Even when data are defined in a high-dimensioal space, they commonly lie
(exactly or approximately) on a hypersurface of much lower intrinsic dimension
(ID). Characterizing the ID of the data may be relevant within the preprocessing
of the data, preliminary to more refined analyses: for instance, the data may be
projected within a lower-dimensional space with some dimensionality-reduction
technique, setting the dimension of the target space to the estimated ID. In
addition, the ID may provide per se relevant information about the structure of
the data.

Among techiques to estimate the ID, a large class of methods is based on the
fact that, for sufficiently random data, nearest-neighbor (NN) distances follow
scaling laws that depend on the ID. In particular, by assuming that the density
of points is locally constant, one retrieves scaling laws that depend solely on the
ID (i.e., no other parameters are involved), which can be leveraged for ID esti-
mation. Various ID estimators were proposed, based on slightly varying choices
of the scaling function and inference algorithm. Differences concern the number
k of nearest neighbors considered, the ID-dependent scaling function used, the
precise procedure to infer the ID from the scaling law, and the possible inclusion
of additional information beyond distances [Ceruti et al., 2014]. ID estimation
algorithms encounter three main difficulties undermining their accuracy and ro-
bustness: i) boundary effects, ii) variations of the density of points in the data,
iii) undersampling in high dimension.

In their manuscript entitled “manifold-adaptive estimation revisited” the Au-
thors propose an updated version of one the ID estimation algorithm proposed
by Farahmand et al. 2007 (FSA estimator). Let us denote by 7, the ratio
of the distances of k-th and the 2k-th NNs of a point, and let D be the ID
value: if the density is locally constant, one approximately has r, = 277, or
D = —1/loga(ry). Fahramand proposed to collect the ri(z) for each point x
in the data, and estimated D as the mean of mode of D(x) = —1/logs(rg(z)).
The Authors build on the same idea, but find the exact distribution of 74 (x)
and consequently of the “local estimates” D(z), under the assumption of lo-
cally constant density (i.e., the density can be assumed to be constant withith
a 2k-neighborhood of each point). Finding the exact distribution of D(z), they
show that the median of D(x) (rather than the mean or mode) is equal to D.
Importantly, this holds independently of k, a fact which allows selecting small
values of k (even k = 1) for estimation. This median-based procedure, called
mFSA estimator, yields and improvement over the estimation method proposed
by Farahmand et al. 2007. A further improvement is given by a boundary-effect
correction: the Authors estimate D on uniformly-sampled hypercubes, showing
that boundary effects induce a systematic underestimation of D, with a relative
error scaling exponentially with D. They then introduce a correction conpen-
sating for this systematic effect, which eventually gives the corrected mediaa
FSA estimator (cmFSA). They show that cmFSA is equally or more accurate
than current state-of-art estimation methods, at least on test data proposed
by Campadelli et al. 2015. Finally, they show that cmFSA can be applied to
intracranial recordings to detect signal abnormalities occurring during epilectic
seizures.



The manuscript is sound and well written. References are generally exhaus-
tive. The methodology is clearly explained.

cmFSA seems to be competitive with state-of-art methods, and I believe it
offers some advantages with respect to some of the above mentioned issued of ID
estimators (in particular, i) and ii) ). I think the manuscript is a fair contribution
to the field of ID estimation, and it can be of interest to researchers in this area,
and more in general to researchers needing accurate ID estimation as part of
their data analysis pipelines. Therefore, I recommend the paper for publicatio
in PeerJ.

However, I think that some improvements are needed before the paper is
published. Major points:

e In my opinion, the main problem with the boundary-effect correction is
that it is optimized for uniformly-sampled hypercubes, and may lead to
overestimation of the ID in cases when the data are not uniforly sampled.
This is clearly visible form table I: while the estimation is nearly perfect
for uniformly sampled data on linear subspaces [M2,M9,M10a-c|, or gener-
ally uniformly sampled data on locally flat spaces [M5,M7,M13], it yields
an overestimation in the case of non-uniformities, such as he Gaussian
case [M12], the non-linear manifold case [M6], or the sphere [M1]. The
overstimation may be even more sever for non-uniform samplings with
heavy-tailed distributions, such as the Cauchy distribution used in Facco
et al. 2015. The authors should extensively comment on this point.

e Since this is a methodological work, I would recommend that the authors
make publicly available the code implementing cmFSA.

e It is not clear how the different sample sizes were included in the cali-
bration of the correction term. It seems that the calibration term used
to infer the ID of the datasets M1-M13 was inferred from the n = 2500
hypercubes. Is one going to use the same term with datasets of different
n? It seems that one should rather use a term calibrated on that specific
n. The authors should comment on this point. Furthermore, why was
k =5 used for calibration, instead of k = 1 used in subsequent analyses?

Minor points:

e The Authors may better stress the fact that their median-based procedure
is independent of k, and thus allows selecting a minimal neighborhood size
(k = 1). In this case, the used statistics is essentially equivalent to the
one used by Facco et al., 2017 - even though the estimation procedure is
slightly different. As in Facco et al., using a minimal size neighborhood
can make the method very robust to density variations and curvature.

e The simplicity of the proposed statistic makes it suitable to be embedded
within mixture-based approaches to provide better ID estimates whe the
ID is varying in the data set (Haro, G., Randall, G. & Sapiro, G. Trans-
lated poisson mixture model for stratifcation learning. Int. J. Comput.



Vis. 80, 358-374 (2008); Allegra M, Facco E, Denti F, Laio A, Mira A
(2020) Data segmentation based on the local intrinsic dimension. Sci Rep
10(1):16449).

The Authors may better clarify Egs. (1-2). In Egs (1-2), k is used to
indicate both a variable quantity and a fixed quantity. In eq. (1), k is
a variable quantity, like R [notice that Eq. (1) now uses both R and
Ry, inconsistently]. In eq. (2), k is a fixed value, like 7, and rof. Also,
the quantities in Eq. (1) should be better defined. T would recommend
something like: “A usually basic assumption of kNN ID estimators is that
the fraction of points f in a spherical neighborhood centered at = is ap-
proximately determined by the intrinsic dimensionality (D) and radius
(R) times a — locally almost constant — mostly density-dependent factor
(n(z, R)):
f/n =n(z, R)R”

[...] If Ry is the distance at which the k-th neighbor is found, from Eq.
(1) one can take the logarithm..."

In Eq. (5), the Authors may better clarify what p(r|k, K — 1, D) is: some-
thing like “the probability that the normalized distance of the k-th neigh-
bor among K neighbors is r if the intrinsic dimension is D.”

“Thus, we can compute the pdf of the estimated values as plugging in
K = 2k into Eq. 5 followed by change of variables”(p. 4). This sentence
might be more clearly rephrased, e.g., “Combining (5) and (6), one can
obtain the pdf of the FSA estimator”

In theorem 1, the Authors may mention that the substitutiona = 2~2/d
is monotonic, which justifies the invariance of the median.

“This means that the median of the FSA estimator is equal to the intrinsic
dimension independent of neighborhood size”. Again, this fact should be
stressed because it allows using small &, which cannot be done in standard
FSA:indeed, for small k, as evident from fig. 1, the mean and mode prduce
severe underestimates.

In Fig. 2, the Authors may add a third panel showing on a simple plot the
standard error of the median as a function of log(n), for different values
of D (different curves for different values of D).

I would put a derivation of Eq. (17) in the SI. (the rationale of the binomial
is nearly obvious, but a full explanation may help the reader).

Are periodic boundary conditions used in Figure 4, as the main text indi-
cates? This should be clarified also in the caption of Fig. 4, to stress the
differece with Fig. 3, which is not using PBC.



In egs. (21)-(22) it would be better to bring in some notational clarity.
What are d, D,d? Note that D was always used as the true value of
intrinsic dimension.

How is the error in Fig. 6 defined? It is stated that “the error rate —
the fraction of cases, when the estimator did not find (missed) the true
dimensionality”. What does this mean exactly? That |D; —d;;| > 17

In fig. 7, what are 1-8 on the x axis? Is it simply the electrode number?
To what areas do the grid recordings Gr-A ... Gr-F correspond? The
Authors should specify it in Methods, or at least provide a reference.

Why was k = 10 used in the analysis of electrode data? If results change a
lot between k£ = 1 and k = 10, it may be because data were not optimally
subsampled.

In Methods, p. 13: Fig. 7 —> Sfig 2

In fig. S2, I would stress that panel ¢ shows that the error distribution
after correction is approximately Gaussian. * “we observed a diagonal
gradient of intrinsic dimensions on the cortical grid (Gr)” (p. 7). It is
difficult to interpret a diagonal gradient (as opposed to a vertical gradient
representing cortical hierarchy).

there are some typing errors/language mistakes:

— while resting state and during epileptic seizures (p. 1) —> between
normal resting state and during epilectic seizures

— MIND_ML (p. 2)-> MIND KL,
Kullback-Leibner —> Kullback-Leibler (p. 2),
— ((Levina and Bickel, 2015)) —> (Levina and Bickel, 2015)

cmFSA and DANCo was evaluated —> ¢cmFSA and DANCo were
evaluated (p. 6)

— froto-basal —> fronto-basal (p. 7)
— chose —> choose (SI p. 1)

— distance, we assume —> distance, if we assume (SI p. 2)



