Submitted 26 July 2021
Accepted 10 November 2021
Published 3 January 2022

Corresponding author
Taghi Javdani Gandomani,
javdani@sku.ac.ir

Academic editor
Sandor Szénasi

Additional Information and
Declarations can be found on
page 19

DOl 10.7717/peerj-cs.800

© Copyright
2022 Dashti et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

LEMABE: a novel framework to improve
analogy-based software cost estimation
using learnable evolution model

Maedeh Dashti’, Taghi Javdani Gandomani'?, Dariush Hasanpoor
Adeh?, Hazura Zulzalil* and Abu Bakar Md Sultan*

! Data Science Research Center, Shahrekord University, Shahrekord, Chaharmahal and Bakhtiari,
Iran

2 Department of Computer Science, Shahrekord University, Shahrekord, Chaharmahal and
Bakhtiari, Iran

3 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan,
Isfahan, Iran

* Department of Software Engineering and Information Systems, Universiti Putra Malaysia,
Serdang, Selangor, Malaysia

ABSTRACT

One of the most important and critical factors in software projects is the proper
cost estimation. This activity, which has to be done prior to the beginning of a
project in the initial stage, always encounters several challenges and problems.
However, due to the high significance and impact of the proper cost estimation,
several approaches and methods have been proposed regarding how to perform cost
estimation, in which the analogy-based approach is one of the most popular ones. In
recent years, many attempts have been made to employ suitable techniques and
methods in this approach in order to improve estimation accuracy. However,
achieving improved estimation accuracy in these techniques is still an appropriate
research topic. To improve software development cost estimation, the current study
has investigated the effect of the LEM algorithm on optimization of features
weighting and proposed a new method as well. In this research, the effectiveness of
this algorithm has been examined on two datasets, Desharnais and Maxwell.

Then, MMRE, PRED (0.25), and MdMRE criteria have been used to evaluate and
compare the proposed method against other evolutionary algorithms. Employing the
proposed method showed considerable improvement in estimating software cost
estimation.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Software Engineering
Keywords Software cost estimation, Learnable evolution model (LEM), Analogy-based estimation,
Features weighting optimization, Software project management, Software cost estimation framework

INTRODUCTION

The process of software development is a set of software engineering activities designed
and planned to manage the life cycle of a software product. Generally, a software product
life cycle can be divided into three major phases, i.e., planning, development, and
maintenance (Boehm, 1984). In the software development process, particular principles
and rules have to be defined for each phase, among which cost estimation at the beginning
of a project makes up a critical activity in the planning (Xu & Khoshgoftaar, 2004).
Because of its impact on the execution of the project, cost estimation is also considered as

How to cite this article Dashti M, Javdani Gandomani T, Hasanpoor Adeh D, Zulzalil H, Md Sultan AB. 2022. LEMABE: a novel
framework to improve analogy-based software cost estimation using learnable evolution model. Peer] Comput. Sci. 8:e800 DOI 10.7717/
peerj-cs.800

http://dx.doi.org/10.7717/peerj-cs.800
http://dx.doi.org/10.7717/peerj-cs.800
mailto:javdani@�sku.�ac.�ir
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.800
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

one of the most important factors of success or failure of projects (Dillibabu ¢ Krishnaiah,
2005).

In the past two decades, significant efforts have been made in order to estimate the
required cost and time of a software project more accurately to do more effective
scheduling, planning, and manage the product quality. Moreover, several techniques and
models have been proposed mainly for simplifying the cost estimation process. Today,
however, because of the substantial growth of the size and efficiency of software
applications as well as the uncertainty of requirements, especially in Agile methodologies,
achieving more accurate estimation is still a concern for many software experts (Keaveney
¢ Conboy, 2006). Software project managers need a series of reliable techniques for
proper estimation so that they can make the right decisions on managing the software
product life cycle and delivering it to the market.

In the analogy-based estimation method, a comparative process based on the project’s
features is performed. Even though the lack of providing accurate estimation due to the
complexity levels of projects, as well as the difficulties in determining the relationship of
project features, is the shortcoming of this method. Considering the complexity of this
method, using machine learning methods and soft computing has been recommended
in recent years for enhancing estimation accuracy (Li, Xie ¢ Goh, 2009; Bardsiri et al.,
2013; Idri, Hosni & Abran, 2016). These methods can be used either directly through the
process of project selection or feature weighting (Tosun, Turhan ¢ Bener, 2009) or applied
indirectly through machine learning methods such as artificial neural networks or fuzzy
neural networks (Kazemifard et al., 2011; Moosavi ¢ Bardsiri, 2017).

One of the emerging algorithms in artificial intelligence is the learnable evolution model
(LEM). This model is one of the non-Darwinian evolutionary computation algorithms
using machine learning for guiding the evolutionary process. This model suggests a new
type of operators for creating the initial population that can act two or more times quickly
in terms of the number of evolutionary steps (Wojtusiak & Michalski, 2004). This
algorithm can contain a wide range of applications (Cervone, Kaufman & Michalski, 2000;
Domanski et al., 2004; Jourdan et al., 2005; Cobos, Estupifidn ¢ Pérez, 2011). LEM
algorithm is able to perform successfully in solving complex optimization problems in the
real world. So, it this study, we tried to investigate the usage of this algorithm in
analogy-based software cost estimation.

The rest of the paper is structured as follows. In “Analogy-based Estimation Method”,
the analogy-based estimation method is briefly introduced. Then, related work will be
discussed in “Related Work”. The LEM algorithm is presented in “Learnable Evolution
Model”, followed by “LEMABE Framework”, which introduces the proposed method.
“Experiment Design” will discuss evaluation criteria, datasets, and implementation details.
The results and empirical experiments using the proposed model will be presented in
“Experiment Results”. Finally, “Conclusions” concludes the paper.

Analogy-based estimation method
The analogy-based estimation is a very simple, efficient, and practical method in its nature.
In this method, no particular formula is used, and in order to estimate a new project, it has

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 2/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

to be compared with similar projects which have completed in the past, known as historical
datasets or repositories. Analogy-based estimation consists of four parts, including the
historical dataset, similarity function, K-nearest neighbors, and solution function.
Moreover, its process consists of the following steps:

1. Creating the historical dataset accessible through real or artificial datasets;

2. Obtaining features associated with a new project in a way that they are in line with
historical datasets;

3. Using a predefined similarity function such as the Euclidean or Manhattan distance
functions so that can be retrieved the projects similar to the new project;

4. The new project’s cost is estimated using the solution function.

In the following, each component of the analogy-based estimation system has been
separately described briefly.

Similarity function

The similarity function is the core of the analogy-based estimation method, in which the
degree of similarity between two different projects is calculated. The general form of the
similarity function is as follows:

sim(p.p') = f (Lsim(fy .f{) .Lsim(f,.f;). . . . Lsim(f,..f;,)) (1)
where p and p’ are indicative of the new and old projects in the repository, f; and f; indicate
the value of the i feature in the mentioned projects, n is the total number of features in
each project, and Lsim(.) function calculates the degree of similarity between two
corresponding features of the projects. Lsim(.) and f(.) functions show the general
structure of the similarity function. Among the various types of similarity functions,
Euclidean distance similarity function (ES) and the Manhattan distance similarity function
(MS) are the most useful ones in the software development cost estimation domain. In
mathematics, the Euclidean distance is the ordinary distance between two points used in
comparing the distances by optimization problems (Shepperd ¢ Schofield, 1997). The
similarity between the two projects is obtained using the Euclidean Similarity distance
through Eq. (2) (Hong & Kim, 2000).

1
sim(p.p') = 3 = 0.0001)
[V 22 wiDis(fif}) + 0]
(fi —fi’)2 if features are numeric)
1 if features are numeric and f; = f,
0 if features are numeric and f; # f;

where w; is the i feature’s weight, and its value is between 0 and 1. Also, 6 = 0.0001 is a
small fixed number that is placed in the equation to prevent division by zero.

The Manbhattan Similarity distance (MS), also known as the city block distance-based
similarity, is a type of Euclidean distance in which the distance between two points is

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 3/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

the sum of the absolute differences of their coordinates. It is shown in Eq. (3)
(Gardner, 1997).

1
sim(p.p) = d = 0.0001 (3)
&) [Z?:l wDis(f,.f]) + 5]
Ifi — fi| if features are numeric
1 if features are numeric and f; = f,
0 if features are numeric and f; # f,

Since the dataset is developed base on trial and error, there is no obligation in choosing
the Euclidean function or Manhattan function. The nature of the projects and the level of
their normality in the data set can have a significant impact on the performance of
similarity functions. In some previous works, several other similarity functions have been
used, including rank mean similarity (Walkerden ¢ Jeffery, 1997), maximum distance
similarity, Minkowski similarity (Angelis ¢» Stamelos, 2000), but there is no specific
method to show the best similarity function (Li ¢ Ruhe, 2008; Li, Xie ¢~ Goh, 2008). In a
systematic literature review, Wen et al. (2012) identified 8 machine learning models for
software effort estimation. Most of these studies have been done on the Euclidean,
Manhattan, and Minkowski distance, and a limited number of them have determined the
similarity degree between two projects using Grey distance (Azzeh, Neagu & Cowling,
2010).

K-Nearest Neighbor

The KNN algorithm is an example of instance-based learning, in which the training
datasets are stored, and then, classification for a record that has not been classified yet is
done simply by comparing it with the most similar records in the training dataset (Larose
¢ Larose, 2014). The number of KNN is known as a vital parameter very effective on
accuracy. Regarding the selection of k value, if k is very small, the effect outliers or unusual
observations (noise) increases, and if k value is very large, the local behavior is ignored.
Some of the papers have suggestions for how to keep k value fixed (Chiu ¢» Huang, 2007),
but k value is dynamic in most papers.

Solution function

In this section, it will be clarified how we can use similar projects and combine them in
order to estimate costs for the new project. The following evaluation methods have been
used as a basis for the solution function in this research:

Closest analogy (Walkerden ¢ Jeffery, 1999);
Unweighted mean;
Median;

Inverse distance weighted mean.

Mean is known as a classic criterion, which has a central tendency. In addition, the
average software cost (k values) can be calculated when k > 1. Median is another classic

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 4/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

criterion with central tendency. In this criterion, software costs (k values) can be calculated
when k > 2. In comparison with mean, the median is a stronger statistical criterion because
it is more sensitive to outliers. At the same time, number of outliers will growth by
increasing the number of projects. Inverse distance weighted mean shows that similar
projects are more important than less similar ones. Equation (4) shows the formula of
inverse distance weighted mean (Kadoda et al., 2000).

"~ Sim(P.Py)
Z < i Sim ;Pk) Chi)
i=1
where P shows the project whose cost has to be estimated. P is the k™ similar project.
Sim(P.Py) is indicative of the similarity between projects P and Py, and Cy is the cost of the
most similar project to Py.
Because the solution function is one of the most influential components in estimating
accuracy, several studies have attempted to improve its performance. Some studies have

used only one solution function (Li ¢» Ruhe, 2008), while other studies have considered
several types of solution functions (Li, Xie ¢» Goh, 2009).

RELATED WORK

A literature review shows that researchers have presented different classifications for
software cost estimation methods based on underlying principles and factors. In a
systematic review among 304 papers from 76 journals, Jorgensen and Shepperd identified
11 cost estimation methods and divided them into parametric and non-parametric
models (Jorgensen & Shepperd, 2007). In parametric models, cost estimation is based on
statistical and/or numerical analysis of historical datasets (Azzeh ¢ Nassif, 2016). In
contrast, in non-parametric models, it is based on optimization principles and artificial
intelligence methods such as Artificial Neural Networks (ANN), Genetic Algorithm (GA),
Analogy-based or Case-based Reasoning Estimation, Decision Tree, and so on.

The analogy-based estimation method is a case-based reasoning model (Kolodner,
2014), which was introduced by Sternberg (1977) for the first time. After that, in 1997, this
method was used for improving cost estimation in software development effort estimation
(Shepperd & Schofield, 1997). This method relies on previously completed projects to
estimate the required development effort for the new ones.

Different methods have already been proposed for analogy-based estimation, and the
focus of all of them has been on improving estimation accuracy. To do this, the correlation
coefficient has been used to improve the ABE performance, which can be the feature
selection or the feature weighting.

In the normal analogy-based method, each of the project’s features is independent
and has similar rates of effectiveness. For more accurate estimation, Auer et al. (2006)
suggested that each of the features should have different rates of efficiency. In this case, the
features that have a weak correlation, i.e., less impact, are given less weight, and the features
with stronger correlations are given higher weight, and features without correlation are
removed. Some studies using Traditional methods (Mendes, Mosley ¢» Counsell, 2003;
Phannachitta et al., 2013) and machine learning methods (Benala ¢ Bandarupalli, 2016;

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 5/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Zare, Zare & Fallahnezhad, 2016; Benala ¢ Mall, 2018; Ezghari & Zahi, 2018) have
demonstrated an improvement in ABE performance. The analogy-based estimation

has been widely used to enhance the accuracy of software cost estimation. Using
optimization algorithms, especially swarm intelligence, has been recommended by many
researchers in order to improve the accuracy of software development estimation (Liu
et al., 2014; Satapathy, Acharya & Rath, 2016).

Pawlak (2012) used a weighting technique called Rough set analysis, in which the
appropriate weight for independent features was determined based on a series of
predefined criteria, but most of the studies in this field have been carried out using soft
computing and metaheuristic algorithms (Huang ¢ Chiu, 2006; Wu, Li ¢» Bao, 2018). For
example, genetic algorithm (GA) is known to be one of the most popular methods for
optimizing and weighing features, and even combining genetic algorithms with other
techniques, including regression methods, has been used to the accuracy of cost estimates
improve accuracy (Chiu ¢ Huang, 2007; Huang ¢ Chiu, 2006; Oliveira et al., 2010). In
addition, fuzzy systems (Azzeh, Neagu ¢» Cowling, 2008), evolutionary algorithms, and
artificial neural networks (Li, Xie ¢» Goh, 2009; Azzeh, 2012) have been used for ABE
adjustment.

In 2015, Azzeh, Nassif ¢» Minku (2015) evaluated comparative analogy-based methods
and concluded that linear adjustment methods could produce better solutions. On the
other hand, some researchers have proposed several feature selection methods, some of
whom did that through information (Li, Xie ¢ Goh, 2009) and some others through
optimization algorithms (Wang et al., 2007).

Learnable evolution model

All common methods of evolutionary computations have been inspired by Darwin’s
theory’s principles: “...one general law, leading to the advancement of all organic
beings, namely, multiply, vary, let the strongest life and the weakest die” (Darwin,

1987). Darwin’s evolutionary computations are semi-blind, in which operators such as
mutation (an unusual reproduction with variety), crossover (sexual reconstruction or
recombination), and selection (survival of the fittest) were used to produce new
population. In this type of evolution, individuals of the new population are not guided by
the trained individuals of the previous population, but there is a trial and error process
that is done in a parallel way. The main idea of LEM comes from a combination of
evolutionary search and machine learning methods introduced in 2000 (Michalski, 2000).
This strategy runs a machine learning model so that it can identify those individuals
performing better in doing tasks. These reasons are expressed as inductive hypotheses and
then used to produce the new population of these individuals. In fact, the new population
is produced using hypotheses related to individuals with high fitness in the previous
population.

LEM may switch between the machine learning mode and Darwinian Evolution mode
or rely completely on machine learning. If LEM only runs the machine learning mode, it is
so repeatedly applied that machine learning reaches evolution for the new population.
While working with both modes, LEM switches from one mode to another when it can

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 6/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

meet the termination condition. The evolutionary process proceeds until the solution for
LEM is satisfactory, or the allocated sources become exhausted (Wojtusiak ¢ Michalski,
2006).

The evolution process in LEM begins with a number of individuals of one initial
population. In evolutionary processing of individuals may demonstrate solutions to issue
or instructions for generating Solutions. An overview of the LEM process is given below:

1. Creating population: the initial population is created randomly or based on a particular
method

2. Running the machine learning mode

a) Extracting the extrema: two groups are selected from the present population
members; one group with high performance, known as H-group in short, and one
group with low performance, known as L-group in short. The value of these groups is
obtained using the fitness function’s value.

b) Making hypotheses: one machine learning method for describing the H-group and
L-group is applied so that it can distinguish the two groups. While describing
H-group or L-group, the evolution history, i.e., the previous population or
description of previous populations, has to be taken into account.

¢) Creating a new population: to do so, the samples learned in the H-group have to be
combined with the new population. Describing samples is done either randomly or in
the form of rules from the described samples.

d) Proceeding to step (2-a) and repeating the machine learning mode until it reaches
the termination condition. Once the termination condition is met in the machine
learning mode, one of the following actions can be taken:

1) Ending the evolution process
2) Repeating the process from stage 1; this operation is called start-over.

3) Proceeding to stage 3

3. Running the Darwinian evolution mode: in this section, one of the methods of
Darwinian evolution is run, i.e., one mutation, crossover, and selection is applied for
producing the new population. This operation is ongoing until the Darwinian evolution
mode reached the termination condition.

4. Alternating the modes: in this mode, we proceed to stage two and then keep switching
between stages 2 and 3 until the LEM termination condition is met. The best-obtained
individual is the evolution result.

The termination condition in the machine learning mode is fulfilled in a day if a
particular level of performance is reached. In this stage, if the termination condition of
LEM is not met yet, the start-over operation is run, or it proceeds to the termination
condition of the Darwinian evolution mode. If LEM always selects the start-over operation,
the evolution process will only be based on a repetitive program of the machine learning
mode. This version of LEM operation is called uniLEM because it does not include the

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 7/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Generate Initial Population

!

—> Evaluating individuals

l

Darwinian evolution mode

Choosing mode

machine leaming mode

> Selection
Extracting the extrema
(Choosing H-group and L-group) l
l Crossover
Making hypotheses
l 4
Mutation

Leam & Instantiate

l v

— Creating new individuals

A

Evaluating individuals

.

Produce new population

!

Termination condition

Figure 1 LEM algorithm flowchart. Full-size K&] DOTI: 10.7717/peerj-cs.800/fig-1

Darwinian evolution mode. If LEM uses both modes, it is called duoLEM. The flowchart of
LEM algorithms has been illustrated in Fig. 1.

When LEM selects the start-over operation, it has to proceed to stage 1. One simple
solution for running stage 1 is to describe a new population like in other evolutionary
algorithms randomly. In LEM, however, this usually happens for the first time while

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 8/24

http://dx.doi.org/10.7717/peerj-cs.800/fig-1
http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

running stage 1, and there are other methods such as select-elite, avoid-past-features, using
suggestions, and creating another variant for running the start-over operation.

LEMABE FRAMEWORK

In ABE, a new project will be compared to completed projects. Therefore, it can be
concluded that the accuracy of estimates is highly dependent on the correctness of
comparisons. Due to the complex nature of software projects, determining the similarity
between the two projects without considering the importance of each feature can have
many negative effects. As mentioned earlier, in the ABE method, the comparison is
made through a similarity function. Therefore, the proposed model emphasizes the
improvement of the similarity function. In the proposed estimation model, the LEM
algorithm is combined with the ABE method to increase the accuracy of the estimates. In
fact, LEM is used specifically to find the most appropriate weight of features for use in the
similarity function.

The Learnable evolution model in analogy-based estimation (briefly LEMABE) consists
of two phases, i.e., training and testing. The architecture of these phases is illustrated in
Figs. 2 and 3, and the pseudo-code is shown in Table 1.

Evaluation criteria

Since different researches use different functions for testing their methods, selecting
suitable evaluation criteria for comparison with other methods is a difficult task because
the evaluation criteria employed in different papers are different, and in most cases, the
program’s source code is not available. For this reason, in this research, we have tried to use
the most common evaluation criteria that have been used in the majority of papers.

The magnitude of Relative Error (MRE) is the most common performance indicator
used for measuring the efficiency of software prediction models. MRE calculates the
percentage of absolute error against the real effort, as shown in Eq. (5). The mean of MREs,
called MMRE, shown in Eq. (6). Also, the median of MREs is called MAMRE.

|Estimated value — actual valuel

MRE; = (5)

actual value
Zf\il MRE;
N

MMRE = (6)

PRED(X) is another performance indicator that shows the percentage of predictions
correctly predicting x value, as defined in Eq. (7).

100
PRED(x) = D; x — 7
1 if MMRE < —
l —_—
0 otherwise

when x = 25 the PRED metric is defind as PRED(0.25)

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 9/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Training Dataset

Yy
»> Take a project
A
Similarity function K: qearest Historical Databas

? Neighbor
A

solution function

Proposed weight

—»{ LEM Algorithm|

estimating costs

If reach Termination
condition

MRE

Optimal weight

If thereis a project leftin Training MMRE, PRED(0.25)—

Figure 2 The architecture of training system. Full-size Kal DOI: 10.7717/peerj-cs.800/fig-2

Since most of the papers have used these three criteria for evaluating their proposed
methods, we used the same criteria in the current research too. The goal is to minimize
MMRE as the final error value and maximize PRED (0.25).

Training phase

In this phase, a set of training data is given to the model, and the analogy-based cost
estimation system is adjusted by features weight, and the LEM algorithm investigates the
weight vector in training samples to minimize errors. Except for EFFORT, the rest of the
features are considered independent features. Initially, the weight of all features is
randomly selected in the range of 0 to 1. Of course, the weights can be equalized, in which
case all weights are selected 0 or 1. In this phase, a project is selected in each iteration from
the training data, and it is estimated using the proposed equations, i.e., the similarity

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 10/24

http://dx.doi.org/10.7717/peerj-cs.800/fig-2
http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Training Dataset

v
> Take a project
v
Similarity function < K: qearest Historical Databas

7 Neighbor

solution function

Proposed weight
Optimal weight

vector

estimating costs

If there is a project leftin Training MMRE, PRED(0.25)

Figure 3 The architecture of the testing system. Full-size Kal DOI: 10.7717/peerj-cs.800/fig-3

function, k, the nearest neighbor, as well as the solution function. The important point in
this process is that we will use it to find the optimal weights. Indeed, the weights are
suggested by the LEM algorithm and injected into the model. The amount is then
estimated as the proposed cost for that project. The proposed cost is compared to the real
cost of the project, and its MRE metric is calculated. This process is repeated until all
training projects are estimated. In the next step, MMRE and PRED (0.25) are calculated
using the MRE values obtained for training data, and these values are passed (sent) to the
LEM algorithm. The weights are changed (modified) by the LEM by evaluating the
evaluation criteria until the termination criteria (number of repetitions (iterations) or error
rate) are met (satisfied) and the weights are recorded as optimized weights. Architecture of
this phase has been illustrated in Fig. 2.

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 11/24

http://dx.doi.org/10.7717/peerj-cs.800/fig-3
http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Pseudo-code of LEMABE framework.

Algorithm LEMABE

Input: f (.) Objective function
Population Size

elite-ratio

Crossover Rate

Mutation rate

Step I: Initialize population POP

Cross over rate = 0.5

Mutation rate = 0.1

Set G = 0 (Generation number)

Step 2: From the training dataset, one project is selected as the new project to be estimated, while the others are treated as historical projects in the ABE

system.

Step 3: In LEM’s parameter vector, encode the training project’s feature weights.
Step 4: Create a weight vector at random from the range [0, 1].
Step 5: Using a picked at random weight vector in pop, assess the similarity metric for the training project.

Step 6: Obtain the K closest analogies to the historical dataset

Step 7: Calculate solution function

Step 8: Repeat steps 2-7 until all of the training instances have been processed with the same random weight vector (produced for to begin with

training instance).

Step 9: Calculate MRE for each individual using objective function. The objective function is (MMRE — PRED (0.25) + €). The € is a minor positive

constant that was purposely included to keep the denominator from being zero.
Step 10: To assess forecast accuracy, compute MMRE and PRED (0.25) and MdMRE.
Step 11: The Evolution Step // As long as the stopping criteria are not met.

Step 12: Choose the mode
Step 13: If choose Machine Learning Mode

Step 13-1: Sort population and make L-group and H-group
Step 13-2: Learn how to use the L and H groups to create a decision tree.

Step 13-3: Create a new individual via hypothesis creation and instantiation

Step 13-4: While termination is not satisfied
Step 14: Else (Choose Darwinian Mode)

Step 14-1: Select parents from population according to selection method

Step 14-2: Apply Crossover
Step 14-3: Apply Mutation
Step 14-4: While termination condition

Step 15: count increase the number of generations G = G + 1

Step 16: Stopping criteria- wait until Gmax reaches 100 or the best objective function hasn’t updated in at least 30 generations before stopping. If all of

the stopping criteria are met, proceed to step 18.

Step 17: go to step 11
Step 18: EXIT

Output: candidate solution with optimal weight vector for testing phase

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800

12/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Testing phase

The main purpose of the testing phase is to assess the accuracy of the estimation model
made using the testing data. In this phase, the optimized weights obtained from the
training phase are applied to the similarity function. Similar to what was done in the
training phase, a project is entered into the model and then using the similarity function, K
nearest neighbors and solution function, the cost is predicted, and MRE will be counted.
This process is repeated for all testing data. Finally, the MMRE and PRED (0.25)
evaluation criteria are calculated. The architecture of this phase has been illustrated in
Fig. 3.

Experiment design

In the present research, three popular datasets, i.e. Desharnais, Maxwell and ISBSG, were
used to evaluate the proposed method. If the accuracy of the cost estimation model is
calculated using the projects used to make the model, performance appraisal may be very
optimistic, and Estimation error, in this case, maybe significantly lower and may not work
well in real-world environments (Hayes, Ryan & Zseller, 1994). In the meantime, the
cross-validation approach provides a more realistic, more accurate assessment, in

which the data set is divided into several sets of training and testing data. In this paper,
10-fold cross-validation validations are used. In order to design the experiment and to
evaluate the proposed method using different experiments, the preprocessing operation
has to be run on the data at first. Data preprocessing is one of the most important

parts of estimation problems, and its goal is for all features to have the same effect on the
target feature. To do so, the data will become normal within the interval [0, 1] using the
min-max equation. The normalization operation is done to remove different effects of
features (Dejaeger et al., 2011). Then, to train the proposed model, the training datasets
have to be divided into training datasets and testing datasets. This was done through
the 10-fold cross-validation method in this research. In this division, the datasets are
randomly divided into 10 almost-equal sets, among which one set is considered the testing
dataset and nine other sets are considered the training datasets.

As mentioned earlier, the analogy-based estimation method has three control
parameters, including similarity function, K-nearest neighbor, and solution function. In
designing the present experiment, Euclidean and Manhattan distances employed for
similarity function and the most common solution functions, i.e., median and mean, used
to obtain the proposed estimation value. Moreover, the number of closest projects with
each other was assumed as variables within the interval of 1 to 5. After specifying the values
of parameters, we first defined the effect of different combinations of these parameters in
the search space of each parameter and finally selected the most appropriate produced
model to be tested with other methods.

EXPERIMENT RESULTS
Experimenting with the proposed method

To experiment the proposed model, the possibility of obtaining the most desirable
configuration of the analogy-based estimation method was investigated. To do so, we used

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 13/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 LEMABE results on deshernais dataset.

Similarity k Solution Training set Testing set
MMRE PRED MdJMRE MMRE PRED MdJMRE
Euclidean K=1 CA 0.25 0.56 0.16 0.34 0.50 0.26
K=2 mean 0.41 0.47 0.40 0.40 0.48 0.39
median 0.39 0.43 0.38 0.37 0.46 0.38
K=3 mean 0.24 0.55 0.17 0.31 0.50 0.25
median 0.24 0.55 0.17 0.21 0.60 0.15
K=4 mean 0.28 0.50 0.21 0.27 0.51 0.20
median 0.24 0.55 0.17 0.26 0.50 0.20
K=5 mean 0.42 0.21 0.50 0.46 0.21 0.54
median 0.23 0.57 0.12 0.21 0.61 0.12
Manhattan K=1 CA 0.36 0.44 0.36 0.35 0.47 0.36
K=2 mean 0.38 0.36 0.40 0.37 0.32 0.35
Median 0.48 0.40 0.65 0.46 0.43 0.65
K=3 mean 0.42 0.25 0.48 0.53 0.20 0.62
median 0.25 0.54 0.17 0.24 0.55 0.17
K=4 mean 0.36 0.44 0.30 0.34 0.46 0.28
median 0.35 0.44 0.30 0.37 0.46 0.32
K=5 mean 0.27 0.55 0.22 0.28 0.50 0.23
median 0.41 0.45 0.50 0.49 0.38 0.60

three evaluation criteria, i.e., MMRE, PRED (0.25), and MdMRE on Desharnais, Maxwell
and ISBSG datasets.

Tables 2-4 show the results of applying the proposed model on the Desharnais and
Maxwell datasets, respectively, in which different combinations of the main ABE
parameters, which include KNN, similarity function, and solution function, are presented.

According to the proposed framework, evaluating the best option in different criteria
was different, but the most suitable and responsive model for all datasets belongs to
the Euclidean distance and k-nearest neighbor as well as the median solution function.
In addition, the lowest value of MMRE and MdMRE belongs to the Euclidean distance
with five nearest neighbors as well as the median solution function, but their PRED value
does not contain the highest value among models, although it has relatively suitable values.
Based on the obtained results, the highest value of PRED belongs to the Manhattan
distance and three nearest neighbors, as well as the median solution function. The
summarization from the Best Results of the Model’s Evaluation based on Three Datasets
shown in Table 5.

Comparing the efficiency of LEMABE with other methods

One point to consider while comparing some methods is that the criteria of evaluation
functions’ quality and the selected intervals of datasets must be the same so that
comparison is made properly. The performance of the proposed framework was validated
and compared with the most efficient and commonly used variants of other popular

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 14/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 LEMABE results on maxwell dataset.

Similarity k Solution Training set Testing set
MMRE PRED MJdMRE MMRE PRED MdJMRE
K=1 CA 0.47 0.46 0.35 0.48 0.46 0.36
Euclidean K=2 mean 0.66 0.54 0.48 0.56 0.62 0.45
K=3 mean 0.64 0.46 0.34 0.90 0.38 0.60
median 0.77 0.58 0.35 0.11 0.61 0.16
K=4 mean 0.50 0.50 0.30 0.49 0.50 0.30
median 0.51 0.48 0.29 0.51 0.52 0.29
K=5 mean 0.66 0.6 0.45 0.56 0.68 0.42
median 0.67 0.50 0.30 0.62 0.54 0.29
0.50 0.50 0.30 0.10 0.51 0.12
Manhattan K=1 median
K=2 mean 0.7 0.4 0.47 0.71 0.36 0.49
K=3 mean 0.62 0.52 0.47 0.53 0.62 0.42
median 0.64 0.46 0.34 0.90 0.38 0.60
K=4 mean 0.65 0.62 0.45 0.55 0.63 0.43
median 0.59 0.52 0.36 0.61 0.44 0.37
K=5 mean 0.54 0.58 0.33 0.55 0.58 0.33
median 0.66 0.38 0.34 0.62 0.46 0.31
0.54 0.6 0.30 0.55 0.68 0.31
Table 4 LEMABE results on ISBSG dataset.
Similarity k Solution Training set Testing set
MMRE PRED MdAMRE MMRE PRED MdAMRE
K=1 CA 0.86 0.29 0.82 0.88 0.3 0.84
Euclidean K=2 mean 0.71 0.50 0.68 0.79 0.43 0.67
K=3 mean 0.70 0.50 0.66 0.76 0.39 0.73
median 0.59 0.40 0.56 0.61 0.59 0.69
K=4 mean 0.63 0.42 0.60 0.69 0.49 0.64
median 0.76 0.36 0.70 0.72 0.40 0.75
K=5 mean 0.67 0.41 0.77 0.77 0.39 0.60
median 0.59 0.48 0.62 0.58 0.49 0.60
Manhattan K=1 median 0.82 0.29 0.78 0.85 0.28 0.83
K=2 mean 0.58 0.55 0.55 0.64 0.52 0.61
K=3 mean 0.54 0.30 0.55 0.57 0.47 0.59
median 0.60 0.42 0.59 0.62 0.39 0.60
K=4 mean 0.50 0.42 0.51 0.50 0.46 0.53
median 0.51 0.43 0.55 0.70 0.40 0.68
K=5 mean 0.57 0.40 0.49 0.57 0.44 0.60
median 0.60 0.38 0.61 0.60 0.38 0.64
Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 15/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 The best model evaluation results related to the three datasets.

Criterion

Solution function K Similarity function
Median 3 Euclidean

Median 5 Euclidean

Median 3 Manhattan

Best evaluation (considering all three criteria)

The lowest value of MAMRE and MMRE

The highest value of PRED

Table 6 Comparison of LEMABE against other evolutionary algorithms in deshernais dataset.

Methods MMRE MdMRE PRED (0.25)
PSO-based 0.30 0.27 0.54
DABE 0.24 0.23 0.52
ABE 0.42 0.35 0.48
GA-ABE 0.33 0.28 0.57
ANN 0.77 0.69 0.18
RBF 0.53 0.48 0.39
MLR 0.82 0.76 0.22
LEMABE 0.21 0.15 0.60

Table 7 Comparison of LEMABE against other evolutionary algorithms in maxwell dataset.

Methods MMRE MdJMRE PRED (0.25)
DABE 0.23 0.26 0.53
ABE 0.76 0.78 0.22
RBF 0.46 0.41 0.38
MLR 0.84 0.83 0.29
PSO-based 0.38 0.38 0.47
ANN 0.70 0.72 0.12
GA-ABE 0.19 0.27 0.59
LEMABE 0.11 0.16 0.61

models, namely PSO-based, GA-based feature weight optimization in ABE (GA-ABE),

Differential evolution in ABE (DABE), ANN with backpropagation learning-based

(de Barcelos Tronto, da Silva & Sant’Anna, 2008; Park & Baek, 2008; Lopez-Martin, 2015),
Radial basis function (RBF)-based SDEE (Shin ¢ Goel, 2000). Also, one of the
regression-based estimation methods which is multiple regression (MLR) (Mittas ¢

Angelis, 2010), was involved in the comparison process. All of the estimation frameworks

using historical data sets and the algorithm parameters were adjusted automatically.

The results of such comparisons were applied to different datasets, as shown in Tables 6-8.

Table 6 shows the results of using the selected estimation methods on the Deshernais
dataset based on MMRE, MdAMRE and PRED (0.25) criteria. The results show that the
proposed model produces more accurate estimates in the testing phase than other methods
[MMRE = 0.21, PRED (0.25) = 0.60, MAMRE = 0.15] and subsequently (DABE with values

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800

16/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Table 8 Comparison of LEMABE against other evolutionary algorithms in ISBSG dataset.

Methods MMRE MdJMRE PRED (0.25)
GA-ABE 0.71 0.85 0.45

ANN 0.92 0.94 0.17

ABE 0.88 0.92 0.32

DABE 0.69 0.89 0.39

RBF 0.81 0.83 0.11
PSO-based 0.73 0.81 0.42

MLR 0.98 0.99 0.2

LEMABE 0.61 0.69 0.59

[MMRE = 0.24, PRED (0.25) = 0.52, MAMRE = 0.23] and the worst estimate was for MLR
[MMRE = 0.82, PRED (0.25) = 0.22, MAMRE = 0.76].

The results of applying different estimation models on the Maxwell data set are shown
in Table 7. As can be seen in the table, the proposed model has achieved the best
performance criteria among other models, the values of which are [MMRE = 0.11, PRED
(0.25) = 0.61, MAMRE = 0.16]. GA-ABE was followed by [MMRE = 0.23, PRED
(0.25) = 0.53, MAMRE = 0.26]. In addition, MLR produced the worst estimates [MMRE =
0.84, PRED (0.25) = 0.29, MAMRE = 0.83].

Table 8 shows the estimate valuesobtained using the proposed model in the ISBSG
dataset. As seen in the table, the performance range of metrics for ISBSG dataset is quite
different from the others. The best performance is obtained with [MMRE = 0.61,

PRED (0.25) = 0.59, MAMRE = 0.69]. DABE [MMRE = 0.69, PRED (0.25) = 0.58,
MdAMRE = 0.69] is the closest method to the proposed model and MLR provides the worst
estimates for this dataset [MMRE = 0.98, PRED (0.25) = 0.20, MdAMRE = 0.99].

As can be seen in the above tables, the value of MMRE and MdMRE criteria is
lower than similar values in comparison with other models. Since improving the proposed
model and providing comprehensive and clear results is the main goal of this article, to
achieve this goal, the percentage improvement of ABE, PSO-based, GA-ABE, DABE
models compared to the proposed model are shown in Figs. 4-6. Due to the lack of proper
results in ANN, RBF and MLR models, they have been discontinued.

Figure 4 shows the progress made using the proposed model in the Deshernais dataset.
According to Fig. 4, the most advanced is the ABE model, in which the evaluation criteria
of MMRE, MdMRE, and PRED (0.25) have values of 50%, 57%, and 20%, respectively.
The improvement rates of MMRE and MdMRE are almost the same in both PSO-based
and GA-ABE models, while in these models, the PRED (0.25) improvement rate is less
than 10%. This suggests that the scope of improvement is limited to a few projects.
Meanwhile, the percentage of improvement of DABE model has been lower than other
models. In general, it can be concluded that in this data set, the progress of MMRE and
MdAMRE in all estimation models has been higher than PRED (0.25), and LEM can
significantly improve the ABE performance in Deshernais data set.

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 17/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

®MMRE = MdJMRE mPRED(0.25)

46%
44%
35% 36%
30%
13%
10%
I “ I

DABE GA-ABE PSO-based

57%
50%
20%
I 1%
ABE

Figure 4 MMRE, MdMRE, and PRED in deshernais dataset in various algorithms.
Full-size k&l DOT: 10.7717/peerj-cs.800/fig-4

®MMRE = MJMRE mPRED(0.25)

86%
79%
%
64%
58%
52%
42%
38% 41%
23%
14%
==
ABE DABE GA-ABE PSO-based

Figure 5 MMRE, MdMRE, and PRED in maxwell dataset in various algorithms.
Full-size k&l DOT: 10.7717/peerj-cs.800/fig-5

mMMRE m MdMRE mPRED(0.25)

47%
34%
31%
: 29%
74
. 27%
2% 3%
‘ 19% .
v %
I 15% I 15%
ABE GA-ABE

DABE PSO-based

Figure 6 MMRE, MdMRE, and PRED in ISBSG dataset in various algorithms.
Full-size k4] DOL: 10.7717/peerj-cs.800/fig-6

Dashti et al. (2022), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.800 I [18/24

http://dx.doi.org/10.7717/peerj-cs.800/fig-5
http://dx.doi.org/10.7717/peerj-cs.800/fig-6
http://dx.doi.org/10.7717/peerj-cs.800/fig-4
http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

The improvement percentage of the proposed model is shown in Maxwell’s dataset in
Fig. 5. It is observed that the proposed model has improved the accuracy of the ABE model
in all three criteria of MMRE, MdMRE, and PRED (0.25) by 86%, 79%, and 64%,
respectively, which does not indicate the wide range of test projects. A high percentage of
accuracy increases that the use of LEM can significantly increase ABE performance in
the Maxwell data set. It is also observed that the MMRE and MdMRE criteria for other
types of estimation models have also increased significantly. The highest PRED (0.25)
progress in this data set occurred with 64%. However, in GA, this value has been
minimized, which could be due to the similarity of the internal structure of GA and LEM.

Figure 6 illustrates the percentage of improvement obtained using the proposed
model in the ISBSG dataset. It has been observed that the PRED value (0.25) for all types of
ABE has increased significantly. Due to the number of outliers and nonnormal projects in
ISBSG data set, there has been less improvement in the MMRE and MdMRE criteria.

CONCLUSIONS

One of the most important factors in a successful software project is cost estimation. But
because of the Significant growth in size and the variability of requirements, the cost
estimation process is difficult and vague. Analogy-based estimation approach is one of the
most popular methods of estimating costs, and despite many benefits, ABE is often unable
to produce accurate estimates. In the current paper, we proposed a weight optimization
technique based on the learnable evolution model in analogy-based estimation. The
proposed model was applied to different datasets and tested in different states. The results
of the conducted experiments reveal that the results obtained from the proposed model
with different evaluation criteria have been satisfactory in most cases. Moreover, the
proposed framework was compared with other evolutionary algorithms like genetic
algorithm, differential evolution, and particle swarm optimization, according to which
more desirable results were obtained. Since the learnable evolution model generates

new individuals by a series of production processes and hypotheses, it can to somehow
solve the problem of randomness population generation in Darwinian algorithms and
increase the speed of convergence as well. This can attract software experts and researchers
in the field of cost estimation interested in this algorithm.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was partially supported by the Universiti Putra Malaysia, Malaysia.

The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Universiti Putra Malaysia, Malaysia.

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 19/24

http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Maedeh Dashti conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

e Taghi Javdani Gandomani conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, and approved the final draft.

e Dariush Hasanpoor Adeh performed the experiments, performed the computation
work, prepared figures and/or tables, and approved the final draft.

e Hazura Zulzalil conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

e Abu Bakar Md Sultan analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The Desharnais Dataset consisting of Canadian software projects and the Maxwell
Dataset consisting of software projects of Finland are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.800#supplemental-information.

REFERENCES

Angelis L, Stamelos 1. 2000. A simulation tool for efficient analogy based cost estimation.
Empirical Software Engineering 5(1):35-68 DOI 10.1023/A:1009897800559.

Auer M, Trendowicz A, Graser B, Haunschmid E, Biffl S. 2006. Optimal project feature weights
in analogy-based cost estimation: improvement and limitations. IEEE Transactions on Software
Engineering 32(2):83-92 DOI 10.1109/TSE.2006.1599418.

Azzeh M. 2012. A replicated assessment and comparison of adaptation techniques for
analogy-based effort estimation. Empirical Software Engineering 17(1-2):90-127
DOI 10.1007/s10664-011-9176-6.

Azzeh M, Nassif AB. 2016. A hybrid model for estimating software project effort from use case
points. Applied Soft Computing 49(1):981-989 DOI 10.1016/j.as0c.2016.05.008.

Azzeh M, Nassif AB, Minku LL. 2015. An empirical evaluation of ensemble adjustment methods
for analogy-based effort estimation. Journal of Systems and Software 103(1):36-52
DOI 10.1016/j.jss.2015.01.028.

Azzeh M, Neagu D, Cowling P. 2008. Improving analogy software effort estimation using fuzzy
feature subset selection algorithm. In: Proceedings of the 4th International Workshop on
Predictor Models in Software Engineering. New York: ACM, 71-78.

Azzeh M, Neagu D, Cowling PI. 2010. Fuzzy grey relational analysis for software effort estimation.
Empirical Software Engineering 15(1):60-90 DOI 10.1007/s10664-009-9113-0.

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 20/24

http://dx.doi.org/10.7717/peerj-cs.800#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.800#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.800#supplemental-information
http://dx.doi.org/10.1023/A:1009897800559
http://dx.doi.org/10.1109/TSE.2006.1599418
http://dx.doi.org/10.1007/s10664-011-9176-6
http://dx.doi.org/10.1016/j.asoc.2016.05.008
http://dx.doi.org/10.1016/j.jss.2015.01.028
http://dx.doi.org/10.1007/s10664-009-9113-0
http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Bardsiri VK, Jawawi DNA, Hashim SZM, Khatibi E. 2013. A PSO-based model to increase the
accuracy of software development effort estimation. Software Quality Journal 21(3):501-526
DOI 10.1007/s11219-012-9183-x.

Benala TR, Bandarupalli R. 2016. Least square support vector machine in analogy-based software
development effort estimation. In: 2016 International Conference on Recent Advances and
Innovations in Engineering (ICRAIE). Piscataway: IEEE, 1-6.

Benala TR, Mall R. 2018. DABE: differential evolution in analogy-based software development
effort estimation. Swarm Evolutionary Computation 38(4):158-172
DOI 10.1016/j.swevo.2017.07.009.

Boehm BW. 1984. Software engineering economics. IEEE Transactions on Software Engineering
10(1):4-21 DOI 10.1109/TSE.1984.5010193.

Cervone G, Kaufman KK, Michalski RS. 2000. Experimental validations of the learnable evolution
model. In: 2000 Congress on Evolutionary Computation. San Diego, 1064-1071.

Chiu N-H, Huang S-J. 2007. The adjusted analogy-based software effort estimation based on
similarity distances. Journal of Systems and Software 80(4):628-640
DOI 10.1016/j.jss.2006.06.006.

Cobos C, Estupiiian D, Pérez J. 2011. GHS+ LEM: global-best harmony search using learnable
evolution models. Applied Mathematics Computation 218(6):2558-2578
DOI 10.1016/j.amc.2011.07.073.

Darwin C. 1987. Charles Darwin’s natural selection: being the second part of his big species book
written from 1856 to 1858. Cambridge: Cambridge University Press.

de Barcelos Tronto IF, da Silva JDS, Sant’Anna N. 2008. An investigation of artificial neural
networks based prediction systems in software project management. Journal of Systems and
Software 81(3):356-367 DOI 10.1016/j.jss.2007.05.011.

Dejaeger K, Verbeke W, Martens D, Baesens B. 2011. Data mining techniques for software effort
estimation: a comparative study. IEEE Transactions on Software Engineering 38(2):375-397
DOI 10.1109/TSE.2011.55.

Dillibabu R, Krishnaiah K. 2005. Cost estimation of a software product using COCOMO I1. 2000
model-a case study. International Journal of Project Management 23(4):297-307
DOI 10.1016/j.ijproman.2004.11.003.

Domanski PA, Yashar D, Kaufman KA, Michalski RSJH, Research R. 2004. An optimized design
of finned-tube evaporators using the learnable evolution model. HVAC&R Research
10(2):201-211 DOI 10.1080/10789669.2004.10391099.

Ezghari S, Zahi A. 2018. Uncertainty management in software effort estimation using a consistent
fuzzy analogy-based method. Applied Soft Computing 67(1):540-557
DOI 10.1016/j.as0¢.2018.03.022.

Gardner M. 1997. Taxicab geometry. In: The last recreations. Berlin: Springer, 159-175.

Hayes CB, Ryan A, Zseller EB. 1994. The middle school child’s perceptions of caring teachers.
American Journal of Education 103(1):1-19 DOI 10.1086/444087.

Hong KS, Kim JG. 2000. Manipulability analysis of a parallel machine tool: application to optimal
link length design. Journal of Robotic Systems 17(8):403-415 DOI 10.1002/(ISSN)1097-4563.

Huang S-J, Chiu N-H. 2006. Optimization of analogy weights by genetic algorithm for software
effort estimation. Information Software Technology 48(11):1034-1045
DOI 10.1016/j.infsof.2005.12.020.

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 21/24

http://dx.doi.org/10.1007/s11219-012-9183-x
http://dx.doi.org/10.1016/j.swevo.2017.07.009
http://dx.doi.org/10.1109/TSE.1984.5010193
http://dx.doi.org/10.1016/j.jss.2006.06.006
http://dx.doi.org/10.1016/j.amc.2011.07.073
http://dx.doi.org/10.1016/j.jss.2007.05.011
http://dx.doi.org/10.1109/TSE.2011.55
http://dx.doi.org/10.1016/j.ijproman.2004.11.003
http://dx.doi.org/10.1080/10789669.2004.10391099
http://dx.doi.org/10.1016/j.asoc.2018.03.022
http://dx.doi.org/10.1086/444087
http://dx.doi.org/10.1002/(ISSN)1097-4563
http://dx.doi.org/10.1016/j.infsof.2005.12.020
http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Idri A, Hosni M, Abran A. 2016. Improved estimation of software development effort using
classical and fuzzy analogy ensembles. Applied Soft Computing 49(35):990-1019
DOI 10.1016/j.as0¢.2016.08.012.

Jorgensen M, Shepperd M. 2007. A systematic review of software development cost estimation
studies. IEEE Transactions on Software Engineering 33(1):33-53 DOI 10.1109/TSE.2007.256943.

Jourdan L, Corne D, Savic D, Walters G. 2005. Preliminary investigation of the ‘learnable
evolution model’for faster/better multiobjective water systems design. In: Coello Coello CA,
Hernandez Aguirre A, Zitzler E, eds. Evolutionary Multi-Criterion Optimization (EMO) 2005.
Berlin: Springer, 841-855.

Kadoda G, Cartwright M, Chen L, Shepperd M. 2000. Experiences using case-based reasoning to
predict software project effort. In: Proceedings of the EASE 2000 Conference. Keele, UK.

Kazemifard M, Zaeri A, Ghasem-Aghaee N, Nematbakhsh MA, Mardukhi F. 2011. Fuzzy
emotional COCOMO II software cost estimation (FECSCE) using multi-agent systems. Applied
Soft Computing 11(2):2260-2270 DOI 10.1016/j.as0¢.2010.08.006.

Keaveney S, Conboy K. 2006. Cost estimation in agile development projects. In: 2006 Proceedings
of European Conference on Information Systems (ECIS). 183-197.

Kolodner J. 2014. Case-based reasoning. Burlington: Morgan Kaufmann.

Larose DT, Larose CD. 2014. Discovering knowledge in data: an introduction to data mining.
Hoboken: John Wiley & Sons.

Li J, Ruhe G. 2008. Software effort estimation by analogy using attribute selection based on rough
set analysis. International Journal of Software Engineering and Knowledge Engineering
18(1):1-23 DOI 10.1142/50218194008003532.

Li J, Ruhe G. 2008. Analysis of attribute weighting heuristics for analogy-based software effort
estimation method AQUA+. Empirical Software Engineering 13(1):63-96
DOI 10.1007/s10664-007-9054-4.

Li Y, Xie M, Goh T. 2008. A study of analogy based sampling for interval based cost estimation for
software project management. In: 4th IEEE International Conference on Management of
Innovation and Technology, 2008 (ICMIT 2008). Piscataway: IEEE, 281-286.

Li Y-F, Xie M, Goh TN. 2009. A study of project selection and feature weighting for analogy based
software cost estimation. Journal of Systems and Software 82(2):241-252
DOI 10.1016/j.jss.2008.06.001.

Li Y-F, Xie M, Goh T. 2009. A study of the non-linear adjustment for analogy based software cost
estimation. Empirical Software Engineering 14(6):603-643 DOI 10.1007/s10664-008-9104-6.

Li Y-F, Xie M, Goh T. 2009. A study of mutual information based feature selection for case based
reasoning in software cost estimation. Expert Systems with Applications 36(3):5921-5931
DOI 10.1016/j.eswa.2008.07.062.

Liu Q, Chu X, Xiao J, Zhu H. 2014. Optimizing non-orthogonal space distance using pso in
software cost estimation. In: 2014 IEEE 38th Annual Computer Software and Applications
Conference. Piscataway: IEEE, 21-26.

Lépez-Martin C. 2015. Predictive accuracy comparison between neural networks and statistical
regression for development effort of software projects. Applied Soft Computing 27(9):434-449
DOI 10.1016/j.as0¢.2014.10.033.

Mendes E, Mosley N, Counsell S. 2003. A replicated assessment of the use of adaptation rules to

improve Web cost estimation. In: Proceedings of the International Symposium on Empirical
Software Engineering, 2003 (ISESE 2003). 100-109.

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 22/24

http://dx.doi.org/10.1016/j.asoc.2016.08.012
http://dx.doi.org/10.1109/TSE.2007.256943
http://dx.doi.org/10.1016/j.asoc.2010.08.006
http://dx.doi.org/10.1142/S0218194008003532
http://dx.doi.org/10.1007/s10664-007-9054-4
http://dx.doi.org/10.1016/j.jss.2008.06.001
http://dx.doi.org/10.1007/s10664-008-9104-6
http://dx.doi.org/10.1016/j.eswa.2008.07.062
http://dx.doi.org/10.1016/j.asoc.2014.10.033
http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Michalski RS. 2000. Learnable evolution model: evolutionary processes guided by machine
learning. Machine Learning 38(1-2):9-40 DOI 10.1023/A:1007677805582.

Mittas N, Angelis L. 2010. LSEbA: least squares regression and estimation by analogy in a
semi-parametric model for software cost estimation. Empirical Software Engineering
15(5):523-555 DOI 10.1007/s10664-010-9128-6.

Moosavi SHS, Bardsiri VK. 2017. Satin bowerbird optimizer: a new optimization algorithm to
optimize ANFIS for software development effort estimation. Engineering Applications of
Artificial Intelligence 60(9):1-15 DOI 10.1016/j.engappai.2017.01.006.

Oliveira AL, Braga PL, Lima RM, Cornélio ML. 2010. GA-based method for feature selection and
parameters optimization for machine learning regression applied to software effort estimation.
Information Software Technology 52(11):1155-1166 DOI 10.1016/j.infsof.2010.05.009.

Park H, Baek S. 2008. An empirical validation of a neural network model for software effort
estimation. Expert Systems with Applications 35(3):929-937 DOI 10.1016/j.eswa.2007.08.001.
Pawlak Z. 2012. Rough sets: theoretical aspects of reasoning about data. Berlin: Springer Science &
Business Media.

Phannachitta P, Keung J, Monden A, Matsumoto K-I. 2013. Improving analogy-based software
cost estimation through probabilistic-based similarity measures. In: Proceedings of the 20th Asia
Pacific Software Engineering Conference (APSEC2013). 541-546.

Satapathy SM, Acharya BP, Rath SK. 2016. Early stage software effort estimation using random
forest technique based on use case points. IET Software 10(1):10-17
DOI 10.1049/iet-sen.2014.0122.

Shepperd M, Schofield C. 1997. Estimating software project effort using analogies. IEEE
Transactions on Software Engineering 23(11):736-743 DOI 10.1109/32.637387.

Shin M, Goel AL. 2000. Empirical data modeling in software engineering using radial basis
functions. IEEE Transactions on Software Engineering 26(6):567-576 DOI 10.1109/32.852743.

Sternberg RJ. 1977. Component processes in analogical reasoning. Psychological Review
84(4):353-378 DOI 10.1037/0033-295X.84.4.353.

Tosun A, Turhan B, Bener AB. 2009. Feature weighting heuristics for analogy-based effort
estimation models. Expert Systems with Applications 36(7):10325-10333
DOI 10.1016/j.eswa.2009.01.079.

Walkerden F, Jeffery R. 1997. Software cost estimation: a review of models, process, and practice.
Advances in Computers 44:59-125 DOI 10.1016/50065-2458(08)60337-X.

Walkerden F, Jeffery R. 1999. An empirical study of analogy-based software effort estimation.
Empirical Software Engineering 4(2):135-158 DOI 10.1023/A:1009872202035.

Wang X, Yang J, Teng X, Xia W, Jensen R. 2007. Feature selection based on rough sets and
particle swarm optimization. Pattern Recognition Letters 28(4):459-471
DOI 10.1016/j.patrec.2006.09.003.

Wen J, Li S, Lin Z, Hu Y, Huang C. 2012. Systematic literature review of machine learning based
software development effort estimation models. Information Software Technology 54(1):41-59
DOI 10.1016/j.infsof.2011.09.002.

Wojtusiak J, Michalski RS. 2004. The LEM3 implementation of learnable evolution model: user’s
guide. In: Reports Machine Learning and Inference Laboratory. George Mason University, 1-23.

Wojtusiak J, Michalski RS. 2006. The LEM3 implementation of learnable evolution model and its
testing on complex function optimization problems. In: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation. 1281-1288.

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 23/24

http://dx.doi.org/10.1023/A:1007677805582
http://dx.doi.org/10.1007/s10664-010-9128-6
http://dx.doi.org/10.1016/j.engappai.2017.01.006
http://dx.doi.org/10.1016/j.infsof.2010.05.009
http://dx.doi.org/10.1016/j.eswa.2007.08.001
http://dx.doi.org/10.1049/iet-sen.2014.0122
http://dx.doi.org/10.1109/32.637387
http://dx.doi.org/10.1109/32.852743
http://dx.doi.org/10.1037/0033-295X.84.4.353
http://dx.doi.org/10.1016/j.eswa.2009.01.079
http://dx.doi.org/10.1016/S0065-2458(08)60337-X
http://dx.doi.org/10.1023/A:1009872202035
http://dx.doi.org/10.1016/j.patrec.2006.09.003
http://dx.doi.org/10.1016/j.infsof.2011.09.002
http://dx.doi.org/10.7717/peerj-cs.800
https://peerj.com/computer-science/

PeerJ Computer Science

Wu D, Li J, Bao C. 2018. Case-based reasoning with optimized weight derived by particle swarm
optimization for software effort estimation. Soft Computing 22(16):5299-5310
DOI 10.1007/s00500-017-2985-9.

Xu Z, Khoshgoftaar TM. 2004. Identification of fuzzy models of software cost estimation. Fuzzy
Sets Systems 145(1):141-163 DOI 10.1016/j.£s5.2003.10.008.

Zare F, Zare HK, Fallahnezhad MS. 2016. Software effort estimation based on the optimal
Bayesian belief network. Applied Soft Computing 49(14):968-980
DOI 10.1016/j.as0¢.2016.08.004.

Dashti et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.800 24/24

http://dx.doi.org/10.1007/s00500-017-2985-9
http://dx.doi.org/10.1016/j.fss.2003.10.008
http://dx.doi.org/10.1016/j.asoc.2016.08.004
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.800

	LEMABE: a novel framework to improve analogy-based software cost estimation using learnable evolution model
	Introduction
	Related work
	Lemabe framework
	Experiment results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

