicardial fat (ECF) is localized fat surrounding the heart muscle or myocardial and
enclosed by a thin-layer membrane of pericardium. Segmenting the ECF is one of the most
difficult medical image segmentation tasks. Since the epicardial fat is infiltrated into the
groove between cardiac chambers and is contiguous with cardiac muscle, segmentation
requires location and voxel intensity. Recently, deep learning methods have been
effectively used to solve medical image segmentation problems in several domains with
state-of-the-art performance. This paper presents a novel approach to 3D segmentation of
ECF by integrating attention gates and deep supervision into the 3D U-Net deep learning
architecture. The proposed method shows significant improvement of the segmentation
performance, when compared with standard 3D U-Net. The experiments show excellent
performance on non-contrast CT datasets with average Dice scores of 90.06%. Transfer
learning from a pre-trained model of a non-contrast CT to contrast-enhanced CT dataset
was also performed. The segmentation accuracy of contrast-enhanced CT dataset
achieved Dice score of 88.16%.
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40 Abstract

41 Epicardial fat (ECF) is localized fat surrounding the heart muscle or myocardial and 
42 enclosed by a thin-layer membrane of pericardium. Segmenting the ECF is one of the most 
43 difficult medical image segmentation tasks. Since the epicardial fat is infiltrated into the groove 
44 between cardiac chambers and is contiguous with cardiac muscle, segmentation requires location 
45 and voxel intensity. Recently, deep learning methods have been effectively used to solve medical 
46 image segmentation problems in several domains with state-of-the-art performance. This paper 
47 presents a novel approach to 3D segmentation of ECF by integrating attention gates and deep 
48 supervision into the 3D U-Net deep learning architecture. The proposed method shows 
49 significant improvement of the segmentation performance, when compared with standard 3D U-
50 Net. The experiments show excellent performance on non-contrast CT datasets with average 
51 Dice scores of 90.06%. Transfer learning from a pre-trained model of a non-contrast CT to 
52 contrast-enhanced CT dataset was also performed. The segmentation accuracy on the contrast-
53 enhanced CT dataset achieved a Dice score of 88.16%.
54

55

56 Introduction

57 Epicardial fat (ECF) is localized fat surrounding the heart muscle and enclosed by the 
58 thin-layer pericardium membrane. The adipose tissue located outside pericardium is called 
59 pericardial fat that is contiguous with other mediastinal fat (Fig 1). ECF is the source of pro-
60 inflammatory mediators and promotes the development of atherosclerosis of coronary arteries. 
61 The clinical significance of the ECF volume lies in its relation to major adverse cardiovascular 
62 events. Thus, measuring its volume is important in diagnosis and prognosis of cardiac conditions.  
63 ECF volume can be measured in non-contrast CT images (NCCT) with coronary calcium scoring 
64 and in contrast-enhanced CT images (CECT) with coronary CT angiography (CCTA).  However, 
65 accurate measurement of ECF is challenging.  The ECF is separated from other mediastinal fat 
66 by thin layer pericardium. The pericardium is often not fully visible in CT images, which makes 
67 the detection of the boundaries of ECF difficult.  ECF can also be infiltrated into grooves 
68 between cardiac chambers and is contiguous to the heart muscle.  These technical challenges not 
69 only make accurate volume estimation difficult but make manual measurement a time consuming 
70 process that is not practical in routine use. Therefore, computer-assisted tools are essential to 
71 reduce the processing time for ECF volume measurement.
72 Automated segmentation could potentially make ECF volume estimation more practical 
73 on a routine basis. Several approaches based on prior medical knowledge or non-machine 
74 learning techniques have been proposed for ECF segmentation, including genetic algorithms, 
75 region-of-interest selection with thresholding, and fuzzy c-mean clustering [1-3].  Deep learning 
76 techniques have been applied to a wide variety of medical image segmentation problems with 
77 great success [4-6]. A recent article [7] demonstrates that deep learning algorithms outperform 
78 conventional methods for medical image segmentation in terms of accuracy.  But most previous 
79 studies involved large solid organs or tumor segmentation [8-10].  The segmentation of relatively 
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80 small and complex structures with high inter-patient variability, such as ECF, has been far less 
81 successful. Recently, a few deep learning approaches to ECF segmentation have made progress 
82 on this problem [11-13].  In this paper we build upon the previous work by presenting a novel 
83 deep learning model for 3D segmentation of ECF.  
84 In this paper, we propose a solution of automatic segmentation of ECF volume using a 
85 deep learning based approach, in non-contrast and contrast-enhanced CT datasets. The NCCT 
86 dataset uses coronary calcium scoring and the CECT dataset uses contrast-enhanced coronary CT 
87 angiography (CE-CCTA). The model is first learned from scratch on the NCCT dataset with 
88 coronary calcium scoring CT. To cover the entire heart, it is scanned in 64 slices with 2.5 mm 
89 thickness on each acquisition. Then, the model pre-trained on that NCCT dataset is transferred to 
90 the CECT dataset which uses CE-CCTA. The CE-CCTA study is performed in 256 slices with 
91 0.625 mm thickness
92 One of the key contributions of this paper is to validate the performance of our new 
93 developed 3D CNN-based approach on these difficult tasks. Since segmentation of ECF requires 
94 utilization of both voxel intensity and location information, we integrate two attention gate (AG) 
95 and deep supervision modules (DSV) on a standard 3D U-Net. Our proposed model has better 
96 performance than the recent state-of-the-art approaches because of the integration of AG and 
97 DSV modules. The AG module is used to focus on the target structures by suppressing irrelevant 
98 regions in the input image. The DSV module is used to increase the number of learned features 
99 by generating a secondary segmentation map combining from different resolution levels of 
100 network layers. The second main contribution is the use of transfer learning, taking a model pre-
101 trained on NCCT data, and applying it to CECT data, using only a small amount of data for the 
102 re-training. This approach has benefits in clinical applications for both NCCT and CECT data for 
103 ECF segmentation. Furthermore, our proposed solution is 3D-based and does not require 
104 preprocessing and postprocessing steps, thus it can easily integrate into the clinical workflow of 
105 CT acquisition to rapidly generate ECF volume results for the physician in clinical practice.
106

107

108 Related works

109 Conventional non-machine learning methods have been proposed for ECF segmentation. 
110 Rodrigues et al. [1] proposed a genetic algorithm to recognize the pericardium contour on CT 
111 images. Militello et al. [2] proposed a semi-automatic approach using manual region-of-interest 
112 selection followed by thresholding segmentation. Zlokolica et al. [3] proposed local adaptive 
113 morphology and fuzzy c-means clustering. However, these conventional methods required many 
114 preprocessing steps before entering the segmentation algorithm. The next evolution of ECF 
115 segmentations were performed with a machine learning approach. Rodrigues et al. [14] proposed 
116 ECF segmentation in CECT images using the Weka library (an open-source collection of 
117 machine learning algorithms) with Random-Forest as the classifier. The experiment, performed 
118 on 20 patients, yielded a Dice score of 97.7%.  Commandeur et al. [13] proposed ECF 
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119 segmentation from non-contrast coronary artery calcium computed tomography using ConvNets. 
120 They reported the Dice score of 82.3%.  
121 To improve the performance of medical image segmentation, several modifications of U-
122 Net have been proposed. The spatial attention gate has been proposed to focus on the spatial and 
123 detailed structure of the important region varying in shape and size [15].  Schlemper et al. [15] 
124 demonstrate the performance of the attention U-Net on real-time fetal detection on 2D images 
125 and pancreas detection on 3D CT images.  He et al. [11] proposed ECF segmentation from CE-
126 CCTA using a modified 3D U-Net approach by adding attention gates (AG). AGs are commonly 
127 used in classification tasks [16-19] and have been applied for various medical image problems 
128 such as image classification [19-20], image segmentation [15-20], and image captioning [20]. 
129 AG is used to focus on the relevant portion of the image by suppressing irrelevant regions [15]. 
130 The integration of AG on the standard U-Net [6, 10, 11, 15, 21] or V-Net [10, 22] has been 
131 demonstrated to have benefits for region localization.
132 As mentioned above, the ECF has a complex-shaped structure. Some parts contain a thin 
133 layer adjacent to the cardiac muscle, which is similar to the microvasculature of the retinal 
134 vascular image visualized as small linear structures. In order to improve the performance of 
135 segmentation of small structures, several modules have been integrated into the main architecture 
136 of U-Net and V-Net such as dense-layer and deep supervision modules [21-25]. The Dense-layer 
137 [23, 24] has been used to enhance the segmentation result instead of the traditional convolution 
138 in the U-Net model.  Deep supervision [21, 22, 25] was used to improve local minimal traps 
139 during the training. The deep supervision helps to improve model convergence and increase the 
140 number of learned features [21]. Kearney et al. [21] showed that addition of deep supervision 
141 added to the U-Net model could improve the performance of 3D segmentation in CT image of 
142 prostate gland, rectum, and penile bulb.
143 While 2D and 3D deep learning approaches have been used for medical image 
144 segmentation, 3D approaches have typically shown better performance than the 2D approaches 
145 [8, 9, 26]. For example, Zhou et al. [9] demonstrated the better performance of 3D CNN 
146 approaches on multiple organs on 3D CT images, when compared to the 2D based method. 
147 Starke et al. [8] also demonstrated that 3D CNN achieved better performance on segmentation of 
148 head and neck squamous cell carcinoma on CT images. Woo et al. [26] demonstrated that 3D U-
149 Net provided better performance on brain tissue MRI images, compared with 2D U-Net, on a 
150 smaller training dataset. Therefore, in this paper we use a 3D CNN for segmenting epicardial fat 
151 in cardiac CT images.
152

153

154 Materials & Methods

155 CNN architecture
156 The model architecture is based on a 3D U-Net model composed of multiple levels of 
157 encoding and decoding paths. The initial number of features at the highest layers of the model is 
158 32. The numbers of feature maps are doubled with each downsampling path. In addition to the 
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159 original U-Net architecture, we added an attention gate connecting the encoding and decoding 
160 paths and deep supervision at the final step of the network. The model is created on a fully 3D 
161 structure at each network level. The final layer is an element-wise sum of feature maps of two 
162 last decoding paths. The segmentation map of two classes (epicardial fat and background) is the 
163 output layer with threshold of 0.5 to generate the binary classification of the epicardial fat. The 
164 architecture of the proposed network is shown in Fig 2.
165 Starting with the standard 3D U-Net architecture, the attention gate module connects each 
166 layer of encoding and decoding paths. The gating signal (g) is chosen from the encoding path 
167 and the input features (x) are collected from the decoding path.  To generate the attention map, g 
168 and x go through a 1x1x1 convolution layer and element-wise sum, followed by rectified linear 
169 unit (ReLu) activation, a channel-wise 1x1x1 convolutional layer, batch normalization and 
170 sigmoid activation layer. The output of sigmoid activation is concatenated to the input x to get 
171 the output of the attention gate module [11, 21].
172 Deep supervision [10, 22] is the module at the final step of the network where it 
173 generates the multiple segmentation maps at different resolution levels, which are then combined 
174 together. The secondary segmentation maps are created from each level of decoding paths which 
175 are then transposed by 1x1x1 convolution. All feature maps are combined by element-wise sum. 
176 The lower resolution map is upsampled by 3D transposed convolution to have the same size as 
177 the second-lower resolution. Two maps are combined with element-wise sum then upsampled 
178 and added to the next level of segmentation map, until reaching the highest resolution level.
179

180 CT imaging data
181 This experimental study was approved and participant consent was waived by the 
182 institutional review board of Siriraj Hospital, Mahidol University (certificate of approval number 
183 Si 766/2020). The experimental datasets were acquired from 220 patients with non-contrast 
184 enhanced calcium scoring and 40 patients with CE-CCTA. The exclusion criteria were post open 
185 surgery of the chest wall. All CT acquisition was performed with the 256-slice multi-detector 
186 row CT scanner (Revolution CT; GE Medical Systems, Milwaukee, Wisconsin, United States).  
187 The original CT datasets of NCCT and CECT studies were 64 slices in 2.5 mm slice thickness 
188 and 256 slices in 0.625 mm slice thickness, respectively. All DICOM images were incorporated 
189 into a single 3D CT volume file with preserved original pixel intensity. Due to limitation of GPU 
190 memory, the 256 slices of CE-CCTA were pre-processing with rescaling to 64 images in the 
191 volume dataset. The final 3D volume dataset in all experiments was 512x512x64. The dataset 
192 was raw 12 bits grayscale in each voxel. The area of pericardial fat was defined by fat tissue 
193 attenuation inside the pericardium, ranging from -200 HU to -30 HU [14, 27, 28].  The ground-
194 truth segmentation of ECF in all axial slices was performed using the 3D slicer software version 
195 4.10.0 by a cardiovascular radiologist with more than 15 years of experience. No additional 
196 feature map or augmentation was performed in the pre-processing step.
197

198 Training framework
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199 The experiments were implemented using the pytorch (v1.8.0) deep learning library with 
200 Tensorflow backend in Python (v3.6.9). The workflow for network training is illustrated in Fig 3. 
201 The training and testing processes were performed on a cuda-enabled GPU (Nvidia DGX-A100) 
202 with 40 GB RAM. The experiments were divided into three scenarios: model validity 
203 assessment, NCCT, and CECE experiments. The parameters were the same for all three 
204 experiments. The networks were trained with RMSprop optimizer and mean squared error loss. 
205 The training parameters of learning rate, weight decay, and momentum were le-3, le-8 and 0.9, 
206 respectively. The initial random seed was set to be 0. The illustration of the experimental 
207 framework is shown in Fig 3.
208 The first experiment was the assessment of the model validity, for which we used 5-fold 
209 cross validation. The total dataset consisted of 200 volume-sets (12,800 images), divided into 
210 five independent folds. Each fold contained 160 volume-sets (10,240 images) for training and 40 
211 volume-sets (2,560 images) for validation, without repeated validation data between folds. The 
212 other 20 volume-sets (1,280 images) were left for testing in second and third experiments. The 
213 volume matrix of each dataset was 512x512x64 pixels. Then the 5-fold cross validation was 
214 performed on standard U-Net, AG-U-Net, DSV-U-Net and the proposed method (AG-DSV-U-
215 Net). For each fold of validation, the model with the best training accuracy after 150 epochs was 
216 selected for the validation.
217 The second experiment was to assess segmentation performance by training the network 
218 from scratch with the NCCT dataset. The volume matrix of each dataset was 512x512x64 pixels. 
219 To compare the performance of segmentation, this experiment was performed with four model 
220 architectures: standard U-Net, AG-U-Net, DSV-U-Net and proposed method (AG-DSV-U-Net). 
221 The network was trained with a hold-out method, in which a total of 220 volume-sets (14,080 
222 images) were split into 200 volume-sets (12,800 images) for training and 20 volume-sets (1,280 
223 images) for testing. The model output on the training data was collected at the best accuracy of 
224 total 300 epochs, named model-A.
225 The third experiment was to assess segmentation performance in CECT dataset and to 
226 evaluate the effectiveness of transferring the learning from NCCT to CECT datasets. The pre-
227 training 3D model (model-A) was trained on large calcium scoring NCCT datasets.  The key 
228 success of the transfer learning on 3D U-Net is to fine-tune only the shallow layers (contracting 
229 path) [29] instead of the whole network. This contracting path represents a more low-level 
230 feature of the network [29]. The retraining dataset requires only a small amount of data - in our 
231 case only 20 volume-sets of CECT data. These retraining datasets are not from the same cases as 
232 used in the pre-trained model. The original volume matrix of each dataset was 512x512x256 
233 pixels. Due to the limitation of GPU memory, the pre-processing step is voxel rescaling from 
234 256 to 64 slices in the z plane. To compare the performance of segmentation, this experiment 
235 was performed with four model architectures: standard U-Net, AG-U-Net, DSV-U-Net and 
236 proposed method (AG-DSV-U-Net). The network was trained with a hold-out method, in which   
237 the total 40 volume-sets (2,560 images) were split into 20 volume-sets (1,280 images) for 
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238 training and 20 volume-sets (1,280 images) for testing. The output model is collected at the best 
239 training accuracy of total 300 epochs, named model-B.
240

241 Performance evaluation
242 The performance of our proposed CNN segmentation is compared with the performance 
243 of the existing methods. The evaluation was quantitatively evaluated by comparison with the 
244 reference standard using the Dice similarity coefficient (DSC), Jaccard similarity coefficient 
245 (JSC) and Hausdroff distance (HD). An average HD value was calculated using the insight 
246 toolkit library of 3D slicer. Differences in the comparison coefficient among the four groups of 
247 experiments (standard U-Net, AG-U-Net, DSV-U-Net and AG-DSV-U-Net) were assessed with 
248 a paired Student’s t-test. P values <0.05 indicated a statistically significant difference. 
249 Differences in the comparison between DSC of segmentation result and ECF volume were 
250 assessed with Pearson’s correlation coefficient. The Pearson’s values of < 0.3 indicated poor 
251 correlation, 0.3 to 0.7 indicated moderate correlation, and > 0.7 indicated good correlation.
252

253

254 Results

255 The patient demographics are shown in Table 1. The training dataset of NCCT has an 
256 average age of 61.43 years and an average volume of 135.75 ml. The testing dataset of non-
257 contrast CT has a similar distribution, with an average age of 67.80 years and an average volume 
258 of 127.59 ml.  For the contrast-enhanced dataset, the average ages of training and testing datasets 
259 were 65.85 and 60.85 years, respectively. The average volumes of epicardial fat of training and 
260 testing datasets were 117.13 and 121.43 ml, respectively.
261 Five-fold cross validation experiments on our NCCT dataset were used to evaluate the 
262 validity and repeatability performance of the proposed method. The dataset was split into 
263 training (80%) and validation (10%) for each fold. On each model architecture, the validation 
264 data exhibits good results across each fold. The proposed method also demonstrates the best 
265 average performance (DSC = 89.02), when compared with other methods (p<0.05). (Table 2).
266 The experimental result of the NCCT dataset is shown in Table 3. The proposed CNN-
267 based method for ECF segmentation on the non-contrast dataset demonstrates excellent results, 
268 achieving average DSC, JSC, HD values of 90.06±4.60, 82.42±6.91 and 0.25±0.14, respectively.  
269 The baseline of the experiment is the standard 3D U-Net which demonstrates good results with 
270 DSC, JSC and HD values of 84.87±5.73, 74.12±8.0.8 and 0.34±0.18, respectively. The 
271 segmentation results of the modified U-Net models (AG-U-Net, DSV-U-Net and the proposed 
272 method) demonstrate statistically significant improvement compared with the standard U-Net 
273 (p<0.05). The difference between segmentation results of AG-U-Net and DSV-U-Net is not 
274 statistically significant (p>0.05). The DSC, JSC, HD values of AG-U-Net are 89.59+4.45, 
275 81.41+6.77 and 0.27+0.12, respectively. The proposed method statistically improved the 
276 segmentation result (p<0.05) compared with the standard U-Net and AG-U-Net. While the 
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277 proposed method is better than DSV-U-Net, the difference is not statistically significant 
278 (p>0.05). Examples of segmentation results of the proposed method are shown in Fig 4
279 The experimental result of the proposed method on the CECT dataset is shown in Table 
280 4. This transfer learning approach achieved average DSC, JSC and HD values of 88.16±4.57, 
281 79.10±6.75 and 0.28±0.20, respectively (Table 4). The segmentation result of the proposed 
282 method demonstrates statistically significant improvement, when compared with other methods 
283 (p<0.0.5). The segmentation results of the standard 3D U-Net and DSV-U-Net demonstrate good 
284 similar performance (p>0.05). The segmentation results of the standard 3D U-Net and DSV-U-
285 Net are statistically significantly better than AG-U-Net (p<0.05). Examples of segmentation 
286 results of transfer learning with the proposed methods are shown in Fig 5.
287

288

289 Discussion

290 Segmentation of ECF is a difficult image segmentation task because of the thin layer and 
291 complex structures at the outer surface sulci of the heart. The ECF is also variable in distribution, 
292 depending on body habitus.  In general, obese patients have larger amounts of ECF than do thin 
293 patients. Segmentation of ECF is more challenging than the segmentation of other cardiac 
294 structures.
295 Most CNN approaches work on 2D images whereas in clinical practice, 3D volume 
296 segmentation is used [30]. The 2D-based CNN approaches such as ResNet and VGG are not 
297 applicable for 3D datasets. The model architectures for 2D CNN and 3D CNN are different [8, 9, 
298 26].  3D CNN has an advantage over 2D-CNN by extracting both spectral and spatial features 
299 simultaneously, while 2D CNN can extract only spatial features from the input data [4]. For this 
300 reason in general, the 3D CNN is more accurate than 2D [4, 31]. 2.5D CNN has been developed 
301 to solve the memory consumption problem of 3D models [32].  2.5D CNN has at least three 
302 approaches [32, 33]. The first is a combination of output of 2D CNN in three orthogonal planes 
303 (axial, coronal and sagittal) with majority voting. The second is 2D CNN with 3 or 5 channels 
304 from adjacent 3 or 5 slices. Third is 2D CNN with randomly oriented 2D cross sections. In the 
305 final step, 2.5D segmentation requires an additional post-processing step to generate 3D output 
306 [34].  Recent studies demonstrated that the 3D CNN provides a higher accuracy for image 
307 segmentation, when compared with the 2D CNN [8, 9, 26]. However, the 3D CNN requires more 
308 resources and time for the model training. For the best performance, we use the 3D CNN in our 
309 implementation.  The best performing methods for 3D volume segmentation of medical data are 
310 U-Net and V-Net. V-Net has more trainable parameters in its network architecture. Recent 
311 experimental comparisons of U-Net and V-Net on medical data have not shown statistically 
312 significant differences in performance [11, 35]. However, U-Net is less complex and easier to 
313 modify so that additional modules can be used to integrate to the standard U-Net in order to 
314 improve the performance.
315 Several state-of-the-art approaches for CNN-based segmentation of ECF have recently 
316 been proposed. Commandeur et al. [13] proposed the first CNN-based method for ECF 
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317 segmentation in a non-contrast 2D CT dataset using a multi-task convolutional neural network 
318 called ConvNets. They reported a Dice score of 82.3% for the segmentation result.  He et al. [11] 
319 proposed another CNN-based method on a 3D CECT dataset using AG integrated into 3D U-
320 Net. The segmentation result was reported to have a DSC of 88.7% [11]. We repeated the 
321 experiment by implementing the AG in 3D U-Net on our NCCT dataset by hold-out test. The 
322 amount of hold-out train on our dataset (200 volume-sets) is more than the one used in the 
323 previous article (150 volume-sets) [11]. Our 4 layer AG-U-Net method demonstrates significant 
324 improved performance with DSC of 89.59%, as compared with 3 layer AG-U-Net of 86.54% 
325 (p<0.05).  That should be due to more layers of our network. In our implementation, our AG-U-
326 Net has deeper convolutional layers (4 layers) and removes sigmoid at the end of the network. 
327 However, the AG integration provides significantly better performance (p<0.05) as compared 
328 with standard 3D U-Net (DSC of 84.87%). To the best of our knowledge, our experiment uses 
329 the largest volume size of the dataset (512x512x64). We try to improve the accuracy of the 
330 segmentation by modifying the standard U-Net architecture. We introduce a novel approach to 
331 3D segmentation of ECF by integrating both AG and DSV modules into all layers of 3D U-Net 
332 deep learning architecture. The AGs are commonly used in natural image analysis and natural 
333 language processing [36, 37], which can generate attention-awareness features. The AG module 
334 is beneficial for organ localization, which can improve organ segmentation [15]. During CNN 
335 training, AG is automatically learned to focus on the target without additional supervision [38]. 
336 The AG module can improve model accuracy by suppressing feature activation in irrelevant 
337 regions of an input image [15]. The AG module is used to make connections between encoding 
338 and decoding paths on the standard U-Net. The DSV module is used to deal with the vanishing 
339 gradient problem in the deeper layer of CNN [10, 25]. The standard approach provides the 
340 supervision only at the output layer. But the DSV module propagates the supervision back to the 
341 earlier layer by generating a secondary segmentation map combining from different resolution 
342 levels. The losses of this segmentation map is weighted and added to the final loss function that 
343 can effectively increase the performance [39]. The DSV module is used by adding into the 
344 decoding path of 3D U-Net. The AG-DSV modules had been implemented in previous work [10, 
345 22] for kidney [22] tumor segmentation (Kidney Tumor Segmentation Challenge 2019), as well 
346 as for liver [10] and pancreas [10] tumor segmentation (Medical Decathlon Challenge 2018).
347 The experiment demonstrated that our proposed method (AG-DSV-U-Net) achieves 
348 excellent performance with average and max DSC values of 90.06% and 95.32%, respectively. 
349 Our proposed method also shows a significant improvement of performance (90.06%), when 
350 compared with the previous state-of-the-art network (86.54%) on the same dataset (p<0.05). The 
351 example of the results was shown in Fig 4. While one might expect the segmentation 
352 performance to improve with fat volume of the dataset, unexpectedly, the statistical analysis 
353 demonstrates that there is poor correlation between segmentation performance and fat volume 
354 (Pearson’s correlation 0.2).
355 The 3D volume size of our dataset is larger (512x512x64) compared with the previous 
356 work (512x512x32) [11]. For comparative analysis on different numbers of slices and image 
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357 resolution of dataset, the previous work demonstrates that a 40-slice of volume dataset achieves 
358 1% higher DSC than 32-slice and 24-slice [11]. However, the training time is also increased. We 
359 set up additional experiments to test the effect of different numbers of slices and image 
360 resolution on segmentation performance with our proposed model (AG-DSC-U-Net).The number 
361 of training, testing datasets and hyperparameters are the same as defined in the NCCT 
362 experiment. The experiment of effect of the number of slices was performed by rescaling the 
363 slices with 64, 32 and 16 slices and fixed image resolution with 512x512 pixels. The 
364 segmentation results of 64, 32 and 16 slices are DSC 90.06%, 81.76%, 78.93%, respectively. The 
365 experiment to determine the effect of different image resolution scales was performed by 
366 rescaling the resolution with 512x512, 256x256 and 128x128 pixels, with the number of slices 
367 fixed at 64. The segmentation results of 512x512, 256x256 and 128x128 resolution are DSC 
368 90.06%, 86.19% and 83.73% respectively.  The 512x512 image resolution and 64 slices still give 
369 the best performance, with significant improvement over lower resolution (p<0.05). More slices 
370 and higher image resolution of the dataset let the network extract more spatial information that 
371 can help to improve segmentation accuracy. Furthermore, because the ECF somewhere is a thin 
372 layer along the sulcus of the heart contour, more spatial resolution will improve segmentation 
373 accuracy. To give the best performance, we choose the 64 slices for our implementation which is 
374 a perfect fit with the original NCCT dataset, having 64 images in each dataset. In the CECT, the 
375 original CT dataset had 256 slices and needed to be rescaled to 64 slices. Due to this limitation of 
376 the proposed model and current GPU architecture, the voxel size of train and test datasets cannot 
377 be extended beyond 64 slices. The other limitation of this study is the size of the dataset: 220 
378 volume-sets for NCCT experiment and 40 volume-sets for CECT experiment. However, the 
379 experiment demonstrates the excellent result of the testing.
380 In clinical practice, the cardiac CT scan can be performed in NCCT or CECT or both 
381 studies. For this reason, the ECF can also be either segmentation from NCCT or CECT dataset. 
382 To the best of our knowledge, ours is the first implementation of ECF segmentation on NCCT 
383 and CECT datasets.  In our experiment, we start to train with the NCCT dataset (200 volume-
384 sets). We use the concept of transfer learning to re-train with a similar dataset by taking a small 
385 amount of the dataset (Fig 3). We re-train the pre-trained NCCT model with a small amount of 
386 CECT data (20 volume-sets). We test the model with additional testing of 20 volume-sets. The 
387 experimental result achieves good performance with a DSC value of 88.16%. The performance 
388 result is also significantly better than the standard U-Net and AG-U-Net (Table 4). Our proposed 
389 re-trained model demonstrates a good performance as compared with the previous training from 
390 scratch (88.7%) [9].
391 Future studies could include investigations in more data diversity from multiple CT 
392 venders, larger patient variation, and testing the model across different healthcare centers. 
393 Further investigation in clinical correlation between CNN segmentation of ECF volume and 
394 occurrence of cardiovascular disease would be also interesting research questions.
395

396
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397 Conclusions

398 In the paper, we have introduced a CNN-based approach for ECF segmentation using 
399 integration of AG and DSV modules into the standard 3D U-Net. ECF segmentation is one of the 
400 most difficult medical image segmentation tasks. We trained the NCCT dataset from scratch and 
401 re-trained on a CE CT dataset from the pre-trained NCCT model. We successfully improved the 
402 performance of ECF segmentation in both NCCT and CECT datasets, when compared with the 
403 previous state-of-the-art methods. It is expected that this proposed method has potential to 
404 improve the performance in other difficult segmentation tasks. This concept of training and 
405 retraining models can be also applied to other medical image segmentation problems.
406

407
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Figure 1
The example CT dataset of epicardial fat

(A) is non-contrast (B) is post-contrast CT images. The pericardium is a thin layer of
membrane surrounding the heart (arrow). The epicardial fat is fat along outer surface of
heart and inside the pericardium (*).
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Figure 2
The proposed network of epicardial fat segmentation.

The network contains two main parts of the standard 3D U-Net integrated with the attention
gate, and the deep supervision modules.
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Figure 3
Illustration of framework of the proposed method.

The upper row is the second experiment which performs the network training from scratch
with a non-contrast CT dataset. The lower row is the third experiment which performs the
network re-training on a contrast-enhanced CT dataset. No post-processing is required in this
framework.
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Figure 4
Example of segmentation result of proposed method on non-contrast CT images.

The first, second and third rows contain a source dataset in axial view, segmentation result in
axial view and segmentation result in 3D reconstruction. The yellow color represents the
segmented ECF using the proposed method and green color represents the ground-truth. The
DSC values from left to right volume-sets are 90.90%, 88.63%, 95.31% and 87.86%,
respectively. The fat volumes from left to right volume-sets are 95.69 ml, 116.95 ml, 106.99
ml and 91.18 ml, respectively.
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Figure 5
Example of segmentation result of proposed method on contrast-enhanced CT images.

The first, second and third rows contain a source dataset in axial view, segmentation results
in axial view and segmentation results in 3D reconstruction. The yellow color represents the
segmented ECF and green color represents the ground-truth. The DSC values from left to
right volume-sets are 80.23 %, 93.38%, 72.26% and 92.72%, respectively. The fat volumes
from left to right volume-sets are 201.20 ml, 112.48 ml, 92.28 ml and 112.98 ml,
respectively.
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Table 1(on next page)

Patient characteristics of the CNN non-contrast and contrast-enhanced CT datasets

Patient characteristics of the CNN non-contrast and contrast-enhanced CT datasets
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1 Table1: Patient characteristics of the CNN non-contrast and contrast-enhanced CT datasets

Non-contrast CT Contrast-enhanced CT

Training dataset Testing dataset Training dataset Testing

No. of records 200 20 20 20

Average age 

(years)

61.41±12.27 67.80±11.66 65.85±8.36 60.75±10.31

Average volume 

(ml)

135.75±60.09 127.59±35.51 117.13±69.29 121.43±40.21

Min volume (ml) 6.39 71.86 47.34 66.03

Max volume (ml) 327.44 208.20 374.82 201.20

2

3

4

5

6

7

8

9

10
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Table 2(on next page)

Results of 5-fold cross-validation. Mean Dice score coefficient and standard deviation
were used to assess model validity and repeatability on non-contrast CT dataset.

Results of 5-fold cross-validation. Mean Dice score coefficient and standard deviation were
used to assess model validity and repeatability on non-contrast CT dataset.

PeerJ Comput. Sci. reviewing PDF | (CS-2021:05:61572:1:1:NEW 6 Oct 2021)

Manuscript to be reviewedComputer Science

eibe
Inserted Text
the 



1

2 Table 2. Results of 5-fold cross-validation. Mean Dice score coefficient and standard deviation 

3 were used to assess model validity and repeatability on non-contrast CT dataset.

Fold U-Net AG-U-Net DSV-U-Net AG-DSV-U-Net

(Proposed method)

1 87.48 87.93 87.70 89.55

2 89.97 89.65 89.93 90.73

3 89.22 89.76 88.30 88.76

4 89.50 90.08 85.56 89.61

5 86.44 84.77 82.84 86.46

mean 88.52 88.44 86.91 89.02

4
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Table 3(on next page)

Experimental results with standard 3D U-Net, AG-U-Net and proposed method (AG-DSV-
U-Net) on non-contrast CT dataset

Experimental results with standard 3D U-Net, AG-U-Net and proposed method (AG-DSV-U-
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1 Table 3. Experimental results with standard 3D U-Net, AG-U-Net and proposed method (AG-

2 DSV-U-Net) on non-contrast CT dataset 

Non-

contrast CT

U-Net AG-U-Net DSV-U-Net AG-DSV-U-Net

(Proposed method)

DSC 84.87±5.73 89.59±4.45 89.70±4.81 90.06+4.60

JSC 74.12±8.08 81.41±6.77 81.64±7.33 82.21+6.91

HD 0.34+0.18 0.27+0.12 0.28+0.14 0.25+0.14

3

4

5

6

7

8

9

10

11

12

13

14
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1

2 Table 4. Transferred learning from pre-trained model to contrast-enhanced CT dataset

U-Net AG-U-Net DSV-U-Net AG-DSV-U-Net

(Proposed method)

DSC 85.58+4.99 82.47+4.33 85.07+4.96 88.16+4.57

JSC 75.11+7.19 70.39+6.03 74.32+7.07 79.10+6.75

HD 0.41+0.36 0.34+0.23 0.35+0.30 0.28+0.20
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