
Ambient intelligence governance review:
from service-oriented to self-service
Victor Ponce and Bessam Abdulrazak

Ambient Intelligence Lab (AMI-Lab), Université de Sherbrooke, Sherbrooke, Quebec, Canada

ABSTRACT
The current generation of connected devices and the Internet of Things augment
people’s capabilities through ambient intelligence. Ambient Intelligence (AmI)
support systems contain applications consuming available services in the
environment to serve users. A well-known design of these applications follows a
service architecture style and implement artificial intelligence mechanisms to
maintain an awareness of the context: The service architecture style enables the
distribution of capabilities and facilitates interoperability. Intelligence and
context-awareness provide an adaptation of the environment to improve the
interaction. Smart objects in distributed deployments and the increasing machine
awareness of devices and people context also lead us to architectures, including self-
governed policies providing self-service. We have systematically reviewed and
analyzed ambient system governance considering service-oriented architecture
(SOA) as a reference model. We applied a systematic mapping process obtaining 198
papers for screening (out of 712 obtained after conducting searches in research
databases). We then reviewed and categorized 68 papers related to 48 research
projects selected by fulfilling ambient intelligence and SOA principles and concepts.
This paper presents the result of our analysis, including the existing governance
designs, the distribution of adopted characteristics, and the trend to incorporate
service in the context-aware process. We also discuss the identified challenges and
analyze research directions.

Subjects Mobile and Ubiquitous Computing, Software Engineering
Keywords Ambient intelligence, SOA, Service-oriented, Self-service, Service governance,
Context-aware

INTRODUCTION
Ambient intelligence (AmI) support systems are a suitable element in the augmentation of
people’s capabilities (Sadri, 2011; Acampora et al., 2013). These systems perform a smart
use of the context in our environment by taking advantage of the technology-enriched
surroundings to support users (Augusto & Mccullagh, 2007) in a context-aware manner.
When systems require the interaction and integration of internal and external entities,
ambient systems tightly adopt Service-Oriented Computing (SOC) (Stavropoulos, Vrakas
& Vlahavas, 2011). SOC is a computing paradigm that considers services the principal
concern when modeling and implementing applications (Papazoglou, 2003; Papazoglou
et al., 2008). SOC includes a Service-Oriented Architecture (SOA) style, which defines a set
of principles and design patterns. SOA is the reference model in SOC, introducing an
abstraction of the solution logic: services invoked by consumers in a platform. SOC and

How to cite this article Ponce V, Abdulrazak B. 2022. Ambient intelligence governance review: from service-oriented to self-service. PeerJ
Comput. Sci. 8:e788 DOI 10.7717/peerj-cs.788

Submitted 18 August 2021
Accepted 28 October 2021
Published 11 January 2022

Corresponding author
Victor Ponce,
Victor.Ponce@USherbrooke.ca

Academic editor
Slinger Jansen

Additional Information and
Declarations can be found on
page 37

DOI 10.7717/peerj-cs.788

Copyright
2022 Ponce and Abdulrazak

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.788
mailto:Victor.�Ponce@�USherbrooke.�ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.788
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

SOA elements facilitate the interoperability and governance of services (Erl, 2008) by
having well-deployed ambient support systems (Urbieta et al., 2008; Stavropoulos, Vrakas
& Vlahavas, 2011). A category of AmI solutions also incorporates agents following
SOA. The agents implement a pervasive empathy context, decreasing technology overload
on users using services and applications (Maes, 1994).

Applications in AmI incorporate and intelligently utilize existing context information
through sensor devices and interact with the environment through actuator devices,
e.g., an assistive smart home application for health care supporting elderly people.
Previously, these devices started as measure-specific nodes with limited memory and
processing capacities, interconnected as a pervasive sensor network, and then turned to
middleware integration in complex systems (Yang et al., 2010). Complex implementations
(e.g., smart cities) also require the integration of physical artifacts (e.g., lights, buses),
augmenting these artifacts to support people (Perera & Zaslavsky, 2014). Nowadays, AmI
applications run in multiple environments (e.g., through a city), maintaining context-
aware support close to users. Thus, ambient intelligence applications require enhanced
governance, i.e., the capacity to control components for efficient service delivery within the
system.

AmI systems extend service architecture styles to integrate context from devices
and external systems, considering configurations, preferences, and the internal system
(virtual context). A well-known architecture relies on a central server to manage all
components (e.g., centralized governance in the cloud). Other implementations release
the architecture deploying service aggregators such as gateways (or proxies), bringing
capacities/governance near the devices. On the other hand, AmI implementations also
provide self-governance adopting agent-based components following the autonomic
computing paradigm. The purpose of this review is to analyze AmI service
architectures and governance, structuring the variability of implementations based on
conceptualization.

We have conducted a systematic mapping process to analyze and visualize a systemic
situation in AmI systems with the following objectives:

1. To identify what the common service-based features used in AmI systems are;

2. To analyze what type of contexts are used and whether the applications consider the
service itself as a context;

3. To review different architectures and how they manage the quality of service,
governance, and security; and

4. To analyze research challenges in AmI service systems.

Related work
Previous reviews have assessed specific SOA characteristics applied to AmI systems,
identifying numerous related challenges. Truong & Dustdar (2009) have studied context-
aware web service systems, envisaging the importance of SOA styles for Internet-based
applications. The authors have identified the need for further support to interoperate

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 2/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

between organizations, including security, context management, and quality. Stavropoulos,
Vrakas & Vlahavas (2011) have analyzed the composition process and techniques,
bringing the demand for quality, context-awareness, and managing user preferences.
Knappmeyer et al. (2013) have reviewed the representation, management, reasoning, and
evaluation strategies of context middleware approaches. The authors have identified
challenges such as governance and the demand for context-aware service composition and
deployment. The authors also envisage emerging middleware such as cloud computing
and the required security and privacy. Perera & Zaslavsky (2014) have studied context-
aware service systems from an Internet of Things (IoT) perspective. The authors identified
challenges such as the adaptability of sensors, the governance and context discovery,
security and privacy, and the way towards a sensing-as-a-service model inside the IoT.
In this survey, we attempt to characterize these challenges.

Rationale for the review
Ambient Intelligence has a significant number of service architectures and
implementations. Querying research databases, we find projects that apply aspects of
AmI and SOA. However, a small number conceptualizes the characteristics inside each
approach or takes advantage of adopting complementary aspects such as defining service
contracts for interoperability. For example, implementation efforts use web services
without a registry, coding the services manually. On the other hand, a SOA-based
implementation with service contracts provides a standard definition of services within
the system. Thus, this review provides an overview of AmI systems adopting SOA
characteristics. To the best of our knowledge, there are no systemic evaluation mapping
AmI and SOA characteristics. This review presents a conceptual schema, organizing the
core concepts to describe AmI and SOA aspects. It includes well-known definitions,
principles, and structures of the research efforts. The review excludes subjective aspects
such as visions, hypothetical scenarios, thoughts, and computational limitations. In
addition, the preview reviews (related work) have identified challenges regarding only
specific characteristics (e.g., improving context-awareness). Our goal is to identify new
challenges and evolution with an integral view of SOA styles inside AmI systems.

Intended audience and organization
This review focuses on the services dimension with a global overview of architectures to
orchestrate ambient intelligent services, including cloud and intelligent agents providing
ubiquitous services. We target this review for researchers and developers who require a
conceptualization for new IoT application modeling and implementation. This review also
explores the distributed service architectures evolving with 5G and new distributed
computation models.

The following Section “AmI and SOA: Definitions and Related Technologies,”
introduces the conceptual schema to analyze with characteristics of AmI and SOA styles.
This schema considers existing implementations, discarding futuristic aspects. Based on
our conceptual schema, Section “Review Methodology,” defines the review structure
and details the method adopted for the study, including criteria for inclusion/exclusion.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 3/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Section “Data Analysis: Systematic Map,” presents our analysis per se with the
classification and mapping. Section “Results and Discussion,” presents the overall results
and introduces the identified challenges. Finally, Section “Conclusions,” finishes the review
with conclusions.

AMI AND SOA: DEFINITIONS AND RELATED
TECHNOLOGIES
Ambient Intelligence (AmI) systems integrate everyday objects and automate tasks in
a transparent and pervasive multi-environment service provider. Nowadays, AmI
systems adopt SOA to integrate/distribute computational services for a diversity of
applications. AmI applications cover the intelligent management of context in houses and
buildings, public and private places and businesses, leisure and tourism, digital spaces
and assistants, and the Internet andWeb of Things (Sadri, 2011). Also, AmI systems target
e-health and personal health applications. Health systems include smart bio-signals
sensing that feeds monitoring applications and affective and responsive systems aware of
the body and environment, triggering actions to improve health conditions (Acampora
et al., 2013; Sadek et al., 2018). This section describes AmI and SOA concepts to introduce
an aggregate view for the survey, associating AmI and SOA approaches.

Ambient intelligence (AmI)
Ambient intelligence is sensitive and sensible surroundings. AmI applications gather
context using wireless or wired1 technologies. For example, in ad-hoc/wireless sensor
networks, distributed sensor nodes use Wi-Fi, ZigBee, Bluetooth, or Z-wave protocols to
gather information from the environment or a monitored field (Rawat et al., 2013).
Afterward, AmI applications apply artificial intelligence algorithms to adapt and provide
support through interaction with the environment (Augusto, 2007; Cook, Augusto &
Jakkula, 2009).

Augusto & Mccullagh (2007) define AmI as “A digital environment that proactively,
but sensibly, supports people in their daily lives”. Sensible means a rational/reasonable
system settled according to reason. Simultaneously, the system is sensitive to the needs,
allowing interaction in a proactive and context-aware manner (Sadri, 2011). Being sensible
entails recognizing the user (e.g., through learning and awareness of user’s preferences)
and the capability of exhibiting empathy for their needs, desires, moods, the current
situation, and social aspects (Augusto & Mccullagh, 2007). Nowadays, advances in
technology provide the means for AmI systems to understand natural human interaction.
They are responsive to commands (e.g., voice) and act based on user needs through
pattern recognition (e.g., face, gesture) and behavior prediction (Dunne, Morris & Harper,
2021).

The fundamental element in AmI is context. Context is a digital representation of
real conditions, considering the internal and external aspects of the system. Relevant to
user and application interaction, context is any information used to characterize the
situation of an entity (entity is a person, a place, an object, an application) (Dey, 2001),
including the characteristics of the entity and application’s domain (Ponce, Roy &

1 Wired gathering includes electrical, oil/gas
control systems (e.g., SCADA (Supervisory
Control and Data Acquisition) and DCS
(Distributed Control Systems) facilitate
and automatize sensing and human deci-
sion making) (Galloway & Hancke, 2013)

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 4/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Abdulrazak, 2016). In autonomic computing, entities also represent the self as context,
working with locally accessible information that includes their settings, operations, and
semantics (Abdulrazak et al., 2010b). In an environment, the sensors allow gathering
context, and the actuators enable the interaction. When the context is available, the system
represents it through context management processes. The system then applies different
data processing and reasoning techniques, providing ambient adaptation and digital
support (Table 1). The general structure of an AmI system considers the following
(Augusto & Mccullagh, 2007):

� Environment— the source and final supported entities (e.g., user, robot, another system).

� Sensors and actuators — people, systems, and devices producing context, gathered
through sensors and receiving commands through actuators.

� Middleware — API, virtual machines, network devices, etc., for system distribution,
gathering, processing, and actuating.

� Decision-making engine — reasoning with a knowledge repository for a proactive or
reactive adaptation.

� Discovery and learning — To update the decision-making engine with experience over
the whole system.

Context-awareness characterizes AmI systems. Schilit & Theimer (1994) introduced
context-aware computing as—a capability of the applications to discover and react based
on variation in the environment (Schilit & Theimer, 1994). Abowd, Dey & Brown
(1999) extended the scope of awareness, highlighting the context’s significance, where
information and services are relevant to the user’s task. Roy (2019) considered the scope of
context-aware agents’ mission performing their micro assessments.

AmI aims to ensure a distributed, suitable, convenient, and precise service provision,
avoiding overloading users. During the interaction in the system, context-awareness
mechanisms provide intelligent management of the context (Augusto, 2007). Context-
awareness applies to systems as advances are in artificial intelligence research (Cook,
Augusto & Jakkula, 2009). Reasoning, Natural Language Processing (NLP), pattern
recognition, prediction, and learning lead AmI systems towards a higher level of sensitivity
and adaptability; and, as a result, to better support users (Zhang et al., 2011; Dunne, Morris
& Harper, 2021). In ubiquitous scenarios, the awareness enables adaptation to different
environments and provides distributed, pervasive and smart support (Augusto, 2007).
Following, we describe the main aspects that highlight AmI systems (Augusto, 2007;
Poslad, 2009; Truong & Dustdar, 2009; Cook, Augusto & Jakkula, 2009; Zhang et al., 2011;
Christin et al., 2013; Dunne, Morris & Harper, 2021) (Table 1):

� Context-awareness, producing a reaction or pro-action based on the context
gathered from the self-system and the environment; or integrating knowledge from the
entities; the awareness interprets synchronous, asynchronous, situation-based, and
social-based information changes.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 5/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Table 1 Characterization of ambient intelligence systems.

Aspect Uses Approaches to implementation

Context
lifecycle

Representation � Symbol table (Baldauf, Dustdar & Rosenberg, 2007), e.g., key-value

� Markup (Baldauf, Dustdar & Rosenberg, 2007), e.g., HTML, XML

� Logic-based (Baldauf, Dustdar & Rosenberg, 2007)

� Ontic-based (Roy, Abdulrazak & Belala, 2014)

� Graphical (Baldauf, Dustdar & Rosenberg, 2007), e.g., UML-based

� Object-oriented-based (Baldauf, Dustdar & Rosenberg, 2007)

� Ontology-based (Baldauf, Dustdar & Rosenberg, 2007)

� Graph-based (Kamienski et al., 2017)

Management � Acquisition: query [the source]-based, event-driven, introduced by the user, etc.

� Preprocessing (process raw data) in a centralized, distributed, or hybrid scheme

� Inconsistency and resolution of conflicts through user interference, based on the quality of context, etc.

Reasoning Based on AI reasoning and learning techniques, e.g., description logic, situation calculus, dynamic belief
networks

Adaptation (context-
awareness)

� Context-based (Knappmeyer et al., 2013): query context on demand (synchronously) and adapt based on
current context parameters, e.g., a mobile application that query GPS coordinates at lunchtime to notify
nearby restaurants

� Context-aware (Knappmeyer et al., 2013): event-based (asynchronous) context diffusion and adapt based on
events of interest, e.g., a mobile application registered to a restaurant, and receive a notification when the user
is nearby and at lunchtime

� Situation-aware (Knappmeyer et al., 2013): higher-level aggregation of context. The adaptation considers
historical context, current user activity, a selected plan, e.g., an application recommending a restaurant
regarding past taken meals (time/place), and previous accompanying people

� Social-aware (Lukowicz, Pentland & Ferscha, 2012): a special case of situation-aware. The adaptation
considers the synergy of entities, communities, and social dynamics, e.g., an application recommending a
route based on traffic congestion and commuting patterns.

Security Based on information security principles, e.g., context-based access control

Dissemination Based on the ubiquity and middleware distribution approaches

Intelligence Represent, reason,
learn

User model, spatial & temporal reasoning, activity recognition, planning & decision-making. Multiple
algorithms and models, e.g., probabilistic, propositional logic, fuzzy logic, AI Planning, natural language
processing, deep learning.

Ubiquity Interaction � Human-Computer: Unobtrusive interaction, e.g., haptic, User eXperience (UX) design, augmented reality,
tangible (Ishii & Ullmer, 1997; Poslad, 2009)

� Computer-Computer: based on computer support, e.g., machine-to-machine, smart traffic, telemetry, multi-
agent

� Things: system's extension with tagging or modeling, e.g., RFID, NFC, bio-chips, profile/shape-of-the-thing
models (Poslad, 2009)

� Sensors/actuators, e.g., wireless sensor networks, global position systems, participatory sensing, SCADA

Distribution Based on network communication and distributed systems, e.g., peer-to-peer, publish/subscribe, client/server,
mobile code

Mobility Distribution based on the capacity to move, e.g., m-health (mobile health system), pervasive

Autonomy Based on the autonomic computing approach, e.g., self-organization

Reasoning Based on intelligence and context awareness, e.g., semantic interoperability, smart-spaces

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 6/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

� Intelligence, involving algorithmic support for decision-making and learning; the
algorithms complement different aspects of the system.

� Ubiquity, distributing/integrating information from spread entities for providing an
everywhere and an every-time provision; the entities extend the perception and
interaction to the ambient, enabling the use of available devices, objects, and other
entities.

Context-awareness is part of a context lifecycle where we find approaches to model,
represent, process, and disseminate the context (Zhang et al., 2011). Ubiquity involves
interaction design and distributed computing (e.g., ubiquitous or ambient computing).
AmI relates human-computer interaction (HCI), smart sensor and actuator technologies,
participatory sensing, embedded and machine-to-machine technologies, wired and
wireless sensor networks, mobile networks, pervasive computing, cloud computing,
and the IoT (Poslad, 2009; Zhou, 2012; Christin et al., 2013; Acampora et al., 2013)
(Table 1).

Applications in AmI systems demand an architecture style, considering
multidimensional design principles (e.g., interaction design, sensor/actuator
management). We examine one dimension in this survey: the provision of service.

Service-oriented architecture
Service-based systems have achieved a significant level of formalization and promote the
strengthening of software design (Bianco et al., 2011; Nacer & Aissani, 2014) and have
reached a broad deployment in business (Van-der-Aalst, 2013). Emerging technologies
such as cloud computing (Rahimi et al., 2013) and the IoT (Xu, He & Li, 2014) also adopt
service designs. SOA is the reference model for service-based systems. The SOA model
applies the separation of concerns design paradigm and defines the service as the solution
logic. A service abstracts functionality, hiding underlying details, executing actions as
autonomous entities. SOA establishes a set of interrelated design principles2 for the
architecture (Erl, 2005; Bianco et al., 2011) and associates the following aspects:

� Interoperability, based on the standardization of interfaces, components’ inputs/format,
and a formal definition of elements for sharing services (service contract). The formal
definition includes an implicit or explicit semantic description. This aspect facilitates
integration, adaptation, validation, federation; and supports security.

� Loose coupling, by designing self-contained services (i.e., with independent technologies
and capabilities) with communication through messages, ideally agreed with a
service interface description. This aspect facilitates the integration, adaptation, and it is
the basis for building scalable architectures.

� Composability, by using reusable and compatible services to compose or aggregate
functionality. This aspect augments the reactive or proactive capabilities for diverse
scenarios.

2 Common service-orientation principles
establish that services are reusable, share
a formal contract, are loosely coupled,
abstract underlying logic, are compo-
sable, are autonomous and are stateless
(Erl, 2005).

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 7/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

� Reusable services, creating generic capabilities, and designing stateless services so that
different consumers use the same services. It also involves mediators for services and
mechanisms for discovery (find services to reuse).

� Discoverability, facilitating the reaching of services at design or runtime, maintaining a
registry (or directory) of services for querying the required ones for future invoking.

Using SOA principles promotes the quality of service in the system. However, it leads to
unbounded and unnecessary overhead processing (Bianco et al., 2011). Despite this,
SOA provides a formal and well-designed framework for ambient service-based support
systems and is the reference service model for this review.

A service is a well-defined capacity of an entity to perform a demand, being significant
when another entity requires or utilizes it. Spohrer et al. (2007) define a service as “a kind
of action, performance, or promise that is exchanged for value between provider and
client”. The exchange between both entities—provider and client (or consumer)—requires
standardization, i.e., using an interface contract, a shared syntax, and guaranteeing a
service level agreement (SLA)3. The value represents the exchange that influences the level
of satisfaction of the client/consumer (Kritikos et al., 2013).

The SOA infrastructure provides the means to interchange services between
providers and consumers. The SOA model and principles are the guidelines for various
service architectures (Papazoglou, 2003; Huhns & Singh, 2005; Bianco et al., 2011).
We summarize the structure of SOA (Table 2), considering the four aspects: (1) service
communication and integration, (2) application logic, (3) service registry and repository,
and (4) monitoring and management. The traditional service-based systems adopt
three architectural styles: (1) SOA-based, (2) Web services (WS), and (3) self-service
systems (Spohrer et al., 2007) (Table 2). The WS and self-service follow the SOA model;
however, the distinction lies in adopting Web protocols and autonomic computing
(respectively). In general, SOA-based andWS architecture governance is implemented in a
central component. Self-service governance is implemented on distributed components
(e.g., agents) interacting based on policies, managing their behavior and relationship
(Kephart & Chess, 2003), providing self-governance.

Services provided by ambient intelligence systems
Access to efficient services characterizes SOA systems. Efficiency is a salient attribute for
the service consumer who requires a quality of service from the provider. Following, we
identified the SOA features applied to AmI (Sheth, 1999; Kephart & Chess, 2003;
Bianco et al., 2011; Stavropoulos, Vrakas & Vlahavas, 2011; Knappmeyer et al., 2013;
Raychoudhury et al., 2013) which are the main aspects adopted for the survey (Table 3):

� In communication and integration, attributes to exchange context between entities and
services, involving distribution and interoperability.

� In application logic, approaches for the composition and the aggregation of services,
including algorithms to the couple, reuse, and organization of services.

3 SLA is a formal (contractual) agreement
between a provider and a consumer. The
aim is to define a consumer’s
expectations.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 8/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

� In monitoring and management, mechanisms for governance: managing, monitoring,
and maintaining available and efficient services.

� In registry and repository, attributes for building visible services and approaches to use
services before and after deployment.

Ambient intelligence applications demand service governance, i.e., capacity to
control components for providing efficient services. AmI applications also require
autonomy in environments, such as in smart cities, independent living, and e-health.
Service-based AmI systems provide governance following SOA principles and patterns.
We define three types of architectural styles for AmI service systems: SOA-based, self-
service, and hybrid: (1) SOA-based are when governance is mainly on a server (even
though having distributed components), enabling a controlled environment, e.g., a central
server, cloud, (2) Self-service are when agents provide self-governance, enabling an
autonomic provision, and (3) hybrid when the governance involves both, e.g., with agents,
fog computing (Fig. 1).

We have presented in this section a conceptual schema that characterizes AmI (Table 1)
and service-based AmI systems (Table 3). In this survey, we intend to find the synergy
between AmI systems and SOA. Therefore, we selected applications to assess interrelated

Table 2 Structure of SOA, WS, and self-service.

SOA (Papazoglou & Heuvel, 2007; Merson et al., 2011) XML Web-Services (WS), Semantic WS (Nacer &
Aissani, 2014) and REST WS (Pautasso, 2014)

Self-Service (White, Hanson &
Whalley, 2004)

Communication and integration: With a broker or
enterprise serial bus (ESB) as an intermediary between
provider and consumer, that allows for a normalization
of the interaction. It is not necessary for homogeneous
environments.

Two ways: (1) Developing an interface; (2) using a
communication/integration layer which either (a)
results in a point-to-point communication or (b)
involves an ESB.
Language/protocol examples (♣ XML, � Semantic, ♦
REST):
Description: (♣) WS Description Language – WSDL;
(♦) HTTP Verbs: GET, POST; (�) Resource Description
Framework — RDF, Web Ontology Language (OWL),
RDF Schema, OWL-S, WSDL-S, WS Modeling
Ontology (WSMO)
Communication: (♣) Simple Object Access Protocol —
SOAP; (�) (♦) HTTP
Message format: (♣) SOAP (represented with XML);
(♦) XML, JSON, HTML, CSV; (�) XML triple, RDF,
OWL, WS Modeling Language — WSML ontology

Broker: To facilitate the
interaction, intermediary
between provider and
consumer

Application logic: Through an execution engine, e.g., a
Business Process Engine. Also coded manually in the
consumer/provider

Idem as service-oriented architecture (SOA) Negotiator: To assist in
complex decisions
Aggregator: To combine
services

Service Registry and Repository: To manage the
directory, reaching, dependency, versioning, and
federation capabilities

Through service registry services, e.g., application server
service repository, universal description, discovery and
integration protocol — UDDI, marketplace

Registry: To manage the
directory and to reach
services

Monitoring and Management: To monitor services and
maintain the quality of service

Implemented in the application server Sentinel: To monitor services

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 9/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Figure 1 Ambient intelligence service architecture styles.
Full-size DOI: 10.7717/peerj-cs.788/fig-1

Table 3 Characteristics of AmI service-based systems.

Structure Characteristic Approaches to implementation

Communication and
integration

Interoperability � Syntactic: Includes communication and integration using standards such as HTML, XML, SOAP

� Semantic: Communicates meaning. The basis is shared conceptualization and integration of a
domain

Middleware
distribution

� Central Server: An application server(s) is responsible for the distribution in a server-client
approach. Can include support from distributed components such as proxies or gateways

� Enterprise Serial Bus: Intermediary that allows the normalization of the distribution

� Peer-to-Peer: Each element acts as both a server and a client

� Autonomous Agents: The elements manage themselves and distribute in different ways (e.g., peer-
to-peer)

Application Logic Composition/
Aggregation

� AI Planning (algorithms): Based on a goal, connects the components

� Capabilities Matching: Match expressions (e.g., rules, script) with the entries of the registry or
policies

� Agent Matching: With context-based negotiations based on rules inside the agent with semantic
matching

Registry/Repository Registry � Canonical Expression: Static service contract � Use of an Intermediary (e.g., broker)

� Runtime registration: Dynamic registration at runtime � No Registry: Coded manually

Discovery � Query: Search inside the registry � Subscriber: Publish/subscribe paradigm

� Direct Access: Pre-defined/coded manually � Lookup: By broadcast/algorithm/semantic matching

Monitoring and
management tools

Management � Admin Service: A service is responsible for coordinating the system. Can be an Admin Agent

� Self-Adaptable Governance: Self-management (self-config, self-optimization, self-healing, self-
protection)

Monitoring � Supervisor Service: A service monitors the system. Can be a supervisor agent (or Sentinel)

� Self-Adaptable Monitoring: Based on self-management aspects

Quality of Service
(QoS)

� Service Performance: Considers the quality of service per se, e.g., QoS rate, availability of service

� Service Resources: Considers physical and logical resources, e.g., network, CPU, location, activity
zone

� Service Context: Considers rules and functional policies to define the Quality of Context (QoC)

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 10/46

http://dx.doi.org/10.7717/peerj-cs.788/fig-1
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

AmI-SOA characteristics. In the following section, we describe our method for the
analysis.

REVIEW METHODOLOGY
We adopted the systematic mapping process—a literature review methodology to build a
categorization scheme that structures the types of research reports and results in published
papers (Petersen et al., 2008). The adopted process relies on the definition of research
questions to search relevant papers to extract data. The outcome of the process is a
systematic map with the frequencies of publications based on a classification scheme. Our
method (Fig. 2) begins with determining research questions and continues searching for
published papers in research databases. After, we screened the papers based on our
inclusion criteria, selecting 68 relevant research projects for analysis (see Table 4
for details). Then, we defined the classification scheme, which also refined our
conceptualization (Section “AmI and SOA: Definitions and Related Technologies”).
Finally, we evaluated the selected papers, extracting data and creating a mapping of studies.

Research questions
The following are our research questions (RQ) and their aim (Table 5):

1. Aim: Identify SOA features on AmI. RQ:What service characteristics are implemented
in ambient intelligence? To identify what the common service-based features used in
AmI systems are.

Figure 2 Review method. Full-size DOI: 10.7717/peerj-cs.788/fig-2

Table 4 Screening of papers.

Consideration Inclusion Observations

Publication year 2001 to 2021 The final range is 2006 to 2021

Relationship with the subject AmI AND SOA characteristics Based on the conceptualization

Research type (Petersen et al.,
2008)

Proposal of solutions and philosophical
papers

Proposal: a novel, extended technique. It may include proofs-of-
concept.
Philosophical: model/framework.

Available details, comprehensive Description with an argumentation Based on the details (components, tools, algorithms, etc.)

Type of Document Proceedings, journals IEEE, ACM, SCOPUS, Web of Science

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 11/46

http://dx.doi.org/10.7717/peerj-cs.788/fig-2
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

2. Aim: Analyze the variety of contexts. RQ: What is the variety of contexts? To analyze
the applications’ context types and whether they consider the service itself as a context.

3. Aim: Review architecture styles. RQ: What are the implemented architectures in
ambient service systems? To review existing architectures and how they manage the
quality of service, governance, and security.

4. Aim: Identify and analyze challenges. RQ: What are the challenges? To analyze further
research challenges in AmI service systems.

Search strategy
We searched using the title, abstract, and keywords with different syntax is depending on
the target research database. The generic search string is the following:

(ubiquitous OR pervasive OR context-aware* OR “Internet of Things” OR IoT) AND
(“ambient intelligence” OR “smart environment” OR “smart space” OR “smart habitat”
OR “smart city”) AND (“service-oriented” OR SOA OR “web service” OR (autonomic
AND service) OR “microservice”).

We conducted searches on the following research databases: IEEE Xplore, ACM Digital
Library, Scopus, and Web of Science.

Inclusion/exclusion criteria
After conducting searches in research databases, we obtained 712 papers. Subsequently, we
examined and selected suitable papers based on the following criteria (Table 4): The year of
publication, the relationship with the subject, research type, comprehensibility, and the
type of document (i.e., proceedings and journal papers). The range of the year of
publication started in 2001, based on the growth of research in ubiquitous and pervasive
computing (Zhao &Wang, 2010). The relation with the subject depends on the fulfillment
of the conceptualization. The type of research characterizes the contribution of the
paper (Wieringa et al., 2005). The survey only considers papers that propose a solution
with proof-of-concept and philosophical papers that propose a model/framework. We
discarded papers that evaluate a system, opinion papers, and papers describing personal
experiences. We evaluated papers with understandable information, complementing the
analysis with their related works and references.

Data extraction and classification
After a first screening, we selected 198 papers for a detailed screening. After a second
screening of the papers, we analyzed the information of 68 papers corresponding to 48
research projects. Nine projects include progressive works with two or more papers
(e.g., Abdulrazak et al. with two papers: Abdulrazak et al., 2011; Roy, Abdulrazak & Belala,
2011). Subsequently, we defined the final classification scheme using the selected
papers and the conceptualization (Section “AmI and SOA: Definition and Related
Technologies”).

Table 5 lists the classification facets and their contribution to the research questions of
the survey. In general, the papers focus on service architecture, and we could match most

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 12/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

of the service-based characteristics (Table 3) in the Service facet. Conversely, related to
the AmI characteristics (Table 1), the papers describe mostly the awareness (for
adaptation) and ubiquity (i.e., distribution, mobility, autonomy) included in the AmI facet.
We also include aspects in the AmI facet regarding the research questions:

� We include the target domain to identify a variety of uses. It follows Sadri (2011), where
the author studied AmI projects by domain. The domains include, among others,
applications for smart home, assisted living, healthcare, business and commerce,
leisure and tourism, human-inspired (integrating emotional user data), as well as
projects for general data management (e.g., sensor networks) and AI techniques
(e.g., self-organized robot control).

� We include whether the service is considered part of the context (service-as-a-context)
and its inclusion in context-awareness (e.g., improving the quality of service).

� We consider whether the projects include agent technology due to the agent-based
software approach’s contribution to AmI systems (Cook, Augusto & Jakkula, 2009).

We also introduce the research/global facet that comprises the publication year,
whether the project considers security aspects and the research type. The research type
follows the classification of the systematic mapping process presented in Petersen et al.
(2008). Each project’s category derives from screening papers and identifying whether the
project is a solution proposal (i.e., application for a particular domain) or a framework/
model (i.e., general design).

The final step is creating a systematic map, being the basis for further analysis. In the
following sections, we present the systematic map and discuss key findings.

Table 5 Classification scheme and contribution to the review.

Facet Attribute Objective Aim*

Ambient intelligence Domain To identify the variety of uses 2, 4

Awareness To identify the awareness for adaptation 2,4

Mobility To identify if components are in mobile devices 1, 3, 4

Service-as-a-Context To determine the trend of considering the service in context-aware processing 2, 4

Agent-Based To determine the trend of using agents 1, 3, 4

Service styles Architecture To classify as SOA, self-service, or hybrid 1, 3, 4

Registry/Repository To identify applied techniques for registering and discovering 1, 3, 4

Distribution To identify applied techniques 1, 3, 4

Composition To identify applied techniques 1, 3, 4

Interoperability To identify the use of semantic communication 1, 3, 4

Management To identify the applied management techniques 1, 3, 4

Monitoring To identify the applied monitoring techniques 1, 3, 4

QoS To identify the use of quality attributes 1, 3, 4

Research/Global Publication To identify the research over time 4

Security To identify the applied security mechanisms 3, 4

Research Type To classify as solution proposal or framework 4

Note:
* Aim: 1: SOA features on AmI; 2: Variety of context; 3: Infrastructure; 4: Identifying challenges.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 13/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

DATA ANALYSIS: SYSTEMATIC MAP
We have analyzed each research effort based on the classification scheme (presented in the
Section “Definition and Related Technologies”). We used different tools to group
information during the analysis, build mind maps, and create lists and graphs for each
facet (i.e., service, AmI, research/global). In the mapping process, we extracted detailed
data to the extent that the information exists in the papers, including information from
tables and figures when necessary. Tables 6 and 7 list the final categorization of the data
extracted from the projects.

In this section, we start with a description of each selected research project. Then, we
present the overall results and illustrate the relevant aspects of each facet.

Service governance in ambient intelligence systems
We classify the projects into five groups related to the governance design within the
architecture style (i.e., SOA-based, self-service and hybrid):

a) centralized governance, a broadly implemented approach with a controlled architecture;

b) centralized governance with distribution, centralized but adding components for the
distribution of governance;

c) distributed governance, with service aggregators such as gateways (or proxies), bringing
capacities/governance near the devices;

d) governance including agents, i.e., components to spread the governance; and

e) self-governance: Governance in autonomic/autonomous architectures.

In this section, we present our classification with a summary of the main aspects of the
selected projects, describing the research’s objective, the architecture components, how
they integrate into the context, and the relationship between context and the provided
service. The description avoids technologies or specific implementations (unless essential
to the description) to maintain a technology-independent mapping. As a rule, we
identify each research effort with a “first author et al.” format. For the projects that include
more than one research effort, we identify them using the latest paper.

Centralized governance
Service governance with centralized components is the traditional design strategy. Diverse
software architects use an SOA-based framework to implement SOA compliance. Others
apply SOA characteristics as needed, use Web Services and other technologies such as
ontologies to provide service or interoperability meaning.

Centralized governance with a SOA-based suit/framework

Using SOA suits is an approach to include service orientation because they apply SOA
compliance in their design. In addition, SOA-based suits provide centralized components
to manage more services and many service compositions, use various communication
protocols, and process multiple accesses/messages.

Baresi, Guinea & Pasquale (2007) have introduced the Dynamo framework to manage
self-healing services. The framework is an aspect-oriented extended version of the

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 14/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Table 6 Categorization in ambient intelligence and research and global facets.

Year Research project Research type Domain Awareness SaaC* Agent-
Based*

Mobility* Security*

Centralized 2007 Baresi, Guinea & Pasquale
(2007)

Sol. Proposal Business–BPM Situation-aware ✓ ✗ ✗ ✗

2007 Yin et al. (2007) Framework General–smart
space

Context-aware ✓ ✗ ✗ ✗

2008 Athanasopoulos et al.
(2008)

Framework General–AmI Situation-aware ✗ ✗ ✗ ✗

2009 Silva, Mouttham& Saddik
(2009)

Sol. Proposal Healthcare–
prescriptions

Context-based ✗ ✗ ✓ ✗

2010 Prehofer & van Gurp
(2010)

Framework General–smart
space

Context-based ✗ ✗ ✗ ✓

2010 Gouin-Vallerand et al.
(2010)

Framework General–smart
space

Context-aware ✓ ✗ ✗ ✓

2010 Ahn & Nah (2010) Framework General–AmI Context-aware ✓ ✗ ✓ ✗

2011 Paganelli & Giuli (2011) Sol. Proposal Healthcare Situation-aware ✗ ✗ ? ✗

2013 Yusro et al. (2013) Sol. Proposal Assisted Living Context-aware ✗ ✗ ✓ ✗

2013 Albreshne, Lahcen &
Pasquier (2013)

Sol. Proposal Smart home Context-based ✓ ✗ ✗ ✗

2013 Hasswa & Hassanein
(2013)

Sol. Proposal Emotional Situation-aware ✗ ✗ ✓ ✓

2015 Yachir et al. (2015) Framework General–AmI + IoT Context-aware ✗ ✗ ✗ ✗

2016 Triboan, Chen & Chen
(2016)

Sol. Proposal Assisted Living Context-based ✗ ✗ ✓ ✗

2017 Gonzalez-Usach et al.
(2017)

Sol. Proposal Assisted Living Context-based ✗ ✗ ✗ ✓

Distribution 2011 Smirnov, Levashova &
Shilov (2011)

Sol. Proposal Institutions–
emergency

Situation-aware ✓ ✗ ✓ ✗

2012 Amoretti (2012) Framework Data–AmI Situation-aware ✓ ✗ ✓ ✓

2014 Pan et al. (2014) Framework General–AmI Situation-aware ✗ ✗ ✗ ✗

2014 Nosović, Peters & Bruegge
(2014)

Framework General-AmI Context-aware ✗ ✗ ✗ ✓

2017 Prado, Ortiz & Boubeta-
Puig (2017)

Framework General-IoT Situation-aware ✓ ✗ ✗ ✗

Distributed 2009 Kawashima et al. (2009) Framework General–smart
space

Context-aware ✗ ✗ ✓ ✗

2009 Bernardos, Tarrío &
Casar (2009)

Framework General–AmI Situation-aware ✗ ✗ ✓ ✗

2010 Reetz, Tonjes & Baker
(2010)

Framework Data management–
WSN

Situation-aware ✗ ✗ ✗ ✗

2011 Roggen et al. (2011) Framework General–AmI Context-aware ✓ ✗ ✓ ✗

2013 Degeler et al. (2013) Sol. Proposal Smart Building Context-aware ✗ ✗ ✗ ✗

2013 Stavropoulos et al. (2013) Framework General–AmI Context-based ✗ ✗ ✓ ✗

2013 Buzeto et al. (2013) Sol. Proposal Emotional–games Context-aware ✗ ✗ ✗ ✗

2014 Forkan, Khalil & Tari
(2014)

Sol. Proposal Assisted Living Situation-aware ✗ ✗ ✗ ✗

(Continued)

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 15/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

ActiveBPEL process orchestration engine, including business rules (with the JBoss Rule
Engine). In addition to business process management (BPM), the framework includes a
monitor and a recovery manager. Based on rules, the engine performs monitoring with
data collection and data analysis, considering internal and external variables and historical
context such as performance deterioration in the past. This information is combined with a
self-healing rule-based recovery strategy.

Yin et al. (2007) have presented an SOA and tool for service composition in smart
spaces. The architecture comprises development and runtime environments. The
development environment includes a GUI for the design of services and applications.
The runtime environment contains three layers: the OSGi platform, middleware, and

Table 6 (continued)

Year Research project Research type Domain Awareness SaaC* Agent-
Based*

Mobility* Security*

2014 Dar et al. (2015) Framework Business–BPM +
IoT

Context-aware ✗ ✗ ✓ ✗

2016 Fysarakis et al. (2016) Framework General–AmI Context-based ✗ ✗ ✗ ✓

2017 Lee et al. (2017) Framework General-IoT Context-aware ✗ ✗ ✗ ✗

2019 Malik & Kim (2019) Framework General-WSN/IoT Context-based ✗ ✗ ✗ ✗

2020 Pitatzis et al. (2020) Sol. Proposal General–AmI + IoT Context-aware ✗ ✗ ✗ ✗

2020 Javed et al. (2020) Framework Smart cities Context-based ✗ ✗ ✗ ✓

2021 Gooder et al. (2021) Sol. Proposal General-smart
environments

Context-aware ✓ ✗ ✗ ✓

Intelligent
agents

2006 Soldatos et al. (2006) Framework General–smart
space

Situation-aware ✗ ✓ ✗ ✗

2009 Miyata, Morikawa &
Ishida (2009)

Sol. Proposal Institutions–
learning

Context-aware ✓ ✓ ✓ ✗

2012 Bhuvaneshwari & Sujatha
(2012)

Sol. Proposal Institutions–Traffic Context-aware ✗ ✓ ✗ ✗

2012 Familiar, Martínez &
López (2012)

Framework Data–wireless, WSN Context-aware ✗ ✓ ✗ ✓

2013 Tapia et al. (2013) Framework Data–WSN Context-aware ✓ ✓ ✓ ✓

2015 Ferilli et al. (2015) Framework General–AmI Situation-aware ✗ ✓ ✗ ✗

2016 Fysarakis et al. (2015) Framework General–AmI Situation-aware ✓ ✓ ✗ ✓

2017 Mohamed et al. (2017) Framework Smart cities Context-based ✓ ✓ ✗ ✓

Autonomic 2006 Kim et al. (2006) Sol. Proposal Data–robot control Situation-aware ✓ ✓ ✓ ✗

2010 Penserini et al. (2010) Model General–AmI Context-based ✓ ✓ ? ?

2011 Chun et al. (2011) Framework General–smart
space

Situation-aware ✓ ✓ ✓ ✗

2011 Acampora, Loia & Vitiello
(2011)

Sol. Proposal Emotional Situation-aware ✗ ✓ ✗ ?

2011 Abdulrazak et al. (2011) Model General–smart
space

Situation-aware ✗ ✓ ✓ ✗

2018 Ruta et al. (2018) Framework Smart home/
building

Situation-aware ✓ ✓ ✓ ✗

Note:
* ✓ = Considered; ✗ = Not considered; ? = Undefined; SaaC = Service-as-a-Context.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 16/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Table 7 Categorization in service facet.

Year Research project Style* Registry* Discovery* Middleware* Composition* Interoperability* Management* Monitoring* QoS*

Centralized 2007 Baresi, Guinea &
Pasquale (2007)

SOA Canonical Query Central
server

Capabilities Syntactic ✓ ✓ ✓

2007 Yin et al. (2007) SOA Canonical Query Central
server

Capabilities Syntactic ✓ ✓ ✓

2008 Athanasopoulos et al.
(2008)

SOA Runtime Query Central
server

Capabilities Semantic ✗ ✗ ✗

2009 Silva, Mouttham &
Saddik (2009)

SOA ✗ Direct Central
server

✗ Syntactic ✗ ✗ ✗

2010 Prehofer & van Gurp
(2010)

SOA Runtime Query Central
server

Capabilities Syntactic ✗ ✗ ✗

2010 Gouin-Vallerand et al.
(2010)

SOA Runtime Query Central
server

✗ Semantic ✗ ✗ ✓

2010 Ahn & Nah (2010) SOA Canonical Query Central
server

✗ Syntactic ✓ ✗ ✗

2011 Paganelli & Giuli (2011) SOA ✗ Direct Central
server

✗ Semantic ✗ ✗ ✗

2013 Yusro et al. (2013) SOA ✗ Direct Central
server

✗ Syntactic ✗ ✗ ✗

2013 Albreshne, Lahcen &
Pasquier (2013)

SOA Canonical Query Central
server

Capabilities Semantic ✓ ✓ ✗

2013 Hasswa & Hassanein
(2013)

SOA Canonical Subscriber Central
server

✗ Sem/Syn ✓ ✓ ✓

2015 Yachir et al. (2015) SOA Runtime Lookup Central
server

Cap+plan Syntactic ✗ ✗ ✓

2016 Triboan, Chen & Chen
(2016)

SOA Canonical Query Central
server

Capabilities Semantic ✗ ✗ ✗

2017 Gonzalez-Usach et al.
(2017)

SOA Canonical Query Central
server

Capabilities Sem/Syn ✓ ✗ ✗

Distribution 2011 Smirnov, Levashova &
Shilov (2011)

SOA Canonical Query Central
+agents

✗ Semantic ✓ ✓ ✗

2012 Amoretti (2012) Self Runtime Lookup P2P Planning Semantic ✓ ✓ ✓

2014 Pan et al. (2014) SOA Runtime Query ESB Cap+plan Semantic ✓ ✓ ✓

2014 Nosović, Peters & Bruegge
(2014)

SOA Runtime Query ESB Capabilities Syntactic ✗ ✗ ✗

2017 Prado, Ortiz & Boubeta-
Puig (2017)

SOA Runtime Que+Subs ESB Capabilities Syntactic ✓ ✗ ✗

Distributed 2009 Kawashima et al. (2009) SOA ✗ Lookup Central
+gateways

✗ Syntactic ✓ ✓ ✗

2009 Bernardos, Tarrío &
Casar (2009)

SOA Canonical Que+Subs Central
+gateways

Capabilities Syntactic ✓ ✗ ✓

2010 Reetz, Tonjes & Baker
(2010)

SOA Runtime Subscriber Central
+gateways

✗ Syntactic ✗ ✓ ✗

2011 Roggen et al. (2011) SOA Canonical Lookup Central
+gateways

Capabilities Syntactic ✓ ✓ ✓

2013 Degeler et al. (2013) SOA Canonical Subscriber Central
+gateways

Cap+plan Syntactic ✓ ✓ ✗

2013 Stavropoulos et al. (2013) SOA Canonical Query Central
+gateways

✗ Syntactic ✗ ✓ ✗

2013 Buzeto et al. (2013) SOA Runtime Subscriber Central
+gateways

Capabilities Semantic ✗ ✗ ✗

2014 Forkan, Khalil & Tari
(2014)

SOA Canonical Query Central
+gateways

Capabilities Syntactic ✓ ✗ ✗

(Continued)

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 17/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

application layers. The OSGi platform provides SOA capabilities. The middleware enables
OSGi service registration and discovery regarding user behavior and service capability
attributes (e.g., QoS, context information). Finally, the application layer contains a
category-based division of applications, composite services, and atomic services to
facilitate reaction in need for alternative actions.

Gouin-Vallerand et al. (2010) have presented a context-aware SOA framework for smart
spaces. Context-aware reasoning infers a device capability quotient (DCQ) to determine
the quality of context produced by the devices and, as a result, the most suitable
environment device to use. The framework adopts the OSGi platform SOA capabilities
(Gouin-Vallerand et al., 2009, 2010). In addition, it implements communication and
security protocols, an administration tool (UI), an environment manager (coordinator for

Table 7 (continued)

Year Research project Style* Registry* Discovery* Middleware* Composition* Interoperability* Management* Monitoring* QoS*

2014 Dar et al. (2015) SOA Runtime Que+Subs Central+P2P Capabilities Syntactic ✓ ✓ ✓

2016 Fysarakis et al. (2016) SOA Canonical Lup+Subs Central
+gateways

Capabilities Syntactic ✗ ✗ ✗

2017 Lee et al. (2017) SOA Canonical Query Central
+gateways

Capabilities Syntactic ✗ ✓ ✗

2019 Malik & Kim (2019) SOA Canonical Query Central
+gateways

Capabilities Syntactic ✓ ✗ ✗

2020 Pitatzis et al. (2020) SOA Canonical Query Gateway
+mservices

Capabilities Syntactic ✓ ✓ ✓

2020 Javed et al. (2020) SOA Canonical Query Central+
gateways

Capabilities Sem/Syn ✓ ✗ ✗

2021 Gooder et al. (2021) SOA Runtime Que+Subs Microservices Capabilities Syntactic ✓ ✓ ✓

With agents 2006 Soldatos et al. (2006) Hybrid Runtime Query Central
+agents

✗ Semantic ✓ ✓ ✓

2009 Miyata, Morikawa &
Ishida (2009)

SOA Canonical Query Central
+agents

✗ Syntactic ✗ ✗ ✓

2012 Bhuvaneshwari &
Sujatha (2012)

SOA Runtime Subscriber ESB+agents Cap+plan Semantic ✗ ✗ ✗

2012 Familiar, Martínez &
López (2012)

SOA Canonical Subscriber Central
+agents

Capabilities Syntactic ✓ ✗ ✓

2013 Tapia et al. (2013) SOA Canonical Query Central
+agents

✗ Syntactic ✓ ✓ ✓

2015 Ferilli et al. (2015) Hybrid Canonical Query Agents Capabilities Semantic ✓ ✓ ✗

2016 Fysarakis et al. (2015) Hybrid Runtime Query Central
+agents

Capabilities Syntactic ✓ ✓ ✓

2017 Mohamed et al. (2017) Hybrid Runtime Lookup Central
+agents

Capabilities Syntactic ✓ ✓ ✓

Autonomic 2006 Kim et al. (2006) Self Runtime Query Agents Agent match Syntactic ✓ ✓ ✗

2010 Penserini et al. (2010) Hybrid ? ? Agents Agent match Undefined ✓ ✗ ✗

2011 Chun et al. (2011) Self ✗ Direct Agents Agent match Syntactic ✓ ✓ ✗

2011 Acampora, Loia &
Vitiello (2011)

Hybrid ? ? Agents ? Syntactic ? ? ?

2011 Abdulrazak et al. (2011) Self Canonical Lookup Agents Agent match Semantic ✓ ✓ ✓

2018 Ruta et al. (2018) Self Canonical Lookup Agents Agent match Semantic ✓ ✓ ✓

Note:
* ✓ = Considered; ✗ = Not Considered; ? = Undefined; Que = Query; Subs = Subscriber; Lup = Lookup; Self = Self-service; Cap = Capabilities; Plan = AI planning.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 18/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

deployment, discovery, gathering, and reasoning), and a device request manager.
The framework also includes an ontology handler. Finally, it manages a smart space
meta-ontology representing the being, environment, and dynamic tasks (Abdulrazak et al.,
2010a).

Using SOA-based frameworks introduces components with non-required
characteristics. Thus, diverse solutions implement SOA characteristics as needed. For
example, Yachir et al. (2015) have presented FASEM – an event-aware framework for
ambient intelligence. It introduces a Bayesian learning mechanism for QoS estimation,
services invocation, and other processes. The architecture comprises five modules: Service
discovery, service classification, user task specification, events handling, and service
selection. The service discovery that is subscribed to service providers (i.e., directories)
receives and registers services. The service classification creates classes of services based on
a global ontology. The task specification enables users to create an ontology-based
specification of tasks and requirements, e.g., event rules. The event handling subscribes to
the events (defined in event rules) and triggers ambient services. Finally, the service
selection invokes the triggered events from service providers.

Centralized governance with web services
Web Services (WS) is a well-known implementation approach because of its SOA
compliance, standardization, and interoperability support. Athanasopoulos et al. (2008)
presented an SOA framework for context management in AmI systems. The framework
enhances the capabilities of a base middleware for mobile WS (Issarny, Sacchetti &
Tartanoglu, 2005), facilitating the dynamic integration of context through additional
services for context sources discovery, context aggregators, and context interpreters.
The context discovery supports presence in the environment, as well as discovers and
registers available WS interfaces. The context aggregator allows for defining relations,
using custom rules for context gathering and processing, and producing relevant context
information. The context interpreter is a context SQL assembler.

Silva, Mouttham & Saddik (2009) have handled the medicine prescription management
problem for aging people in AmI. Implementation includes a centralized server supporting
the scheduling and history of intakes. The server implements WS accessed by mobile
clients. The architecture consists of an event manager and a personal health record (PHR)
interface. The event manager handles intake feedback events and proactive alerts sent to
physicians and relatives when the intake interrupts. The PHR service interface acts as a
loose coupling proxy to external PHR information and prescription information.

Prehofer & van Gurp (2010) have presented a REST-based framework for smart spaces,
including functionalities for finding and securing relevant local resources based on context
information from devices and users. The framework consists of a web platform,
middleware services, and web portal-based applications. The framework includes
service registration and discovery through a search engine to support resource localization.
The framework also provides security services and context services. Security services
guarantee access to resources using authentication and authorization. Context services
interface relevant resources to users.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 19/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Yusro et al. (2013) have presented the smart environment explorer stick (SEES)—a
smart cane for people with visual impairment. SEES integrates data from a camera, GPS,
wheel encoder, ultrasound, compass, and accelerometer, producing context to analyze
aspects such as color, obstacles, route, surface roughness. SEES includes algorithms for
image processing of traffic lights, tracking, location, alerts, etc. SEES consists of a global
server (iSEE) and two subsystems: SEE-stick and SEE-phone. iSEE provides WS, such as
localization and remote monitoring. The SEE-stick and SEE-phone are interconnected
through WiFi, increasing the phone’s sensing/actuating capabilities with an augmented
perception provided by the stick.

Centralized governance with ontologies

Nowadays, SOA frameworks also regard knowledge representation to improve governance
because it enables maintaining exact service/context meaning. Diverse projects have
considered ontologies to represent system components, to facilitate interoperability or
both.

Ahn & Nah (2010) have presented a WS context-aware framework to allow users to use
services anytime and anywhere. Registration and matching algorithms utilize a service
category ontology that classifies service types (e.g., shopping, transport). The framework
includes three components: service provider, service requester, and service broker. The
service provider handles context integration from sensors (processing location data) and
the service registry. The service requester manages the context-aware client. The service
broker implements a service finder based on a matchmaking pattern, matching the
requested category of service, location, and available communication protocols
(e.g., ZigBee).

Paganelli & Giuli (2011) presented a context-aware SOA platform for home and
continuous care support. The platform adopts the Web and semantic services, including
three components: a multichannel healthcare services manager, a central and patient
context manager, and a wireless sensor system. The multichannel service manager
maintains an ontology-based assistance model and services, including patient records,
profiles, and alerts. Both the central and patient context managers provide back-end
services for processing context changes and deliver continuous patient support at a central
care center or patient’s home. Finally, the wireless sensor system collects the patient’s
biomedical data (e.g., heart rate) and environmental data.

Albreshne, Lahcen & Pasquier (2013) have presented an approach for modeling,
discovering, orchestrating, and executing services for smart residential environments
(SRE). It incorporates an ontology to describe the SRE and capabilities of devices and a
domain-specific language (DSL) to design and control the environment. The framework
comprises templates’ repository, process generator, execution environment, client user
interface (CUI), and execution engine. The templates’ repository stores the templates
defined by a process template tool using both the ontology and DSL. The process generator
interprets a template and generates an executable. The execution environment handles
SRE services. The CUI allows the definition of user preferences. The execution engine is the
process runtime environment.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 20/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Hasswa & Hassanein (2013, 2011) have presented a smart social space framework to
enhance users’ experience by providing adaptable multimedia services. It implements an
ontology representation of the user’s profile, preferences, and services. The framework
includes services to manage feeds and geo-feeds, location and presence, and user profiles
from social networks. The architecture comprises communication services, an application
server (interact and coordinate processes), presence and a policy server (propagates
changes to subscribed users), a location awareness server (manages geographical
information), a home subscriber server (provides persistence), client-user agent (mobile
application), a social network manager, and a system manager.

Triboan, Chen & Chen (2016) have presented a REST-based solution for AAL.
The architecture includes three components: WS platform, triplestore, and Android
application. WS platform consists of the following layers: (a) smart WS API (exposes
services), (b) façade (abstraction of complex and CRUD operations), (c) repository
(knowledge base), (d) domain (data mapping among layers), and (e) utility (low-level
processes, e.g., communication, ontology management). The triplestore layer includes a
database to store triple datasets for semantic interoperability. The Android application
provides the primary system interface.

Gonzalez-Usach et al. (2017) have presented SAFE-ECH - an IoT SOA system to
monitor and control AAL residences. The system includes functionalities for the
management of multiple residences, accessing globally and locally through an HMI.
Diverse WSs enable communication to the HMI and a sensor observation service (SOS),
complex event processor (CEP), and other services. The HMI allows authorized users
to visualize information, configure system rules and services. The SOS manages sensor
data, storing data observation based on the Open Geospatial Consortium semantics. The
CEP includes rules to process SOS events and execute actions. Other services include an
alarm manager to handle high-priority events and a broker to handle communication
between system elements.

Centralized governance with distribution
Diverse projects maintain the governance in centralized components and use remote
components (e.g., agents) to gather context, distribute services, or deploy processes.
Smirnov, Levashova & Shilov (2011), with several authors (Smirnov & Levashova, 2009;
Smirnov et al., 2010, 2011), proposed a WS context-aware decision support system for
situation responses in emergency scenarios. It incorporates an ontological description of
the resource network and situation management domain. The system includes profile
management (i.e., capabilities of each operation member) for providing a role-based
response. The system also comprises support services and agent-based services. The
support services include core services (to manage context, registry, and monitoring) and
operational services (to manage resources and decision-making), and wrap services for
external sources. Agent-based services are intelligent agents collecting information,
negotiating with other agents, and calling associated supporting services to execute action
plans.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 21/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Amoretti (2012) have introduced an SOA framework based on autonomic hosts for
AmI. The architecture consists of networked autonomic machines (NAMs) with
ontologies to describe a smart environment. NAMs comprise resources and functional
modules. The resources are fixed or changeable (e.g., battery level). The functional modules
play the role (based on their definition) of context/service provider or consumer.
Functional modules can also execute missions, functional policies, and self-management
policies. The functional policies are mission-based processes (such as rules, algorithms,
evolutionary plans). They enable a reactive service execution or call and publish context
based on incoming events.

Pan et al. (2014) presented an SOA framework for AmI applications. It connects
pervasive services through a bus capable of linking sensors and devices, software
components, and distributed services (e.g., cloud, WS). The framework uses an ontology to
represent heterogeneous services as uniform pervasive services. It includes a service bus
that manages a group of sub-buses for effective peer-to-peer communication. A sub-bus
operates services with similar protocols or frequently required. Sub-buses discover
known protocols and register services (publish-subscribe pattern) on the main bus.
The services are orchestrated with a planning-based approach based on (1) a task’s goal,
(2) flow of services, and (3) context and quality requirements.

Nosović, Peters & Bruegge (2014) presented a framework for controlling smart
environments, which abstracts device protocols providing consistent communication
through an ESB which integrates: Device controller, device repository, client adapter,
decision-maker, security controller, and environment tracker. The device controller
provides the protocol abstraction. The device repository stores properties (e.g., protocol
type, location). The client adapter provides a uniform request (e.g., get location) and
set (e.g., set state). The decision-maker process rules (trigger events) and machine-learning
(inhabitant recognition). The security controller provides authentication, access control,
and priority-based requests. The environment tracker registers automatic state changes
(e.g., temperature variation) or caused by users (e.g., turn on a light).

Prado, Ortiz & Boubeta-Puig (2017) presented CARED-SOA—an event-driven SOA for
the IoT. It integrates a complex event processing (CEP) engine to provide a short-time data
stream processing. CARED-SOA includes three components: ESB, alert manager, and
context broker. The ESB facilitates communication. The Alert manager receives/retrieves
data, adapts and stores it, and sends it to the CEP engine. Afterward, the CEP engine
evaluates alert patterns and sends the IoT context (i.e., CEP matching data) to the context
broker. The Context broker keeps a knowledge database of users’ context (e.g., age,
location). Then, a context reasoner analyzes the context and sends notifications. Finally, a
context adviser processes the notifications and sends them to the user. The authors
improved the architecture to integrate client-side context (via a mobile app) and security
functionalities (Caballero et al., 2021).

We presented in this section projects with remote components supporting service
governance. They perform assigned tasks, but they maintain centralized governance in a
central component, e.g., a complex event processing (CEP). Furthermore, remote
components can also incorporate governance (e.g., collaborative policies), producing

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 22/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

implementations that distribute governance. We present these implementations in the
following section.

Distributed governance
Several approaches take advantage of remote components (e.g., proxies, gateways) close to
sensors/actuators and locally manage resources and processes. In general, distributed
governance optimizes the architecture by improving the performance for gathering
context, integrating services, and providing remote user interaction.

Kawashima et al. (2009) have worked on a ubiquitous SOA platform for smart spaces,
using distributed gateways to reduce overload over resource-constrained devices. The
platform includes a server, smart space gateways, and smart applications. The server
provides discovery, storage, service interface and management, communication, and
sensing/actuation services. The smart space gateways connect heterogeneous devices for
discovery and sensing. They support communication protocols and services to interact
with devices or another gateway. Smart applications are both embedded applications in the
server or web-based applications.

Bernardos, Tarrío & Casar (2009) have presented an SOA middleware to support AmI
applications. It includes acquisition, fusion, presentation, and control layers. The
acquisition layer gathers context from physical and virtual sensors. It implements software
modules in gateways (on mobile devices) and signal adequacy and preprocessing in a
server. The fusion layer implements services for feature extraction (through APIs) and an
upper-level context inference. The presentation layer includes event notification services
(context changes) to consumer applications. The control layer maintains persistence
and enables a multi-layer registry, query, and subscription of services.

Reetz, Tonjes & Baker (2010) have presented an SOA solution to increase the
performance of WSNs. It is based on the C-Cast middleware, where a central component –
context broker – integrates different context providers connected to environmental,
virtual, and logical sensors. The solution focuses on the environmental context provider,
integrating wireless sensor gateways, and communicating with the context broker.
The environmental context provider incorporates services. It also implements data
management and sensor gateway interfaces for connecting the context broker, consumers,
and other sensor gateways. Services include context detection and adaptation, sensor
discovery and synchronization, data aggregation and fusion, and monitoring.

Roggen et al. (2011) presented Titan - an SOA framework for discovering resources
based on user activity recognition. Titan consists of three components: a mobile device,
Internet application repositories, and Titan nodes. The mobile device allows discovering
resources from the personal area network, downloading code (if necessary), and executing
services from pervasive applications. Internet application repositories store application
references and application templates. It contains composite service graphs according to
available resources. Titan nodes perform activity recognition; then, they instantiate,
reconfigure, and execute sensor nodes’ services. They also provide communication,
synchronization, management, and governance.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 23/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Degeler et al. (2013) presented an energy-aware SOA architecture for smart buildings.
The architecture consists of three layers: physical, ubiquitous, and composition. The
physical layer connects smart grid services (for pricing and local/external energy
availability) and integrates devices using hardware gateways. The ubiquitous layer
includes a context manager (for producing high-level context and activity recognition),
repository manager (for maintaining data), and orchestration manager (for executing
and scheduling actions). The composition layer includes control services (system interface,
e.g., dashboards) and composition services (rule matching, AI planning, and
computational fluid dynamics for heating conditions).

Stavropoulos et al. (2013) have introduced an SOA middleware for AmI. The
architecture defines hardware, integration, and service and application layers. The
hardware layer corresponds to physical devices such as ZigBee smart plugs, sensor
boards, smart clampers, or Z-Wave devices. The integration layer consists of individual
physical hardware drivers, including their interface, communication, and operation
protocols. The service and application layers adopt a WSDL wrapping of device functions
and complementary services, e.g., service to query IT context (e.g., ping, findMAC address,
get CPU usage).

Buzeto et al. (2013) have presented uOS - a middleware for sharing resources in
ubiquitous environments. Using proxies, uOS integrates different networks endpoints with
diverse protocols (e.g., Bluetooth, WiFi) and resources (through a resource ontology). The
architecture follows the Device Service Oriented Architecture (DSOA) and ubiquitous
protocols (uP)—a lightweight set of protocols designed to facilitate communication in
DSOA (Buzeto, Castanho & Jacobi, 2011). The middleware includes an abstraction of the
software, hardware, and communication platforms using uP, removing constraints
for integration. uOS combines network plugins, resource drivers, and applications.
In addition, it includes a network layer (manages input/output and discovery), a
connectivity layer (provides a message engine to manage uP protocols), and adaptability
layers (integrates resources and applications).

Forkan, Khalil & Tari (2014) presented a solution for unifying context generation for
AAL. It includes five cloud-oriented components: AAL systems, context aggregator and
providers (CAP), service providers (SP), context-aware middleware (CaM), and context
data visualization (VIS). The AAL systems comprise AAL cloud sensor data providers
and service customers. The CAP abstracts context representation through context fusion
and reasoning. The SP links applications or external services. The CaM processes,
stores, and retrieves context and performs computational tasks such as management of
services, context-to-service mapping, access control, and service delivery. The VIS
provides a GUI for data (e.g., medical records). The solution includes an ontological
context model, but the interoperability is through XML.

Fysarakis et al. (2018) presented XSACd—a smart environment framework for
policy-based sharing and device services access. It adopts the eXtensible Access control
Markup Language (XACML) to represent policies and the Device Profile for WS (DPWS)
to specify resources as services. The architecture comprises five entities: Policy
Enforcement Point (PEP), Policy Decision Point (PDP), Policy Administration Point

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 24/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

(PAP) and Policy Information Point (PIP), Cross-domain Proxy (CP), and Broker.
The PEP is on devices providing resources, allowing requests/authorizations. The PDP,
which is on controlling nodes, evaluates requests/authorization. The PAP and PIP
(on controlling nodes) create/manage policies and store attribute values. The CP enables
routing discovery messages. The Broker distributes messages to subscribed proxies.

Dar et al. (2015) presented a resource-oriented architecture to integrate IoT devices into
business process (BP) applications. It includes a registry of IoT services described with
standard languages (e.g., WSDL) and an API to invoke IoT services. Then, a BP developer
uses the API to compose IoT-aware processes. The architecture also includes an event
manager for interaction (service subscription), a service replacement manager to query the
registry, matching and selecting an appropriate candidate (or randomly selecting if
multiple matches), and a device status monitor to register possible IoT device failures.
A BP or the service replacement manager subscribes to update the failures. Multiple BP
engines enable a distributed execution of processes in both a central server and
smartphones.

Lee et al. (2017) have presented SoPIoT—an SOA IoT platform that abstracts as a
service the functionalities of IoT devices and cloud. It allows registration of IoT device
services using TCP/IP, lightweight protocols (e.g., Bluetooth) using gateways, and cloud
functionalities as virtual devices. SoPIoT includes a script editor to compose services
and middleware to store, monitor, and mediate service transactions. The middleware
consists of three managers: (1) Device manager, for handling and monitoring devices;
(2) Composite service manager, for translating scripts, monitoring, restarting (context-
aware), and notifying service status; and (3) Data manager for sending data and
checkpointing to perform recovery.

Malik & Kim (2019) presented a framework for sensor networks with geographical data
management. It includes a virtual sensor platform to provide context (gateways connected
to sensor networks) and a composite toolbox to create service profiles. The toolbox
manages sensor networks with geospatial context, environment context, and physical
sensor context. Service profiles are registered into a service registry, keeping available
services at running time. The service profiles are then deployed to service platforms for
service provision, querying the registry, and interacting through the gateways.

Pitatzis et al. (2020) presented a microservices-based platform for IoT devices available
in AmI environments. The platform includes a gateway to provide service registration
and discovery. The gateway connects IoT devices (physical or virtual things) microservices,
i.e., independent building blocks/services handling its processes. It includes a rule engine
to evaluate device rules with priorities. The platform handles policies to enforce proper
device operation (e.g., can switch off only one minute after switching on) and provides a
state maintenance mechanism to persist snapshots of devices during a shutdown to ensure
service continuity.

Javed et al. (2020) presented a framework for smart cities to achieve cross-domain/
cross-application service integration. The framework adopts open communication and
data standards. It includes a service marketplace for data and service capability distribution
and the corresponding functionalities and API to govern the services. The framework also

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 25/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

proposes IoT gateways to integrate IoT systems/smart objects and external cloud-based
solutions. The framework also adopts security functionalities (authentication,
authorization).

Gooder et al. (2021) proposed a microservice-oriented middleware for service
composition, matching device capabilities in smart environments. The middleware
integrates IoT device functionalities to create on-demand services based on a service
request. The middleware connects a service publisher and a service subscriber. The
publisher gathers IoT device data/capabilities and make them available to the middleware.
The subscriber interacts with the environment, e.g., to manage user service requests.
The middleware matches the capabilities and requests, assembling and delivering a
composite service. The middleware also includes security/auditing functions and QoS
monitoring.

Architectures with distributed governance involve similar technologies/languages/
protocols as centralized governance (e.g., WS, ontologies). The difference lies in the
resources, capacities, and policies of the distributed components (e.g., mobile devices,
brokers). However, still exist a centralized component (e.g., WS server) that provides the
governance. Conversely, when this centralized component is indistinguishable among
distributed components, the governance depends on the behavior of all components
(i.e., intelligent agents).

Governance including intelligent agents
Diverse approaches implement agents with rules to represent complex behavior. Even
though the following projects also include non-agent components, this section focuses on
the governance implementation in agents, e.g., agents performing discovery/composition
of services.

Soldatos et al. (2006) built a framework for integrating perceptual components and the
context of space, creating a model of the situation, thus enabling intelligent resource
discovery and management. It includes an ontology knowledge base (KB) and three
layers: sensory, perceptual, and agent layers. Sensor proxies manage the dynamism of
sensing the environment. The perceptual layer is implemented using IBM’s CHILIX
library, enabling person localization/tracking, body detection/recognition/tracking,
speech/acoustic/emotion/activity recognition, and lips observation. The agent layer
includes agents for discovering and registering services in the KB. It also manages device
integration, user profile, and service requests and performs system management and
monitoring.

Miyata, Morikawa & Ishida (2009) have worked in a service-oriented smart space
learning system. The architecture (Suo et al., 2008; Miyata, Morikawa & Ishida, 2009) is
based onWS and includes three components: WS wrapper agent (WSWA), smart platform
agent web service (SPAW), and open smart platform gateway (OSPG). WSWA is an
intermediary to external services (e.g., language services), invoking them as required by
other agents. SPAW is the WS server, providing interaction inside and outside the
platform and creating agents to manage requests. The OSPG is a proxy for mobile devices,
allowing interaction with platform services using a web browser.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 26/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Bhuvaneshwari & Sujatha (2012) have worked on VAISTC4 - an agent-based SOA
system for traffic congestion control. It consists of a backbone of agents merging
information from different sensors (e.g., cameras), preprocessing the data, and putting
relevant information in a database. VAISTC4 is based on the ATRACO framework
(Goumopoulos et al., 2008; Seremeti, Goumopoulos & Kameas, 2009; Bidot, Goumopoulos
& Calemis, 2011), i.e., an SOA middleware for AmI systems. ATRACO includes an
ontology model for the user and environment profiles (Seremeti, Goumopoulos & Kameas,
2009) and allows service composition through AI planning and workflow (Bidot,
Goumopoulos & Calemis, 2011). In addition, VAISTC4 provides event channels for
registering sensor and effector agents. Sensor agents are attached to devices and can
command events (e.g., change the timing of a traffic light), and effector agents are scattered
in the environment close to users (e.g., mobile).

Familiar, Martínez & López (2012) have presented an architecture for wireless ad hoc
and sensor networks that includes three platforms: physical device, pervasive, and SOA.
The physical device platform abstracts the hardware and provides software capabilities
for integrating devices. The pervasive service platform uses the separation of concern
paradigm to identify and encapsulate properties into different services. The SOA
platform constitutes the backbone of the integration. It includes a control service layer
(based on a publish-subscribe approach (Familiar et al., 2012)), cross-layer services
(providing security and resource-available-service reasoning), low-level service layers
(agent-based components and context discovery), high-level service layers (service control
and QoS), and internetworking service layers (agent-based service composition).

Tapia et al. (2013), together with several authors (Corchado, Tapia & Bajo, 2012; Tapia,
Fraile & Rodríguez, 2009; Tapia & Alonso, 2010; Tapia, Alonso & Corchado, 2011), have
worked on a solution for an agent and SOA integration of heterogeneous WSN. It
includes a multi-agent layer (called FUSION@) and remote service-based agents (called
HERA). FUSION@ implements agents and communication capabilities to facilitate the
distribution and management of resources and services, allowing for moving functions to
where actions are required. HERA is directly embedded in WSN to manage sensing data
and is the evolution of SYLPH – the first SOA platform with an application layer and a
message layer (Tapia & Alonso, 2010; Tapia, Alonso & Corchado, 2011). The platform
includes an admin, an interface, a supervisor, and security agents with explicit policies to
support the execution.

Ferilli et al. (2015) presented a smart environment MAS architecture to execute services
for actions in user workflows. It comprises a knowledge base (KB) and three layers:
environment, reasoning, and learning. The environment represents sensors, actuators, and
services. Reasoning and learning layers are agent-based with the following modules:
(a) AmI coordinator (applies the KB), (b) incremental theory learner from examples
(refines the KB), (c) workflow manager (controls executions), and (d) service
planning identifier and composer (provides service composition based on semantic
Web). A composite service interoperates with the workflow manager to achieve goals
based on constraints, preferences, or requirements. Then, the workflow manager can act
(through agents) or refine a process (learning).

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 27/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Fysarakis et al. (2015) have presented a framework for real-time security, privacy, and
dependability of AmI systems based on pre-defined metrics. It includes four layers:
node (embedded devices), network (connected nodes), middleware (network
management), and overlay (control agents). The framework uses the OSGi platform
for SOA compliance and management of embedded devices. Different agents are
deployed into OSGi, implementing two core components: reasoning and ambient/system
manager. The reasoning evaluates the metrics and composes elements (i.e., operations,
attributes) from the different layers. Afterward, in real-time, the ambient/system manager
controls the resulting composition, e.g., change the configuration to increase the security
level.

Mohamed et al. (2017) have presented SmartCityWare—a middleware to integrate
cloud and fog computing for smart city services. It includes a service layer and a multi-
agent runtime environment. The service layer provides core services and environmental
services (e.g., cloud, fog, IoT services). The core services enable a secure and location-based
invocation of services. It includes a broker that is responsible for environmental
services advertisement, discovery, and registration. The multi-agent runtime environment
includes agents to deploy, schedule, and support the execution of distributed services and
provide governance of available fog resources.

Architectures that include agents provide a level of “intelligence” because they act
based on their policies/rules. However, the agents cannot control unknown situations
(i.e., situations not contemplated in their rules). Some projects propose autonomic
computing/autonomous agents with a self-governance of services for governance in
unknown situations.

Self-governance: governance in autonomic/autonomous architectures
Self-governance is a challenging aspect of SOA projects. It involves a higher level of
adaptation in service processes (e.g., discovery, composition) for adjusting them to the
situations. They include a knowledge base that provides feedback on the situations and
learning processes and improves adaptation through changeable policies/rules.

Kim et al. (2006) introduced an SOA ubiquitous function (UF) model for the smart
control of robots in AmI. UFs represent the environment and its capabilities, allowing
operations through functions. The architecture includes three main services: smart
object, discovery, and logic. The smart object manages physical objects, mapping them to
UFs. The smart discovery finds and integrates UFs. The smart logic controls robots’
mission, combining objects with sensors and actuators. It is based on a self-adaptive
discovery, registry, and combination of UFs, using a robust internal-loop compensator
(RIC) – a multiple feedback logic controller with an internal-loop to find and compensate
for disturbances (i.e., obstacles for the robot’s mission).

Penserini et al. (2010) have described a model for service-oriented organizations
(SOO) of autonomous agents. The SOO combines service-oriented computing
matchmaker and broker agent patterns (Fuxman & Giorgini, 2001; Bresciani et al., 2004a)
with Tropos—an agent-oriented software engineering methodology for organizational
modeling (Bresciani et al., 2004b; Penserini & Bresciani, 2005). The model includes three

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 28/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

SOO architectures: matchmaker, broker, and implicit. The matchmaker and broker SOO
extend matchmaker and broker agent patterns, respectively. Both support the provider
organizer role with either a consumer initiator (matchmaker) for a direct execution
provider-consumer or through an intermediary (broker). The implicit SOO discards the
pre-defined provider organizer role. At runtime, a winner provider assumes the organizer’s
role. It coordinates services, enabling faster environment support.

Chun et al. (2011) have presented a self-adaptive scheme for smart space services, using
context history as an additional soft-feedback adaptation. It includes an adaptation agent
and adaptable software. The adaptation agent gathers context data from sensors. The
adaptable software handles internal adaptation using collected data such as sound, seismic,
light, video, audio, temperature, and system data such as processes, CPUs, and memory
use. The adaptation process follows adaptation plans, including policies and rules.
When the system detects the need for a strategy, it executes an adaptation plan—using
learning algorithms, the system stores both performance and the executed plan in a
knowledge base.

Acampora, Loia & Vitiello (2011) have presented an SOA autonomous multi-agent
framework for being aware of a user’s emotional condition for providing comfort services
in AmI. It includes three layers: sensor network, cognitive multi-agent system (MAS),
and SOA platform. The sensor network captures users and surrounding contexts. The
cognitive MAS manages the distribution of emotional services in the environment.
The SOA platform provides service interaction, improving the user’s comfort, e.g., soft or
hard music services, volume control service. The system adapts its conditions based on the
human mood’s representation, including variation in emotional, environmental, and
temporal situations.

Abdulrazak et al. (2011) presented ContextAA—a self-organized service architecture for
micro context-awareness of distributed agents, perceiving their local environment, and
acting based on their roles. Micro context-awareness represents the usual categories of
context (e.g., activity, identity, location, time) and operations and entities such as
publishing, requesting, and obtaining an ontologically meaningful subset of contexts for
performing a service in a given agent. The architecture (Abdulrazak et al., 2011; Roy,
Abdulrazak & Belala, 2011) includes host components, agents, context, and context space.
Host components serve as middleware, interacting with others and integrating external
services. Agents are context-dependent entities responsible for executing actions,
differentiating between standard (host services) and user (or domain-specific) agents.
Context and context space are organized knowledge repositories at both the agent and host
levels.

Ruta et al. (2018) presented a semantic-based framework for home and building. It
defines autonomous device agents that interoperate to share and orchestrate resources.
First, an agent describes its basic features (device type, location, hardware) and its services,
such as the device configuration. Next, agents can interact and “post” context, exploited by
other agents for sensing (context/events) or actuating (e.g., request for changing a
configuration). Agents then actuate or start a discovery process to find potential agents

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 29/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

providing suitable services. The semantics follows the Linked Data Platform W3C
recommendation, defining devices, services, posts, and other semantic descriptions.

The previous architectures involve the use of context as a key aspect of improving
governance. For example, context history and cognitive agents can enhance the
governance of services and, as a result, service delivery. On the other hand, an advantage of
autonomic/autonomous architectures is that computers can reach desired entity
capabilities by self-governed policies/rules, providing self-service.

Mapping and classification
Following the analysis, we classified the papers (Tables 6 and 7). Figure 3 summarizes the
research efforts considering each quantifiable characteristic of the classification scheme. In
the figure, the contribution axis represents orthogonal aspects analyzed in this survey,
inter-relating service-oriented, AmI, and research/global facets. We also considered the
quality of service (QoS) in the contribution axis to analyze QoS to AmI elements, e.g., the
context history in Chun et al. (2011) and the quality of space in Gouin-Vallerand et al.
(2010).

The registry is the service feature most considered among the research efforts with 39
projects (31 are service-oriented, four are self-service, and four are hybrids). Semantic
interoperability, which refers to explicit semantics, is the least applied to 16 projects.
However, some projects’ interoperability use implicit semantics inherited from SOA,
e.g., Pitatzis et al. (2020) adopts REST semantics. We classify projects with implicit SOA
semantics as syntactic interoperability (i.e., no semantics at the project level). The research
efforts adopt other characteristics on different levels. In the AmI facet, 13 projects are
agent-based, 18 incorporate architecture components on mobile devices, and 19 propose
a higher-level adaptation (situation-aware), introducing state, history, relevant context
(e.g., Acampora, Loia & Vitiello (2011) consider human emotions for context awareness).

Figure 3 Systematic map (contribution per characteristic).
Full-size DOI: 10.7717/peerj-cs.788/fig-3

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 30/46

http://dx.doi.org/10.7717/peerj-cs.788/fig-3
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

The reviewed solution proposals (Table 6) are domain-specific projects, and
thus, they mainly consider the required features for implementation. For example,
Paganelli & Giuli (2011) propose a healthcare support system at home that integrates
the situation of the patient (e.g., actual activity) and heterogeneous sources (e.g., bio-signals
and environmental context) for a situation-aware adaptation, regarding semantic
interoperability, in a centralized WS with static access to the services.

RESULTS AND DISCUSSION
According to the systematic map process, we detail in this section the analysis, summary
of information per facet, and comparison of characteristics using tables and graphs to
answer the research questions. Following, we highlight the relevant aspects of the selected
projects.

Ambient intelligence facet
Research efforts provide solutions for various application domains, including, among
others, smart home/building, assisted living, healthcare, wireless sensor networks, IoT, and
applications targeting business and the city (Table 6). Furthermore, several projects target
a framework/model general applicable to smart space or AmI fields. We found a few
projects applying security to distributed agents or mobile components inside the domain
or field. For example, 18 projects propose mobility (e.g., components in mobile devices),
but only three propose a security mechanism in their design. Similarly, 14 projects
consider agents (seven agent-based and seven with agents as part of the architecture),
but only four propose security.

Also, several projects incorporate the service provided in the context-awareness process
to improve adaptation (Fig. 4). Eight projects out of 19 consider service-as-a-context when
the application demands a higher adaptation (situation-aware). This ratio is lower in
context-aware adaptation, seven out of 18, and for context-based adaptation, it is three out
of 11 (Fig. 4).

Figure 4 Awareness of the context and service. Full-size DOI: 10.7717/peerj-cs.788/fig-4

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 31/46

http://dx.doi.org/10.7717/peerj-cs.788/fig-4
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Service facet
Figure 5 shows the distribution of service-oriented aspects. Figure 5B compares the
distribution where the aspects are either not considered or undefined. The prevalent
architecture is SOA-based, with 37 projects following the SOA model, implementing
diverse governance (Table 7). Five projects extend the SOA model to the autonomic
computing paradigm proposing self-service architectures, and six projects present hybrid
architecture. The projects apply different techniques for each aspect of SOA, e.g., lookup,
subscribe, direct access, and querying the registry for discoverability (Table 7).

Research and global facets
The demand for ambient service support systems is present in both domain-specific
applications and general designs. Therefore, we analyzed the target of the research, finding
18 projects proposing a solution in an application domain (e.g., assisted living); 28 projects
proposing a framework (domain-specific or general); and two projects proposing a
general-purpose model (Fig. 6A). On the other hand, few projects considered security
mechanisms (e.g., access control): Two in 2010, 2012, 2013, and 2017, and one in 2014,
2015, 2016, 2020, and 2021 (Fig. 6B).

Limitations of the study
The central focus of the survey is to analyze the SOA model in AmI implementations.
Therefore, we refined the research queries with explicit exclusion of either the AmI or the
SOA concepts. The survey also disregards specific aspects such as representing the context,
AI algorithms for reasoning, or interaction styles between entities (Table 1 lists other
aspects). We also discarded general adoption research efforts with no details of SOA/AmI
applied characteristics. As an example of the general case of the discarded papers, we
can find WS applications such as regulating the temperature for healthcare support
without a registry of services, monitoring, QoS. The limitation is that these discarded

Figure 5 (A) Projects by service architecture. (B) Distribution of SOA aspects.
Full-size DOI: 10.7717/peerj-cs.788/fig-5

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 32/46

http://dx.doi.org/10.7717/peerj-cs.788/fig-5
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

projects could contribute to new approaches such as augmented adaptation (e.g., social-
aware).

Open challenges and research directions
Distributed computing, mobile systems, and the Internet of Things (IoT) marked the last
two decade’s development of ambient intelligence (Zhao & Wang, 2010; Lin et al., 2017).
New technologies, such as cloud/edge computing and 5G, provide connectivity to
massive IoT surrounding devices in multiple settings (Pham et al., 2020). As a result,
ubiquitous technologies are available to interact with users who exploit resources through
context-aware applications.

Our analysis enabled us to highlight the research challenges and trends of ambient
intelligence systems. A couple of traditional challenges have been presented in diverse
reviews, e.g., constraints in resources for running services, scalable IoT discovery, protocol
interoperability, and security (Perera & Zaslavsky, 2014; Issarny et al., 2016). Following, we
present our identified challenges and research directions.

Intelligent ubiquitous services

Computer support is becoming indistinguishable (Weiser, 1991). Researchers are
proposing systems for decreasing the cognitive load on users (Weiser & Brown, 1996),
systems for pushing technology in moments of cognitive rest (Hallnäs & Redström, 2001),
and context-aware systems (Schilit & Theimer, 1994; Abowd, Dey & Brown, 1999). In
addition, advances in artificial intelligence and hardware technology contribute to services
that appear when necessary.

However, it is still necessary to provide services that vanish in everyday activities and
objects. Therefore, different technologies and mechanisms direct the research for
providing intelligent ubiquitous services, e.g., body sensors gathering vital signs inputs to
the AI algorithm in health care systems (Acampora et al., 2013), sensing-as-a-service
QoS model for managing billions of sensors in the IoT (Perera & Zaslavsky, 2014),

Figure 6 Projects by (A) research type, (B) year and consider security.
Full-size DOI: 10.7717/peerj-cs.788/fig-6

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 33/46

http://dx.doi.org/10.7717/peerj-cs.788/fig-6
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

distributed sensing and big data for an accurate mobile context-awareness in cloud
computing (Rahimi et al., 2013). In particular, these research directions have to involve
learning and further mechanisms to understand the person (psychological-aware) (Bao
et al., 2013), provide individual (in-person) augmentation (Xia & Maes, 2013), anticipate
the intentions (anticipatory adaptation) (Pejovic & Musolesi, 2015; Pejovic & Musolesi,
2014) and strengthen the service architecture, e.g., implementing recovery services.

Self-governance: autonomic service providers
The concept of autonomic computing (Kephart & Chess, 2003) continues materializing,
bringing self-service and hybrid architectures to AmI. An emerging framework is the open
smart environment (Abdulrazak et al., 2011) which extends the support system to the
person’s space, providing personal assistance in mobile, distributed, and dynamic
scenarios. Open smart environments release the controlled architecture by implementing
agent-based support and enabling the use of the context as a pervasive self-governing
service provider (Gouin-Vallerand et al., 2008; Abdulrazak et al., 2010b, 2011). Agents as
service providers describe the user and the system’s situation in their context, containing
self-descriptions of their capabilities and existence.

Service interoperability and distribution are complex aspects of governing autonomic
architectures for enabling inter-system interoperability4. Self-governed service
providers maintain knowledge of the self, being aware of their capabilities but restricted,
conscious of the global situation among entities. Specifically, the autonomic architecture
has to manage conflicts between entities, integrate legacy systems, the federation of
services, and implement community-based service conflict resolution. Maintaining a
global quality of service (QoS) in autonomic service architectures is challenging.
It requires QoS definitions into learning and artificial intelligence techniques to achieve
self-adaptation (Razzaque et al., 2016).

Empowering people
Non-[ICT]-technical people use applications in AmI, e.g., solution proposals in the survey
(Table 6). Even though SOA contracts can be human readable, e.g., using plain text or
XML, non-technical people encounter difficulties managing services. Still, AmI systems
use different technologies and data formats, bringing on the necessity of technological
support. Nowadays, domain experts use tools for their activities (e.g., using a business
process management engine (Baresi, Guinea & Pasquale, 2007; Albreshne, Lahcen &
Pasquier, 2013)). These tools require technical support, preventing users from creating
their services, allowing only pre-existing components and services.

Other approaches facilitate the integration of context from service providers to support
users. For example, IFTTT (https://ifttt.com, last accessed 2021-06-30) allows for the
creation of condition/action rules (called recipes) from pre-defined services available as
building blocks (called channels). Other platforms simplify building complete applications.
E.g., Apache Cordova (http://cordova.apache.org, last accessed 2021-06-30) allows
building mobile applications for different mobile platforms based on web standards,
integrating the device’s sensors and external services through plugins. However, when

4 Between systems, interoperability is the
ability of two or more systems or com-
ponents to exchange information and use
the information that has been exchanged
(IEEE Standard Computer Dictionary).

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 34/46

https://ifttt.com
http://cordova.apache.org
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

providing this service, these approaches only consider device context, disregarding user
profile. A service can produce a different significance for various users or multiple
significances for a user, e.g., a service for a comfortable temperature in a room for a healthy
user and a user with the flu.

An emerging approach is end-user as application builders, using cognitive-aid
metaphors and software engineering techniques (Paternò, 2013; Burnett & Myers, 2014).
End-user software engineering introduces techniques into users’ existing workflow,
managing the unplanned, implicit, opportunistic, instinctive, and self-priority intents
over their applications regarding quality concerns (Ko et al., 2011). These techniques
combine artificial intelligence, cooperative work, and human-computer interaction (HCI)
patterns to facilitate application development by end-users (i.e., non-technical people)
(Lieberman et al., 2006).

Security
Security and safety are constant research topics. Most surveys describe security and
privacy issues as challenges. Safety and ethical issues are also identified, especially for
healthcare systems. Our study found 13 out of 48 projects considering security aspects
regarding (a) context security (e.g., encryption) and (b) security functionalities such as
authentication and authorization for using services. In general, a primary aspect is to
provide an appropriate integration of heterogeneous resources and maintain adequate
security in communication mechanisms and protocols such as Wi-Fi and Bluetooth.
Similarly, available services on the Internet increase the context for AmI/IoT applications,
e.g., Amazon Alexa skills (i.e., services to integrate) have grown to more than 40.000 in
2018 (Kim & Kim, 2018). These services, often implemented by third-party developers, are
a potential security risk.

In a controlled SOA infrastructure (e.g., centralized servers, cloud), it is feasible to
deploy security algorithms and mechanisms. Autonomic self-service also defines policies
for self-protection, but security is challenging. The emerging paradigm Fog computing
enables the distribution of services but introduces diverse challenges such as access control
and encryption key management (Alrawais et al., 2017). Blockchain technology, capable of
achieving decentralized/autonomous security, is an open research topic in fog/edge
computing (Omoniwa et al., 2019). Also, a security challenge is in society, particularly in
integrating legacy and external systems and implementing federated services.

CONCLUSIONS
Enabling technologies, resources, and services for Ambient Intelligence applications is
diverse—all physical or virtual things could be regarded as context. With ubiquitous
technologies and IoT, ambient capabilities increase, making available even more resources
and services. Due to the diversity of resources in environments, effective governance of
these resources is required for supporting users. A common approach to govern
resources in ambient intelligence systems is service-oriented computing. In this approach,
services represent the capabilities of entities, and a service platform provides the
governance of the services. We presented in this paper the Ambient Intelligence

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 35/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Perspective and the Results of our review and analysis of Ambient Intelligence system
implementations considering service-oriented architecture (SOA) as a reference model for
the distribution and delivery of AmI services.

Ambient intelligence perspective
Ambient Intelligence is one of the paradigms of computer science targeting automating the
interaction with surrounding resources. New computation technologies, such as cloud
computing and edge/fog computing, make available computational services and control
everyday objects and devices. These technologies augment ambient intelligence systems
through context-awareness. They sense and actuate via physical artifacts such as IoT
devices (e.g., lights) in a dynamic and distributed setup (e.g., street lights). Applications in
diverse domains adopt ambient intelligence to provide ubiquitous services involving
context-aware development.

Ambient Intelligence extends the boundaries of controlled architectures for supporting
users, maintaining an efficient response to end-users based on available resources and
services everywhere. The new generation of AmI applications is augmented with artificial
intelligence, combining resources in the ambient, covering possible situations, and
strengthening human interactions. A complete ambient intelligence achievement is still a
research challenge; however, AmI is further considered for different domains and
indoor/outdoor settings. Thus, the AmI governance is becoming an essential aspect of
managing changes and system components such as available resources/services, user
dynamicity, and diverse situations.

Large-scale Ambient Intelligence deployment is a continuous industrial and research
effort. It can be achieved when computing systems can provide all services for continuous
support, matching available resources by extracting functional characteristics from
deployed applications, and running situation-aware processes in ambient components
(e.g., self-governed agents) that provide and adapt environments for user support.

Review overview
This paper presents a systemic situation in AmI systems to identify common service-based
features, including what type of contexts are used and whether the applications consider
the service itself as a context. We also reviewed different architectures and how they
manage the quality of service, governance, and security. We applied a systematic mapping
process in our study by defining a categorization schema for analyzing existing research
projects. The categorization supplies characteristics for an objective classification based
on concepts and existing surveys. We also defined three types of service architecture styles
for AmI (following the SOA model): (i) SOA-based with a central server or cloud,
(ii) self-service with autonomic computing, and (iii) hybrid. Furthermore, we defined five
groups related to the governance design within the architecture style (i.e., SOA-based,
self-service and hybrid): (a) centralized governance, (b) centralized governance with
distribution, (c) distributed governance, (d) governance including agents, and
(e) governance in autonomous architectures with self-governing policies.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 36/46

http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

In this study, we have highlighted the diversity of the projects adopting SOA in AmI,
from a smart house to a smart city, including the several projects that extended QoS by
including the situation and user-profile to improve the service provisioning. We have
also identified the challenges of AmI service systems: (a) For the service provider, it is
necessary to enhance the learning and proactive support as well as delivery mechanisms to
guarantee the continuity of the service provided by autonomic services; (b) For the client, it
is essential to empower non-technical people to use the available pervasive services.

Furthermore, emerging technologies, such as the IoT, are enabling pervasive services.
Therefore, it is necessary to correlate the categorization scheme and the characteristics
of emerging technologies (e.g., self-organization of IoT devices) to produce an aggregation
of attributes to evaluate the AmI systems’ evolution.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by SENESCYT, Ecuador and Université de Sherbrooke, Canada

Grant Disclosures
The following grant information was disclosed by the authors:
SENESCYT, Ecuador and Université de Sherbrooke, Canada.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Victor Ponce conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Bessam Abdulrazak conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

This is a literature review, the data appears in Tables 6 and 7.

REFERENCES
Abdulrazak B, Chikhaoui B, Vallerand CG, Fraikin B. 2010a. A standard ontology for smart

spaces. International Journal of Web and Grid Services 6(3):244
DOI 10.1504/IJWGS.2010.035091.

Abdulrazak B, Roy P, Gouin-Vallerand C, Belala Y, Giroux S. 2011.Micro context-awareness for
autonomic pervasive computing. International Journal of Business Data Communications and
Networking 7:48–68 DOI 10.4018/IJBDCN.

Abdulrazak B, Roy P, Gouin-Vallerand C, Giroux S, Belala Y. 2010b.Macro and micro context-
awareness for autonomic pervasive computing. In: Proceedings of the 12th International
Conference on Information Integration and Web-based Applications & Services - iiWAS ’10. 427.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 37/46

http://dx.doi.org/10.1504/IJWGS.2010.035091
http://dx.doi.org/10.4018/IJBDCN
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Abowd G, Dey A, Brown P. 1999. Towards a better understanding of context and context-
awareness. In: Handheld and Ubiquitous Computing. 304–307.

Acampora G, Cook DJ, Rashidi P, Vasilakos AV. 2013. A survey on ambient intelligence in health
care. Proceedings of the IEEE 101(12):2470–2494 DOI 10.1109/JPROC.2013.2262913.

Acampora G, Loia V, Vitiello A. 2011. Distributing emotional services in Ambient Intelligence
through cognitive agents. Service Oriented Computing and Applications 5(1):17–35
DOI 10.1007/s11761-011-0078-7.

Ahn C, Nah Y. 2010. Design of location-based web service framework for context-aware
applications in ubiquitous environments. In: 2010 IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing. Piscataway: IEEE, 426–433.

Albreshne A, Lahcen AA, Pasquier J. 2013. A framework and its associated process-oriented
domain specific language for managing smart residential environments. International Journal of
Smart Home 7:377–392 DOI 10.14257/ijsh.2013.7.6.37.

Alrawais A, Alhothaily A, Hu C, Cheng X. 2017. Fog computing for the internet of things: security
and privacy issues. IEEE Internet Computing 21(2):34–42 DOI 10.1109/MIC.2017.37.

Amoretti M. 2012. Global ambient intelligence: an autonomic approach. In: Pervasive Computing
and and Communications Workshops. Piscataway: IEEE, 842–847.

Athanasopoulos D, Zarras AV, Issarny V, Pitoura E, Vassiliadis P. 2008. CoWSAMI: interface-
aware context gathering in ambient intelligence environments. Pervasive and Mobile Computing
4(3):360–389 DOI 10.1016/j.pmcj.2007.12.004.

Augusto J. 2007. Ambient intelligence: the confluence of ubiquitous/pervasive computing and
artificial intelligence. In: Schuster AJ, ed. Intelligent Computing Everywhere. London: Springer.

Augusto J, Mccullagh P. 2007. Ambient intelligence: concepts and applications. Computer Science
and Information Systems 4(1):1–27 DOI 10.2298/CSIS0701001A.

Baldauf M, Dustdar S, Rosenberg F. 2007. A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing 2:263–277 DOI 10.1504/IJAHUC.2007.014070.

Bao X, Gowda M, Mahajan R, Choudhury RR. 2013. The case for psychological computing. In:
Proceedings of the 14th Workshop on Mobile Computing Systems and Applications - HotMobile
’13. 1.

Baresi L, Guinea S, Pasquale L. 2007. Self-healing BPEL processes with dynamo and the JBoss rule
engine. In: International Workshop on Engineering of Software Services for Pervasive
Environments. New York: ACM, 11–20.

Bernardos AM, Tarrío P, Casar JR. 2009. CASanDRA: a framework to provide context acquisition
services ANd reasoning algorithms for ambient intelligence applications. In: 2009 International
Conference on Parallel and Distributed Computing, Applications and Technologies. 372–377.

Bhuvaneshwari NS, Sujatha S. 2012. Vibrant ambient intelligence with agents based service
oriented approach. Journal of Algorithms & Computational Technology 6(3):541–554
DOI 10.1260/1748-3018.6.3.541.

Bianco P, Lewis GA, Merson P, Simanta S. 2011. Architecting service-oriented systems. Carnegie-
mellon univ pittsburgh pa software engineering inst.

Bidot J, Goumopoulos C, Calemis I. 2011. Using AI planning and late binding for managing
service workflows in intelligent environments. In: 2011 IEEE International Conference on
Pervasive Computing and Communications (PerCom). Piscataway: IEEE, 156–163.

Bresciani P, Penserini L, Busetta P, Kuflik T. 2004a. Agent patterns for ambient intelligence. In:
Conceptual Modeling—ER 2004. 682–695.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 38/46

http://dx.doi.org/10.1109/JPROC.2013.2262913
http://dx.doi.org/10.1007/s11761-011-0078-7
http://dx.doi.org/10.14257/ijsh.2013.7.6.37
http://dx.doi.org/10.1109/MIC.2017.37
http://dx.doi.org/10.1016/j.pmcj.2007.12.004
http://dx.doi.org/10.2298/CSIS0701001A
http://dx.doi.org/10.1504/IJAHUC.2007.014070
http://dx.doi.org/10.1260/1748-3018.6.3.541
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J. 2004b. Tropos: an agent-oriented
software development methodology. Autonomous Agents andMulti-Agent Systems 8(3):203–236
DOI 10.1023/B:AGNT.0000018806.20944.ef.

Burnett MM, Myers BA. 2014. Future of end-user software engineering: beyond the silos. In:
Proceedings of the on Future of Software Engineering. New York: ACM, 201–211.

Buzeto FN, a. Capretz MM, Castanho CD, Jacobi RP. 2013. uOS: a resource rerouting
middleware for ubiquitous games. In: 2013 IEEE 10th International Conference on Ubiquitous
Intelligence and Computing and 2013 IEEE 10th International Conference on Autonomic and
Trusted Computing. Piscataway: IEEE, 88–95.

Buzeto FN, Castanho CD, Jacobi RP. 2011. uP: a lightweight protocol for services in smart spaces.
In: 2011 Fourth International Conference on Ubi-Media Computing. 25–30.

Caballero P, Ortiz G, Garcia-de-Prado A, Boubeta-Puig J. 2021. Paving the way to collaborative
context-aware mobile applications: a case study on preventing worsening of allergy symptoms.
Multimedia Tools and Applications 80(14):21101–21133 DOI 10.1007/s11042-021-10759-6.

Christin D, Roßkopf C, Hollick M, Martucci LA, Kanhere SS. 2013. IncogniSense: an anonymity-
preserving reputation framework for participatory sensing applications. Pervasive and Mobile
Computing 9(3):353–371 DOI 10.1016/j.pmcj.2013.01.003.

Chun I, Park J, Lee H, Kim W, Park S, Lee E. 2011. An agent-based self-adaptation architecture
for implementing smart devices in Smart Space. Telecommunication Systems 52(4):2335–2346
DOI 10.1007/s11235-011-9547-8.

Cook DJ, Augusto JC, Jakkula VR. 2009. Ambient intelligence: technologies, applications, and
opportunities. Pervasive and Mobile Computing 5(4):277–298 DOI 10.1016/j.pmcj.2009.04.001.

Corchado J, Tapia D, Bajo J. 2012. A multi-agent architecture for distributed services and
applications. Computational Intelligence 8:2453–2476.

Dar K, Taherkordi A, Baraki H, Eliassen F, Geihs K. 2015. A resource oriented integration
architecture for the internet of things: a business process perspective. Pervasive and Mobile
Computing 20(15):145–159 DOI 10.1016/j.pmcj.2014.11.005.

Degeler V, Gonzalez LIL, Leva M, Shrubsole P, Bonomi S, Amft O, Lazovik A. 2013. Service-
oriented architecture for smart environments (Short Paper). In: 2013 IEEE 6th International
Conference on Service-Oriented Computing and Applications. Piscataway: IEEE, 99–104.

Dey AK. 2001. Understanding and using context. Personal and Ubiquitous Computing 5(1):4–7
DOI 10.1007/s007790170019.

Dunne R, Morris T, Harper S. 2021. A survey of ambient intelligence. ACM Computing Surveys
54(4):1–27 DOI 10.1145/3447242.

Erl T. 2005. Service-oriented architecture: concepts, technology, and design. London: Pearson
Education India.

Erl T. 2008. Soa: principles of service design. Upper Saddle River, New Jersey: Prentice Hall.

Familiar MS, Martínez JF, Corredor I, García-Rubio C. 2012. Building service-oriented smart
infrastructures over wireless Ad Hoc sensor networks: a middleware perspective. Computer
Networks 56(4):1303–1328 DOI 10.1016/j.comnet.2011.12.005.

Familiar MS, Martínez JF, López L. 2012. Pervasive smart spaces and environments: a service-
oriented middleware architecture for wireless Ad Hoc and sensor networks. International
Journal of Distributed Sensor Networks 2012(4):1–11 DOI 10.1155/2012/725190.

Ferilli S, Carolis BD, Pazienza A, Esposito F, Redavid D. 2015.An agent architecture for adaptive
supervision and control of smart environments. In: Proceedings of the 5th International
Conference on Pervasive and Embedded Computing and Communication Systems. 160–167.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 39/46

http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef
http://dx.doi.org/10.1007/s11042-021-10759-6
http://dx.doi.org/10.1016/j.pmcj.2013.01.003
http://dx.doi.org/10.1007/s11235-011-9547-8
http://dx.doi.org/10.1016/j.pmcj.2009.04.001
http://dx.doi.org/10.1016/j.pmcj.2014.11.005
http://dx.doi.org/10.1007/s007790170019
http://dx.doi.org/10.1145/3447242
http://dx.doi.org/10.1016/j.comnet.2011.12.005
http://dx.doi.org/10.1155/2012/725190
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Forkan A, Khalil I, Tari Z. 2014. CoCaMAAL: a cloud-oriented context-aware middleware in
ambient assisted living. Future Generation Computer Systems 35(1):114–127
DOI 10.1016/j.future.2013.07.009.

Fuxman A, Giorgini P. 2001. Information systems as social structures. In: Proceedings of the
International Conference on Formal Ontology in Information Systems-Volume 2001. New York:
ACM, 10–12.

Fysarakis K, Hatzivasilis G, Askoxylakis I, Manifavas C. 2015. RT-SPDM: real-time security,
privacy and dependability management of heterogeneous systems. In: International Conference
on Human Aspects of Information Security, Privacy, and Trust. 619–630.

Fysarakis K, Soultatos O, Manifavas C, Papaefstathiou I, Askoxylakis I. 2018. XSACd—cross-
domain resource sharing & access control for smart environments. Future Generation Computer
Systems 80:572–582 DOI 10.1016/j.future.2016.05.023.

Galloway B, Hancke G. 2013. Introduction to industrial control networks. Communications
Surveys & Tutorials, IEEE 15(2):860–880 DOI 10.1109/SURV.2012.071812.00124.

Gonzalez-Usach R, Collado V, Esteve M, Palau CE. 2017. AAL open source system for the
monitoring and intelligent control of nursing homes. In: 2017 IEEE 14th International
Conference on Networking, Sensing and Control (ICNSC). Piscataway: IEEE, 84–89.

Gooder B, Khan R, Adrian PR, Sossoe K. 2021. CSRaaS: composite service rendezvous as a service
for IoT-based smart environments. In: 2021 IEEE 11th Annual Computing and Communication
Workshop and Conference, CCWC. Piscataway: IEEE, 603–609.

Gouin-Vallerand C, Abdulrazak B, Giroux S, Mokhtari M. 2008. Toward autonomic pervasive
computing. In: Proceedings of the 10th International Conference on Information Integration and
Web-based Applications & Services - iiWAS ’08. 673–676.

Gouin-Vallerand C, Abdulrazak B, Giroux S, Mokhtari M. 2009. A self-configuration
middleware for smart spaces. International Journal of Smart Home 3:7–16.

Gouin-Vallerand C, Abdulrazak B, Giroux S, Mokhtari M. 2010. A software self-organizing
middleware for smart spaces based on fuzzy logic. In: 2010 IEEE 12th International Conference
on High Performance Computing and Communications (HPCC). Piscataway: IEEE, 138–145.

Goumopoulos C, Kameas A, Hagras H, Callaghan V, Gardner M, Minker W, Bellik Y, Meliones
A. 2008. ATRACO: adaptive and trusted ambient ecologies. In: 2008 Second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops. Piscataway: IEEE, 96–101.

Hallnäs L, Redström J. 2001. Slow technology-designing for reflection. Personal and uBiquitous
Computing 5:201–212 DOI 10.1007/PL00000019.

Hasswa A, Hassanein H. 2011. SocioSpace: an adaptive service-oriented architecture that
integrates smart spaces and social networks through the IP multimedia subsystem. In: 2011 IEEE
Symposium on Computers and Communications (ISCC). Piscataway: IEEE, 85–90.

Hasswa A, Hassanein H. 2013. Utilizing the IP multimedia subsystem to create an extensible
service-oriented architecture. Journal of Computational Science 4(4):183–198
DOI 10.1016/j.jocs.2012.02.002.

Huhns M, Singh M. 2005. Service-oriented computing: key concepts and principles. Internet
Computing, IEEE 9:75–81 DOI 10.1109/MIC.2005.21.

Ishii H, Ullmer B. 1997. Tangible bits: towards seamless interfaces between people, bits and atoms.
In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems. New
York: ACM, 234–241.

Issarny V, Bouloukakis G, Georgantas N, Billet B. 2016. Revisiting service-oriented architecture
for the IoT: a middleware perspective. In: 14th International Conference on Service Oriented
Computing (ICSOC). Berlin: Springer, 3–17.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 40/46

http://dx.doi.org/10.1016/j.future.2013.07.009
http://dx.doi.org/10.1016/j.future.2016.05.023
http://dx.doi.org/10.1109/SURV.2012.071812.00124
http://dx.doi.org/10.1007/PL00000019
http://dx.doi.org/10.1016/j.jocs.2012.02.002
http://dx.doi.org/10.1109/MIC.2005.21
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Issarny V, Sacchetti D, Tartanoglu F. 2005. Developing ambient intelligence systems: a solution
based on web services. Automated Software Engineering 12(1):101–137
DOI 10.1023/B:AUSE.0000049210.42738.00.

Javed A, Kubler S, Malhi A, Nurminen A, Robert J, Framling K. 2020. BIoTope: building an IoT
open innovation ecosystem for smart cities. IEEE Access 8:224318–224342
DOI 10.1109/ACCESS.2020.3041326.

Kamienski C, Borelli F, Biondi G, Pinheiro I, Zyrianoff I, Jentsch M. 2017. Context design and
tracking for IoT-based energy management in smart cities. IEEE Internet of Things Journal
5:687–695 DOI 10.1109/JIOT.2017.2748037.

Kawashima T, Ma J, Huang R, Apduhan BO. 2009. GUPSS: a gateway-based ubiquitous platform
for smart space. In: 2009 International Conference on Computational Science and Engineering.
213–220.

Kephart J, Chess D. 2003. The vision of autonomic computing. Computer 36:41–50
DOI 10.1109/MC.2003.1160055.

Kim JK, Kim YB. 2018. Joint learning of domain classification and out-of-domain detection with
dynamic class weighting for satisficing false acceptance rates. In: Proceedings of the Annual
Conference of the International Speech Communication Association, INTERSPEECH 2018-Septe.
556–560.

Kim BK, Tomokuni N, Ohara K, Ohba K, Tanikawa T, Hirai S. 2006. Ubiquitous function
services based control for robots with ambient intelligence. In: IECON, 2006 - 32nd Annual
Conference on IEEE Industrial Electronics. Piscataway: IEEE, 4546–4551.

Knappmeyer M, Kiani SL, Reetz ES, Baker N, Tonjes R. 2013. Survey of context provisioning
middleware. IEEE Communications Surveys & Tutorials 15(3):1492–1519
DOI 10.1109/SURV.2013.010413.00207.

Ko AJ, Myers B, Rosson MB, Rothermel G, Shaw M, Wiedenbeck S, Abraham R, Beckwith L,
Blackwell A, Burnett M, Erwig M, Scaffidi C, Lawrance J, Lieberman H. 2011. The state of the
art in end-user software engineering. ACM Computing Surveys 43:1–44
DOI 10.1145/1922649.1922658.

Kritikos K, Carro M, Pernici B, Plebani P, Cappiello C, Comuzzi M, Benrernou S, Brandic I,
Kertész A, Parkin M. 2013. A survey on service quality description. ACM Computing Surveys
46(1):1–58 DOI 10.1145/2522968.2522969.

Lee H, Jeong E, Kang D, Kim J, Ha S. 2017. A novel service-oriented platform for the Internet of
Things. In: Proceedings of the Seventh International Conference on the Internet of Things. New
York: ACM, 1–8.

Lieberman H, Paternò F, Klann M, Wulf V. 2006. End-user development: an emerging paradigm.
In: Lieberman H, Paternò F, Wulf V, eds. End User Development. Dordrecht: Springer
Netherlands, 1–8.

Lin J, Yu W, Zhang N, Yang X, Zhang H, Zhao W. 2017. A survey on Internet of Things:
architecture, enabling technologies, security and privacy, and applications. IEEE Internet of
Things Journal 4(5):1125–1142 DOI 10.1109/JIOT.2017.2683200.

Lukowicz P, Pentland S, Ferscha A. 2012. From context awareness to socially aware computing.
IEEE Pervasive Computing 11:32–41 DOI 10.1109/MPRV.2011.82.

Maes P. 1994. Agents that reduce work and information overload. Communications of the ACM
37(7):30–40 DOI 10.1145/176789.176792.

Malik S, Kim DH. 2019. Geo-sensor framework and composition toolbox for efficient deployment
of multiple spatial context service platforms in sensor networks. Applied Sciences (Switzerland)
9(23):4993 DOI 10.3390/app9234993.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 41/46

http://dx.doi.org/10.1023/B:AUSE.0000049210.42738.00
http://dx.doi.org/10.1109/ACCESS.2020.3041326
http://dx.doi.org/10.1109/JIOT.2017.2748037
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/SURV.2013.010413.00207
http://dx.doi.org/10.1145/1922649.1922658
http://dx.doi.org/10.1145/2522968.2522969
http://dx.doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1109/MPRV.2011.82
http://dx.doi.org/10.1145/176789.176792
http://dx.doi.org/10.3390/app9234993
http://dx.doi.org/10.7717/peerj-cs.788
https://peerj.com/computer-science/

Miyata N, Morikawa H, Ishida T. 2009. Open smart classroom: extensible and scalable learning
system in smart space using web service technology. IEEE Transactions on Knowledge and Data
Engineering 21(6):814–828 DOI 10.1109/TKDE.2008.117.

Mohamed N, Al-Jaroodi J, Jawhar I, Lazarova-Molnar S, Mahmoud S. 2017. SmartCityWare: a
service-oriented middleware for cloud and fog enabled smart city services. IEEE Access 5:17576–
17588 DOI 10.1109/ACCESS.2017.2731382.

Nacer H, Aissani D. 2014. Semantic web services: standards, applications, challenges and
solutions. Journal of Network and Computer Applications 44(2):134–151
DOI 10.1016/j.jnca.2014.04.015.

Nosović S, Peters S, Bruegge B. 2014. Design of a framework for controlling smart environments.
In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 8638 LNCS. 29–39.

Omoniwa B, Hussain R, Javed MA, Bouk SH, Malik SA. 2019. Fog/edge computing-based IoT
(FECIoT): architecture, applications, and research issues. IEEE Internet of Things Journal
6(3):4118–4149 DOI 10.1109/JIOT.2018.2875544.

Paganelli F, Giuli D. 2011. An ontology-based system for context-aware and configurable services
to support home-based continuous care. IEEE Transactions on Information Technology in
Biomedicine 15(2):324–333 DOI 10.1109/TITB.2010.2091649.

Pan G, Zhang L, Wu Z, Li S, Yang L, Lin M, Francis S. 2014. Pervasive service bus: smart SOA
infrastructure for ambient intelligence. IEEE Intelligent Systems 29(4):52–60
DOI 10.1109/MIS.2012.119.

PapazoglouM. 2003. Service-oriented computing: concepts, characteristics and directions. In:Web
Information Systems Engineering, 2003. WISE 2003. IEEE, 3–12.

Papazoglou MP, Heuvel W-J. 2007. Service oriented architectures: approaches, technologies and
research issues. The VLDB Journal 16:389–415 DOI 10.1007/s00778-007-0044-3.

Papazoglou MP, Traverso P, Dustdar S, Leymann F. 2008. Service-oriented computing: a
research roadmap. International Journal of Cooperative Information Systems 17(2):223–255
DOI 10.1142/S0218843008001816.

Pautasso C. 2014. RESTful web services: principles, patterns, emerging technologies. In: Web
Services Foundations. Springer, 1–22.

Paternò F. 2013. End user development: survey of an emerging field for empowering people. ISRN
Software Engineering 2013(4):1–11 DOI 10.1155/2013/532659.

Pejovic V, Musolesi M. 2014. Anticipatory mobile computing for behaviour change interventions.
In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct Publication. 1025–1034.

Pejovic V, Musolesi M. 2015. Anticipatory mobile computing: a survey of the state of the art and
research challenges. ACM Computing Surveys (CSUR) 47:1–29 DOI 10.1145/2693843.

Penserini L, Bresciani P. 2005. Using Tropos to model agent based architectures for adaptive
systems: a case study in ambient intelligence. In: Software-Science, Technology and Engineering.
Piscataway: IEEE, 37–46.

Penserini L, Kuflik T, Busetta P, Bresciani P. 2010. Agent-based organizational structures for
ambient intelligence scenarios. Journal of Ambient Intelligence and Smart Environments
2(4):409–433 DOI 10.3233/AIS-2010-0083.

Perera C, Zaslavsky A. 2014. Context aware computing for the internet of things: a survey.
Communications Surveys & Tutorials, IEEE 16(1):414–454
DOI 10.1109/SURV.2013.042313.00197.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 42/46

http://dx.doi.org/10.1109/TKDE.2008.117
http://dx.doi.org/10.1109/ACCESS.2017.2731382
http://dx.doi.org/10.1016/j.jnca.2014.04.015
http://dx.doi.org/10.1109/JIOT.2018.2875544
http://dx.doi.org/10.1109/TITB.2010.2091649
http://dx.doi.org/10.1109/MIS.2012.119
http://dx.doi.org/10.1007/s00778-007-0044-3
http://dx.doi.org/10.1142/S0218843008001816
http://dx.doi.org/10.1155/2013/532659
http://dx.doi.org/10.1145/2693843
http://dx.doi.org/10.3233/AIS-2010-0083
http://dx.doi.org/10.1109/SURV.2013.042313.00197
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.788

Petersen K, Feldt R, Mujtaba S, Mattsson M. 2008. Systematic mapping studies in software
engineering. In: 12th International Conference on Evaluation and Assessment in Software
Engineering (EASE) 12. 1–10.

Pham QV, Fang F, Ha VN, Piran MJ, Le M, Le LB, Hwang WJ, Ding Z. 2020. A survey of multi-
access edge computing in 5G and beyond: fundamentals, technology integration, and state-of-
the-art. IEEE Access 8:116974–117017 DOI 10.1109/ACCESS.2020.3001277.

Pitatzis S, Drosos N, Goumopoulos C, Kameas A. 2020. AmIoT: a microservices-based IoT
platform to orchestrate AmI environments. In: 2020 16th International Conference on Intelligent
Environments (IE). 21–28.

Ponce V, Roy P, Abdulrazak B. 2016.Dynamic domain model for micro context-aware adaptation
of applications. In: Proceedings of the 13th IEEE International Conference on Ubiquitous
Intelligence and Computing. Piscataway: IEEE, 98–105.

Poslad S. 2009. Ubiquitous computing smart devices, environments and interactions. John Wiley
& Sons.

Prado AGD, Ortiz G, Boubeta-Puig J. 2017. CARED-SOA: a context-aware event-driven service-
oriented architecture. IEEE Access 5:4646–4663 DOI 10.1109/ACCESS.2017.2679338.

Prehofer C, van Gurp J. 2010. Practical web-based smart spaces. IEEE Pervasive Computing
9(3):72–80 DOI 10.1109/MPRV.2009.88.

Rahimi MR, Ren J, Liu CH, Vasilakos AV, Venkatasubramanian N. 2013. Mobile cloud
computing: a survey, state of art and future directions. Mobile Networks and Applications
19(2):133–143 DOI 10.1007/s11036-013-0477-4.

Rawat P, Singh KD, Chaouchi H, Bonnin JM. 2013.Wireless sensor networks: a survey on recent
developments and potential synergies. The Journal of Supercomputing 68(1):1–48
DOI 10.1007/s11227-013-1021-9.

Raychoudhury V, Cao J, Kumar M, Zhang D. 2013. Middleware for pervasive computing: a
survey. Pervasive and Mobile Computing 9(2):177–200 DOI 10.1016/j.pmcj.2012.08.006.

Razzaque MA, Milojevic-jevric M, Palade A, Clarke S. 2016.Middleware for internet of things: a
survey. IEEE Internet of Things Journal 3(1):70–95 DOI 10.1109/JIOT.2015.2498900.

Reetz E, Tonjes R, Baker N. 2010. Towards global smart spaces: merge wireless sensor
networks into context-aware systems. In: Wireless Pervasive Computing (ISWPC). IEEE,
337–342.

Roggen D, Lombriser C, Rossi M, Tröster G. 2011. Titan: an enabling framework for activity-
aware pervasive apps in opportunistic personal area networks. EURASIP Journal on Wireless
Communications and Networking 2011(1):1–22 DOI 10.1155/2011/172831.

Roy P. 2019. ContextAA : plateforme sensible au Contexte pour aborder le problème de l’espace
intelligent ouvert. Université de Shrerbrooke.

Roy P, Abdulrazak B, Belala Y. 2011. A distributed architecture for micro context-aware agents.
Procedia Computer Science 5:296–303 DOI 10.1016/j.procs.2011.07.039.

Roy P, Abdulrazak B, Belala Y. 2014. Quantifying semantic proximity between contexts. In:
International Conference on Smart Homes and Health Telematics. Springer, 165–174.

Ruta M, Scioscia F, Loseto G, Gramegna F, Ieva S, Pinto A, Di Sciascio E, Sicilia Á,
Pauwels P, Madrazo L, Poveda Villalón M, Euzenat J, Sicilia Á, Pauwels P, Madrazo L,
Poveda-Villalón M, Euzenat J. 2018. Social internet of things for domotics: a knowledge-based
approach over LDP-CoAP. Semantic Web 9(6):781–802 DOI 10.3233/SW-180299.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 43/46

http://dx.doi.org/10.1109/ACCESS.2020.3001277
http://dx.doi.org/10.1109/ACCESS.2017.2679338
http://dx.doi.org/10.1109/MPRV.2009.88
http://dx.doi.org/10.1007/s11036-013-0477-4
http://dx.doi.org/10.1007/s11227-013-1021-9
http://dx.doi.org/10.1016/j.pmcj.2012.08.006
http://dx.doi.org/10.1109/JIOT.2015.2498900
http://dx.doi.org/10.1155/2011/172831
http://dx.doi.org/10.1016/j.procs.2011.07.039
http://dx.doi.org/10.3233/SW-180299
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.788

Sadek I, Seet E, Biswas J, Abdulrazak B, Mokhtari M. 2018. Nonintrusive vital signs monitoring
for sleep apnea patients: a preliminary study. IEEE Access 6:2506–2514
DOI 10.1109/ACCESS.2017.2783939.

Sadri F. 2011. Ambient intelligence: a survey. ACM Computing Surveys 43(4):1–66
DOI 10.1145/1978802.1978815.

Schilit B, Theimer M. 1994. Disseminating active map information to mobile hosts. In: Network,
IEEE. Piscataway: IEEE.

Seremeti L, Goumopoulos C, Kameas A. 2009. Ontology-based modeling of dynamic ubiquitous
computing applications as evolving activity spheres. Pervasive and Mobile Computing
5(5):574–591 DOI 10.1016/j.pmcj.2009.05.002.

Sheth A. 1999. Changing focus on interoperability in information systems: from system, syntax,
structure to semantics. In: Goodchild M, Egenhofer M, Fegeas R, Kottman C, eds. Interoperating
Geographic Information Systems. Boston: Springer.

Silva J, Mouttham A, Saddik AEI. 2009. UbiMeds: a mobile application to improve accessibility
and support medication adherence. In: Proceedings of the 1st ACM SIGMM International
Workshop on Media Studies and Implementations that Help Improving Access to Disabled Users.
New York: ACM, 71–78.

Smirnov A, Kashevnik A, Levashova T, Shilov N. 2011. Service-based community for emergency
response in smart space. In: 2011 IEEE International Conference on Systems, Man, and
Cybernetics. Piscataway: IEEE, 55–60.

Smirnov A, Levashova T. 2009. Self-organizing resource network for traffic accident response. In:
Proceedings of the 6th International Conference Information Systems for Crisis Response and
Management.

Smirnov A, Levashova T, Shilov N. 2011. Ubiquitous computing in emergency: role-based
situation response based on self-organizing resource network. In: 2011 IEEE International
Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision
Support (CogSIMA). Piscataway: IEEE, 94–101.

Smirnov A, Levashova T, Shilov N, Kashevnik A. 2010. Hybrid technology for self-organization
of resources of pervasive environment for operational decision support. International Journal on
Artificial Intelligence Tools 19(02):211–229 DOI 10.1142/S0218213010000121.

Soldatos J, Dimakis N, Stamatis K, Polymenakos L. 2006. A breadboard architecture for
pervasive context-aware services in smart spaces: middleware components and prototype
applications. Personal and Ubiquitous Computing 11(3):193–212
DOI 10.1007/s00779-006-0102-7.

Spohrer J, Maglio P, Bailey J, Gruhl D. 2007. Steps toward a science of service systems. Computer
40(1):71–77 DOI 10.1109/MC.2007.33.

Stavropoulos TG, Gottis K, Vrakas D, Vlahavas I. 2013. aWESoME: a web service middleware for
ambient intelligence. Expert Systems with Applications 40(11):4380–4392
DOI 10.1016/j.eswa.2013.01.061.

Stavropoulos TG, Vrakas D, Vlahavas I. 2011. A survey of service composition in ambient
intelligence environments. Artificial Intelligence Review 40(3):247–270
DOI 10.1007/s10462-011-9283-1.

Suo Y, Miyata N, Ishida T, Shi Y. 2008.Open smart classroom: extensible and scalable smart space
using web service technology. Advances in Web Based Learning—ICWL 2007:428–439
DOI 10.1007/978-3-540-78139-4.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 44/46

http://dx.doi.org/10.1109/ACCESS.2017.2783939
http://dx.doi.org/10.1145/1978802.1978815
http://dx.doi.org/10.1016/j.pmcj.2009.05.002
http://dx.doi.org/10.1142/S0218213010000121
http://dx.doi.org/10.1007/s00779-006-0102-7
http://dx.doi.org/10.1109/MC.2007.33
http://dx.doi.org/10.1016/j.eswa.2013.01.061
http://dx.doi.org/10.1007/s10462-011-9283-1
http://dx.doi.org/10.1007/978-3-540-78139-4
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.788

Tapia D, Alonso R. 2010. SYLPH: an ambient intelligence based platform for integrating
heterogeneous wireless sensor networks. In: IEEE International Conference on Fuzzy Systems
(FUZZ), 2010. Piscataway: IEEE, 1–8.

Tapia D, Alonso R, Corchado J. 2011. SYLPH: a platform for integrating heterogeneous wireless
sensor networks in ambient intelligence systems. International Journal of Ambient Computing
and Intelligence (IJACI) 3:1–15 DOI 10.4018/jaci.2011040101.

Tapia D, Fraile J, Rodríguez S, de Paz JF, Bajo J. 2009. Wireless sensor networks in home care.
In: Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Springer,
1106–1112 DOI 10.1007/978-3-642-02478-8_138.

Tapia DI, Fraile JA, Rodríguez S, Alonso RS, Corchado JM. 2013. Integrating hardware agents
into an enhanced multi-agent architecture for Ambient Intelligence systems. Information
Sciences 222:47–65 DOI 10.1016/j.ins.2011.05.002.

Triboan D, Chen L, Chen F. 2016. Towards a mobile assistive system using service-oriented
architecture. In: 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE).
Piscataway: IEEE, 187–196.

Truong H-L, Dustdar S. 2009. A survey on context-aware web service systems. International
Journal of Web Information Systems 5(1):5–31 DOI 10.1108/17440080910947295.

Urbieta A, Barrutieta G, Parra J, Uribarren A. 2008. A survey of dynamic service composition
approaches for ambient systems. In: Proceedings of the First International Conference on
Ambient Media and Systems.

Van-der-Aalst W-M. 2013. Business process management: a comprehensive survey. ISRN Software
Engineering 2013(1):1–37 DOI 10.1155/2013/507984.

White S, Hanson J, Whalley I. 2004. An architectural approach to autonomic computing. In:
International Conference on Autonomic Computing. Piscataway: IEEE, 2–9.

Weiser M. 1991. The computer for the 21st century. Scientific American 3(3):94–104
DOI 10.1038/scientificamerican0991-94.

Weiser M, Brown J. 1996. Designing calm technology. PowerGrid Journal 1:75–85.

Wieringa R, Maiden N, Mead N, Rolland C. 2005. Requirements engineering paper classification
and evaluation criteria: a proposal and a discussion. Requirements Engineering 11(1):102–107
DOI 10.1007/s00766-005-0021-6.

Xia C, Maes P. 2013. The design of artifacts for augmenting intellect. In: Proceedings of the 4th
Augmented Human International Conference on-AH ’13. 154–161.

Xu L, He W, Li S. 2014. Internet of things in industries: a survey. IEEE Transactions on Industrial
Informatics 3203(4):1 DOI 10.1109/TII.2014.2300753.

Yachir A, Amirat Y, Chibani A, Badache N. 2015. Event-aware framework for dynamic services
discovery and selection in the context of ambient intelligence and internet of things. IEEE
Transactions on Automation Science and Engineering 13(1):85–102
DOI 10.1109/TASE.2015.2499792.

Yang H-I, Chen C, Abdulrazak B, Helal S. 2010. A framework for evaluating pervasive systems.
International Journal of Pervasive Computing and Communications 6(4):432–481
DOI 10.1108/17427371011097631.

Yin Q, Hu H, Li J, Lu J. 2007. A middleware approach for behavior consistent composition of
services in smart space. In: IEEE International Conference on Service-Oriented Computing and
Applications (SOCA ’07). Piscataway: IEEE, 233–240.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 45/46

http://dx.doi.org/10.4018/jaci.2011040101
http://dx.doi.org/10.1007/978-3-642-02478-8_138
http://dx.doi.org/10.1016/j.ins.2011.05.002
http://dx.doi.org/10.1108/17440080910947295
http://dx.doi.org/10.1155/2013/507984
http://dx.doi.org/10.1038/scientificamerican0991-94
http://dx.doi.org/10.1007/s00766-005-0021-6
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/TASE.2015.2499792
http://dx.doi.org/10.1108/17427371011097631
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.788

Yusro M, Hou KM, Pissaloux E, Shi HL, Ramli K, Sudiana D. 2013. SEES: concept and design of
a smart environment explorer stick. In: 2013 6th International Conference on Human System
Interactions (HSI). 70–77.

Zhang D, Huang H, Lai C-F, Liang X, Zou Q, Guo M. 2011. Survey on context-awareness in
ubiquitous media. Multimedia Tools and Applications 67(1):179–211
DOI 10.1007/s11042-011-0940-9.

Zhao R, Wang J. 2010. Visualizing the research on pervasive and ubiquitous computing.
Scientometrics 86(3):593–612 DOI 10.1007/s11192-010-0283-8.

Zhou H. 2012. The internet of things in the cloud. Boca Raton: CRC Press.

Ponce and Abdulrazak (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.788 46/46

http://dx.doi.org/10.1007/s11042-011-0940-9
http://dx.doi.org/10.1007/s11192-010-0283-8
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.788

	Ambient intelligence governance review: from service-oriented to self-service
	Introduction
	Ami and soa: definitions and related technologies
	Review methodology
	Data analysis: systematic map
	Results and discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

