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ABSTRACT
Data dimensionality informs us about data complexity and sets limit on the structure of
successful signal processing pipelines. In this work we revisit and improve the manifold
adaptive Farahmand-Szepesvári-Audibert (FSA) dimension estimator, making it one
of the best nearest neighbor-based dimension estimators available. We compute the
probability density function of local FSA estimates, if the local manifold density is
uniform. Based on the probability density function, we propose to use the median of
local estimates as a basic globalmeasure of intrinsic dimensionality, andwe demonstrate
the advantages of this asymptotically unbiased estimator over the previously proposed
statistics: the mode and the mean. Additionally, from the probability density function,
we derive the maximum likelihood formula for global intrinsic dimensionality, if i.i.d.
holds. We tackle edge and finite-sample effects with an exponential correction formula,
calibrated on hypercube datasets. We compare the performance of the corrected
median-FSA estimator with kNN estimators: maximum likelihood (Levina-Bickel), the
2NN and two implementations of DANCo (R and MATLAB). We show that corrected
median-FSA estimator beats the maximum likelihood estimator and it is on equal
footing with DANCo for standard synthetic benchmarks according to mean percentage
error and error rate metrics.With themedian-FSA algorithm, we reveal diverse changes
in the neural dynamics while resting state and during epileptic seizures. We identify
brain areas with lower-dimensional dynamics that are possible causal sources and
candidates for being seizure onset zones.
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BACKGROUND
Dimensionality sets profound limits on the stage where data takes place, therefore it is
often crucial to know the intrinsic dimension of data to carry out meaningful analysis.
Intrinsic dimension provides direct information about data complexity; as such, it was
recognised as a useful measure to describe the dynamics of dynamical systems (Grassberger
& Procaccia, 1983), to detect anomalies in time series (Houle, Schubert & Zimek, 2018), to
diagnose patients with various conditions (Dlask & Kukal, 2017; Polychronaki et al., 2010;
Sharma, Pachori & Rajendra Acharya, 2017; Acharya et al., 2013) and to use it simply as
plugin parameter for signal processing algorithms.

Most of the multivariate datasets lie on a lower dimensional manifold embedded in a
potentially very high-dimensional embedding space. This is because the observed variables
are far from independent, and this interdependence introduces redundancies resulting in
a lower intrinsic dimension (ID) of data compared with the number of observed variables.
To capture this—possibly nonlinear—interdependence, nonlinear dimension-estimation
techniques can be applied to reveal connections between the variables in the dataset
(Sugiyama & Borgwardt, 2013;Romano et al., 2016), particularly between time series (Benkő
et al., 2018; Krakovská, 2019). In this latter case, the estimated intrinsic dimension provides
actionable information about the causal structures within the investigated system based on
it’s dynamics.

Dimension estimation of system’s dynamics from time series is supported by theorems
of nonlinear dynamical systems. Given a univariate time series generated by a deterministic
chaotic dynamical system one can reconstruct the multivariate state of the system, for
example, by time delay embedding if some mild conditions are met (Packard et al., 1980;
Takens, 1981). This procedure is carried out by adding the time shifted versions of the time
series to itself as new coordinates:

X(t )= [x(t ),x(t−τ ),x(t−2τ ),...,x(t− (E−1)τ ),x(t− (E−1)τ )] (1)

where x(t ) is the time series, X(t ) is the reconstructed state. E and τ are two parameters,
the embedding dimension and embedding delay respectively.

State space reconstruction by time delay embedding or some other technique based
on wavelet transformation (Parlitz & Mayer-Kress, 1995; You & Huang, 2011; Hu et al.,
2019) or recurrent neural networks (Chen et al., 2018; de Brouwer et al., 2019) are usually
a first step in any nonlinear time series analysis pipeline to characterize the system’s
dynamics (Bradley & Kantz, 2015). In the E-dimensional embedding space, the intrinsic
dimensionality of the augmented dataset can be a relevant real-time descriptor of the
dynamics (Skinner, Molnar & Tomberg, 1994).

To estimate the ID of data various approaches have been proposed, for a full review
of techniques see the work of Campadelli et al. (2015). Here we discuss the k-Nearest
Neighbor (kNN) ID estimators, with some recent advancements in the focus.

A usually basic assumption of kNN ID estimators is that the fraction of points f in
a spherical neighborhood is approximately determined by the intrinsic dimensionality
(D) and radius (R) times a—locally almost constant—mostly density-dependent factor
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(η(x,R), Eq. (2)).

f ≈ η(x,R)RD (2)

where f is the fraction of samples in a neighborhood.
Assuming the Poisson sampling process on the manifold, Levina & Bickel (2004) derived

a Maximum Likelihood estimator, which became a popular method and got several
updates (Ghahramani & Mckay, 2005; Gupta & Huang, 2010). These estimators are prone
to underestimation of dimensionality because of finite sample effects and overestimations
because of the curvature.

To address the challenges posed by curvature and finite sample, new estimators were
proposed (Rozza et al., 2012; Bassis et al., 2015; Ceruti et al., 2014; Facco et al., 2017). To
tackle the effect of curvature, a minimal neighborhood size can be taken on normalized
neighborhood distances as in the case of MINDML (Rozza et al., 2012). To tackle the
underestimation due to finite sample effects, empirical corrections were applied. A naive
empirical correction approach was applied by Camastra & Vinciarelli (2002): a perceptron
was trained on the estimates computed for randomly sampled hypercubes to learn a
correction function. Motivated by the correction in the previous work, the IDEA method
was created (Rozza et al., 2012); and a more principled approach was carried out, where
the full distribution of estimates was compared to the distributions computed on test data
sets using the Kullback–Leibler divergence (MINDKL (Rozza et al., 2012), DANCo (Ceruti
et al., 2014)). In the case of DANCo, not just the nearest neighbor distances, but the angles
are measured and taken into account in the estimation process resulting in more accurate
estimates.

In the recent years, further estimators have been proposed, such as the estimator that uses
minimal neighborhood information leveraging the empirical distribution of the ratio of the
nearest neighbors to fit intrinsic dimension (Facco et al., 2017), or other approaches based
on simplex skewness (Johnsson, Soneson & Fontes, 2015) and normalized distances (Chelly,
Houle & Kawarabayashi, 2016; Amsaleg et al., 2015; Amsaleg et al., 2018; Amsaleg et al.,
2019).

In the followings we revisit the manifold-adaptive Farahmand-Szepesvári-Audibert
(FSA) dimension estimator proposed by Farahmand, Szepesvári & Audibert (2007) to
measure intrinsic dimensionality of datasets (Fig. 1). This estimator is extremely simple, it
uses two neighborhoods around a data point to estimate the local intrinsic dimensionality.

We derive the FSA estimator from Eq. (2). Let M be a D dimensional manifold and
let’s have a sample {xi} where i∈ {1,2,...,n} with size n, sampled from M. We take two
neigborhoods around a sample point, thereby we fix f = k/n and if Ri

k is the distance at
which the k-th neighbor is found around xi, then we can take the logarithm of both sides:

ln
(
k
n

)
≈ ln η+D lnRi

k

ln
(
2k
n

)
≈ ln η′+D lnRi

2k (3)
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Figure 1 The estimation procedure of manifold-adaptive Farahmand-Szepesvári-Audibert intrinsic
dimension estimator. (A) The data is a set of uniformly sampled points from the [0,1] × [0,1] interval
(n= 103). A neighborhood around the most central sample point is colored by blue. (B) A magnified view
shows the neighborhood around the central sample point. The local FSA estimate (δk(xi)) is computed
leveraging the formula for the distances of the kth and 2kth neighbor. This computation is repeated for
the whole sample and a global estimate is generated as the mean of the local estimates. (C) We show the
local estimates (blue dots), the empirical mean (orange) and median (red) in the function of a neighbor-
hood size for the 2D points above. The mean has an upcurving tail at small neigborhood sizes but the me-
dian seems to be robust global estimate even for the smallest neighborhood. The mean approximately lies
on a hyperbola aD

k−1 +D ≈< δk(xi) >i, where a ≈ 0.685 is a constant (grey dashed line). (D) We measure
the intrinsic dimension of the dynamics for a logistic map driven by two other independent logistic maps
(n= 1,000). We show the local FSA estimates (blue), the mean (orange) and the median (red) in the func-
tion of neighborhood size after time delay embedding (E = 4,τ = 1). The dynamics is approximately 3 di-
mensional and the median robustly reflects this, however the mean overestimates the intrinsic dimension
at small neigborhood sizes.

Full-size DOI: 10.7717/peerjcs.790/fig-1
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If η is slowly varying and1R is small, we can take η= η′ as a constant. Thus, by subtracting
the two equations from each other we get rid of the local density dependence:

ln(2)≈D ln

(
Ri
2k

Ri
k

)
(4)

We rearrange Eq. (4) to compute the local estimates, which is practically fitting a line
through the log-distance of the kth and 2kth nearest neighbor at a given sample’s location
(Figs. 1A, 1B):

δk(xi)=
ln(2)

ln
(
Ri
2k/R

i
k
) (5)

where δk(xi) is the local FSA dimension estimate.
To compute a global ID estimate, the authors proposed the mean of local estimates

at sample-points, or a vote for the winner global ID value (the mode), if the estimator is
used in integer-mode. They proved that the above global ID estimates are consistent for
k > 1, if η is differentiable and the manifold is regular. They calculated the upper bound
for the probability of error for the global estimate, however this bound contains unknown
constants (Farahmand, Szepesvári & Audibert, 2007).

In practice one computes the local estimates for various neighborhood sizes and compute
the global estimate typically by averaging. We show this procedure by two examples: on
uniformly sampled points from the 2D plane and on a coupled logistic map system (Figs.
1C, 1D). For the uniform random sample the basic assumptions of the FSA method
hold, and the average of local values estimates well the global dimension D= 2 at bigger
neighborhood sizes (k > 8). However for small neighborhood sizes the estimate curls
upwards and goes to infinity at k = 1 (Fig. 1C). One can use a robust statistic, the median
as a global estimate and gets better results.

As a second example let’s see the intrinsic dimension estimation procedure for a coupled
logistic map system to grasp the complexity of the system’s dynamics. We couple three
chaotic logistic maps, such that two independent variables drive a third one through
nonlinear coupling:

x(t+1)= rxx(1−x)

y(t+1)= ryy(1−y)

z(t+1)= rzz(1−z−βzxx−βzyy) (6)

where x , y and z ∈ [0,1] are the state variables, ri = 3.99 and βi = 0.3 are parameters.
We generate n= 103 sample points with periodic boundary on the [0,1] interval and
investigate the dynamics of the variable z . We apply time delay embedding with embedding
dimension E = 4 and embedding delay τ = 1, and compute the local FSA estimates around
each sample in the embedding space with periodic boundary conditions (Fig. 1D). At
small neighborhoods the mean of the local estimates is higher than the actual intrinsic
dimensionality (D≈ 3) of the data, the median however stays approximately constant with
respect to k.
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We showed in the previous two examples that the median of local FSA estimates was a
more robust estimator of the intrinsic dimension than the mean, but the generality of this
finding is yet to be explored by more rigorous means. Additionally, in these cases the data
were abundant, and the edge effect was softened by periodic boundary, but data can be
scarce and the manifold may have finite size causing systematic errors in the estimates of
intrinsic dimension.

In this paper we propose an improved FSA estimator, based on the assumption that the
density is locally uniform. The main contributions of this paper are as follows:
(1) We calculate the probability density function of local FSA estimates, and derive formula

for the sampling distribution of the median.
(2) We prove that the median is an asymptotically unbiased estimate of the intrinsic

dimension, and introduce this variant as the median FSA (mFSA) algorithm. To
confirm the validity of the theory, we make comparison with empirical measurements
carried out on uniformly sampled random hypercube datasets with varied sample size
and intrinsic dimension value. We find that finite sample size and edge effects cause
systematic underestimation at high intrinsic dimensions.

(3) We present the new corrected median FSA (cmFSA) method to alleviate the
underestimation due to finite sample and edge effects. We achieve this by applying a
heuristic exponential correction-formula applied on the mFSA estimate and we test
the new algorithm on benchmark datasets.

(4) Finally, we apply the mFSA estimator to locate putative epileptic focus on Local Field
Potential measurements of a human subject.
The paper is organised as follows. In the Methods section, we present the steps of FSA,

mFSA and cmFSA algorithms, then we describe the simulation of the hypercube datasets
and we show the specific calibration procedure used in the cmFSA method. After these, we
turn to benchmark datasets. We refer to data generation scripts and display the evaluation
procedure. This section ends with a description of Local Field Potential measurements and
the analysis workflow. In the Results section, we lay out the theoretical results about the
FSA estimator first, then we validate them against simple simulations as second. Third,
we compare our algorithms on benchmark datasets against standard methods. Fourth, we
apply the mFSA algorithm on Local Field Potential measurements. These parts are followed
by the Discussion and Conclusion sections.

METHODS
The FSA and mFSA algorithm
There is a dataset with a sample size n, and sample points xi ∈Rm. Then,
1. Compute distances: Calculate the distance of the kth and 2kth nearest neighbors

(Rk,R2k) for each data point (xi). Here the neighborhood size is some positive integer
k ∈Z+.

2. Compute local estimates: Get local estimates δk(xi) from the distances for each data
point according to Eq. (5).

3. Calculate global estimate: Aggregate the local estimates into one global value. This last
step is the only difference between the FSA and the mFSA method:
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(a) FSA estimator:

d(k)FSA=

∑
δk(xi)
n

(7)

(b) mFSA estimator:
d(k)mFSA=M[{δk(x1),δk(x2),...,δk(xn)}] (8)
where M stands for the sample median.

The cmFSA algorithm
There is a dataset with a sample size n, and sample points xi ∈Rm. Then,
1. Compute mFSA estimate Apply the mFSA algorithm to get biased global estimate

d(k)mFSA.
2. Model Calibration Fit a correction-model with the the given sample size n on uniform

randomhypercube calibration datasets consisting of various intrinsic dimension values,
many instances each (at least N = 15 realizations). We used the following model:

D≈ d exp

( L∑
l=1

αld l
)

(9)

where D is the true dimension of the underlying manifold, αl-s are sample size and k
dependent coefficients, L is the order of the polynomial and d = d(k)mFSA is a shorthand
for the biased local estimate. This model is derived from heuristic reasoning, and
simplifies to a linear model in the parameters, if the logarithm of the two sides is taken.
First we calculate biased estimates on each test data. Second, we carry out the model
fit by linear regression on the log–log values with the ordinary least squares method or
with orthogonal distance regression.

3. Calculate cmFSA estimate Plug in the biased estimate into fitted the correction model
to compute d(k)cmFSA.
A python implementation of the algorithms can be found at https://github.com/phrenico/

cmfsapy along with the supporting codes for this article.

Simulations on D-hypercube datasets
The simulations were implemented in python3 (Van Rossum & Drake, 2009) using the
numpy (Oliphant, 2006), scipy (Virtanen et al., 2020) and matplotlib (Hunter, 2007)
packages, unless otherwise stated.

We generated test-datasets by uniform random sampling from the unit D-cube to
demonstrate, that theoretical derivations fit to data. We measured distances with a circular
boundary condition to avoid edge effects, hence the data is as close to the theoretical
assumptions as possible.

To illustrate the probability density function of the FSA estimator, we computed the
local FSA intrinsic dimension values (Fig. 2). We generated d-hypercubes (n= 10,000, one
realization) with dimensions of 2, 3, 5, 8, 10 and 12, then computed histograms of local
FSA estimates for three neighborhood sizes: k = 1, 11, 50 respectively (Figs. 2A, 2F). We
selected these specific neighborhoods because of didactic purposes: the k= 1 neighborhood
is the smallest one, the k = 50 is a bigger neighborhood, which is still much smaller than
the sample size, so the estimates are not affected by the finite sample effect. The k = 11
neighborhood represents a transition between the two ‘‘extremes’’, the specific value is an
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Figure 2 Probability density functions of the local Farahmand-Szepesvári-Audibert estimator (δ) for
various dimensions (D) and neighborhood sizes (k). (A–F) The sublots show that the theoretical proba-
bility density functions (pdfs) (continuous lines) fit to the histograms (n= 10,000) of local estimates cal-
culated on uniformly sampled hypercubes (D = 2,3,5,8,10,12). The three colors denote the three pre-
sented neigborhood sizes: k = 1 (blue), k = 11 (orange) and k = 50 (green). The pdfs are less skewed and
the variance gets smaller as the neighborhood size gets bigger. Also, the higher the dimension of the mani-
fold, the higher the variance of the local estimates.

Full-size DOI: 10.7717/peerjcs.790/fig-2

arbitrary choice giving pleasing visuals suggesting the gradual change in the shape of the
curve as a function of the k parameter. We drew the theoretically computed probability
density function (pdf) to illustrate the fit.

To show that the theoretically computed sampling distribution of the mFSA fits to
the hypercube datasets, we varied the sample size (n= 11,101,1001) with N = 5,000
realizations from each. We computed the global mFSA for each realization and plotted the
results for d = 2 (Fig. 3A) and d = 5 (Fig. 3B).

We investigated the dimensionality and sample-size effects on mFSA estimates (Figs. 4–
5). We simulated the hypercube data in the 2–30 dimension-range, and applied various
sample sizes: n= 10,100,1,000,2,500,10,000; one hundred realizations each (N = 100).
We computed the mFSA values with minimal neighborhood size (k = 1), and observed
finite-sample-effects, and asymptotic convergence. We repeated the analysis with hard
boundary conditions.
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Figure 3 The sampling distribution and standard error of the median for the FSA estimator on uni-
formly sampled hypercubes. The figure shows the pdf of median-FSA estimator of points uniformly sam-
pled from two example systems: a square (A) and from a 5D hypercube (B) for three sample sizes n = 11
(blue), n = 101 (orange) and n = 1,001 (green) respectively for the smallest neighborhood (k = 1). The
solid lines represent the theoretical pdfs of the median and the shaded histograms are the results of sim-
ulations (N = 5,000 realizations of hypercube datasets with periodic boundary conditions). The derived
formula fits well to the histograms. The variance shrinks with bigger sample size, and the pdf becomes less
skewed, more Gaussian-like. (C) The standard error of median in the function of sample size computed by
numerical integration and Laplace-Stirling approximation (grey dashed). The standard error linearly de-
creases on a log–log plot in the function of sample size. The slope is approximately−0.5, independent of
the dimension of the manifold and the error’s value is proportional to D. Thus, the relative error (err/D)
is independent of intrinsic dimension and it is shown by the overlapping markers on the black dashed
straight line. (D) The standard error in the function of neighborhood size computed by numerical integra-
tion and Laplace-Stirling approximation. The slope of the lines are also approximately−0.5, the apprxi-
mation (grey dashed line) becomes accurate for k> 10 neighborhood size.

Full-size DOI: 10.7717/peerjcs.790/fig-3
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Figure 4 Intrinsic dimension dependence of the median-FSA estimator for uniformly sampled unit
hypercubes with various sample sizes (k = 1) with periodic boundary conditions. Subplots (A–F) show
the mean of median-FSA estimator (thick line) values from N = 100 realizations (shading) of uniformly
sampled unit hypercubes . The perfect estimation values lie on the diagonal (dashed black line). As the in-
trinsic dimension of the manifold grows, the estimates start to deviate from the ideal diagonal line due to
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low sample size and high intrinsic dimension.

Full-size DOI: 10.7717/peerjcs.790/fig-4

We fitted a correction formula on the logarithm of dimension values and estimates with
the least squares method (Eq. 10), using all 100 realizations for each sample sizes separately
(Fig. 6).

α=

∑
(lnEi)d(i)∑(

d(i)
)2 (10)

where Ei=Di/d(i) is the relative error, Di is the intrinsic dimension of the data, and d(i)

are the corresponding mFSA estimates. We carried out the model fit on the 2–30 intrinsic
dimension range.

We also calibrated the cmFSA algorithm in a wider range of intrinsic dimension values
(2–80) and applied more coefficients in the polynomial fit procedure (Fig. S1A). Also, we
used orthogonal distance regression to fit the mean over realizations of lnEi with the same
Di value (Fig. S1B). We utilized the mean and standard deviation of the regression error
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to compute the ideal error rate of cmFSA estimator, if the error-distributions are normal
(Figs. S1C–S1F).

Simulations on customly sampled manifolds
We carried out simulations on datasets sampled from manifolds according to uniform,
multivariate Gaussian, Cauchy distribution and on uniformly sampled D-spheres in the
function of sample size as in Facco et al. (2017), Fig. 2.

The uniform sampling was carried out on D-hypercube data with periodic boundary
conditions. The Gaussian datasets were sampled from a zero mean and unit variance and
no covariance multivariate normal distribution. The Cauchy datasets were generated so
that the probability density of the norms were a Cauchy distribution. We achieved this by
the following procedure:
1. Generate n points according toD dimensional Gaussian distribution (ζi) and normalize

the euclidean distance of the points from the origin.

zi=
ζi

|ζi|
where ζi∼N (0,I )
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Figure 6 Bias-correction of the median-FSA estimator for uniformly sampled unit hypercubes with
various sample sizes with hard boundary (k = 1). Subplots (A–F) show the mean of median-FSA es-
timator (grey line) values from N = 100 realizations (shading) of uniformly sampled unit hypercubes.
The boundary condition is hard, so the edge effect makes under-estimation even more severe than in the
case of periodic boundary condition. The colored lines show the corrected estimates according to the dc =
d exp(αd). In the D = 1–30 intrinsic dimension range a simple coefficient was enough to get small mean
squared error after model fit.

Full-size DOI: 10.7717/peerjcs.790/fig-6

and I is theD-dimensional identitymatrix. Thus, the points zi are uniformly distributed
on the hyper-surface of a D−1 dimensional hyper-sphere of unit radius.

2. Generate n positive real numbers ui from a Cauchy distribution f (u)= 1
π(1+u2) and

multiply zi by this to get a dataset:
xi= ui×zi
Thus the norms of the resulting points are distributed according to a Cauchy
distribution.
Finally, we produced the D-sphere data with the first step of the previous procedure.
We generated N = 200 instances of each dataset with the intrinsic dimension values

D= 2,5,10, we estimated the global mFSA and cmFSA dimensions and plotted the mean
and standard deviation in the function of sample size (Fig. 7).
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Figure 7 mFSA and cmFSA dimension estimates on customly sampled data in the function of sample
size (k = 5,D= 2,5,10). The figure presents that mFSA and cmFSA makes errors if the sampling process
is not uniform. (A) Results on hypercubes with periodic boundary conditions dataset shows, that mFSA
systematically underestimates the intrinsic dimension especially for higher dimension values, this bias is
corrigated by cmFSA. (B) The mFSA algorithm underestimates and cmFSA overestimates the intrinsic di-
mension for the Gaussian datasets. (C) For the Cauchy datasets, mFSA estimator shows an average under-
estimation at small sample sizes and an over-estimation region followed by convergence to true dimen-
sion value. cmFSA severely overestimates the intrinsic dimension values. (D) On the slightly curved hyper-
sphere datasets mFSA also underestimates the intrinsic dimension and cmFSA gives and overestimation.
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Comparison on synthetic benchmark datasets
We simulated N = 100 instances of 15 manifolds (Table 1, Mi, n= 2,500) with various
intrinsic dimensions. We generated the datasets according to the first 15 manifolds
proposed by Campadelli et al. (2015). More specifically, Table 1 contains the description
manifold types, the first 15 manifolds of Table 2 are used in this work as synthetic
benchmark, and the Table 4 shows the benchmark results in Campadelli et al. (2015),
http://www.mL.uni-saarland.de/code/IntDim/IntDim.htm.

We applied the wide (D=2–80) calibration procedure (l1=−1,l2= 1,l3= 2,l4= 3) as
in the previous subsection (n= 2,500, k= 5) to compute cmFSA for the datasets. We used
cmFSA in two modes, in integer and in fractal mode. In the former the global estimates are
rounded to the nearest integer value, while in the latter case the estimates can take on real
values.
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Table 1 Synthetic benchmark datasets. The synthetic benchmark datasets used for comparison are the
first 15 manifolds from Campadelli et al. (2015). The datasets represent various types of manifolds with or
without curvature, also with uniform or non-uniform sampling of n= 2,500 points.

Dataset Description d embed-dim

1 M 1 10d sphere 10 11
2 M 2 3d affine space 3 5
3 M 3 4 figure 4 6
4 M 4 4d manifold in 8d 4 8
5 M 5 2d helix in 3d 2 3
6 M 6 6dim manifold in 36d 6 36
7 M 7 swiss roll 2 3
8 M 9 20d affine space 20 20
9 M10a 10d hypercube 10 10
10 M10b 17d hypercube 17 17
11 M10c 24d hypercube 24 24
12 M10d 70d hypercube 70 70
13 M 11 Moebius band 10x twisted 2 3
14 M 12 Multivariate Gaussian 20 20
15 M 13 1d curve in 13d 1 13

Table 2 Dimension estimates on synthetic benchmark datasets. The table shows true dimension values (d), median-Farahmand-Szepesvári-
Audibert (mFSA), corrected median Farahmand-Szepesvári-Audibert (cmFSA), DANCo, Maximum Likelihood (Levina) and 2NN mean estimates
from N = 100 realizations. cmFSA and DANCo was applied in integer and in fractal modes. The mean percentage error (MPE) values can be seen in
the bottom line, the Matlab version of DANCo estimator (DANCo M) produced the smallest error followed by the cmFSA estimator.

Dataset d mFSA cmFSA frac cmFSA DANCo R DANCoM frac DANCoM Levina 2NN

M1 10 9.09 11.19 11.08 11.34 10.42 10.30 10.15 9.40
M2 3 2.87 3.02 3.00 3.00 2.90 3.00 3.20 2.93
M3 4 3.83 4.14 4.00 5.00 3.84 4.00 4.29 3.87
M4 4 3.95 4.29 4.00 5.00 3.92 4.00 4.38 3.91
M5 2 1.97 2.00 2.00 2.00 1.98 2.00 2.19 1.99
M6 6 6.38 7.38 7.16 9.00 6.72 7.00 7.04 5.93
M7 2 1.95 1.98 2.00 2.00 1.96 2.00 2.18 1.98
M9 20 14.58 20.07 20.10 19.16 19.24 19.09 16.38 15.55
M10a 10 8.21 9.90 10.00 10.00 9.56 9.78 9.20 8.63
M10b 17 12.76 16.95 16.96 16.04 16.39 16.24 14.33 13.58
M10c 24 16.80 24.10 24.06 23.61 23.39 23.26 18.89 18.04
M10d 70 35.64 69.84 69.84 69.73 71.00 70.91 40.35 40.05
M11 2 1.97 2.00 2.00 2.00 1.97 2.00 2.19 1.98
M12 20 15.64 21.96 21.98 21.72 20.88 20.00 17.72 17.24
M13 1 1.00 0.96 1.00 1.00 1.00 1.00 1.11 1.00
MPE 13.58 4.73 2.89 9.64 3.39 2.35 13.23 10.91
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We measured the performance of the mFSA and corrected-mFSA estimators on the
benchmark datasets, and compared them with the performance of ML (Levina & Bickel,
2004) DANCo (Ceruti et al., 2014) and the 2NN (Facco et al., 2017) (Table 2) estimators.
We used the Matlab (MATLAB, 2020; Lombardi, 2020) (see on github) and an R package
(Johnsson, Soneson & Fontes, 2015) implementation of DANCo. In the case of DANCo,
we also investigated the results for integer and for fractal mode just as for the cmFSA
algorithm.

To quantify the performance we adopted the Mean Percentage Error (MPE, Eq. 11)
metric (Campadelli et al., 2015):

MPE=
100
MN

M∑
j=1

N∑
i=1

|Dj−dij |
Dj

(11)

where there is N realizations of M types of manifolds, Dj are the true dimension values,
dij are the dimension estimates.

Also, we used the error rate—the fraction of cases, when the estimator did not find
(missed) the true dimensionality—as an alternative metric (Fig. 8). We used this metric to
compare the performace of DANCo and cmFSA in integer mode, we simply counted the
cases, when the estimator missed the true dimension value:

Hj =
1
N

N∑
i=1

I (Dj 6= dij) (12)

whereHj is the error rate for a manifold computed fromN realizations and I = 1 ifDj 6= dij
is the indicator function for the error. We computed the mean error rate H by averaging
the manifold specific values.

Dimension estimation of interictal and epileptic dynamics
We used data of intracranial field potentials from two subdural grids positioned –
parietofrontally (6*8 channels, Gr A-F and 1–8) and frontobasally (2*8 channels, Fb
A-B and 1–8) –on the brain surface and from three strips located on the right temporal
cortex (8 channels, JT 1–8), close to the hippocampal formation and two interhemispheric
strips, located within the fissura longitudinalis, close to the left and right gyrus cinguli (8
channels BIH 1–8 and 8 channels JIH 1–8) as part of presurgical protocol for a subject
with drug resistant epilepsy (Fig. 9A). The participants signed a written consent form
and the study was approved by the relevant institutional ethical committee (Medical
Research Council, Scientific and Research-Ethics Committee TUKEB, Ref number: 20680-
4/2012/EKU (368/PI/2012)). This equipment recorded extracellular field potentials at
88 neural channels at a sampling rate of 2048 Hz. Moreover, we read in—using the neo
package (Garcia et al., 2014)—selected 10 second long chunks of the recordings from
interictal periods (N = 16) and seizures (N = 18) to further analysis.

We standardised the data series and computed the Current Source Density (CSD) as
the second spatial derivative of the recorded potential. We rescaled the 10 second long
signal chunks by subtracting the mean and dividing by the standard deviation. Then,
we computed the CSD of the signals by applying the graph Laplacian operator on the
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Figure 8 Performance-comparison between cmFSA and DANCo on synthetic benchmark datasets.
cmFSA and DANCo have comparable performance with small differences according to Mean Percentage
Error and Error rate metrics. (A) Dataset-wise Mean Percentage Error (MPE) on benchmark data.
cm-FSA (blue) shows smaller MPE in 4 cases (M9,M10a−c ) and bigger MPE in 4 cases (M1,M6,M10d ,M12)
compared with DANCo (Matlab). (B) Dataset-wise error rate for cmFSA and DANCo. cmFSA shows
smaller error rates in 5 cases (M9,M10a−d) and bigger error rates in 2 cases (M1,M12) compared with
DANCo.

Full-size DOI: 10.7717/peerjcs.790/fig-8

time-series. The Laplacian contains information about the topology of the electrode grids,
to encode this topology, we used von Neumann neighborhood in the adjacency matrix.
After CSD computation, we bandpass-filtered the CSD signals (Gramfort et al., 2013) (1–30
Hz, fourth order Butterworth filter) to improve signal to noise ratio.

We embedded CSD signals and subsampled the embedded time series. We used an
iterative manual procedure to optimize embedding parameters (Fig. S2). Since the fastest
oscillation is (30 Hz) in the signals, a fixed value with one fourth period (2048/120≈ 17
samples) were used as embedding delay. We inspected the average space–time separation
plots of CSD signals to determine a proper subsampling, with the embedding dimension of
D= 2 (Fig. S2A). We found, that the first local maximum of the space–time separation was
at around 5ms: 9–10, 10–11, 11–12 samples for the 1%, 25%, 50%percentile contour-curves
respectively. Therefore, we divided the embedded time series into 10 subsets to ensure the
required subsampling. Then, we embedded the CSD signal up to D= 12 and measured the
intrinsic dimensionality for each embeddings (Figs. S2B and S2C). We found that intrinsic
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Figure 9 mFSA and FSA dimension estimates on intracranial brain-LFPmeasurements during inter-
ictal activity and epileptic seizures. (A) The experimental setup with the implanted electrodes are shown.
A 64 channel intracranial cortical grid (red grid on graph A, Gr A1-F8 on graph C), a smaller frontobasal
grid (magenta dots, Fb A1-B8) and a right temporal electrode strip, close to the hippocampus (cyan dots,
JT1-8). Dimension estimates were calculated for two additional electrode strips close to the gyrus cinguli
(JIH and BIH) which are hidden on this figure. The change in the mFSA estimates between seizure and
control is color coded and mapped onto the recording electrodes. (B) Comparison of mFSA and FSA es-
timates on an epileptic seizure. FSA results in higher estimates, but the difference decreases with the in-
creasing neighbourhood parameter k. (C) Average of mFSA dimension values from interictal LFP activ-
ity (N = 16, k=5–10). The areas with lower-dimensional dynamics are marked by hot colors. (D) Av-
erage of mFSA dimension values from seizure LFP activity (N = 18, k=5–10), colors same as on graph
C. (E) Difference of average dimension values. Stronger red color marks areas, where the dynamics dur-
ing seizure was smaller-dimensional than its interictal counterpart. However, stronger blue indicates elec-
trodes, where the during-seizure dynamics was higher dimensional than the interictal dynamics.

Full-size DOI: 10.7717/peerjcs.790/fig-9

dimension estimates started to show saturation at D≥ 3, therefore we chose D= 7 as a
sufficiently high embedding dimension (averaged over k=10–20 neighborhood sizes).

We measured the intrinsic dimensionality of the embedded CSD signals using the mFSA
method during interictal and epileptic episodes (Fig. 9). We selected the neighborhood size
between k = 10 and k = 20 and averaged the resulting estimates over the neighborhoods
and subsampling realizations. We investigated the dimension values (Figs. 9C and 9D) and
differences (Fig. 9E) between interictal and epileptic periods.
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We also compared the mFSA estimates with the original –mean based –FSA estimates
in the function of neighborhood size on a recording in the k =1–12 neighborhood range
and plotted the estimates against each other to visualize differences (Fig. 9B).

RESULTS
Manifold adaptive dimension estimator revisited
The probability density of Farahmand-Szepesvári-Audibert estimator
We compute the probability density function of Farahmand-Szepesvári-Audibert (FSA)
intrinsic dimension estimator based on normalized distances.

The normalized distance density of the kNN can be computed in the context of a
K -neighborhood, where the normalized distance of K −1 points follows a specific form:

p(r |k,K −1,D)=
D

B(k,K −k)
rDk−1(1− rD)K−k−1 (13)

where r ∈ [0,1] is the normalized distance of the kth neighbor and B is the Euler-beta
function. In practice, the normalization is carried out by dividing with the distance of
K th neighbor (rk =Rk/RK , k<K ). Here p(r |k,K −1,D)1r describes the probability that
the k-th neighbor can be found on a thin shell at the normalized distance r among the
K −1 neighbors if the intrinsic dimension is D (see SI A. 1 for a derivation). A maximum
likelihood estimator based on Eq. (13) leads to the formula of the classical Levina-Bickel
estimator (Levina & Bickel, 2004). For a derivation of this probability density and the
maximum likelihood solution see SI A. 1 and SI A. 2 respectively.

We realize that the inverse of normalized distance appears in the formula of FSA
estimator, so we can express it as a function of r :

δk =
log2

log(R2k/Rk)
=−

log2
log(Rk/R2k)

=−
log2
logrk

(14)

Where rk =Rk/R2k .
Combining Eqs. (13) and (14), one can obtain the pdf of the FSA estimator:

q(δk)≡ p(r |k,2k−1,D)
∣∣∣∣ drdδk

∣∣∣∣= Dlog(2)
B(k,k)

2−
Dk
δk

(
1−2−

D
δk

)k−1
δ2k

(15)

Theorem 1 The median of q(δk)is at D.

Proof We apply the monotonic substitution a= 2−D/δk on Eq. (15):

p(a)= q(δk)
∣∣∣∣dδkda

∣∣∣∣=
(16)

=
Dlog(2)
B(k,k)

ak(1−a)k−1log2a
D2log22

Dlog2
alog2a

(17)
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=
1

B(k,k)
ak−1(1−a)k−1 (18)

The pdf in Eq. (18) belongs to a beta distribution. The cumulative distribution function
of this density is the regularized incomplete Beta function (Ia) with k as both parameters
symmetrically.

P(a)= Ia(k,k) (19)

The median of this distribution is at a= 1
2 , thus at δk =Dsince:

a= 2−
D
δk =

1
2

(20)

D = δk (21)

and a is a monotonic function of δ, therefore the median in δk can be computed by the
inverse mapping. �

This means that the median of the local FSA estimator is equal to the intrinsic dimension
independent of neighborhood size, even for the minimal neighborhood, if the locally
uniform point density assumption holds. The sample median is a robust statistic, therefore
we propose to use the sample median of local estimates as a global dimension estimate.
We will call this modified method the ’median Farahmand-Szepesvári-Audibert’ (mFSA)
estimator.

Let’s see the form for the smallest possible neighborhood size: k = 1 (Fig. 2). The pdf
for the estimator takes a simpler from Eq. (22).

q(δ|k= 1,D)=Dlog(2)
2−

D
δ1

δ21
(22)

Also, we can calculate the cumulative distribution function analytically (Eq. 23).

Q(δ|k= 1,D)=
∫ δ1

0
q(t |k= 1,D) dt = 2−D/δ1 (23)

The expectation of δk diverges for k= 1–but not for k> 1 –although the median exists.

Q(δ1=D)=
∫ D

0
q(t |k= 1,D) dt = 0.5 (24)

From Eq. (23) the median is at D Eq. (24).

Sampling distribution of the median
We can compute the pdf of the sample median if an odd sample size is given (n= 2l+1)
and if sample points are drawn independently according to Eq. (15) (see Supplemental
Information 1 secC for a derivation). Roughly half of the points have to be smaller, half of
the points have to be bigger and one point has to be exactly at d (Eq. 25).

p(d|k,D,n)=
1

B(l+1,l+1)
[
P
(
a= 2−D/d

)(
1−P

(
a= 2−D/d

))]l
q(d) (25)

Benkő et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.790 19/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.790#supp-1
http://dx.doi.org/10.7717/peerj-cs.790#supp-1
http://dx.doi.org/10.7717/peerj-cs.790


where p(a) and P(a) are the pdf and cdf of a (Eqs. (18), (19)) and q is the pdf of the FSA
estimator (Figs. 3A, 3B).

We determine the standard error by the numerical integration of Eq. (25) and found
that the error shrinks approximately with the square-root of n and k (Figs. 3C, 3D). Also,
the value of the standard error is proportional to the dimension of the manifold. From
these observations, we express the error as:

σd ≈ κ
D
√
nk

(26)

where κ is a constant. These empirical results can be backed up by theory: the same
expression arises for the standard error by using the Laplace and Stirling approximations,
also by these methods, the exact value of κ =

√
π

2log2 can be derived (see Supplemental
Information 1 secD for a derivation).

Maximum Likelihood solution for the manifold-adaptive estimator
If the samples are independent and identically distributed, we can formulate the likelihood
function as the product of sample-likelihoods (Eq. (27)). We seek for the maximum of
the log likelihood function, but the derivative is transcendent for k> 1. Therefore, we can
compute the place of the maximum numerically (Eq. (29)).

L =

n∏
i=1

Dlog(2)
B(k,k)

2−Dk/δ
(i)
(1−2−D/δk

(i)
)k−1(

δk
(i))2 (27)

logL = nlog
log(2)
B(k,k)

+nlogD−Dk log(2)
∑ 1

δk
(i) + (k−1)

∑
log
(
1−2−D/δk

(i)
)

−2
∑

log(δk (i)) (28)

∂ logL
∂D

=
n
D
− log(2)k

∑ 1
δk

(i) + log(2)(k−1)
∑ 1

δk
(i)(2D/δk (i)−1)

!
= 0 (29)

For k= 1, the ML formula is equal to the Levina-Bickel (k= 1) andMIND1ML formulas.

Results on randomly sampled hypercube datasets
Theoretical probability density function of the local FSA estimator fits to empirical
observations (Eq. (15), Fig. 2). We simulated hypercube datasets with fixed sample size
(n= 10,000) and of various intrinsic dimensions (D= 2,3,5,8,10,12). We measured
the local FSA estimator at each sample point with three different k parameter values
(k= 1,11,50). We visually confirmed that the theoretical pdf fits perfectly to the empirical
histograms.

The empirical sampling distribution of mFSA fits to the theoretical curves for small
intrinsic dimension values (Fig. 3). To demonstrate the fit, we drew the density of mFSA on
two hypercube datasets D= 2 and D= 5 with the smallest possible neighborhood (k = 1),
for different sample sizes (n= 11, 101, 1,001). At big sample sizes the pdf is approximately
a Gaussian (Laplace, 1986), but for small samples the pdf is non-Gaussian and skewed.

The mFSA estimator underestimates intrinsic dimensionality in high dimensions.
This phenomena is partially a finite sample effect (Fig. 4), but edge effects make this
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underestimation even more severe. This phenomenon was pronounced at low sample sizes
and high dimensions, but we experienced convergence to the real dimension value as we
increased sample size.

We graphically showed that mFSA estimator asymptotically converged to the real
dimension values for hypercube-datasets, when we applied periodic boundary conditions
(Fig. 5). We found, that the convergence is much slower for hard boundary conditions,
where edge effects make systematic estimation errors higher.

From the shape of the curves in Fig. 4, we heuristically derived a correction formula for
finite sample size and edge effects (Eq. 9). The heuristics is as follows. We tried to find a
formula, which intuitively describes the true intrinsic dimension in the function (C) of the
estimated values. One can see on Fig. 4, that at small values the error converges to zero and
also the curve lies approximately on the diagonal, so it’s derivative goes to one.

lim
d→0

C(d) =D

lim
d→0

C ′(d) = 1 (30)

where C is the correction function and d is the biased estimate. Equation (9) satisfies these
conditions and gives good fit to empirical data (Fig. 6).

From an other point of view, Eq. (9) means that one could estimate the logarithm of
relative error with an L-order polynomial:

log(Erel)= log
(
D
d

)
=

L∑
l=1

αld l (31)

The order of the polynomial was different for the two types of boundary conditions.
When we applied hard boundary, the order was L= 1, however in the periodic case higher
order polynomials fit the data. Thus, in the case of hard-boundary, we could make the
empirical correction formula:

D≈C(d)= deαnd (32)

where αn is a sample size dependent coefficient that we could fit with the least squares
method. This simple model described well the data in the 2–30 intrinsic dimension range
(Figs. 6A–6F).

Results on customly sampled manifolds
We investigated the case when the assumption of uniform sampling or flatness is violated
through gaussian, Cauchy and hypersphere datasets (Fig. 7) with various intrinsic
dimensions and sample sizes. We added hypercube datasets with periodic boundary
conditions as a control with the same parameter setting respectively (k= 5).

On the hypercube datasets with periodic boundary conditions the mFSA algorithm
produced a massive underestimation of intrinsic dimension for low sample sizes for
D= 10, but cmFSA corrects this bias caused by finite sample size (Fig. 7A). For the
small-dimensional cases. When D= 2 and D= 5 both cmFSA and FSA estimated well
the true intrinsic dimension values. On the gaussian datasets with non-periodic boundary
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conditions mFSA produced even more severe underestimation for D= 10 or D= 5, but
cmFSA overestimated the intrinsic dimensions (Fig. 7B). On the heavy tailed Cauchy
datasets mFSA showed a non-monotonic behaviour in the function of sample size: for
fewer points it had low values with a maximum at mid sample sizes and exhibited slow
decline convergence to true dimension value for big samples (Fig. 7C). This shape of the
curve resulted in underestimation for small samples followed by an overestimation part
depressing towards the true dimension values as N goes to infinity (D= 5,10). For D= 2
the first underestimation section was missing. cmFSA produced severe overestimation for
these Cauchy datasets. The hypersphere dataset is an example when the point density is
approximately uniform, but themanifold is curved (Fig. 7D).On this datsetmFSAproduced
underestimation for D= 5,10 and good estimates for D= 2. cmFSA overestimated the
dimension value.

Results on synthetic benchmarks
We tested the mFSA estimator and its corrected version on synthetic benchmark datasets
(Hein & Audibert, 2005; Campadelli et al., 2015). We simulated N = 100 instances of 15
manifolds (Table 1,Mi, n= 2,500) with various intrinsic dimensions.

We estimated the intrinsic dimensionality of each sample and computed the mean,
the error rate and Mean Percentage Error (MPE) for the estimators. We compared the
mFSA, cmFSA, the R and the Matlab implementation of DANCo, the Levina-Bickel and
the 2NN estimator (Table 2). cmFSA and DANCo was evaluated in two modes, in a
fractal-dimension mode and in an integer dimension mode.

The mFSA estimator underestimated intrinsic dimensionality, especially in the cases
when the data had high dimensionality. The Levina-Bickel estimator overestimated low
intrinsic dimensions and underestimated the high ones. The 2NN estimator produced
underestimation on most test manifolds it reached the best average result on the M6 and
M13 manifolds.

In contrast, the cmFSA estimator found the true intrinsic dimensionality of the datasets,
it reached the best overall error rate (0.277) and 2nd best MPE (Fig. 8, Table 2). In some
cases, it slightly over-estimated the dimension of test datasets. Interestingly, DANCo
showed implementation-dependent performance, the Matlab algorithm showed the 2nd
best error rate (0.323) and the best MPE value (Table 2). The R version overestimated the
dimensionality of datasets in most cases.

Analysing epileptic seizures
To show how mFSA works on real-world noisy data, we applied it to human neural
recordings of epileptic seizures.

We acquired field potential measurements from a patient with drug-resistant epilepsy by
2 electrode grids and 3 electrode strips. We analyzed the neural recordings during interictal
periods and during epileptic activity to map possible seizure onset zones (see Methods).

We found several characteristic differences in the dimension patterns between normal
and control conditions. In interictal periods (Fig. 9C), we found the lowest average
dimension value at the FbB2 position on the fronto-basal grid. Also, we observed gradually
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increasing intrinsic dimensions on the cortical grid (Gr) between the F1 and D6 channels.
In contrast, we observed the lowest dimension values at the right interhemispherial strip
(JIH 1–2) and on the temporo-basal electrode strip (JT 3–5) close to the hippocampus,
and the gradient on the cortical grid altered during seizures (Fig. 9D). Comparing the
dimensions between seizure and control periods, the majority of the channels showed
lower dimensions during seizures. This decrease was most pronounced close to the
hippocampal region (strip JT) and the parietal region mapped by the main electrode grid
(GrA-C). Curiously, the intrinsic dimensionality became higher at some frontal (GrE1-F2)
and fronto-basal (FbA1-B3) recording sites during seizure (Figs. 9A and 9E).

Comparison of the original FSA and the mFSA dimension estimators on the seizure data
series showed characteristic difference similar to the one observed in the simulated data:
mFSA resulted in lower dimension estimates than FSA and the difference between the two
methods decreases as the k neighbourhood increases (Fig. 9B, compare it with Figs. 1C and
1D).

DISCUSSION
In this work we revisited and improved the manifold adaptive FSA dimension estimator.
We computed the probability density function of local estimates for uniform local density.
From the pdf, we derived the maximum likelihood formula for intrinsic dimensionality.
However these results were derived for the simplest uniform euclidean manifold with
single global intrinsic dimension, they form a base for application in more complex cases.
For example the pdf of the local statistic make possible to apply the FSA estimator within
mixture-based approaches, this would provide better ID estimates when the ID is varying
in the data set (Haro, Randall & Sapiro, 2008; Allegra et al., 2020).

We proposed to use the median of local estimates as a global measure of intrinsic
dimensionality, and demonstrated that this measure is asymptotically unbiased. This
property holds even for the minimal k = 1 neighborhood size, where the previously
proposed mean is infinite. The use of minimal neighborhood may be relevant, because it
ameliorates the effect of curvature and density inequalities (Facco et al., 2017).

We tackled edge and finite sample effects with a correction formula calibrated on
hypercube datasets. We showed that the coefficients are sample-size dependent. Camastra
and Vinciarelli (Camastra & Vinciarelli, 2002) took a resembling empirical approach,
where they corrected correlation dimension estimates with a perceptron, calibrated on d-
dimensional datasets. Our approach is different, because we tried to grasp the connection
between underestimation and intrinsic dimensionality more directly, by showing that
the dimension-dependence of the relative error is exponential (Eq. 31). The calibration
procedure of DANCo may generalize better, because it compares the full distribution of
local estimates rather than just a centrality measure (Ceruti et al., 2014). Also, we are aware
that our simple correction formula overlooks the effect of curvature, uneven density and
noise. One can try to address the effect of curvature and nonuniform density with the
choice of minimal neighborhood size (k = 1), thus the estimation error is minimal (Facco
et al., 2017).We investigated cases when the flatness and uniformity assumptions is violated
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on curved and unevenly sampled manifolds as in Facco et al. (2017) and found that the
estimation errors can be large both formFSA and cmFSA.We investigated the non-uniform
sampling with Gaussian and Cauchy datasets (k = 5). For the Gaussian dataset cmFSA
moderately overestimated the values. For the Cauchy dataset the overestimation of cmFSA
is very severe: for less than 500 points, the estimation error and also the standard deviation
seems to be unbounded. On the curved hypersphere data cmFSA also produced moderate
overestimation. These datasets are quite challenging, and the 2NN method of Facco et al.
(2017), which uses minimal neighborhood information, presents more exact results on
these. The simplicity of the correction in cmFSA, more specifically that the calibration is
based onuniformly sampled hypercube datasetsmakes it vulnerable to non-uniformdensity
and curvature. Additionally, the effect of noise on the estimates is yet to be investigated.
There are several strategies to alleviate noise effects such as undersample the data while
keeping the neighborhood fixed (Facco et al., 2017), or using a larger neighborhood size,
while keeping the sample size fixed. Both of these procedures make the effect of curvature
more severe, which makes the dimension estimation of noisy curved data a challenging
task.

We benchmarked the new mFSA and corrected-mFSA method against Levina-Bickel
estimator, 2NN and DANCo on synthetic benchmark datasets and found that cmFSA
showed comparable performance to DANCo. For many datasets, R-DANCo overestimated
the intrinsic dimensionality, which is most probably due to rough default calibration
(Johnsson, Soneson & Fontes, 2015); the Matlab implementation showed the best overall
results in agreement with Campadelli et al. (2015). This superiority was however dataset-
specific: cmFSA performed genuinely the best in 2, DANCo in 1 out of the 15 benchmark
datasets, with 7 ties (Table 2). Also, cmFSA showed better overall error rate than DANCo.
Combining the performance measured by different metrics, we recognise that cmFSA
found the true intrinsic dimension of the data in more cases, but when mistaken, it
makes relatively bigger errors compared with DANCo. More specifically in the cases of
M1, M6, M12 cmFSA almost never hits the true intrinsic dimension value, where M1 is a
10-dimensional sphere, M6 is a 6-dimensional manifold embedded in 36 dimensions and
M12 is a 20-dimensional multivariate Gaussian. In the first case the manifold is curved, in
the second it is embedded in high dimensional ambient space and in the third one it is
non-uniformly sampled. DANCo was robust against the curvature and the non-uniform
sampling, but also exhibited vulnerability to high ambient space data M6. For this dataset
the 2NN method performed the best.

The mFSA algorithm revealed diverse changes in the neural dynamics during epileptic
seizures. In normal condition, the gradient of dimension values on the cortical grid reflects
the hierarchical organization of neocortical information processing (Tajima et al., 2015).
During seizures, this pattern becomes disrupted pointing to the breakdown of normal
activation routes. Some channels showed lower dimensional dynamics during seizures;
that behaviour is far from the exception: the decrease in dimensionality is due to widespread
synchronization events between neural populations (Mormann et al., 2000), a phenomenon
reported by various authors (Polychronaki et al., 2010; Bullmore et al., 1994; Päivinen et al.,
2005).
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Benkő et al. (2018) showed, that dimensional relations between time series from
dynamical systems can be exploited to infer causal relations between brain areas. In
the special case of unidirectional coupling between two systems, the dimension of the cause
should be lower than the dimension of the consequence. Thus, the lower-dimensional
areas are possible causal sources (Sugiyama & Borgwardt, 2013; Krakovská, 2019; Benkő et
al., 2018) and candidates for being the seizure onset zone. Interestingly, Esteller et al. found,
that the Higuchi fractal dimension values were higher at seizure onset and decreased to
lower values as the seizures evolved over time (Esteller et al., 1999). We found, that most
areas showed decreased dimensionality, but few areas also showed increased dimension
values as seizure takes place. This may suggests that new - so far unused - neural circuits
are activated at seizure onset; whether this circuitry contributes to or counteracts epileptic
seizure is unclear.

CONCLUSION
In this work we revisited the manifold adaptive dimension estimation problem, made
improvements on the Farahmand-Szepevári-Audibert (FSA) intrinsic dimension estimator
and applied the new algorithm on simulated and real-world datasets.

We derived the probability density function of local dimension estimates for uniform
data density and proved that the median is an unbiased estimator of the global intrinsic
dimension, even at small neighborhoods. Therefore, we proposed the use of median as
a global dimension estimate as the median-FSA (mFSA) algorithm. We also wrote the
expression to be optimized for the maximum likelihood solution.

We created a heuristic correction formula to tackle the bias caused by finite sample
and edge effects. The resulting method is the corrected mFSA (cmFSA) algorithm, which
corrigates the bias in the estimates according to an exponential formula calibrated on
uniform hypercube datasets.

We compared the performance of the mFSA and cmFSA algorithms with the Levina-
Bickel, 2NN and the DANCo estimators on benchmark datasets. We found that cmFSA
showed comparable performance to DANCo.

We applied the mFSA algorithm to investigate the dynamics of human brain activity
during epileptic seizures and resting state. We hypothesized that areas exhibiting low
dimensional dynamics have important role as initiators or maintainers of seizure activity.
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