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ABSTRACT
Support vector machine (SVM) is a robust machine learning method and is widely
used in classification. However, the traditional SVM training methods may reveal
personal privacy when the training data contains sensitive information. In the
training process of SVMs, working set selection is a vital step for the sequential
minimal optimization-type decomposition methods. To avoid complex sensitivity
analysis and the influence of high-dimensional data on the noise of the existing SVM
classifiers with privacy protection, we propose a new differentially private working
set selection algorithm (DPWSS) in this paper, which utilizes the exponential
mechanism to privately select working sets. We theoretically prove that the proposed
algorithm satisfies differential privacy. The extended experiments show that the
DPWSS algorithm achieves classification capability almost the same as the original
non-privacy SVM under different parameters. The errors of optimized objective
value between the two algorithms are nearly less than two, meanwhile, the DPWSS
algorithm has a higher execution efficiency than the original non-privacy SVM by
comparing iterations on different datasets. To the best of our knowledge, DPWSS is
the first private working set selection algorithm based on differential privacy.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Security and Privacy
Keywords Differential privacy, Exponential mechanism, Sequential minimal optimization, Support
vector machines, Working set selection

INTRODUCTION
In recent years, with the rapid development of artificial intelligence, cloud computing, and
big data technologies, data sharing and analysis are becoming easier and more practical.
A large amount of individual information is stored in electronic databases, such as
economic records, medical records, web search records, and social network data, which
poses a great threat to personal privacy. Support vector machine (SVM) is one of the most
widely used and robust machine learning methods for classification. Boser, Guyon &
Vapnik (1992) proposed the earliest SVM classification idea by maximizing the margin
between the training patterns and the decision boundary. Cortes & Vapnik (1995) solved
the classification problem of non separable training data through non linearly mapping
them to a very high dimension feature space. Vapnik & Vapnik (1998) considered three
different kernels to construct learning machines with different types of nonlinear decision
surfaces in the input space. Burges (1998) gave an overview on linear SVMs and kernel
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SVMs with numerous examples for pattern recognition. Chang & Lin (2007) developed
a popular library LIBSVM for SVMs and presented all the implementation details.
A SVM trains a classification model by solving an optimization problem and requires only
as few as a dozen examples for training. However, when the training data sets contain
sensitive information, directly releasing the SVM classification model may reveal personal
privacy.

Generally speaking, training SVMs is to solve a large optimization problem of quadratic
programming (QP). Sequential minimal optimization (SMO) (Platt, 1999) is currently a
commonly used decomposition method for training SVMs by solving the smallest QP
optimization problem, and only needs two elements in every iteration. Keerthi, Shevade &
Bhattacharyya (2001) employed two threshold parameters to derive modifications of
SMO and it performed significantly faster than the original SMO algorithm. In all kinds of
SMO-type decomposition methods, working set selection (WSS) is an important step.
Different WSS algorithms determine the convergence efficiency of the SVM training
process. Zuo, Yi & Lv (2010) proposed an improved WSS and a simplified minimization
step for the SMO-type decomposition method.

Differential privacy (DP) was proposed by a series of work of Dwork (2006) from 2006,
which has been becoming an accepted standard for privacy protection in sensitive data
analysis. DP ensures that adding or removing a single item does not affect the analysis
outcome too much, and the privacy level is quantified by a privacy budget ε. DP is realized
by introducing randomness or uncertainty. According to the difference of data types, it
mainly includes Laplace mechanism (McSherry & Talwar, 2007), Gaussian mechanism,
and exponential mechanism (Dwork et al., 2006). Among them, the Laplace mechanism
and Gaussian mechanism are mostly used for numerical data, while the exponential
mechanism is used for non-numerical data.

In this paper, we studied the privacy leakage problem of the traditional SVM training
methods. There are some shortcomings in the existing SVM classifiers with privacy
protection, such as the low classification accuracy, the requirements on the differentiability
of the objective function, the complex sensitivity analysis, and the influence of high-
dimensional data on noise. We give a solution by introducing randomness in the training
process of SVMs to privately release the classification model. The main contributions in
this paper conclude as follows:

� We propose an improved WSS method for training SVMs and design a simple scoring
function for the exponential mechanism, in which the sensitivity is easy to analyze.

� We propose a new differentially private working set selection algorithm (DPWSS)
based on the exponential mechanism, which is achieved by privately selecting the
working set in every iteration.

� To improve the utilization of the privacy budget, every violating pair is selected only
once during the entire training process.

� We analyze theoretically that the DPWSS algorithm satisfies the requirement of DP, and
evaluate the classification capability, algorithm stability, and execution efficiency of the

Sun et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.799 2/36

http://dx.doi.org/10.7717/peerj-cs.799
https://peerj.com/computer-science/


DPWSS algorithm vs the original non-privacy SVM algorithm through extended
experiments.

The rest of this paper is organized as follows. Section “Related Work” discusses related
work. Section “Preliminaries” introduces the background knowledge of SVMs, WSS,
and DP. Section “DPWSS Algorithm” proposes a novel DPWSS algorithm. Section
“Experiments” gives the experimental evaluation of the performance of DPWSS. Lastly,
Section “Conclusions” concludes the research work.

RELATED WORK
In this section, we briefly review some work related to privacy-preserving SVMs.
Mangasarian, Wild & Fung (2008) considered the classification problem of sharing private
data by separating agents and proposed using random kernels for vertically partitioned
data. Lin & Chen (2011) pointed out an inherent privacy violation problem of support
vectors and proposed a privacy-preserving SVM classifier, PPSVC, which replaces the
Gaussian kernel with an approximate decision function. In these two methods, the degree
of privacy protection cannot be proved as the private SVMs based on DP.

As DP is becoming an accepted standard for private data analysis, some SVM
classification models based on DP have produced in the recent two decades. Chaudhuri
et al. proposed two popular perturbation-based techniques output perturbation and
objective perturbation (Chaudhuri & Monteleoni, 2009; Chaudhuri, Monteleoni &
Sarwate, 2011). Output perturbation introduces randomness into the weight vector w after
the optimization process, and the randomness scale is determined by the sensitivity of w.
On the contrary, objective perturbation introduces randomness into the objective
function before the optimization, and the randomness scale is independent of the
sensitivity of w. However, the sensitivity of the two perturbation-based techniques is
difficult to analyze (Liu, Li & Li, 2017) and the objective perturbation requires the loss
function satisfying certain convexity and differentiability criteria. Rubinstein et al. (2012)
proposed a private kernel SVM algorithm PrivateSVM for convex loss functions with
Fourier transformation and output perturbation to release the private SVM classification
model. However, the classification model is valid only for the translation-invariant
kernels. To alleviate too much noise in the final outputs, Li et al. (2014) developed a hybrid
private SVM model that uses a small portion of public data to calculate the Fourier
transformation. However, public data is hard to obtain in the modern private world.
Zhang, Hao & Wang (2019) constructed a novel private SVM classifier by dual variable
perturbation, which adds Laplace noise to the corresponding dual variables according to
the ratio of errors.

Different from those kinds of perturbation-based techniques mentioned above,
which introduce randomness into the output result or objective function, the DPWSS
algorithm introduces randomness during the process of WSS. Therefore, it avoids complex
sensitivity analysis and the influence of high-dimensional data on noise, meanwhile
improves the performance of the classification model to some extent.
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PRELIMINARIES
In this section, we introduce some background knowledge of SVM, WSS, and DP. Table 1
summarizes the notations in the following sections.

Support vector machines
The SVM is an efficient classification method in machine learning that originates from
structural risk minimization (Vapnik & Vapnik, 1998). It finds an optimal separating
hyperplane with the maximal margin to train a classification model. Given training
instances xi 2 Rn and labels yi2{1,−1}, the main task for training a SVM is to solve the QP
optimization problem as follows (Fan, Chen & Lin, 2005):

min
a

f ðaÞ ¼ 1
2
aTQa� eTa

Subject to 0 � ai � C; i ¼ 1; . . . ; l

yTa ¼ 0

(1)

where Q is a symmetric matrix with Qij = yiyjK(xi,xj), and K is the kernel function, e is a
vector with all 1’s, C is the upper bound of vector α.

Table 1 Notations.

Symbol Description

U Universe

D⊂U Dataset to be trained

D’ Neighbor dataset of D

xi2Rd Train instance

yi2{1,−1} Label of train instance

α Dual variable

e Vector of all ones

C Upper bound of all variables

K Kernel function

Q Symmetric matrix of kernel function

B Working set

τ A small positive number

σ Constant-factor

M Mechanism

Lap(λ) Laplace distribution with mean 0 and scale factor λ

ε Privacy budget

f Query function

q(D, r) Score function

Δf, Δq Sensitivity of function

TP True positive

TN True negative

FP False positive

FN False negative
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Working set selection
Generally, the QP problem is hard to solve in the training process of the SVMs. When the
optimization methods handle the large matrix Q, the whole vector α will be updated
repeatedly in the iterative process. Nevertheless, the decomposition methods only update
a subset of vector α in every iteration to solve the challenge and change from one
iteration to another. The subset is called the working set. The method for determining the
working set is called WSS, which originally derives from the optimality conditions of
Karush-Kuhn-Tucker (KKT). Furthermore, SMO-type decomposition methods restrict
the working set to only two elements (Platt, 1999). A pair of elements that violate the
KKT optimality conditions are called “violating pair” (Keerthi, Shevade & Bhattacharyya,
2001).

Definition 1 (Violating pair (Keerthi, Shevade & Bhattacharyya, 2001; Fan, Chen & Lin,
2005)). Under the following restrictions:

IupðaÞ � ftjat ,C; yt ¼ 1 or at . 0; yt ¼ �1g; (2)

IlowðaÞ � ftjat ,C; yt ¼ �1 or at . 0; yt ¼ 1g: (3)

For the kth iteration, if i 2 IupðakÞ, j 2 IlowðakÞ, and�yirf ðakÞi > �yjrf ðakÞj, then {i, j}
is a “violating pair”.

Violating pairs are important in WSS. If working set B is a violating pair, the function
value in SMO-type decomposition methods strictly decreases (Hush & Scovel, 2003).
Under the definition of violating pair, a natural choice of the working set B is the “maximal
violating pair”, which most violates the KKT optimality condition.

WSS 1 (WSS via the “maximal violating pair” (Keerthi, Shevade & Bhattacharyya, 2001;
Fan, Chen & Lin, 2005; Chen, Fan & Lin, 2006)). Under the same restrictions (2) and (3) in
Definition 1,

1. Select

i 2 argmax
t
f�ytrf ðakÞtjt 2 IupðakÞg; (4)

j 2 argmin
t
f�ytrf ðakÞtjt 2 IlowðakÞg; (5)

or

j 2 argmax
t
fytrf ðakÞtjt 2 IlowðakÞg: (6)

2. Return B = {i, j}.

Keerthi, Shevade & Bhattacharyya (2001) first proposed the maximal violating pair,
which has become a popular way in WSS. Fan, Chen & Lin (2005) pointed out that it was
concerned with the first order approximation of f(α) in (1) and gave a detailed explanation.
Meanwhile, they proposed a new WSS algorithm by using more accurate second order
information.

WSS 2 (WSS using second order information (Fan, Chen & Lin, 2005; Chen, Fan & Lin,
2006)).
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1. Define ait and bit,

ait � Kii þ Ktt � 2Kit; (7)

bit � �yirf ðakÞi þ ytrf ðakÞt . 0; (8)

�ait � ait if ait . 0;
s otherwise:

�
(9)

2. Select

i 2 argmax
t
f�ytrf ðakÞtjt 2 IupðakÞg; (10)

j 2 argmin
t

� b2it
�ait

�
jt 2 IlowðakÞ;� ytrf ðakÞt , � yirf ðakÞi

�
: (11)

3. Return B = {i, j}.
WSS 2 uses second order information and checks only O(l) possible working sets to

select j through using the same i as in WSS 1. The WSS 2 algorithm achieves faster
convergence than existing selection methods using first order information. It has been used
in the software LIBSVM (Chang & Lin, 2007) (since version 2.8) and is valid for all
symmetric kernel matrices K, including the non-positive definite kernel.

Lin (2001, 2002) pointed out the maximal violating pair was important to SMO-type
methods. When the working set B is the maximal violating pair, SMO-type methods
converge to a stationary point. Otherwise, it is uncertain whether the convergence
will be established. Chen, Fan & Lin (2006) proposed a general WSS method via the
“constant-factor violating pair”. Under a fixed constant-factor σ specified by the user, the
selected violating pair is linked to the maximal violating pair. The “constant-factor
violating pair” is considered to be a “sufficiently violated” pair. And they prove the
convergence of the WSS method.

WSS 3 (WSS via the “constant-factor violating pair” (Fan, Chen & Lin, 2005; Chen,
Fan & Lin, 2006)).
1. Given a fixed 0 < σ ≤ 1 in all iterations.
2. Compute

mðakÞ ¼ max
t
f�ytrf ðakÞtjt 2 IupðakÞg; (12)

MðakÞ ¼ min
t
f�ytrf ðakÞtjt 2 IlowðakÞg: (13)

3. Select i, j satisfying

i 2 IupðakÞ; j 2 IlowðakÞ; (14)

�yirf ðakÞi þ yjrf ðakÞj � rðmðakÞ �MðakÞÞ > 0: (15)

4. Return B = {i, j}.
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Clearly (15) guarantees the quality of the working set B if it is related to the maximal
violating pair. Fan, Chen & Lin (2005) explained that WSS 2 was a special case of WSS 3
under the special value of σ.

Furthermore, Zhao et al. (2007) employed algorithm WSS 2 to test the datasets by
LIBSVM. They find two interesting phenomena. One is that some α are not updated in the
entire training process. Another is that some α are updated again and again. Therefore,
they propose a new methodWSS-WR and a certain α are selected only once to improve the
efficiency of WSS, especially the reduction of the training time.

Differential privacy
Recently, with the advent of the digital age, huge amounts of personal information have
been collected by web services and mobile devices. Although data sharing and mining
large-scale personal information can help improve the functionality of these services, it
also raises privacy concerns for data contributors. DP provides a mathematically rigorous
definition of privacy and has become a new accepted standard for private data analysis.
It ensures that any possible outcome of an analysis is almost equal regardless of an
individual’s presence or absence in the dataset, and the output difference is controlled by
a relatively small privacy budget. The smaller the budget, the higher the privacy. Therefore,
the adversary cannot distinguish whether an individual’s in the dataset (Liu, Li & Li,
2017). Furthermore, DP is compatible with various kinds of data sources, data mining
algorithms, and data release models.

In dataset D, each row corresponds to one individual, and each column represents an
attribute value. If two datasets D and D’ only differ on one element, they are defined as
neighboring datasets. DP aims to mask the different results of the query function f in
neighboring datasets. The maximal difference of the query results is defined as the
sensitivity Δf. DP is generally achieved by a randomized mechanism M : D ! Rd,
which returns a random vector from a probability distribution. A mechanism M satisfies
DP if the effect of the outcome probability by adding or removing a single element
is controlled within a small multiplicative factor (Lee, 2014). The formal definition is given
as follows.

Definition 2 (ε-differential privacy (Dwork, 2006)). A randomized mechanismM gives
ε-DP if for all datasets D and D’ differing on at most one element, and for all subsets of
possible outcomes S � Range (M),

Pr½MðDÞ 2 S� � expðeÞ 	 Pr½MðD0Þ 2 S�: (16)

Sensitivity is a vital concept in DP that represents the largest effect of the query function
output made by a single element. Meanwhile, sensitivity determines the requirements of
how much perturbation by a particular query function (Zhu et al., 2017).

Definition 3 (Sensitivity (Dwork, 2006)). For a given query function f : D ! Rd , and
neighboring datasets D and D’, the sensitivity of f is defined as
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Df ¼ max
D;D0

f ðDÞ � f ðD0Þk k1: (17)

The sensitivity Df depends only on the query function f, and not on the instances in
datasets.

Any mechanism that meets Definition 2 is considered as satisfying DP (Lee, 2014).
Currently, two principal mechanisms have been used for realizing DP: the Laplace
mechanism (Dwork et al., 2006) and the exponential mechanism (McSherry & Talwar,
2007).

Definition 4 (Laplace mechanism (Dwork et al., 2006)). For a numeric function

f : D ! Rd on a dataset D, the mechanism M in Eq. (18) provides ε-DP.

MðDÞ ¼ f ðDÞ þ Lap
Df
e

� �d

: (18)

The Laplace mechanism gets the real results from the numerical query and then
perturbs it by adding independent random noise. Let Lap(b) represent the random noise
sampled from a Laplace distribution according to sensitivity. The Laplace mechanism is
usually used for numerical data, while for the non-numerical queries, DP uses the
exponential mechanism to randomize results.

Definition 5 (Exponential mechanism (McSherry & Talwar, 2007)). Let qðD; rÞ be a
scoring function on a dataset D that measures the quality of output r 2 R, Dq represents
the sensitivity. The mechanism M satisfies ε-DP if

MðDÞ ¼ return r / exp
eqðD; rÞ
2Dq

� �� �
: (19)

The exponential mechanism is useful to select a discrete output in a differentially private
manner, which employs a scoring function q to evaluate the quality of an output r with a
nonzero probability.

DPWSS ALGORITHM
In this paper, we study the problem of how to privately release the classification model of
SVMs while satisfying DP. To overcome the shortcomings of the privacy-preserving SVM
classification methods, such as low accuracy or complex sensitivity analysis of output
perturbation and objective perturbation, we proposed the algorithm DPWSS for training
SVM in this section. The DPWSS algorithm is achieved by privately selecting the
working set with the exponential mechanism in every iteration. As far as we know, DPWSS
is the first private WSS algorithm based on DP.

An improved WSS method
In the process of training SVMs, WSS is an important step in SMO-type decomposition
methods. Meanwhile, the special properties of the selection process in WSS are perfectly
combined with the exponential mechanism of DP. WSS 3 algorithm is a more general
algorithm to select a working set by checking nearly Oðl2Þ possible B’s to decide j, although
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under the restricted condition of parameter σ. By using the same i 2 argmðakÞ as inWSS 2,
which checks only OðlÞ possible B’s, we propose WSS 4 to select a working set based
on WSS 3 as below. To make the algorithm easy to understand, we replace MðakÞ with
M0ðakÞ.

WSS 4 (An improved WSS via the “constant-factor violating pair”)
1. Given a fixed 0 < σ ≤ 1 in all iterations.
2. Compute

mðakÞ ¼ max
t
f�ytrf ðakÞtjt 2 IupðakÞg; (20)

M0ðakÞ ¼ max
t
fytrf ðakÞtjt 2 IlowðakÞg: (21)

3. Select i, j satisfying

i 2 argmðakÞ; j 2 IlowðakÞ; (22)

mðakÞ þ yjrf ðakÞj � rðmðakÞ þM0ðakÞÞ > 0: (23)

4. Return B = {i, j}.

The scoring function and sensitivity in the exponential mechanism
In the exponential mechanism, the scoring function is an important guarantee for
achieving DP. The rationality of scoring function design is directly related to the execution
efficiency of mechanism M. For one output r, the greater the value of the scoring
function, the greater the probability that r will be selected. Based on the definition of the
“maximal violating pair”, it is obvious that

mðakÞ þM0ðakÞ � mðakÞ þ yjrf ðakÞj: (24)

From Eqs. (23) and (24), we conclude that

mðakÞ þM0ðakÞ � mðakÞ þ yjrf ðakÞj � rðmðakÞ þM0ðakÞÞ > 0: (25)

We design a simple scoring function q(D, r) for the DPWSS algorithm based on WSS 4
and Eq. (25) as follows

1 � qðD; rÞ ¼ mðakÞ þ yjrf ðakÞj
mðakÞ þM0ðakÞ � r; (26)

where r denotes the working set B, which contains violating pair i and j. The larger the
value of scoring function q(D, r), the closer the selected violation pair is to the maximal
violation pair. The sensitivity of scoring function q(D, r) is

Dq ¼ 1� r; (27)

and the value of Dq is a small number, less than 1.
In the exponential mechanism, the output r is selected randomly with probability
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PrðrÞ ¼ exp
eqðD; rÞ
2Dq

� � X
r02R

exp
eqðD; r0Þ
2Dq

� �
:

,
(28)

Privacy budget
Privacy budget is a vital parameter in DP, which controls the privacy level in a randomized
mechanism M. The smaller the privacy budget, the higher the privacy level. When the
allocated privacy budget runs out, mechanismM will lose privacy protection, especially for
the iteration process. To improve the utilization of the privacy budget, every pair of
working sets is selected only once during the entire training process as in Zhao et al. (2007).
Meanwhile, in DPWSS every iteration is based on the result of the last iteration, but
not based on the entire original dataset. Therefore, there is no need to split the privacy
budget for every iteration.

Description of DPWSS algorithm
In the DPWSS algorithm, DP is achieved by privately selecting the working set with the
exponential mechanism in every iteration. We first present an overview of the DPWSS
algorithm and then elaborate on the key steps. Finally, we describe an SMO-type
decomposition method using the DPWSS algorithm in detail.

The description of the DPWSS Algorithm 1 is shown below.
The DPWSS algorithm selects multiple violating pairs that meet the constraints based

on WSS 4, and then randomly selects one with a certain probability by the exponential
mechanism to satisfy DP. Firstly, the DPWSS algorithm computes m(α) and M’(α) for
the scoring function q from Line 1 to Line 4 and determines i as one element of the
violating pair. Secondly, it computes the scoring function q from Line 5 to Line 12. The
constraints in Line 6 represent that the violating pair {i, j} has not been previously selected,
meanwhile the value range of the other element j and the violating pair are valid for
the changes of gradient G. The constraints in Line 8 represent that the scoring function
value is effective under constant-factor σ. Line 14 and Line 15 are key steps in the
exponential mechanism, which randomly select a violating pair with the chosen
probability of the scoring function q. Lastly, the DPWSS algorithm outputs the violating
pair {i, j} as the working set B in Line 15. The time and memory complexity of DPWSS
algorithm is O(l).

In summary, a SMO method using the DPWSS algorithm is shown below.
Algorithm 2 is an iterative process, which first selects working set B by DPWSS, then

updates dual vector α and gradient G in every iteration. After the iterative process, the
algorithm outputs the final α. There are three ways to get out of the iterative process. One is
that α is a stationary point, another is that all violating pairs have been selected, and
the last one is that the number of iterations exceeds the maximum value. Using
Algorithm 2, we privately release the classification model of SVMs with dual vector α while
satisfying the requirement of DP.
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Privacy analysis
In the DPWSS algorithm, randomness is introduced by randomly selecting working sets
with the exponential mechanism. By using the exponential mechanism, a violating pair is
selected randomly with a certain probability. The greater the probability, the closer the
selected violating pair is to the maximal violating pair. For every iteration, the violating
pair in the outputs of the DPWSS algorithm is uncertain. The uncertainty masks the
impact of individual record change on the algorithm results, thus protecting the data
privacy.

According to the definition of DP mentioned in Section 3, we proved that the DPWSS
algorithm satisfies DP strictly by theorem 1 as shown below.

Theorem 1 DPWSS algorithm satisfies DP.
Proof LetM(D, q) be to select the output r of the violating pair in one iteration, and ε be

the allocated privacy budget in the DPWSS algorithm. Based on Eq. (28), we randomly
select violating pair r as a working set with the following probability by the exponential
mechanism. To accord with the standard form of the exponential mechanism, we use q to
denote q’ in the DPWSS algorithm.

Algorithm 1 DPWSS.

Input: G: gradient array; y: array of every instance labels with {+1, −1}; l: number of instances; α: dual
vector; I: the violating pair selected flag bool matrix; σ: constant-factor; ε: privacy budget; eps: stopping
tolerance;

Output: B: working set;

Begin

1: initialize m(α)and M’(α) to -INF;

2: find m(α) by Eq. (20) for t in [0:l−1] and t in Iup(α);

3: set i = t;

4: find M’(α) by Eq. (21) for t in [0:l−1] and t in Ilow(α);

5: for t = 0 to l−1

6: if I[i][t] = =false and t in Ilow(α) and m(α)+y[t]*G[t] > eps then

7: compute scoring function q(D, rt) by Eq. (26);

8: if q(D, rt) ≥ σ then

9: q’(D, rt)← q(D, rt);

10: end if

11: end if

12: end for

13: compute the probability Pr(B) for every violating pair by Eq. (28);

14: randomly select a violating pair as a working set with probability Pr(B);

15: Return B = {i, j};

End
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PrðMðD; qÞ ¼ rÞ
PrðMðD0; qÞ ¼ rÞ ¼

exp
eqðD; rÞ
2Dq

� �
=
P
r02O

exp
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Algorithm 2 A SMO method using DPWSS.

Input: Q: kernel symmetric matrix; y: array of every instance labels with {+1, −1}; l: number of instances; C:
upper bound of all dual variables;

Output: α: dual vector;

Begin

1: initialize gradient array G to all −1, dual vector α to all 0, and violating pair selected flagbool
matrix I to all 0;

2: find α1as the initial feasible solution, set k = 1;

3: while k < max_iter

4: if αk is a stationary point then

5: exit the loop;

6: else

7: select working set B = {i, j} by DPWSS;

8: if B is NULL then

9: exit the loop;

10: end if

11: end if

12: set k = k+1;

13: set I[i][j] = true;

14: update α[i] and α[j];

15: project α back to the feasible region;

16: update gradient G;

17: end while

18: return α;

End
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According to Definition 2, we prove that

PrðMðD; qÞ ¼ rÞ � expðeÞ 	 PrðMðD0; qÞ ¼ rÞ:

Therefore, the DPWSS algorithm satisfies DP.
Algorithm 2 is an iterative process, in which DPWSS is a vital step to privately select a

working set. As the DPWSS algorithm satisfies DP, we perform the steps of updating
dual vector α and gradient G in every iteration without accessing private data. To improve
the utilization of the privacy budget, every pair of working sets is selected only once during
the entire training process. Meanwhile, in Algorithm 2 every iteration is based on the
result of the last iteration, but not based on the original datasets. Therefore, Algorithm 2
satisfies DP.

EXPERIMENTS
In this section, we compared the performance of the DPWSS algorithm with WSS 2, which
is a classical non-private WSS algorithm and has been used in the software LIBSVM
(Chang & Lin, 2007). The comparison between WSS 2 and WSS 1 was done in Fan,
Chen & Lin (2005). We do not compare the DPWSS algorithm with other private SVMs.
One reason is that randomness is introduced in different ways, and the other reason is that

Table 2 Basic information of the datasets.

Index Dataset #data Range #features Imbalance ratio

1 a1a 1,605 (0,1) 119 0.33

2 a5a 6,414 (0,1) 122 0.32

3 Australian 690 (−1,1) 14 0.8

4 breast 683 (−1,1) 10 1.86

5 diabetes 768 (−1,1) 8 1.87

6 fourclass 862 (−1,1) 2 0.55

7 German 1,000 (−1,1) 24 0.43

8 gisette 6,000 (−1,1) 5,000 1

9 heart 270 (−1,1) 13 0.8

10 ijcnn1 49,990 (−1,1) 22 0.11

11 ionosphere 351 (−1,1) 34 1.79

12 rcv1 20,242 (−1,1) 47,236 1.08

13 sonar 208 (−1,1) 60 0.87

14 splice 1,000 (−1,1) 60 1.07

15 w1a 2,477 (0,1) 300 0.03

16 w5a 9,888 (0,1) 300 0.03
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the DPWSS algorithm achieves classification accuracy and optimized objective value
almost the same as the original non-privacy SVM algorithm.

Datasets and experimental environment
The datasets are partly selected for the experiments as Zhang, Hao & Wang (2019), Fan,
Chen & Lin (2005) and Zhao et al. (2007). All datasets are for binary classification, and
available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/. The basic information of the
datasets includes dataset size, value range, number of features, and imbalance ratio, which
is shown in Table 2 below. To make the figures look neater in the experiments, we use
breast to denote the breast-cancer dataset and German to denote the german.number
dataset.

To carry out the contrast experiments efficiently, we use LIBSVM (version 3.24) as an
implementation of the DPWSS algorithm in C++ language and GNU Octave (version 5.2).
All parameters are set to default values.

An example of a private classification model
Unlike other privacy SVMs, which introduce randomness into the objective function or
classification result by the Laplace mechanism, in our method the randomness is
introduced into the training process of SVM. It is achieved by privately selecting the
working set with the exponential mechanism in every iteration. We give an example of a
private classification model to show how privacy is protected in Fig. 1. The data uses two
columns of the heart dataset and moves the positive and negative instances to each end
for easier classification. The solid lines represent the original non-private classification
model and circles represent support vectors. The dotted lines represent a private

Figure 1 An example of a private classification model. Full-size DOI: 10.7717/peerj-cs.799/fig-1
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classification model by training SVM with the DPWSS algorithm. It is observed that the
differences between the private and non-private classification models are very small, and
achieves similar accuracy of classification. All the classification models generated are
different from each other to protect the training data privacy.

Algorithm performance experiments
In this section, we evaluated the performance of the DPWSS algorithm vs WSS 2 by
experiments for the entire training process. The metrics of performance include
classification capability, algorithm stability, and execution efficiency under different
constant-factor σ and privacy budget ε.

The classification capability is measured by AUC, Accuracy, Precision, Recall, F1, and
Mcc.

AUC ¼
P

i2positiveClass ranki �
Mð1þMÞ

2
M 	 N

(29)

The ranki denotes the serial number of instance i after sorting by the probability, M is
the number of positive instances and N is the number of negative instances. The higher the
AUC, the better the usability of the algorithm. Other metrics are calculated as shown
below, and they are all based on confusion matrix.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(30)

Precision ¼ TP
TP þ FP

(31)

Recall ¼ TP
TP þ FN

(32)

F1 ¼ 2TP
2TP þ FP þ FN

(33)

Mcc ¼ TP 	 TN � FP 	 FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp (34)

The algorithm stability is measured by the error of optimized objective value between
DPWSS algorithm and WSS 2, named objError.

objError ¼ objDPWSS � objWSS2j j (35)

The smaller the objError, the better the stability of the algorithm.
The execution efficiency of the algorithm is measured by the ratio of iteration between

the two algorithms, named iterationRatio.

iterationRatio ¼ #iteration with DPWSS
#iteration with WSS2

(36)
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The smaller the iterationRatio, the better the execution efficiency of the algorithm. We
do not compare the training time between the two algorithms as it is a millisecond class for
the entire training process to most of the datasets.

To evaluate the influence of different constant-factor σ and privacy budget ε to the three
metrics for algorithm performance, we set σ at 0.1, 0.3, 0.5 and 0.7 under ε fixed at 1 and
set ε at 0.1, 0.5 and 1 under σ fixed at 0.7. We do not set σ at 0.9, because under the
circumstances, most of the violating pairs will be filtered out that the algorithm fails to
reach the final objective value.

Firstly, we measure the classification capability of the DPWSS algorithm vsWSS 2. The
experiments for the DPWSS algorithm were repeated five times under different σ and ε,
and the averages of the experimental results are shown in Table 3. Observed from the
results, the DPWSS algorithm achieves almost the same classification capability as WSS 2
on all datasets. The maximum error between them is no more than 3%. Due to the repeated
execution of the iterative process, the DPWSS algorithm obtains a well private
classification model. The classification capability is not affected by the randomness of DP
and the filtering effect of parameter σ on violating pairs. The DPWSS algorithm introduces
randomness into the training process of SVMs, not into the objective function or
classification result. There are no requirements of the differentiability of the objective
function and the complex sensitivity analysis, and the less influence of high-dimensional
data on noise. Therefore, the DPWSS algorithm achieves the target extremum through
the optimization process under the current condition. Meanwhile, the imbalance of dataset
has little effect on the classification capability of the DPWSS algorithm.

Secondly, we compare the optimized objective values and measure the algorithm
stability by objError between the DPWSS algorithm and WSS 2. The experimental
results are shown in Figs. 2–5. Observed from the results, the DPWSS algorithm achieves
similar optimized objective values with WSS 2 on all datasets under different σ and ε.
The errors between the DPWSS algorithm and WSS 2 are very small (nearly within two).
Due to the repeated execution of the iterative process, the DPWSS algorithm converges
stably to optimized objective values and is not affected by the randomness of DP and the
filtering effect of parameter σ on violating pairs. With the increase of σ, the errors also
tends to increase.

Lastly, we compare the iterations and measure the execution efficiency by iterationRatio
between the two algorithms. The experimental results are shown in Figs. 6–21. Observed
from the results, the DPWSS algorithm achieves higher execution efficiency with fewer
iterations vs WSS 2 on all datasets under different σ and ε. Because the DPWSS algorithm
introduces randomness into the WSS process, the iterations will increase more or less.
However, with the increase of constant-factor σ, the iterations are affected by the filtering
effect of it on violating pairs larger and larger. When σ increases to 0.3, the execution
efficiency of the DPWSS algorithm is already higher thanWSS 2 for most datasets. When σ
increases to 0.7, the iterations of the DPWSS algorithm are far less than WSS2 for all
datasets except ijcnn1. Therefore, our method should set larger σ for big datasets. While
the privacy budget ε has little effect on iterations under a fixed constant-factor σ.

Sun et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.799 16/36

http://dx.doi.org/10.7717/peerj-cs.799
https://peerj.com/computer-science/


Table 3 The performance of WSS2 and DPWSS for different ε and σ.

Dataset Shrinking Metrics WSS2 DPWSS

epsi = 1
sigm = 0.1

epsi = 1
sigm = 0.3

epsi = 1
sigm = 0.5

epsi = 1
sigm = 0.7

epsi = 0.5
sigm = 0.7

epsi = 0.1
sigm = 0.7

a1a 1 AUC 0.9117 0.9119 0.9117 0.9113 0.9116 0.9109 0.9123

Accuracy 0.8623 0.8611 0.8629 0.8629 0.8592 0.8604 0.8636

Precision 0.7669 0.7654 0.7709 0.7709 0.76 0.7631 0.7667

Recall 0.6329 0.6278 0.6304 0.6304 0.6253 0.6278 0.6405

F1 0.6935 0.6898 0.6936 0.6936 0.6861 0.6889 0.6979

Mcc 0.6104 0.6063 0.6115 0.6115 0.6012 0.6048 0.6148

obj −540.57 −540.42 −540.45 −540.42 −539.95 −540.23 −540.06

iteration 8,649 10,535 6,735 4,316 3,239 3,529 3,406

0 AUC 0.9117 0.9116 0.9116 0.9119 0.9122 0.9111 0.9117

Accuracy 0.8623 0.8623 0.8629 0.8629 0.8617 0.8623 0.8617

Precision 0.7669 0.7685 0.7692 0.7709 0.7645 0.7685 0.7645

Recall 0.6329 0.6304 0.6329 0.6304 0.6329 0.6304 0.6329

F1 0.6935 0.6926 0.6944 0.6936 0.6925 0.6926 0.6925

Mcc 0.6104 0.61 0.612 0.6115 0.6088 0.61 0.6088

obj −540.57 −540.42 −540.44 −540.38 −540.12 −540.11 −540.2

iteration 7,997 9,566 6,091 4,252 3,447 3,379 3,295

a5a 1 AUC 0.906 0.9059 0.9059 0.9057 0.9058 0.9058 0.9059

Accuracy 0.8506 0.8502 0.8499 0.8511 0.8486 0.8506 0.8503

Precision 0.7327 0.7317 0.7306 0.7354 0.7311 0.7334 0.7305

Recall 0.6131 0.6119 0.6119 0.6112 0.6029 0.6119 0.615

F1 0.6676 0.6664 0.666 0.6676 0.6608 0.6671 0.6678

Mcc 0.576 0.5746 0.5738 0.5768 0.5689 0.5758 0.5757

obj −2,224.72 −2,224.56 −2,224.57 −2,224.33 −2,223.2 −2,223.75 −2,223.92

iteration 35,752 36,151 22,590 15,987 13,240 14,034 14,275

0 AUC 0.906 0.9058 0.9059 0.9058 0.9057 0.9058 0.906

Accuracy 0.8506 0.8506 0.8506 0.8514 0.8503 0.8502 0.85

Precision 0.7327 0.7323 0.7327 0.7373 0.7312 0.7331 0.7322

Recall 0.6131 0.6138 0.6131 0.6099 0.6138 0.6093 0.6099

F1 0.6676 0.6678 0.6676 0.6676 0.6674 0.6655 0.6655

Mcc 0.576 0.5762 0.576 0.5773 0.5754 0.5741 0.5738

obj −2,224.72 −2,224.41 −2,224.47 −2,224.33 −2,223.72 −2,223.07 −2,223.85

iteration 37,578 33,682 21,592 16,418 13,926 12,987 14,318

Australian 1 AUC 0.9393 0.9403 0.9378 0.9318 0.9141 0.9126 0.9202

Accuracy 0.8565 0.8565 0.8565 0.8565 0.8565 0.8565 0.8565

Precision 0.7873 0.7873 0.7873 0.7873 0.7873 0.7873 0.7873

Recall 0.9283 0.9283 0.9283 0.9283 0.9283 0.9283 0.9283

F1 0.852 0.852 0.852 0.852 0.852 0.852 0.852

Mcc 0.7237 0.7237 0.7237 0.7237 0.7237 0.7237 0.7237

obj −199.65 −199.25 −198.98 −198.21 −197.78 −198.53 −198.64

iteration 10,727 6,438 1,910 835 493 596 612
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Table 3 (continued)

Dataset Shrinking Metrics WSS2 DPWSS

epsi = 1
sigm = 0.1

epsi = 1
sigm = 0.3

epsi = 1
sigm = 0.5

epsi = 1
sigm = 0.7

epsi = 0.5
sigm = 0.7

epsi = 0.1
sigm = 0.7

0 AUC 0.9393 0.9397 0.9324 0.9111 0.923 0.9223 0.9316

Accuracy 0.8565 0.8565 0.8565 0.8565 0.8565 0.8565 0.8565

Precision 0.7873 0.7873 0.7873 0.7873 0.7873 0.7873 0.7873

Recall 0.9283 0.9283 0.9283 0.9283 0.9283 0.9283 0.9283

F1 0.852 0.852 0.852 0.852 0.852 0.852 0.852

Mcc 0.7237 0.7237 0.7237 0.7237 0.7237 0.7237 0.7237

obj −199.65 −199.25 −199.15 −198.68 −198.33 −198.62 −198.82

iteration 10,590 6,978 2,629 847 542 637 731

breast 1 AUC 0.9962 0.9962 0.9963 0.9961 0.9962 0.9961 0.9962

Accuracy 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707 0.9707

Precision 0.9818 0.9818 0.9818 0.9818 0.9818 0.9818 0.9818

Recall 0.973 0.973 0.973 0.973 0.973 0.973 0.973

F1 0.9774 0.9774 0.9774 0.9774 0.9774 0.9774 0.9774

Mcc 0.936 0.936 0.936 0.936 0.936 0.936 0.936

obj −46 −45.96 −45.93 −45.89 −45.63 −45.53 −45.78

iteration 212 542 257 196 138 146 150

0 AUC 0.9962 0.9962 0.9963 0.9963 0.9962 0.9962 0.9962

Accuracy 0.9707 0.9707 0.9707 0.9707 0.9722 0.9722 0.9722

Precision 0.9818 0.9818 0.9818 0.9818 0.9819 0.9841 0.9819

Recall 0.973 0.973 0.973 0.973 0.9752 0.973 0.9752

F1 0.9774 0.9774 0.9774 0.9774 0.9785 0.9785 0.9785

Mcc 0.936 0.936 0.936 0.936 0.9391 0.9393 0.9391

obj −46 −45.95 −45.99 −45.78 −45.62 −45.87 −45.88

iteration 212 443 329 184 146 160 181

diabetes 1 AUC 0.8388 0.8393 0.839 0.8388 0.8383 0.8378 0.8385

Accuracy 0.776 0.7747 0.7734 0.7747 0.7708 0.7721 0.7721

Precision 0.7918 0.7904 0.789 0.7904 0.7893 0.7886 0.7897

Recall 0.89 0.89 0.89 0.89 0.884 0.888 0.886

F1 0.838 0.8373 0.8365 0.8373 0.834 0.8354 0.8351

Mcc 0.4878 0.4846 0.4813 0.4846 0.4759 0.4784 0.4788

obj −403.1 −403.03 −402.97 −403 −402.53 −402.44 −402.58

iteration 680 873 612 590 460 475 502

0 AUC 0.8388 0.8392 0.8391 0.8393 0.8384 0.8383 0.839

Accuracy 0.776 0.7747 0.776 0.7747 0.7695 0.7721 0.776

Precision 0.7918 0.7904 0.7918 0.7914 0.7858 0.7897 0.7918

Recall 0.89 0.89 0.89 0.888 0.888 0.886 0.89

F1 0.838 0.8373 0.838 0.8369 0.8338 0.8351 0.838

Mcc 0.4878 0.4846 0.4878 0.48449 0.4718 0.4788 0.4878

obj −403.1 −403 −403.03 −403 −402.05 −402.8 −402.72

iteration 680 793 687 529 490 502 516
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Table 3 (continued)

Dataset Shrinking Metrics WSS2 DPWSS

epsi = 1
sigm = 0.1

epsi = 1
sigm = 0.3

epsi = 1
sigm = 0.5

epsi = 1
sigm = 0.7

epsi = 0.5
sigm = 0.7

epsi = 0.1
sigm = 0.7

fourclass 1 AUC 0.8266 0.8268 0.8262 0.8265 0.8255 0.8251 0.8261

Accuracy 0.7715 0.7715 0.7715 0.7715 0.7715 0.7726 0.7726

Precision 0.7455 0.7455 0.7455 0.7477 0.7477 0.7489 0.7489

Recall 0.544 0.544 0.544 0.5407 0.5407 0.544 0.544

F1 0.629 0.629 0.629 0.6276 0.6276 0.6302 0.6302

Mcc 0.4818 0.4818 0.4818 0.4816 0.4816 0.4845 0.4845

obj −454.29 −454.27 −454.22 −454.23 −454.12 −454.12 −454.17

iteration 590 917 676 509 450 466 496

0 AUC 0.8266 0.827 0.8256 0.8272 0.8245 0.8263 0.8257

Accuracy 0.7715 0.7691 0.7715 0.7691 0.7749 0.7726 0.7726

Precision 0.7455 0.7432 0.7455 0.7432 0.7653 0.7534 0.7467

Recall 0.544 0.5375 0.544 0.5375 0.5309 0.5375 0.5472

F1 0.629 0.6238 0.629 0.6238 0.6269 0.6274 0.6316

Mcc 0.4818 0.4761 0.4818 0.4761 0.4894 0.4842 0.4847

obj −454.29 −454.25 −454.22 −454.18 −453.68 −453.8 −454.19

iteration 590 908 625 526 421 458 471

German 1 AUC 0.8165 0.8163 0.8161 0.816 0.8161 0.8157 0.816

Accuracy 0.789 0.788 0.787 0.786 0.785 0.783 0.784

Precision 0.6943 0.6947 0.69 0.6886 0.6856 0.6861 0.6858

Recall 0.53 0.5233 0.5267 0.5233 0.5233 0.51 0.5167

F1 0.6011 0.597 0.5974 0.5947 0.5936 0.5851 0.5894

Mcc 0.469 0.4654 0.4638 0.4608 0.4586 0.4514 0.455

obj −519.05 −518.76 −518.81 −518.48 −517.51 −517.92 −517.59

iteration 13,688 9,415 5,821 4,533 3,675 3,741 3,787

0 AUC 0.8165 0.8163 0.8163 0.8155 0.8154 0.8159 0.8162

Accuracy 0.789 0.787 0.789 0.783 0.785 0.784 0.787

Precision 0.6943 0.6916 0.6978 0.6781 0.6856 0.6826 0.6933

Recall 0.53 0.5233 0.5233 0.5267 0.5233 0.5233 0.52

F1 0.6011 0.5958 0.5981 0.5929 0.5936 0.5925 0.5943

Mcc 0.469 0.4631 0.4677 0.4548 0.4586 0.4563 0.4625

obj −519.05 −518.64 −518.69 −518.41 −517.91 −517.98 −517.65

iteration 13,454 9,367 5,495 4,576 3,663 3,842 3,742

gisette 1 AUC 1 1 1 1 1 1 1

Accuracy 1 1 1 1 1 1 1

Precision 1 1 1 1 1 1 1

Recall 1 1 1 1 1 1 1

F1 1 1 1 1 1 1 1

Mcc 1 1 1 1 1 1 1

obj −0.668 −0.668 −0.668 −0.668 −0.668 −0.668 −0.668

iteration 8,157 23,247 9,312 6,736 6,002 5,978 5,979
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Table 3 (continued)

Dataset Shrinking Metrics WSS2 DPWSS

epsi = 1
sigm = 0.1

epsi = 1
sigm = 0.3

epsi = 1
sigm = 0.5

epsi = 1
sigm = 0.7

epsi = 0.5
sigm = 0.7

epsi = 0.1
sigm = 0.7

0 AUC 1 1 1 1 1 1 1

Accuracy 1 1 1 1 1 1 1

Precision 1 1 1 1 1 1 1

Recall 1 1 1 1 1 1 1

F1 1 1 1 1 1 1 1

Mcc 1 1 1 1 1 1 1

obj −0.668 −0.668 −0.668 −0.668 −0.668 −0.668 −0.668

iteration 8,246 17,902 7,933 6,918 6,258 6,225 6,250

heart 1 AUC 0.9282 0.9281 0.9287 0.9296 0.9287 0.9282 0.9296

Accuracy 0.8481 0.8444 0.8481 0.8481 0.8519 0.8593 0.8481

Precision 0.8376 0.8362 0.8376 0.8376 0.8509 0.8534 0.8376

Recall 0.8167 0.8083 0.8167 0.8167 0.8083 0.825 0.8167

F1 0.827 0.822 0.827 0.827 0.8291 0.839 0.827

Mcc 0.6919 0.6843 0.6919 0.6919 0.6992 0.7144 0.6919

obj −92.47 −92.07 −92.33 −92.17 −90.78 −91.34 −91.62

iteration 1,010 992 662 525 372 404 410

0 AUC 0.9282 0.9278 0.9284 0.9292 0.9251 0.9278 0.9275

Accuracy 0.8481 0.8481 0.8444 0.8556 0.8556 0.8593 0.8481

Precision 0.8376 0.8435 0.8362 0.8462 0.8584 0.8596 0.8376

Recall 0.8167 0.8083 0.8083 0.825 0.8083 0.8167 0.8167

F1 0.827 0.8255 0.822 0.8354 0.8326 0.8376 0.827

Mcc 0.6919 0.6917 0.6843 0.7069 0.7068 0.7143 0.6919

obj −92.47 −92.2 −92.07 −92.09 −91.03 −91.14 −91.36

iteration 1,010 1,097 671 542 380 390 411

ijcnn1 1 AUC 0.918 0.918 0.918 0.9179 0.917 0.9184 0.9179

Accuracy 0.9242 0.9242 0.9241 0.9242 0.9241 0.9241 0.9241

Precision 0.7579 0.758 0.7576 0.7581 0.767 0.7565 0.7598

Recall 0.3219 0.3215 0.3215 0.3217 0.314 0.3221 0.3188

F1 0.4518 0.4515 0.4514 0.4517 0.4456 0.4518 0.4491

Mcc 0.4628 0.4626 0.4624 0.4628 0.4604 0.4625 0.4612

obj -8,590.16 -8,590.07 -8,590.11 -8,590.07 -8,588.99 -8,588.82 -8,589

iteration 18,382 40,443 29,635 25,599 19,150 18,694 17,842

0 AUC 0.918 0.9181 0.918 0.9181 0.9181 0.9183 0.9183

Accuracy 0.9241 0.924 0.9241 0.9241 0.9238 0.9242 0.924

Precision 0.7574 0.7573 0.7573 0.7572 0.7549 0.7569 0.7562

Recall 0.3217 0.3202 0.3215 0.3212 0.3179 0.3221 0.3208

F1 0.4515 0.4501 0.4513 0.4511 0.4474 0.4519 0.4505

Mcc 0.4625 0.4614 0.4623 0.4621 0.4588 0.4626 0.4614

obj −8,590.16 −8,590.05 −8,590.1 −8,589.94 −8,588.84 −8,589.73 −8,589.18

iteration 16,469 4,5191 30,133 23,786 18,416 20,637 18,750
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Table 3 (continued)

Dataset Shrinking Metrics WSS2 DPWSS

epsi = 1
sigm = 0.1

epsi = 1
sigm = 0.3

epsi = 1
sigm = 0.5

epsi = 1
sigm = 0.7

epsi = 0.5
sigm = 0.7

epsi = 0.1
sigm = 0.7

ionosphere 1 AUC 0.9677 0.9684 0.9681 0.9679 0.9686 0.9688 0.9687

Accuracy 0.9373 0.9373 0.9373 0.9259 0.9345 0.9373 0.9345

Precision 0.9283 0.9283 0.9283 0.9234 0.9244 0.9356 0.9316

Recall 0.9778 0.9778 0.9778 0.9644 0.9778 0.9689 0.9689

F1 0.9524 0.9524 0.9524 0.9435 0.9503 0.952 0.9499

Mcc 0.8634 0.8634 0.8634 0.8379 0.8572 0.863 0.8567

obj −73.41 −73.41 −73.31 −71.97 −72.02 −72.44 −72.11

iteration 1,016 1,489 834 664 555 562 525

0 AUC 0.9677 0.9674 0.9678 0.9673 0.9651 0.9667 0.965

Accuracy 0.9373 0.9288 0.9373 0.9288 0.9316 0.9288 0.9288

Precision 0.9283 0.9274 0.9283 0.9237 0.9277 0.9237 0.9274

Recall 0.9778 0.9644 0.9778 0.9689 0.9689 0.9689 0.9644

F1 0.9524 0.9455 0.9524 0.9458 0.9478 0.9458 0.9455

Mcc 0.8634 0.8441 0.8634 0.8442 0.8505 0.8442 0.8441

obj −73.41 −73.15 −73.2 −73.13 −72.44 −72.85 −71.91

iteration 770 1,348 944 761 560 610 548

rcv1 1 AUC 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989

Accuracy 0.9896 0.9896 0.9896 0.9896 0.9896 0.9896 0.9896

Precision 0.9896 0.9896 0.9896 0.9896 0.9896 0.9896 0.9897

Recall 0.9903 0.9903 0.9903 0.9903 0.9903 0.9903 0.9903

F1 0.9899 0.9899 0.9899 0.9899 0.9899 0.9899 0.99

Mcc 0.9791 0.9791 0.9791 0.9791 0.9791 0.9791 0.9792

obj −1,745.67 −1,745.66 −1,745.65 −1,745.62 −1,745.63 −1,745.6 −1,745.59

iteration 11,639 41,681 17,129 12,374 11,029 9,865 9,945

0 AUC 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989

Accuracy 0.9896 0.9896 0.9896 0.9896 0.9896 0.9896 0.9896

Precision 0.9896 0.9896 0.9896 0.9896 0.9896 0.9897 0.9896

Recall 0.9903 0.9903 0.9903 0.9903 0.9903 0.9903 0.9903

F1 0.9899 0.9899 0.9899 0.9899 0.9899 0.99 0.9899

Mcc 0.9791 0.9791 0.9791 0.9791 0.9791 0.9792 0.9791

obj −1,745.67 −1,745.66 −1,745.65 −1,745.64 −1745.55 −1,745.58 −1,745.61

iteration 11,650 38,114 16,388 13,014 9,242 9,419 10,457

sonar 1 AUC 0.9495 0.9491 0.9475 0.9467 0.9489 0.9459 0.9482

Accuracy 0.8942 0.8894 0.8894 0.8894 0.8942 0.899 0.8894

Precision 0.8641 0.8558 0.8558 0.8558 0.8641 0.8654 0.8558

Recall 0.9175 0.9175 0.9175 0.9175 0.9175 0.9278 0.9175

F1 0.89 0.8856 0.8856 0.8856 0.89 0.8955 0.8856

Mcc 0.7896 0.7806 0.7806 0.7806 0.7896 0.7999 0.7806

obj −65.67 −65.62 −65.48 −65.49 −65.21 −64.79 −65

iteration 1,492 1,716 1,035 687 544 478 473

(Continued)
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Table 3 (continued)

Dataset Shrinking Metrics WSS2 DPWSS

epsi = 1
sigm = 0.1

epsi = 1
sigm = 0.3

epsi = 1
sigm = 0.5

epsi = 1
sigm = 0.7

epsi = 0.5
sigm = 0.7

epsi = 0.1
sigm = 0.7

0 AUC 0.9496 0.9501 0.9475 0.9464 0.9492 0.9455 0.9439

Accuracy 0.8942 0.8894 0.8894 0.8894 0.899 0.899 0.8846

Precision 0.8641 0.8558 0.8558 0.8558 0.8654 0.8585 0.8476

Recall 0.9175 0.9175 0.9175 0.9175 0.9278 0.9381 0.9175

F1 0.89 0.8856 0.8856 0.8856 0.8955 0.8966 0.8812

Mcc 0.7896 0.7806 0.7806 0.7806 0.7999 0.8013 0.7717

obj −65.67 −65.57 −65.43 −65.49 −64.97 −65.02 −64.88

iteration 1,397 1,516 929 701 489 448 440

splice 1 AUC 0.9173 0.9165 0.9164 0.9169 0.9165 0.9173 0.9162

Accuracy 0.842 0.84 0.842 0.845 0.841 0.84 0.844

Precision 0.8671 0.8665 0.8716 0.8724 0.8698 0.868 0.8737

Recall 0.8201 0.8162 0.8143 0.8201 0.8143 0.8143 0.8162

F1 0.8429 0.8406 0.842 0.8455 0.8412 0.8403 0.844

Mcc 0.6853 0.6815 0.6859 0.6916 0.6838 0.6817 0.69

obj −375.19 −374.55 −374.56 −374.31 −373.25 −374.02 −373.51

iteration 95,972 19,779 11,627 8,079 6,486 6,847 6,620

0 AUC 0.9173 0.9164 0.9169 0.9156 0.9166 0.9163 0.9168

Accuracy 0.842 0.845 0.843 0.843 0.841 0.844 0.841

Precision 0.8671 0.8724 0.8719 0.8719 0.8698 0.8737 0.8698

Recall 0.8201 0.8201 0.8162 0.8162 0.8143 0.8162 0.8143

F1 0.8429 0.8455 0.8432 0.8432 0.8412 0.844 0.8412

Mcc 0.6853 0.6916 0.6878 0.6878 0.6838 0.69 0.6838

obj −375.19 −374.08 −374.11 −373.89 −373.32 −373.77 −373.7

iteration 38,987 18,752 11,058 7,562 6,501 6,845 6,785

w1a 1 AUC 0.9755 0.9759 0.9757 0.9757 0.9757 0.9756 0.9754

Accuracy 0.9927 0.9927 0.9927 0.9927 0.9927 0.9927 0.9927

Precision 0.9821 0.9821 0.9821 0.9821 0.9821 0.9821 0.9821

Recall 0.7639 0.7639 0.7639 0.7639 0.7639 0.7639 0.7639

F1 0.8594 0.8594 0.8594 0.8594 0.8594 0.8594 0.8594

Mcc 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628

obj −62.92 −62.89 −62.91 −62.9 −62.85 −62.89 −62.89

iteration 2,565 9,030 5,034 3,529 1,835 1,949 2,224

0 AUC 0.9755 0.9755 0.9758 0.9759 0.9766 0.9758 0.9734

Accuracy 0.9927 0.9927 0.9927 0.9927 0.9927 0.9927 0.9927

Precision 0.9821 0.9821 0.9821 0.9821 0.9821 0.9821 0.9821

Recall 0.7639 0.7639 0.7639 0.7639 0.7639 0.7639 0.7639

F1 0.8594 0.8594 0.8594 0.8594 0.8594 0.8594 0.8594

Mcc 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628 0.8628

obj −62.92 −62.89 −62.89 −62.79 −62.8 −62.86 −62.85

iteration 2,547 8,436 4,326 2,222 1,691 1,781 1,737
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Figure 2 The algorithm stability of DPWSS for different ε and σ vs WSS 2 on dataset 1 to 8 with
shrinking. Full-size DOI: 10.7717/peerj-cs.799/fig-2

Table 3 (continued)

Dataset Shrinking Metrics WSS2 DPWSS

epsi = 1
sigm = 0.1

epsi = 1
sigm = 0.3

epsi = 1
sigm = 0.5

epsi = 1
sigm = 0.7

epsi = 0.5
sigm = 0.7

epsi = 0.1
sigm = 0.7

w5a 1 AUC 0.9632 0.9632 0.9638 0.9632 0.9625 0.9653 0.9626

Accuracy 0.9889 0.9887 0.9888 0.9887 0.9887 0.9889 0.9887

Precision 0.9524 0.9424 0.9474 0.9424 0.9424 0.9524 0.9424

Recall 0.6406 0.6406 0.6406 0.6406 0.6406 0.6406 0.6406

F1 0.766 0.7627 0.7643 0.7627 0.7627 0.766 0.7627

Mcc 0.7762 0.772 0.7741 0.772 0.772 0.7762 0.772

obj −291.68 −291.55 −291.6 −291.6 −291.37 −290.15 −291.29

iteration 15,422 31,105 13,388 10,568 6,514 5,906 5,858

0 AUC 0.9632 0.9636 0.9632 0.9633 0.9632 0.9623 0.9626

Accuracy 0.9889 0.9888 0.9887 0.9888 0.9889 0.9888 0.9887

Precision 0.9524 0.9427 0.9424 0.9474 0.9476 0.9474 0.9424

Recall 0.6406 0.6441 0.6406 0.6406 0.6441 0.6406 0.6406

F1 0.766 0.7653 0.7627 0.7643 0.7669 0.7643 0.7627

Mcc 0.7762 0.7743 0.772 0.7741 0.7764 0.7741 0.772

obj −291.68 −291.53 −291.55 −291.46 −291.39 −291.4 −291.31

iteration 15,511 25,969 13,074 8,879 6,630 6,373 5,838
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In the above experiments, we compared the average results of five times running of the
DPWSS algorithm with the WSS 2 algorithm. It can be seen from the experimental results
that the two algorithms have similar classification capability and optimized objective

Figure 4 The algorithm stability of DPWSS for different ε and σ vs WSS 2 on dataset 9 to 16 with
shrinking. Full-size DOI: 10.7717/peerj-cs.799/fig-4

Figure 3 The algorithm stability of DPWSS for different ε and σ vsWSS 2 on dataset 1 to 8 without
shrinking. Full-size DOI: 10.7717/peerj-cs.799/fig-3
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Figure 6 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset a1a.
Full-size DOI: 10.7717/peerj-cs.799/fig-6

Figure 5 The algorithm stability of DPWSS for different ε and σ vsWSS 2 on dataset 9 to 16 without
shrinking. Full-size DOI: 10.7717/peerj-cs.799/fig-5

Sun et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.799 25/36

http://dx.doi.org/10.7717/peerj-cs.799/fig-6
http://dx.doi.org/10.7717/peerj-cs.799/fig-5
http://dx.doi.org/10.7717/peerj-cs.799
https://peerj.com/computer-science/


Figure 8 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset Australian.
Full-size DOI: 10.7717/peerj-cs.799/fig-8

Figure 7 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset a5a.
Full-size DOI: 10.7717/peerj-cs.799/fig-7
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Figure 10 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset diabetes.
Full-size DOI: 10.7717/peerj-cs.799/fig-10

Figure 9 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset breast.
Full-size DOI: 10.7717/peerj-cs.799/fig-9
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Figure 12 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset German.
Full-size DOI: 10.7717/peerj-cs.799/fig-12

Figure 11 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset fourclass.
Full-size DOI: 10.7717/peerj-cs.799/fig-11
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Figure 14 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset heart.
Full-size DOI: 10.7717/peerj-cs.799/fig-14

Figure 13 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset gisette.
Full-size DOI: 10.7717/peerj-cs.799/fig-13
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Figure 16 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset ionosphere.
Full-size DOI: 10.7717/peerj-cs.799/fig-16

Figure 15 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset ijcnn1.
Full-size DOI: 10.7717/peerj-cs.799/fig-15
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Figure 18 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset sonar.
Full-size DOI: 10.7717/peerj-cs.799/fig-18

Figure 17 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset rcv1.
Full-size DOI: 10.7717/peerj-cs.799/fig-17
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Figure 20 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset w1a.
Full-size DOI: 10.7717/peerj-cs.799/fig-20

Figure 19 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset splice.
Full-size DOI: 10.7717/peerj-cs.799/fig-19
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value under different parameter combinations. Under the same set of parameters, the
experimental results of DPWSS algorithm differ little each time, and the main difference
lies in the iterations. These slight differences show that the DPWSS algorithm has good
usability while satisfying DP. Due to the limitations of the paper, we have not listed each
running result in the experiments.

CONCLUSIONS
In this paper, we study the privacy leakage problem of the traditional SVM training
methods. The DPWSS algorithm was proposed to release a private classification model
of SVM and theoretically proved to satisfy DP through utilizing the exponential
mechanism to privately select working sets in every iteration. The extended experiments
show that the DPWSS algorithm achieves similar classification capability and the
optimized objective value as the original non-privacy SVM under different parameters.
Meanwhile, the DPWSS algorithm has a higher execution efficiency by comparing
iterations on different datasets. In the DPWSS algorithm, randomness is introduced in the
training process. The most prominent advantages include that there are no requirements
for differentiability of the objective function and complex sensitivity analysis compared
with objective perturbation or output perturbation methods. And a number of training set
selection methods can be easily combined with the DPWSS algorithm for large-scale
training problems that require large memory and enormous amounts of training time.
Because the DPWSS algorithm doesn’t change the training process of the classical non-
privacy SVMs, it is also suitable for multi-class classification. It is a challenge that

Figure 21 The execution efficiency of DPWSS for different ε and σ vs WSS 2 on dataset w5a.
Full-size DOI: 10.7717/peerj-cs.799/fig-21
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parameter setting of the constant-factor σ for different datasets. The idea of introducing
randomness into the optimization process can be easily extended to other privacy-
preserving machine learning algorithms, and how to ensure that the method meets the
DP requirements is another challenge. Furthermore, the DPWSS algorithm is valid to
release a private classification model for linear SVM, while invalid for other non-linear
kernel SVM as the privacy disclosure problem of the support vectors in kernel function. In
future work, we will study how to release a private classification model for non-linear
kernel SVMs.
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