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ABSTRACT
Corona Virus Disease 2019 (COVID-19) pandemic has increased the importance of
Virtual Learning Environments (VLEs) instigating students to study from their
homes. Every day a tremendous amount of data is generated when students interact
with VLEs to perform different activities and access learning material. To make the
generated data useful, it must be processed and managed by the proper machine
learning (ML) algorithm. ML algorithms’ applications are many folds with Education
Data Mining (EDM) and Learning Analytics (LA) as their major fields. ML
algorithms are commonly used to process raw data to discover hidden patterns and
construct a model to make future predictions, such as predicting students’
performance, dropouts, engagement, etc. However, in VLE, it is important to select
the right and most applicable ML algorithm to give the best performance results. In
this study, we aim to improve those ML and DL algorithms’ performance that give an
inferior performance in terms of performance, accuracy, precision, recall, and F1
score. Several ML algorithms were applied on Open University Learning Analytics
(OULA) dataset to reveal which one offers the best results in terms of performance,
accuracy, precision, recall, and F1 score. Two popular ML algorithms called Decision
Tree (DT) and Feed-Forward Neural Network (FFNN) provided unsatisfactory
results. They were selected and experimented with various techniques such as grid
search cross-validation, adaptive boosting, extreme gradient boosting, early stopping,
feature engineering, and dropping inactive neurons to improve their performance
scores. Moreover, we also determined the feature weights/importance in predicting
the students’ study performance, leading to the design and development of the
adaptive learning system. The ML techniques and the methods used in this research
study can be used by instructors/administrators to optimize learning content and
provide informed guidance to students, thus improving their learning experience and
making it exciting and adaptive.

Subjects Human-Computer Interaction, Artificial Intelligence, Computer Education, Data Science
Keywords Cross validation, Adaptive boosting, Performance augmentation, Machine learning,
Grid search

INTRODUCTION
Machine Learning (ML) and Deep Learning (DL) algorithms showing good performance
on a certain class of problems or datasets do not entail that they will have the same
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performance on other problems or datasets. If ML/DL model shows good performance
results on a certain class of problems then it essentially compensates for generating
degraded performance results on sets of all remaining problems (Goodfellow, Bengio &
Courville, 2016). Nonetheless, in the field of education data mining, there is always some
background knowledge that can be used to generate good performance results evening
without knowing about the exact problem or datasets. Students learning behavior having
similar features are usually classified in the same class. Often there will be outliers in
the dataset with little or no noise. Rarely, there will be a time-series component attached to
the dataset features. For ML/DL models, the proper dataset along with the suitable features
are crucial for generating high-performance results. The choice of features influences
the overall performance of the model (Loch-Olszewska & Szwabiński, 2020). Moreover, the
proper ML/DL algorithm also affects the overall performance of the model as it can
increase or decrease the response time of the model.

In VLEs, often a popular and stable ML/DL algorithm experiences low-performance
results (Grohmann et al., 2019). For data scientists and machine learning experts, it is a
challenge to reveal what causes ML/DL algorithm to generate low-performance results and
what techniques can be used to improve the performance of that ML/DL algorithm
(Rodrigues et al., 2019). Already, the fast spread of COVID-19 has compelled educational
institutes to offers online courses to students. Various ML/DL algorithms can be used
to study and comprehend the learning features of online students to provide them the
needed feedback and tailored learning content. In VLEs, the performance of the ML/DL
algorithm is vital to model the study behavior of students and if some ML/DL algorithms
show degraded performance, then machine learning experts should come with suitable
techniques to improve their performance. In this study, various ML/DL algorithms were
applied to Open University Learning Analytics (OULA) dataset to predict the performance
of online learners. The ML/DL algorithms showing inferior performance in terms of
accuracy, precision, recall, and F1 score were selected and various techniques such as grid
search cross-validation, adaptive boosting, extreme gradient boosting, early stopping,
feature engineering, and dropping inactive neurons were introduced to improve their
performance.

Recently, with the rapid spread of COVID-19, Virtual Learning Environment (VLE)
platforms across the world experienced a massive increase in the number of online
students (Dhawan, 2020). Besides, public and private sector educational institutions have
also moved their courses, and learning material on the online learning platforms (Bao,
2020). Even before the COVID-19 pandemic outbreak, the explosive growth of VLEs and
Massive Open Online Courses (MOOCs) has attracted millions of students where students
can learn according to their needs and learning pace (Weinhardt & Sitzmann, 2019).
MOOCs, VLE, Learning Management Systems (LMS), and web-based online learning
systems have reduced learning costs and allow students to learn without temporal and
spatial constraints. Instructors/Educators can analyze and monitor students learning
behavior by evaluating their learning features stored at the computer servers. Instructors
can assess students’ behavior from multiple perspectives i.e., predicting students’
performance, predicting students’ engagements, discovering students’ difficulties during
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the learning process, thereby gaining insight into students’ behavior that may cause their
failure or dropout.

Contrary to traditional classroom settings, the Virtual Learning Environment (VLE)
platform allows students to study from anyplace and at their own preferred time (Cofino,
Atillo & Velos, 2021). In circumstances such as the COVID-19 pandemic, where social
distancing is mandatory, the importance of VLE becomes more obvious and essential. The
vast majority of universities are using online learning platforms such as Massive Open
Online Courses (MOOCs), Learning Management System (LMS), and VLEs to provide
education to those students who due to many reasons, cannot attend regular classes (Tseng
et al., 2019). Popular online platforms such as Coursera, Udacity, Udemy, Edx,
Khanacademy have contributed a lot in providing education of all levels to the students.
VLEs allows students to further polish their skills while they are doing the job. As compare
to regular class settings, where the presence of the students is mandatory, VLEs allows
students to study any course at their own pace from anywhere at an affordable price.
Despite having advantages, VLEs also have several challenges which educators and
administrators need to consider for otherwise, VLEs may squander their effectiveness
(Gillett-Swan, 2017). As there is no one to one connection between students and
instructors, the form of education in VLEs is passive, where the students have to take
responsibility for captivating and assisting themselves in studies. It is also noticed that in
online learning settings, students after the registration process, download learning
materials such as videos, notes, learning content, etc. and do not carry out the entire
course. Due to less engagement with online courses, the total number of activities that a
student must perform plunges below the recommended level. Often students’ feedback in
online learning is limited, lacks face-to-face communication causing social isolation
(Gillett-Swan, 2017). Therefore, the administrators of online learning must understand its
disadvantages and come up with techniques that encourage students to remain active,
engaged, and complete the entire course with good grades.

The overall aim of this research study is to use and compare various ML algorithms to
predict students’ performance, thereby supporting instructors to perform timely
intervention by recommending the suitable content to students and providing the
necessary guidance. The performance of various ML algorithms is compared by using
metrics such as precision, recall, f1 score, support, accuracy, macro average, and weighted
average. Those ML algorithms showing unsatisfactory accuracy results are selected, and
different performance improvement techniques have been applied to improve their
performance. The study behavior is determined by analyzing students’ interaction with
VLE platforms such as clickstream data, students’ performance in past assessments,
module interest, and online content accessed. More specifically, the objectives to be
addressed in this paper are as follows:

� Comparing the performance of various ML and deep learning (DL) algorithms to
predict students’ performance.

� Improving the performance of those ML algorithms (DT and FFNN) that show inferior
performance results in performance, accuracy, precision, recall, and F1 score.
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� Using various techniques such grid search cross-validation, adaptive boosting, extreme
gradient boosting, early stopping, feature engineering, and dropping inactive neurons to
improve ML algorithm performance.

� Using a Decision Tree (DT) ML algorithm in determining the feature weights of
students in predicting their performance.

� Classifying students according to their performance and study behavior features
(Withdrawn, Fail, Pass, Distinction).

� Recommending tailored learning paths to students according to their feature weights.

The rest of the article is structured as follows: In “Literature Review” we discuss the
study background and related work. “Data Description and Preprocessing” is about data
description and preprocessing steps. The training of multiclass classification algorithms
and their performance evaluation is discussed in “Multiclass Classification Models
Training and Performance Evaluation”. The methodology is presented in “Methodology”.
This study results are further discussed in “Discussion and Limitations”. The study
conclusion and future work is discussed in “Conclusion and Future Work”.

LITERATURE REVIEW
Table 1 presents a comparison of various studies carried out on VLE and MOOC datasets,
their objectives, ML algorithms used, and evaluation metrics with the availability of data
mining tools, researchers are experimenting on various educational datasets to know
about students’ study behavior, factors affecting their performance, and attrition (Gupta &
Sabitha, 2019). The results generated from the learning analytics dataset helps instructors
in decision-making and supporting students. Predicting students’ performance based
on their feature weights is a new phenomenon in the educational domain, helping
instructors to know about students learning behavior in detail and to provide timely
corrective strategies to avoid students from course dropout. In literature, there is
substantial debate over determining factors affecting students’ behavior, avoiding students
dropout, and providing timely support in VLE. Numerous studies had been carried out
to determine the features contributing to students’ study performance. Features such as
study time, study duration, online engagement rate, type of learning content, background
knowledge, earlier education, parental education, student-instructor interactivity, course
prerequisite, motivational and social factors, assessment performance are directly
associated with the students’ final performance in VLE.

Damaševičius (2009) analyzed the application of association rule mining for evaluating
the students’ academic results and improving course material. A novel metric was
introduced called cumulative interestingness for assessing the strength of association rule
to determine the factors influencing examination results, important course topics, and
students’ study behavior. The strength of the proposed framework was validated by
carrying out a case study in an informatics course. The research study demonstrated that
the association rule mining technique can help both instructors and students in improving
the learning content and knowing which course topic caused the most difficulties for
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Table 1 Comparative Analysis of studies using ML techniques on VLE and MOOC datasets.

Authors Objective ML model Performance & Evaluation

Helal et al.
(2018)

Academic performance prediction by
considering student heterogeneity

Naïve Bayes, J48, SMO JRip Naïve Bayes with best Accuracy = 85%

Heuer &
Breiter
(2018)

Using daily online activity to predict
students’ success

Decision Tree, Random
Forest, Logistic regression,
Support Vector Machine

SVM with f1 score = 91% and accuracy = 87% precision
= 93% recall = 89%

Herodotou
et al. (2019)

Using predictive learning analytics to
empower online teachers

Chi-square Kruskal-Wallis H
test

55.9%, p = 0.0003 for high group students 48.1%, p =
0.0006 for low group students

Okubo et al.
(2017)

Using recurrent neural network to predict
students performance in multiple courses

RNN Accuracy = 84.6%

Waheed et al.
(2020)

Deploying deep learning model to predict
students performance

Deep Artificial Neural
Network

Accuracy: DANN = 84–93%

Logistic Regression = 79.82–85.60%

Support Vector Machine = 79.95–89.14%

Manrique
et al. (2019)

Using classification algorithms to predict
students dropout

Naïve Bayes (NB) Precision, Recall, Accuracy, f1 Random Forest
Accuracy = 86%, Precision = 86%, f1 = 85% GBT
Recall = 86%

Support Vector Machine
(SVM)

Random Forest (RF)

Gradient Boosting Tree
(GBT)

Cobos &
Olmos
(2018)

Predicting students dropout and success in
MOOC for professional learning

Boosted Logistic Regression Stochastic Gradient Boosting

Stochastic Gradient Boosting Neuronal Network

Random Forest, Naïve Bayes Random Forest with accuracy above 80%

Neuronal Network

Support Vector Machine

K-Nearest Neighbors

Classification Tree

Extreme Gradient Boosting

Jha,
Ghergulescu
& Moldovan
(2019)

Predicting dropout and performance using
ensemble, regression and deep learning
technique

Generalized Linear Model Deep learning with 94% accuracy for dropout
prediction.

Gradient Boosting Machine Deep learning with 96% for performance prediction

Distributed Random Forest

Deep Learning

Xing & Du
(2019)

Intervening students to avoid dropout by
leveraging deep learning

K-Nearest Neighbors Deep Learning with 98% accuracy

Support Vector Machine

Decision Tree Deep Learning

(Continued)
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the students during their study. The major drawback of this study was that no topic map
was provided to the students that would help them in selecting which topic to study first.

Aydoğdu (2020) predicted the performance of 3,518 students, who were actively
participating in LMS activities using Artificial Neural Networks (ANN). The features
selected for performance prediction were gender, assessment score, study duration,
number of logins made, attendance in the live session, homework score, attendance in
archived courses, and time spent on archived courses. The ANN was able to make
predictions with 80.47% accuracy with attendance in the live session, attendance in
archived courses and study time duration being the most significant features contributing
to the prediction of the final performance.

Hew et al. (2020) reasoned that the success of MOOCs is not associated with students’
course completion rate, but as the extent of students’ contentment with the course.
Students’ satisfaction with MOOCs can enable educational institutions to extend their
reach to more people and use MOOCs as a source of revenue. Their study adopted a
supervised ML algorithm, hierarchical linear modeling, and sentiment analysis to analyze
the 249 MOOC course features. A total of 6,393 randomly selected students’ data was also
added to analyze the students’ perception of MOOCs. The results revealed that features
such as course instructor, assessment score, course content, and timetable play a
considerable role in justifying students’ contentment with MOOC while course major,

Table 1 (continued)

Authors Objective ML model Performance & Evaluation

Youssef et al.
(2019)

Predicting learners’ dropout in MOOC based
on efficient algorithm and feature selection

Support Vector Machine Random Forest with 97% accuracy using RFE feature
selection method

K-Nearest Neighbors

Decision Tree, Naïve Bayes

Logistic Regression

Random Forest

Hmedna, El
Mezouary &
Baz (2019)

Identification of learning styles using
predictive model

Neural Networks, Decision
Tree

Decision Tree with the highest accuracy of 99%,
Precision = 99%, Recall = 99%, f1 score = 99%, micro-
precision = 99%, macro-precision = 98%

Random Forest

K-Nearest Neighbors

Yu, Wu & Liu
(2019)

Predicting students performance in MOOC
with clickstreams data

K-Nearest Neighbors ANN with the highest accuracy of 96%

Artificial Neural Networks

Support Vector Machines

Imran, Dalipi
& Kastrati
(2019)

Evaluating the performance of deep neural
networks to predict students dropout in
MOOC

Deep Neural Network
(DNN)

DNN with 99% accuracy when using 64 neurons

Ding et al.
(2019)

Improving the performance of predictive
models by effective feature selection using
unsupervised machine learning

Long Short-Term Memory
(LSTM)

LSTM with best feature selection

Convolutional Neural
Networks (CNN)
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structure, duration, workload, content type (video, text, etc.), MOOC interaction, and
perceived difficulty play a less significant role.

Hlioui, Aloui & Gargouri (2018) argued that one of the important factors in reducing
dropout rates in VLE is the accurate and timely prediction of students’ engagement
level and providing tailored assistance. They proposed a survival modeling technique to
analyze various feature roles on attrition in Open University, UK. The learning outcome
was perceived from a student engagement perspective, which asserts that the more a
student is engaged with VLE, the better the knowledge and skill acquisition is. To enhance
students’ efficiency, the course instructor was provided with an innovative process
where the instructor can interfere with a weak student during the learning process by using
dialog prompts and providing the needed learning material.

With the emergence of MOOCs platforms and ML techniques in the past decade,
studies on analyzing and predicting VLE students’ performance, dropouts, engagement,
and difficulties, which allows for instructors timely intervention to support students, are
not rare. The easiest way to predict students’ online learning behavior is to get data
from log records of MOOCs and LMS and analyze it (Helal et al., 2018; Jiang et al., 2014;
Romero et al., 2013; Xing et al., 2016).

However, researchers may face difficulties in the data collection process, as MOOCs and
LMS are not available for each subject in every university. Moreover, the online
systems store data about the offered courses, and often do not consider storing students’
behavioral features for all courses. To overcome data collection difficulties, researchers
often use an online questionnaire survey as an effective tool to collect data about students’
academics achievements and study behavior (Apuke & Iyendo, 2018). On the other
hand, an online questionnaire study often suffers from data credibility and assurance
issues as the data may be inaccurately reported by the students (Giunchiglia et al., 2018; Lee
et al., 2017). To accurately predict students’ performance grades, it is essential to find out
the key features of online platform usage that could be used as input variables by ML
models for contributing to effective prediction.

In this study, various ML algorithms were employed to determine which algorithm
gives the best results in terms of predicting students’ performance in different course
modules. After merging tables and selecting the most relevant features, MIN-MAX scaling
technique was used to normalize the data. Before feeding features into various ML
algorithms, a train-test split was performed with 85% data reserved for training and 15%
reserved for testing the models. Figure 1 presents the working of the proposed ML based
VLE architecture.

DATA DESCRIPTION AND PREPROCESSING
We used Open University Learning Analytics (OULA) dataset that includes information
about the students’ demographics, course registration, VLE interactions, clickstreams,
assessments, and final performance scores for training ML models. The dataset is available
freely at Open University Learning Analytics Dataset and is officially certified by Open
Data Institute (ODI): http://theodi.org/.
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The students, courses, registration, and clickstream data in the acquired OULA dataset
are spread across seven tables, with students as the focal point of information. For this
study, 32,593 students’ data was gathered for 9 months. The students’ final performance is
categorized into four classes/grades with 31% withdrawn students, 22% fail students,
38% pass students, and 9% of students who secured distinction position. Seven courses
known as modules were offered to students, with each module delivered at least twice a
different time in a year. The procured raw data having seven tables are connected with
identifier columns. The tables contain information about assessments, assessment types,
assessment submission dates, courses, VLE resources types, students’ interaction
with VLE in the form of clickstreams, course registration information, and student
demographics. The VLE clickstream consist of information about various activities carried
out by students on heterogeneous modules such as discussion forums, accessing course
materials, students’ logins, visiting OU main page, subpage, URL, and glossary, etc. Their
clickstream sum records the interest of the students in each activity type.

Processing the raw dataset
The OULA features in seven tables were combined into one table having independent and
dependent features. For this research study, we selected students’ final result as the
dependent or target feature, whereas the rest of the features were selected as the predictors.
First, Students Assessments and Assessment tables were merged into the Combine

Figure 1 Workflow of the proposed machine learning based VLE architecture.
Full-size DOI: 10.7717/peerj-cs.803/fig-1
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Assessment table to know to which module each assessment belongs to. Several
unnecessary features such as code_presentation, assessment_type, date, weight from the
Assessment table, and is_banked, date_submitted from the Students Assessments table were
dropped before the merge operation as we only needed code_mudule and students
score features. The features included in the Combined Assessments table included
id_assessment, id_student, code_module, and assessment score features. In the second
step, the Combine Assessments was merged with the Student Info table to include students’
assessment scores in each code module with the Student Info table. The resultant Student
Assessment Info table was further merged with the VLE Grouped table on id_student
and code_module features using Python left join operation. The VLE Grouped table was
created by merging Student VLE and VLE table and dropping unnecessary features. The
features of the VLE Grouped table were grouped by id_student and code_module features.
The VLE Grouped table presents students registered in each code module and their
clickstream sum in that code module. The Final Info table contains all important
information about student assessments, code_modules, VLE interaction data, number of
previous attempts, studied credits, etc.

Dropping null values
The Final Info table consists of 14 features with 30,358 feature instances. All feature
instances with null, N/A, or missing data were dropped as ML algorithms can’t use
them during their training process. Invalid or missing instances usually trigger an ML
algorithm to produce misleading outcomes or less accurate results. After dropping the
missing values, the Final Info table consisted of 28,939 feature instances.

Converting object data types features to categorical features

It was revealed that several features data type was changed to object data type during
tables merge operation. These features were converted to categorical data type due to their
values characteristics. These features included code_module, code_presentation, gender,
region, highest_education, imd_band, age_band, disability, and final_result. The
categorical features allow ML algorithms to use memory efficiently and leads to accurate
ML model results.

Scaling features
We noted that some features were having variation in their magnitude and range, such as
sum_click, num_of_prev_attempts, and studied_credits. One independent feature may
gain higher weightage over other features by the ML model when not properly scaled. The
three features, as mentioned above, were scaled to one unit using the standard scalar as:

z ¼ ðx � lÞ=r (1)

where x is the feature, l is the feature mean, and r is the feature standard deviation.
Feature scaling helps the ML model in speeding up the training process and generating
accurate results.
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Performing one-hot encoding
Before fitting the data into the ML model, a one-hot encoding technique was applied to all
categorical features. Converting categorical features to one-hot encoding is important, as
most ML algorithms cannot work with them directly. They require all independent
categorical features and dependent categorical features to be converted into a numeric
data type. One-hot encoding leads to an efficient implementation of ML algorithms and is
also necessary for ML algorithms parallel operations. After performing the one-hot
encoding technique on all the categorical features, we get a dataset having 50 input features
and 28,939 feature instances. The dependent feature called final_result was also converted,
and four feature columns were generated, one for each performance class, as shown in
Table 2.

MULTICLASS CLASSIFICATION MODELS TRAINING AND
PERFORMANCE EVALUATION
After the data preprocessing and exploratory steps, 11 ML classifiers and one Deep
Learning (DL) classifier were used to train the models and predict students’ final
performance. The 11 ML classifiers included Random Forest (criterion = ‘gini’), Random
Forest (criterion = ‘entropy’), AdaBoost, Extra Tree classifier, K-Nearest Neighbor,
Decision Tree, Support Vector Machine (SVM), Gradient Boosting, Logistic Regression,
Gaussian Naïve Bayes, and Bernoulli Naïve Bayes classifier. The one DL classifier included
Feed Forward Neural Network (FFNN). For each of these classifiers, different experiments
were carried out with different configuration parameters; however, the models having
optimized results were selected. The models were selected based on accuracy, precision,
recall, f1, support, macro average, and weighted average score. Tables 3–5 present ML
classifiers with inferior, average, and superior performance scores. It can be observed that
the classification models trained with gradient boosting, extra tree classifier, random forest
‘criterion = gini’, and random forest ‘criterion = entropy’ classifiers have the highest
performance score. For brevity, we selected FFNN and Decision Tree classifiers for tuning
and for further improving their prediction performance scores using various techniques.

METHODOLOGY
The performance of ML algorithms varies on the nature of problems and datasets. We
could not assume that if 1 ML algorithm performs well on a certain class of problems, it
will also perform well on the rest of the problems. Often, in data science, ML experts are
surprised by a degraded ML algorithm performance on new and different problems.

Table 2 Performing one-hot encoding of the final result feature.

Withdrawn Fail Pass Distinction

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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Therefore, it is important to evaluate various ML algorithms on one problem and to
determine which one performs best based on their output results. Besides the
aforementioned facts, luckily, there is always some background knowledge even without
knowing anything about the datasets such as; (1) in multiclass classification problems,
samples having similar features are classified in a common class, (2) it is likely that there
will be some outliers in the dataset, (3) there is going to be little noise in the current dataset,
(4) which ML algorithms are used commonly for multiclass classification problems,
(5) which algorithms are considered to have the excellent running time, etc. We first
selected the Decision Tree (DT) ML algorithm for students’ performance prediction as it is

Table 3 ML classifiers with inferior performance scores.

Gaussian NB Precision Recall f1-score Support

Distinction 0.32 0.48 0.38 464

Fail 0.35 0.37 0.36 927

Pass 0.62 0.46 0.53 2,067

Withdrawn 0.40 0.51 0.45 883

Accuracy 0.45 4,341

Macro avg 0.42 0.46 0.43 4,341

Weighted avg 0.49 0.45 0.46 4,341

SVM

Distinction 0.52 0.17 0.26 519

Fail 0.46 0.11 0.18 928

Pass 0.64 0.55 0.59 2,000

Withdrawn 0.32 0.81 0.46 894

Accuracy 0.46 4,341

Macro avg 0.49 0.41 0.37 4,341

Weighted avg 0.52 0.46 0.44 4,341

Bernoulli NB

Distinction 0.34 0.08 0.13 464

Fail 0.37 0.24 0.29 927

Pass 0.56 0.77 0.65 2,067

Withdrawn 0.41 0.38 0.39 883

Accuracy 0.50 4,341

Macro avg 0.42 0.37 0.37 4,341

Weighted avg 0.47 0.50 0.47 4,341

KNN

Distinction 0.46 0.49 0.48 464

Fail 0.36 0.41 0.38 927

Pass 0.61 0.67 0.64 2,067

Withdrawn 0.47 0.27 0.34 883

Accuracy 0.52 4,341

Macro avg 0.48 0.46 0.46 4,341

Weighted avg 0.51 0.52 0.51 4,341
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considered relatively robust in multiclass classification problems. The performance of the
DT model was further improved using various techniques as increasing model
performance where it has shown unsatisfactory result is one of the objective of this study.

Decision tree (DT)
DTs are adaptable to multiclass classification problems, regression settings, and
continuous data. DTs have leaf nodes, intermediate nodes, and one root node. A split is
made on each node by selecting a feature value. All samples having similar feature value go
in one branch, whereas all other goes to the other branch. Gini and information gain

Table 4 ML Classifiers with average performance score.

Decision tree Precision Recall f1-score Support

Distinction 0.42 0.44 0.43 464

Fail 0.40 0.42 0.41 927

Pass 0.66 0.63 0.64 2,067

Withdrawn 0.46 0.47 0.46 883

Accuracy 0.53 4,341

Macro avg 0.49 0.49 0.49 4,341

Weighted avg 0.54 0.53 0.53 4,341

Logistic

Regression

Distinction 0.67 0.32 0.43 519

Fail 0.48 0.31 0.38 928

Pass 0.63 0.85 0.72 2,000

Withdrawn 0.54 0.47 0.50 894

Accuracy 0.59 4,341

Macro avg 0.58 0.49 0.51 4,341

Weighted avg 0.58 0.59 0.57 4,341

Ada boost

Distinction 0.52 0.52 0.52 464

Fail 0.46 0.40 0.43 927

Pass 0.67 0.79 0.73 2,067

Withdrawn 0.55 0.40 0.46 883

Accuracy 0.60 4,341

Macro avg 0.55 0.53 0.53 4,341

Weighted avg 0.58 0.60 0.59 4,341

FFNN

Distinction 0.57 0.51 0.54 471

Fail 0.50 0.44 0.47 946

Pass 0.67 0.83 0.74 2,036

Withdrawn 0.59 0.38 0.46 888

Accuracy 0.62 4,341

Macro avg 0.58 0.54 0.55 4,341

Weighted avg 0.61 0.62 0.60 4,341
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are the most common splitting metrics used in building a DT. The general rule for splitting
metrics is based on feature values giving the greatest separation for the predictor
features. For training the DT model, the final result feature was set as a dependent feature,
whereas all other features were set as independent features. Figure 2 shows the DT model
classifier’s confusion matrix after the data was fitted and the model was trained/tested.
The results were not satisfactory as a low score for accuracy = 0.518, and f1 = 0.517 were
achieved. The resultant confusion matrix shows the true label on the Y-axis, whereas the
predicted labels are displayed on the X-axis. The diagonal numbers correctly predicted
final result labels, whereas the rest of the labels are incorrectly predicted. It can be

Table 5 ML classifier with superior performance score.

Gradient boosting Precision Recall f1-score Support

Distinction 0.68 0.46 0.55 519

Fail 0.51 0.38 0.43 928

Pass 0.66 0.86 0.75 2,000

Withdrawn 0.61 0.47 0.53 894

Accuracy 0.63 4,341

Macro avg 0.61 0.54 0.56 4,341

Weighted avg 0.62 0.63 0.61 4,341

Extra tree classifier

Distinction 0.65 0.43 0.52 464

Fail 0.51 0.40 0.45 927

Pass 0.67 0.85 0.75 2,067

Withdrawn 0.60 0.47 0.53 883

Accuracy 0.63 4,341

Macro avg 0.61 0.54 0.56 4,341

Weighted avg 0.62 0.63 0.62 4,341

Random forest ‘gini’

Distinction 0.66 0.48 0.56 464

Fail 0.56 0.45 0.50 927

Pass 0.69 0.86 0.77 2,067

Withdrawn 0.64 0.50 0.57 883

Accuracy 0.66 4,341

Macro avg 0.64 0.57 0.60 4,341

Weighted avg 0.65 0.66 0.65 4,341

Random forest ‘entropy’

Distinction 0.66 0.48 0.56 464

Fail 0.55 0.44 0.49 927

Pass 0.69 0.87 0.77 2,067

Withdrawn 0.65 0.48 0.56 883

Accuracy 0.66 4,341

Macro avg 0.64 0.57 0.59 4,341

Weighted avg 0.65 0.66 0.64 4,341
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noticed that the highest numbers of the correctly predicted label are Pass while the lowest
numbers of the correctly predicted label areWithdrawn. One reason for low accuracy and
f1 score could be the class imbalance problem because the Withdrawn (10,156), Fail
(7,052), Pass (12,361), and Distinction (3,024) classes are not distributed evenly. To
increase DT prediction, accuracy, and f1 score, Withdrawn and Fail classes were merged
into incomplete class while Pass and Distinction classes were merged into complete
class. We once again fitted and executed the DT model classifier and received higher
accuracy = 0.753 and f1 = 0.753 score. Figure 3 shows the confusion matrix for the DT
model classifier for complete/incomplete classes. The result shows that after performing
merge operation on final result labels, we could increase the accuracy score by almost 24%.
To further improve the DT model classifier’s prediction accuracy, we used a technique
called Grid Search Cross-Validation.

Improving DT model classifier performance using grid search
cross-validation
Grid Search Cross-Validation (GSCV) is a technique used to optimize hyper-parameters.
It finds the best combination of hyper-parameters that give optimal results for the model
performance. For example, during the model training process, GSCV creates multiple
models, each with a unique combination of hyper-parameters. The goal of GSCV is to train
each of these models and evaluate their performance using cross-validation. Ultimately,
the model that gives the best results is selected. The DT model classifier was once
again fitted with the following hyper-parameters. Values for maximum depth = [2, 3, 4, 5,
6, 7, 8, 9, 10], values for maximum leaf nodes = [8, 18, 28, 38, 48, 59, 69, 79, 89, 100],
nodes splitting criterion = [‘gini’, ‘entropy’], class_weight = [‘balanced’, None],

Figure 2 Confusion matrix for the DT model. Full-size DOI: 10.7717/peerj-cs.803/fig-2
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cross-validation = 3. The GSCV generated the following best hyper-parameters for the DT
model classifier with an accuracy score of 0.83. ‘class_weight’ = None, ‘criterion’ = ‘gini’,
‘max_depth’ = 7, ‘max_leaf_nodes’ = 38. Using the GSCV technique we were able to
increase the performance score of the DT model by 9%.

Using ensembling to increase DT model classifier performance
Ensembling is a technique that combines several models into one bigger model, which
produces better results than any of its constituents. Ensembling techniques usually take a
longer time in ML model training, but even a simple model trained using ensemble
technique can outperform more advanced and specialized models. Popular and common
ML ensemble techniques include Bagging, Boosting, Random Forest, Extra-Trees,
AdaBoost, Gradient Boosting Machine (GBM), and XGBoost. For brevity, we used two
ensemble techniques, i.e., AdaBoost and XGBoost.

Adaptive boosting (AdaBoost)
The AdaBoost ensembling technique’s basic idea is that it combines several weak learning
models into a strong learning model, and the predictors’ features are trained sequentially.
It gives more weights to those features’ instances that previously were responsible for
model underfitting. The training and testing features were fitted to the AdaBoost classifier
and received accuracy = 0.792 and f1 = 0.791. The results determine that the AdaBoost
classifier could not improve accuracy and the f1 score of the DT model. Figure 4 presents
the confusion matrix for AdaBoost ensembling technique.

Figure 3 Confusion matrix for the DT model after feature engineering.
Full-size DOI: 10.7717/peerj-cs.803/fig-3

Adnan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.803 15/29

http://dx.doi.org/10.7717/peerj-cs.803/fig-3
http://dx.doi.org/10.7717/peerj-cs.803
https://peerj.com/computer-science/


eXtreme gradient boosting (XGBoost)
XGBoost is the cutting edge and one of the most advanced supervised ML algorithms. As
compared to other ensemble classifiers, it is comparatively fast, parallelizable, gives better
performance scores, and has a variety of tunning parameters for regularization, cross-
validation, missing values, etc. After fitting the data and running the model, we received an
accuracy of 0.82 and an f1 score of 0.81. The XGBoost classifier results were very close to
the GSCV technique, and there was no improvement in model performance. The
confusion matrix for XGBoost is shown in Fig. 5 where it can be noticed that XGBoost
accurately predicted more elements than the AdaBoost algorithm.

One of the benefits of tree-based classification algorithms is that they are easily
interpretable and explainable, leading to easy calculation of factors such as features’
importance and decision paths. In VLE, it is essential to determine each feature’s relative
weights in predicting students’ performance. Feature weights can tell instructors about
students’ strengths and weaknesses and how to provide them adaptive guidance. By
looking at feature weights, the LMS or VLE platforms can recommend adaptive paths to
students, making the learning process easy and adaptive. Most MOOCs/VLE and LMS
follow the one-size-fits-all approach where the same learning content is delivered to all
students regardless of their learning pace and performance. Contemporary online
systems assign equal weights to all students’ features while providing them help and
guidance. Not considering feature weights is the main reason for students’misclassification
in online learning platforms. Thus, due to students’ misclassification, they do not get
adaptive and tailored learning content. XGBoost classifier was once again used to
determine each feature’s importance in predicting students’ final results. Figure 6 shows a
bar plot displaying the relative weights of independent features in predicting the final result

Figure 4 Confusion matrix for the AdaBoost ensembling technique.
Full-size DOI: 10.7717/peerj-cs.803/fig-4
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feature. The top 10 features that significantly contributed to leveraging the final
performance of students were: module FFF, module GGG, module BBB, sum_clicks,
module CCC, higher education lower than A level, code_presentation_2013B, assessment

Figure 5 Confusion matrix for the XGBoost algorithm. Full-size DOI: 10.7717/peerj-cs.803/fig-5

Figure 6 Features importance/weights in predicting the final performance.
Full-size DOI: 10.7717/peerj-cs.803/fig-6
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scores, module EEE, and the number of previous attempts. Apart from modules and
code_presentation features, we noticed that the number of clicks, assessment scores, and
previous attempts significantly increase students’ final performance.

Assessing XGBoost model with learning curves
A goodMLmodel generalizes well over unseen feature samples. Even if the inputs are new,
a good ML model gives a sensible output. The application and performance of a model
depend heavily on the generalization of the model. If the model generalizes well, it will
serve its objectives; otherwise, it will show poor performance and results. Underfitting
and overfitting are two common deficiencies in ML models that halt them from
generalizing on unseen data. Overfitting occurs when a model learns a lot during the
learning stage, and the overall cost is minimal, but the model performs poorly on unseen
data. This phenomenon causes a model to be unreliable, and it does not generalize well.

On the other hand, underfitting occurs when a model has not learned enough during its
training stage. A model suffering from underfitting shows poor performance and low
generalization on testing and unseen data. Specifically, suppose a model does not predict
well. It is highly biased and suffers from underfitting, whereas if a model is sensitive to
slight variation between feature samples, it has high variance and suffers from overfitting.
Model performance that lies between underfitting and overfitting is desirable and
generalizes well. A good supervised model always has an intrinsic bias-variance tradeoff
during its training stage. Generally, this is possible by tuning the model’s hyperparameters,
such as with the maximum depth of a DT.

Non-linear algorithms such as XGBoost frequently suffer from overfitting problems.
A technique called early stopping was used during the XGBoost training stage to avoid it
from overfitting. Before applying the early stopping technique, we plot a learning curve to
retrieve the performance of the XGBoost model both on training and testing sets. The
performance results of the XGBoost model are shown in Figs. 7 and 8 showing the
logarithmic loss and classification error of the XGBoost model. Looking at the logarithmic
loss plot in Fig. 7, it looks like there is a chance to halt the learning early, feasibly
somewhere across epoch 0 to epoch 20. A similar observation was made for the
classification error plot in Fig. 8 where it appears to stop the training process at epoch 10.

Early stopping with XGBoost model training
We configured XGBoost to stop after certain numbers of epoch, after which no
improvement in the model performance was observed. The parameters specified for early
stopping were early_stopping_rounds = 10, eval_metric = “logloss”, eval_set = eval_set.
The XGBoost model stopped training at epoch 41, and at epoch 31, the best model
loss was observed with an accuracy of 80.83%. We can innate bias-variance tradeoff
through model early stopping during the training process, thus avoiding the model to
suffer from underfitting and overfitting problems.

Feed-forward neural networks (FFNN)
As compared to normal neural networks, DFFNN can extract features from low-level
details, find hidden patterns and feature ranks. Established on old feature instances,
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DFFNN can predict unseen data outcomes, and the prediction accuracy improves with
newly obtainable data.

Like DT, the prediction performance of DFFNN was evaluated first on four students’
performance categories, i.e., Withdrawn, Fail, Pass, Distinction. Subsequently, the
prediction performance was evaluated on two categories, namely Complete and Incomplete.
For four output classes, the DFFNN configuration was set to; activation function for
hidden layer = Relu, input shape = 50, activation function for output layer = softmax,
loss = categorical_crossentropy, optimizer = adam, kernel regularizer =mregularizers. A
total of 12 metrics = accuracy, epochs = 100, batch size = 10. Figure 9 shows the validation
loss-training loss and validation accuracy-training accuracy for DFFNN 100 epochs. It can
be observed that both the validation loss and training loss have a similar pattern and
decrease after each epoch. On the other hand, the validation accuracy and training
accuracy is increasing with each successive epoch. Moreover, both the validation loss and
validation accuracy are spreading away from training loss and training accuracy after
epoch 60. This concludes that the model training process should be stopped after 60 epoch
for accurate prediction, as the model performance is deteriorating.

DFFNN early stopping during the training process
The early stopping technique was used as our DFFNNmodel was trained too much. In this
technique, the validation loss for the model is tracked, and once it begins increasing too

Figure 7 XGBoost log loss performance. Full-size DOI: 10.7717/peerj-cs.803/fig-7
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much, the model training process is stopped. The early stopping Python class was
imported from the TensorFlow Keras library with the following configurations.

monitor ¼ ‘val loss’; mode ¼ ‘min’; verbose ¼ 1; patience ¼ 10

Figure 8 XGBoost classification error performance. Full-size DOI: 10.7717/peerj-cs.803/fig-8

Figure 9 DFFNN training accuracy/loss, validation accuracy/loss.
Full-size DOI: 10.7717/peerj-cs.803/fig-9
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We observed that at epoch 74, the model training process stopped as the model
validation loss was increasing. Figure 10 shows the model early stopping scenario, where it
can be observed that the validation loss was growing and spreading away from training
loss after epoch 74. Thus, the early stopping technique helps avoid DL algorithms
consuming more resources and overfitting the models.

Increasing DFFNN performance by dropping inactive neurons
The DFFNN model’s performance can further be increased by adding a dropout layer that
drops a percentage of inactive neurons and thus prevents the model from overfitting.
The inactive neurons are those neurons that do not participate in the DFFNN training
process. The Python dropout class was imported from the Keras layers package, and the
dropout calls with a value of 0.5 were added to each dense layer. Suppose a neuron is
not activated during the training process. In that case, the value of 0.5 indicates a
probability of 50% that the dropout calls will deactivate the neuron. The DFFNN model
was once again fitted and executed with the same parameters as the early stopping
technique. This time the model stopped training at epoch 87, and from Fig. 11 we noticed
that the model showed even better behavior with validation and learning loss essentially
flattening out at the same rate.

Table 6 presents the precision, recall, f1 score, support, accuracy, macro average,
and weighted average of the DFFNN model when trained on a multiclass problem. We
noticed that the Pass grade received the highest values for precision, recall, and f1 score,
whereas the model’s accuracy was 62%.

Feature engineering: merging grades to increase DFFNN performance
Table 7 shows the DFFNN model precision, recall, f1-score, support, accuracy, macro
average, and the weighted average for binary classification configuration. After the training
process, the DFFNN model achieved a prediction accuracy of 79%, which is 18% more

Figure 10 DFFNN early stopping during the training process.
Full-size DOI: 10.7717/peerj-cs.803/fig-10
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than the model trained for multiclass classification (61%). Figure 12 shows the DFFNN
model training history. In each elapsing epoch, the training accuracy and validation
accuracy increases, while the training loss and validation loss are decreasing. It can be only
noticed that the validation loss is increasing and is spreading away from training loss
at the end of the training process, which may cause the DFFNNmodel to overfit. Similar to

Figure 11 DFFNN early stopping after inactive neurons dropouts.
Full-size DOI: 10.7717/peerj-cs.803/fig-11

Table 6 DFFNN performance score for distinction, fail, pass and withdrawn grades.

DFFNN performance score Precision Recall f1-score Support

D 0.57 0.51 0.54 471

F 0.50 0.44 0.47 946

P 0.67 0.83 0.74 2,036

W 0.59 0.38 0.46 888

Accuracy 0.62 4,341

Macro avg 0.58 0.54 0.55 4,341

Weighted avg 0.61 0.62 0.60 4,341

Note:
Bold value is the accuracy score of the DFFNN model for distinction, fail, pass and withdrawn grades

Table 7 After feature engineering, DFFNN performance for complete/incomplete grades.

DFFNN performance score for complete/incomplete grades Precision Recall f1-score Support

Complete 0.78 0.90 0.83 2,526

Incomplete 0.82 0.64 0.72 1,815

Accuracy 0.79 4,341

Macro avg 0.80 0.77 0.78 4,341

Weighted avg 0.80 0.79 0.79 4,341

Note:
Bold is the accuracy score of the DFFNN model for complete and incomplete grades
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the multiclass classification model, we used early stopping and layer dropout techniques to
avoid the DFFNN model from suffering from overfitting and consume more resources. In
Fig. 13, it can be noticed that after epoch 72, the validation loss was spreading away
from training loss; therefore, the DFFNN training process was stopped by the early
stopping technique. Similarly, in Fig. 14, it can be observed that the DFFNN training
process was stopped at epoch 81 as the model did not experience any change in the
training accuracy, training loss, validation accuracy, and validation loss.

Figure 12 DFFNN training history for complete/incomplete grades.
Full-size DOI: 10.7717/peerj-cs.803/fig-12

Figure 13 DFFNN early stopping for complete/incomplete grades.
Full-size DOI: 10.7717/peerj-cs.803/fig-13
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Figure 15 presents Receiver Operating Characteristic (ROC) i.e., probability curve and
the value of Area Under Curve (AUC) as 0.886 which infer that the FFNN model accuracy
of distinguishing between complete and incomplete class is 88%.

DISCUSSION AND LIMITATIONS
We selected 11 ML and 1 DL algorithms to train the learner model and predict which
one gives the best results. Gradient boosting, extra tree classifier, random forest’
criterion = ‘gini’, and random forest’ criterion = ‘entropy’ classifiers give the highest
performance scores. However, we selected DT and FFNN models for performance
improvement, as one of the objectives of this study is to improve models performance in an
environment where they show unsatisfactory performance results.

Figure 14 DFFNN early stopping and dropping inactive neurons for complete/incomplete grades.
Full-size DOI: 10.7717/peerj-cs.803/fig-14

Figure 15 FFNN receiver operating characteristic (ROC) with AUC score.
Full-size DOI: 10.7717/peerj-cs.803/fig-15
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Initially, when the data was fitted to the DT model, it generated unsatisfactory results
with accuracy = 0.518, and f1 = 0.517. We noted that one of the reasons for the low-
performance score was the class imbalance problem. To improve the DT model
performance, feature engineering technique was performed, which resulted in merging
Withdrawn and Fail classes to Incomplete class and Pass and Distinction classes to
Complete class. When trained to predict the Incomplete and Complete class, the DTmodel
performance improved with accuracy = 0.753 and f1 = 0.753 score. The Grid Search
Cross-Validation (GSCV) technique further enhanced the DT model’s performance,
increasing the DT model accuracy score upto 0.83. To further improve the DT model
performance, AdaBoost and XGBoost ensembling techniques were used. After fitting the
training and testing data to the AdaBoost and XGBoost classifier, an accuracy of 0.792 and
f1 score of 0.791 was achieved. We noted that no improvement was made to the DT
model after using the AdaBoost technique. Next, we fitted the data to the XGBoost
classifier and achieved an accuracy of 0.82 and an f1 score of 0.81. Moreover, the XGBoost
classifier was also used to determine the independent feature weights in predicting
students’ final performance. In the last stage of the XGBoost model tuning process, early
stopping technique was used to avoid underfitting and overfitting problems.

Similar to the DT model, the performance of FFNN was evaluated first on four
students’ classes, namely, Withdrawn, Fail, Pass, Distinction. To avoid the FFNN model
from generating inaccurate results, the model training process was stopped at 60 epoch. The
early stopping technique helped the FFNN model to avoid consuming more resources and
avoid overfitting problem. To further improve the FFNN model’s performance, inactive
neurons were dropped from the neural network, thus assisting the model in preventing the
overfitting problem. Like the DT model, we performed a feature engineering process to
improve the FFNN model’s performance further. The withdrawn-fail grades were
merged into Incomplete grade and pass-distinction grades to complete grade. When trained
after the feature engineering process, FFNN achieved a performance accuracy of 79%, which
was 18% more than the model trained for multiclass classification (61%).

The limitations of this study include not modeling the students’ behavior at different
stages of course length. Modeling students’ behavior at different stages of course length
would help instructors in knowing about the weaknesses of students earlier in the course
thus would have taken preemptive measures to avoid students from failure or dropouts.
Moreover, only 1 DL model i.e., FFNN was used for modeling students’ behavior. In the
future, other DL algorithms such as RNN, CNN, Transformers, LSTM, and deep
Boltzmann machines would be used for students’ performance prediction and how various
techniques can be used to improve DL models performance upon showing unsatisfactory
results. Furthermore, the validity of the ML results may suffer from the following
constraint in real-time.

� The models may suffer from poor transfer learning ability and integration.

� The models require structure training data and hand-crafted features.

� Every model may require a special training process and planning.

� The ML models may suffer from a slow learning process in real-time.

Adnan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.803 25/29

http://dx.doi.org/10.7717/peerj-cs.803
https://peerj.com/computer-science/


CONCLUSION AND FUTURE WORK
This study presents various ML models that can be used to predict students’ performance
in VLE by considering the feature weights. In VLE, it is vital to decide which ML algorithm
to choose for modeling students’ learning behavior as the right ML algorithm affects
the online system’s performance. This study also presents how the ML model’s
performance can be increased in a situation where the ML model is generating
unsatisfactory results. As an example, we selected DT and DFFNN models for modeling
students learning behavior in VLE and how their performance can be increased by
using various techniques such as using grid search cross-validation, ensembling models,
adaptive boosting, extreme gradient boosting, early stopping, feature engineering, and
dropping inactive neurons from neural network hidden layers.

Out of 12 ML/DL models, we selected the DT and FFNN models to improve their
performance as they were showing unsatisfactory performance results. Initially, the DT
model showed a low accuracy = 0.518 and f1 = 0.517 score. To improve the DT model
performance, a feature engineering technique was employed and subsequently higher
accuracy = 0.753 and f1 = 0.753 score was achieved. Other performance improvement
techniques such as Grid Search Cross-validation, ensembling, adaptive boosting, eXtreme
Gradient Boosting (XGBoost), and early stopping were used and achieved an overall
accuracy of 80.83% and Ff1 = 79.56. After training the FFNN model, initially, it achieved
an accuracy of 62%. Similar to the DT model, a feature engineering technique was
employed for the FFNN model, and it reached a performance accuracy of 79%. Other
performance improvement techniques such as early stopping and dropping inactive
neurons were also used to reduce the execution cost of the FFNN model.

Our research study can help instructors and educational institutes formulating proper
guidelines to students by considering their feature weights, strengths, and weaknesses. In
future work, we plan to deploy only deep learning algorithms such as Long Short-Term
Memory (LSTM), Convolutional Neural Networks (CNNs), Self-Organizing Maps
(SOMs), Recurrent Neural Networks (RNN), and Deep Artificial Neural Networks
(DANN) to model students learning behavior in online settings and compare their
performance results.
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