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ABSTRACT
Background. The principal component analysis (PCA) is known as a multivariate sta-
tistical model for reducing dimensions into a representation of principal components.
Thus, the PCA is commonly adopted for establishing psychometric properties, i.e., the
construct validity. Autoencoder is a neural network model, which has also been shown
to perform well in dimensionality reduction. Although there are several ways the PCA
and autoencoders could be compared for their differences, most of the recent literature
focused on differences in image reconstruction, which are often sufficient for training
data. In the current study, we looked at details of each autoencoder classifier and how
they may provide neural network superiority that can better generalize non-normally
distributed small datasets.
Methodology. A Monte Carlo simulation was conducted, varying the levels of non-
normality, sample sizes, and levels of communality. The performances of autoencoders
and a PCA were compared using the mean square error, mean absolute value,
and Euclidian distance. The feasibility of autoencoders with small sample sizes was
examined.
Conclusions. With extreme flexibility in decoding representation using linear and non-
linear mapping, this study demonstrated that the autoencoder can robustly reduce
dimensions, and hence was effective in building the construct validity with a sample size
as small as 100. The autoencoders could obtain a smaller mean square error and small
Euclidian distance between original dataset and predictions for a small non-normal
dataset. Hence, when behavioral scientists attempt to explore the construct validity of a
newly designed questionnaire, an autoencoder could also be considered an alternative
to a PCA.
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INTRODUCTION
Selecting a proper sample size is critical when planning an empirical study. The minimum
sample size is often calculated based on selected statistical procedures. For example,
inferential statistics based on an independent-sample t -test can apply the formula,
N≥

( 1.96
δ

)2
∗ σ 2, to achieve the minimum sample size to detect a difference with a

satisfactory probability. However, the feasibility of using an autoencoder to establish
psychometric properties is not as straightforward. Although an autoencoder has not been
used as often to evaluate psychometric properties compared to its alternative, the principal
component analysis (PCA), autoencoders have been used in a vast array of scientific fields
for dimensional reduction.

Dimensional reduction
Dimensional reduction refers to the representation of high-dimensional information into
a lower-dimensional space without losing an appreciable amount of data. Dimensional
reduction can be applied to many methods of multivariate data analyses. For example,
factor analysis (FA) is a tool to model interrelationships among items. In an FA, the focus
is to partition the variance into either common variance or unique variance. By factor
extraction, an FA can reduce the number of variables explaining the variance–covariance
among items. Thus, much of the information in the original data can be retained but with
fewer dimensions. As a result, this statistical tool, like so many other multivariate models,
plays a superlative role in the fields of education, manufacturing industry, bioinformatics,
and computer science. Two major challenges are encountered in dimension-reduction
tasks. First, in order to evaluate the effectiveness of the dimensional reduction, a method
of data visualization is often conducted to visualize the information in the data (Young,
Valero-Mora & Friendly, 2011). However, data can only be visualized by humans in very
limited lower dimensions of 2D or 3D. Thus, it will sometimes be impossible to graphically
evaluate results of dimensional reduction. Second, although the dimension of a dataset can
effectively be reduced by a stepwise algorithm, including a forward selection algorithm,
backward elimination, stepwise procedure, etc., the impact of each variable being examined
is based on its contribution in improving the model fit. However, these stepwise algorithms
are only valid when all of the dimensions are independent of each other (Wang, 2008).
As a result, alternatives, like an FA, partial least squares, and PCA, can also be adopted.
In contrast to a stepwise algorithm where nuisance variables are excluded, the FA and
PCA retain all of the original items and combine them to form latent factors or principal
components.

In contrast to the PCA and similar algorithms, the autoencoder is in essence a three-layer
neural network, which was developed in the 1990s and which has been studied by many
researchers. The association between auto-association and singular value decomposition
was first examined by Bourlard & Kamp (1988). Kramer (1991) attempted to conduct a
nonlinear PCAusing auto-associative neural networks.Most studies related to autoencoders
were restricted to one or two hidden layers mainly due to training difficulties (Wang et al.,
2014;Wang, He & Prokhorov, 2012).Le (2013)built a nine-layer sparse autoencoder to show
that the network could be sensitive to higher-level concepts. Despite recent developments
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with different architectures of autoencoders, creating a good reconstruction without losing
significant information remains a challenging task due to high-dimensionality, small
sample sizes, non-linearity, and complex data types.

Construct validity
Construct validity is a psychological property defined as the degree to which a measure
assesses the theoretical construct intended to be measured (Cronbach & Meehl, 1955). One
cannot assess confounding influences of random error without estimating the construct
validity when designing a questionnaire. Evaluation of what defines a psychological
construct is the determinant of the test performance. A better representation of the
latent psychological construct is desirable for almost all psychological tests. Thus,
construct validity, in general, is considered the most fundamental aspect of psychometrics.
Campbell & Fiske (1959) proposed two views of construct validity: convergent validity
and discriminant validity. Convergent validity refers to the degree of agreement among
measurements of the same constructs that should be related based on theory. Discriminant
validity refers to the distinction of concepts that are not supposed to be related and
are in fact, unrelated. Campbell and Fiske developed four steps based on inspecting the
multitrait-multimethod (MTMM) matrix to operationally define convergent validity and
discriminant validity. Since the concept of construct validity was introduced, an extensive
effort has been made ever since to seek numerical representations of the construct validity.
Starting with Douglas Jackson who employed a component analysis as an integral part of
the development of psychological measures, the PCA has become a standard method for
questionnaire development (Jackson, 1970). Traditionally, the PCA and FA are two of the
most often employed statistical procedures in the social behavioral sciences commonly
used to suggest factor profiles as latent constructs (Sherman, 1986; Yoon et al., 2019; Fontes
et al., 2017).

In FAs, the confirmatory factor analysis (CFA) and exploratory factor analysis (EFA)
are two methods that facilitate the transition from many observed variables to a smaller
number of latent variables. Both FA models are commonly used to address the construct
validity. The CFA is a tool that researchers can adopt to test the validity by comparing
alternatively proposed a priori models at the latent factor level. Advantages of the CFA for
being more informative than Campbell & Fiske’s criteria are that it provides a statistical
justification of the model fit and the degree of fit for the convergent validity and divergent
validity (Bagozzi, Yi & Phillips, 1991).

In addition to the CFA, there are several statistical models based upon which the
factors explored by a questionnaire are validated. For example, the PCA is a mathematical
algorithm in which observations are described by several inter-correlated quantitatively
dependent variables. A PCA is the default data-reduction technique in SPSS software
and was adopted by many researchers, including Mohammadbeigi, Mohammadsalehi &
Aligol (2015), and Parker, Bindl & Strauss (2010). A PCA can be conducted to examine the
construct validity due to the PCA’s ability to integrate the full bivariate cross-correlation
matrix of all item-wise measurements through dimension reduction. Its goal is to extract
important information from the total number of observed variables, and represent it as a
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set of new orthogonal variables called principal components. These principal components,
or latent variables, summarize the observed data table and display the pattern of similarity
of the observations (Abdi & Williams, 2010).

Most educational researchers, behavioral scientists, and social science researchers treat
uncorrelated principal components as independent identities. However, the property of
principal components being independent of each other only holds when the principal
components are uncorrelated, and the multivariate items are normally distributed (Kim &
Kim, 2012). If the input data are not normally distributed, the variance explained by one
of the traits will overlap that of another trait. PCAs have also been criticized due to limited
linear mapping representation.

Based on the underlying definition of dimensional reduction, it is less informative to
aggregate all scales into a single latent variable score. A set of items or scales may share
similar conceptual underpinnings but not necessarily be identical (Stangor, 2014). Using
a PCA, a large number of items can be reduced to fewer components with possibly more
variance explained than with other methods of factoring (Hamzah, Othman & Hassan,
2016).

Autoencoder
Autoencoders are characterized by their function of extracting important information
and representing it in another space. Such a network consists of three symmetrical layers:
input, hidden, and output layers (Hinton & Zemel, 1994). An autoencoder attempts to
approximate the original data so that the output is similar to the input after feed-forward
propagation. The input is projected to the hidden layer that is commonly designed to
be of a lower dimensionality. After information is passed through the hidden layer, the
output of the network should ideally resemble the original input as closely as possible.
As a result, the latent space contains all of the necessary information to describe the data
(Ladjal, Newson & Pham, 2019). In a simple autoencoder framework, each neuron is fully
connected to all neurons in the previous layer, where neurons in a single layer function
completely independently and share no connections. As illustrated by from Meng, Ding &
Xue (2017), autoencoder tries to learn function S(·) such that:

SW,W′ ,b1,b2(X)≈X (1)

W is weight matrix connected input layer and hidden layer while W′ is weight matrix
connected hidden layer and output layer. b1 and b2 are bias vectors of hidden layer and
output layer. S(·) can be divided into two phases: from input layer to hidden layer is
encoding phase Eq. (2) and from hidden to output layer is decoding phase Eq. (3).

h= f(W×X+b1) (2)

Y= g(W
′

×h+b2) (3)
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Autoencoder versus PCA
When one is interested in establishing the construct validity, it is often intuitive to apply
a PCA to extract latent factors. It quickly becomes apparent that the PCA shares lots of
similarities with an autoencoder. Both methods can serve as tools for feature generation
and selection by their ability to reduce dimensions. Despite autoencoder neural networks
bearing a significant resemblance to PCAs, there is one major difference between these
two networks. In contrast to a PCA, an autoencoder applies a non-linear transformation
to the input, and so the autoencoder could be more flexible. That is, although the PCA
can effectively reduce the linear dimensionality, it still suffers when relationships among
the variables are not linear. Aside from the linearity restriction, a PCA may fail by its loose
assumption about the input data distribution. As Shlens (2014) pointed out, even though
the PCA algorithm is in essence completely nonparametric, because a PCA is unconcerned
with the source of the data, it might not capture key features of data variations. That
is, a PCA makes no assumptions about the distribution of the data. However, only
when the data are assumed to be normal from a multivariate perspective will the joint
distribution of the principal components be normal from a multivariate perspective. Then,
the principal components will have an obvious geometrical interpretation where the first
component can be determined by locating the chord of maximum distance in the ellipsoid
(x−µ)T6−1(x−µ)= constant (Chatfield & Collins, 1981).

As a result, we can directly compare various forms of autoencoders to a PCA when we
attempt to build the construct validity of a small sample when the data are not normally
distributed. Four different forms of autoencoders are considered in this study, including a
simple autoencoder with a single-layered autoencoder and three other candidates briefly
described as follows.

Tie-weighted autoencoder
An autoencoder is a neural network with a symmetrical structure. Although the input is
compressed and the output is reconstructed through its latent-space representation, there
is no guarantee that the weights of the encoder and decoder are identical. Thus, we can
impose an additional optimization restriction so that the weights of the decoder layer are
tied to the weights of the encoder layer. By tying the weights, the number of parameters
that needs to be trained and the risk of overfitting are reduced. Tie-weight autoencoder is
the one we set it to be W =W′ from Eqs. (2) and (3) (Meng, Ding & Xue, 2017).

Deep autoencoder
In the autoencoder framework, there is no limitation on the number of layers for the
encoder or decoder. That is, the autoencoder can go deep and can be implemented with
a stack of layers. Theoretically, the more hidden layers there are, the more features can be
learned from the hidden layers. Although the layers can be stacked, the layers are often
designed to remain symmetrical with respect to the central layers.

Independent encoded autoencoder
A preferable feature of a PCA is that the weight vectors are independent of each other.
If orthogonality is imposed, each encoded feature explains unique information, and a
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smaller number of encoder layers can be achieved. Thus, we also adopted an orthogonal
autoencoder (COAE) for comparison, which is capable of simultaneously extracting latent
embedding and predicting the clustering assignment (Wang et al., 2019).

Sample size
There are only a few studies concerning the requirement of the sample size on the
dimensional reduction performance of a PCA. So there is no consensus as to how large is
large enough for conducting a PCA. Forcino Frank (2012) found that a too-small sample
size is more likely to lead to erroneous conclusions.Manjarrés-Martínez et al. (2012) tested
the stability performance of three ordinationmethods in terms of their bootstrap-generated
sampling variances. Bootstrap resampling techniques are used to generate larger samples
which may provide more-precise evaluations of the sampling error. Some researchers
recommend sample sizes in relation to the number of variables or correlation structure.
For example, Hatcher & O’Rourke (2013) suggested that the sample size should be larger
than five times the number of variables. Hutcheson & Sofroniou (1999) recommended that
a minimum of n= 150 is required for a high community correlation structure.Mundfrom,
Shaw & Tian (2005) found that n > 100 was required for medium community while
MacCallum et al. (2001) achieved satisfactory results even for data with numbers of items
greater than the sample size. In contrast, Yeung & Ruzzo (2001) showed that a PCA is not
suitable for dimensionality reduction tasks when p is greater than n. The performance of a
PCA is worsened when a nonlinear relationship is present with limited samples.

A deep neural network is competitive in solving nonlinear dimensional reductions for
high-dimensional data. Although it may seem legitimate that a massive amount of data
is required to train a deep neural network, some researchers claim that deep learning can
still be adopted even if n is small. Seyfioğlu & Gürbüz (2017) compared a convolutional
autoencoder and two convolutional neural networks, VGGNet and GoogleNet, in terms
of the training sample sizes. They found that when the sample size exceeded 650, the
convolutional autoencoder outperformed transfer learning and random initialization.

Although there is a great number of dimensionality reduction algorithms being
developed, the feasibility of their use with small-sample, non-normal data is still unknown.
A limited sample size and an non-linear data distribution may also increase the likelihood
of overfitting and decrease the accuracy. To overcome the pitfalls of the sample size issue,
the principal objective of the current study was to examine the influence of sample size
on the latent structure of PCAs and autoencoders using a Monte Carlo simulation. The
performances of the PCA and various transformations by autoencoders were evaluated
using both simulated data and a real dataset pertaining to quantifying the concept of
curiosity.

MATERIALS & METHODS
The detailed design of the simulation consisted of three major states (Fig. 1): data
generation, dimensionality-reduction algorithms, and performance evaluation. The
input dataset was first divided into two sub-datasets: a training set and testing set. Then
various forms of autoencoders along with a PCA were applied to select desirable encoded
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Figure 1 Flow chart for the Monte Carlo (MCMC) simulations.
Full-size DOI: 10.7717/peerjcs.782/fig-1

dimensions of attributes. Finally, for latent dimensionality classification of the obtained
reduced-dimensional data, a reconstruction error was applied to evaluate the algorithms.

Data generation
A Monte Carlo simulation was used for this study. To avoid the overfitting issue,
separate datasets were used for the dimension-reduction algorithms. Each simulated
dataset was divided into two parts: 80% of samples were used as a training set, and
the remaining 20% were used as a test set. The dimension-reduction techniques,
including various type of autoencoders and a PCA, were trained on the training
dataset. After the classifier was built, the testing data were used to test the effectiveness
of the classifier. Each simulated dataset was simulated based on its degree of non-
normality, correlation among items, and sample size. Correlation matrices of continuous
variables, each representing a questionnaire correlation structure, were generated
for each condition by three manipulated variables: the degree of communality, the
degree of non-normality, and the sample size. The data generation python code was
stored in Github, and can be assessed at https://github.com/robbinlin/data-generation-
/blob/e94206b6a16751961c3db57fbe93017dc050d746/data_generation_20211005.ipynb.

Non-normality
A variety of mathematical algorithms have been developed over the years to simulate
conditions of non-normal distributions (Fan et al., 2002; Fleishman, 1978; Ramberg et
al., 1979; Schmeiser & Deutsch, 1977). Fleishman (1978) also introduced a method for
generating sample data from a population with desired degrees of skewness and kurtosis.
That method uses a cubic transformation to transform a standard univariate normally
distributed variable to obtain a nonnormal variable with specified degrees of skewness and
kurtosis. The transformation developed by Fleishman takes the form of

Y= a+bZ+cZ2
+dZ3

; (4)

where Y is the transformed non-normal variable, Z is a standard normal random variable,
and a, b, c, and d are coefficients needed for transforming the unit around the unit normal
to a non-normal variable with specified degrees of population skewness and kurtosis (Byrd,
2008).
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These coefficients were tabulated in Fleishman (1978) for selected combinations of
degrees of skewness and kurtosis. Fleishman (1978) derived a system of nonlinear equations
that given the target distributionmean, variance, skewness, and kurtosis, could be solved for
coefficients to produce a third-order polynomial approximation to the desired distribution
(Fan et al., 2002).

Correlation structure
In order to generate non-normal correlated observation, the interaction between inter-
variable correlation and degree of non-normality needs to be considered since difference
combination of inter-variable correlations and non-normality conditions would cause
sample data to deviate from the specified correlation pattern. The abovementioned
Fleishman’s method can be extended to multivariate non-normal data with a specified
correlation (Wicklin, 2013). For example, two non-normal variables, Y1 and Y2, can be
generated with specified skewness and kurtosis from Eq. (4) i.e.,

Y1= a1+b1Z+c1Z2
+d1Z3 (5)

Y2= a2+b2Z+c2Z2
+d2Z3 (6)

Coefficients a1, b1, c1, d1, a2, b2, c2, and d2 can be derived from Fleishman’s table
once the degree of skewness and kurtosis are known. After these coefficients (ai, bi, ci,
di) are found, the intermediate correlations could be derived by specifying Rx1x2, the
population correlation between two non-normal variables Y1 and Y2. Vale & Maurelli
(1983) demonstrated that through the following relationship,

Rx1x2 = ρ(b1b2+3b1d2+3d1b2+9d1d2)+ρ
2(2c1c2)+ρ3(6d1d2) (7)

the intermediate correlation, ρ, can be derived. These coefficients in the Fleishman power
transformation above are required to derive intermediate correlations, ρ. After all of the
intermediate correlation coefficients are assembled into an intermediate correlationmatrix,
this intermediate correlation matrix is then used to extract factor patterns to transform
uncorrelated items into correlated items (Vale & Maurelli, 1983). Kaiser & Dickman (1962)
presented amatrix decomposition procedure that imposes a specified correlationmatrix on
a set of uncorrelated random normal variables specified with population correlations R as
represented by the imposed correlation matrix. The basic matrix decomposition procedure
takes the following form (Kaiser & Dickman, 1962):

R̂k∗N= Fk∗k× X̂k∗N (8)

where k is the number of variables, N is the number of sample, R̂ is the resulting data
matrix, F is the principal component factor pattern coefficients obtained by principal
component factorization to the desired population matrix R, and X are uncorrelated k
random variables, with N observations. After the intermediate correlations are derived
from Vale andMaurelli ‘s formula using iterative Newton–Raphson method, we then apply
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the assembled intermediate correlation matrix to Kaiser and Dickman’s method as R in
order to generate N sample.

In the current study, three correlation structures for 15 items were simulated to
approximate three communalities of high, in which communalities were assigned values of
0.8; wide, in which they could have value from 0.6 to 0.9; and low, in which they could have
value from 0.3 and 0.5. The communality estimate is the estimated proportion of variance
in each variable that is accounted for Mamdoohi et al. (2016). These estimates reflect the
proportion of variation in that variable explained by the latent factors (Yong & Pearce,
2013). In other words, a high communality means that if we perform multiple regression
of curiosity against the three common factors, we obtain a satisfactory proportion of the
variation in curiosity explained by the factor model. These estimates reflect the variance of
a variable in common with all others together. The communality is denoted by h2 and is
the summation of the squared correlations of the variable with the factors (Barton, Cattell
& Curran, 1973). The formula for deriving the communalities is h2j = a2j1+a2j2+ ...a

2
jm

where a denotes the loadings for j variables. The communality levels correspond inversely
to levels of importance of unique factors. High communalities imply several variables load
highly on the same factor and the model error is low (MacCallum et al., 2001). These three
correlation structures were designed to mimic a three-factor solution and are presented as
follows.

Correlation matrix for high communality

1 0.7 0.7 0.7 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.7 1 0.7 0.7 07 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.7 0.7 1 0.7 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.7 0.7 0.7 1 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.7 0.7 0.7 0.7 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 1 0.7 0.7 0.7 0.7 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.7 1 0.7 0.7 0.7 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 07 0.7 1 0.7 0.7 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 07 0.7 0.7 1 0.7 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.7 0.7 0.7 0.7 1 0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 0.7 0.7 0.7 0.7
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.7 1 0.7 0.7 0.7
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.7 0.7 1 0.7 0.7
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.7 0.7 0.7 1 0.7
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.7 0.7 0.7 0.7 1
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Correlation matrix for intermediate communality

1 0.9 0.8 0.7 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.9 1 0.7 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.8 0.7 1 0.5 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.7 0.6 0.5 1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.6 0.5 0.4 0.3 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 1 0.9 0.8 0.7 0.6 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.9 1 0.7 0.6 0.5 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.8 0.7 1 0.5 0.4 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.7 0.6 0.5 1 0.3 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.6 0.5 0.4 0.3 1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.9 0.8 0.7 0.6
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9 1 0.7 0.6 0.5
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.7 1 0.5 0.4
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.7 0.6 0.5 1 0.3
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6 0.5 0.4 0.3 1



Correlation matrix for weak communality

1 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.5 1 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.5 0.5 1 0.5 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.5 0.5 0.5 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.5 0.5 0.4 0.3 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 1 0.5 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.5 1 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.5 0.5 1 0.5 0.4 0.3 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 1 0.3 0.3 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.4 0.3 1 0.3 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 1 0.5 0.5 0.5 0.5
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 1 0.5 0.5 0.5
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 1 0.5 0.4
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.5 1 0.3
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.5 0.4 0.3 1


Factor patterns were estimated with one of these three correlation matrices. These

pattern matrices were then adopted to generate 15 correlated normal variables with
specified population correlation coefficients, variable means, standard deviations (SDs),
skewness, and kurtosis.

Sample size
The sample size was chosen based on the recommendations of Mundfrom, Shaw & Tian
(2005). Sample size increments were according to the following algorithm:
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• When n < 200, it was increased by 10;
• When n < 500, it was increased by 50;

Dimensionality-reduction algorithms
• Simple autoencoder: A simple autoencoder is an autoencoder with two main
components: The Encoder and the decoder in addition to the latent-space representation
layer also known as the bottle neck layer. Linear activation function and SGD optimizer
were adopted. The encoding and decoding algorithms will be chosen to be parametric
functions and to be differentiable with respect to the loss function (Chollet, 2016). By
minimizing the reconstruction loss, the parameters of the encoder and decoder can be
optimized. The basic autoencoder, which refers to simple autoencoder in section 1.4
is a autoencoder with a single fully-connected neural layer as encoder and as decoder
(Fig. 2A).
• Tie-weighted autoencoder: A tie-weighted autoencoder is a single-layer autoencoder
with three neurons in addition to a decoder and an encoder layer. A restriction is imposed
so that the weights of the encoder and decoder are identical.
• Deep autoencoder: In order to demonstrate that the autoencoder algorithms do not
have to limit to a single layer as encoder or decoder, we could instead use a stack of
layers, so called ‘‘deep autoencoder’’ in ‘Autoencoder versus PCA’ A deep autoencoder
is a sevenlayer autoencoder. The first layer is a dense layer with 11 neurons follow by two
layers each with six neurons. Before the decoder, a bottleneck layer with three neurons
is included. The architecture is depicted in Fig. 2B.
• Independent encoded autoencoder: With this custom layer, we impose penalty on the
sum of off-diagonal elements of the encoded features covariance to create uncorrelated
features as well as applying orthogonality on both encoder and decoder Weights.

Real dataset
In this subsection, we implemented the PCA and autoencoders with a real dataset—a Sports
Fan Curiosity dataset–to see how the autoencoders differed from the PCA and provide
visualization results. More specifically, we compared the ability to build psychometric
properties between the autoencoders and the PCA on a Sports Fan Curiosity questionnaire.
Curiosity is considered a fundamental intrinsic motivational subdomain for initiating
human exploratory behaviors in many field of study, such as psychology, education, and
sports. The Sports Fan Curiosity questionnaire is commonly used in the field of sports
management, which is a subset of questionnaires for measuring behavioral intentions. This
subcategory was designed to measure and quantify the construct of curiosity. Although
leisure management has received greater attention, little is known about how the curiosity
construct can be realized with a structured questionnaire. We deployed the autoencoders
for this questionnaire and evaluated their ability to identify the latent construct. Items
of the Sports Fan Curiosity questionnaire are listed in Table 1. The data set along with
the python code was stored in Google Colab and Google drive, and can be assessed at
https://colab.research.google.com/drive/1pC8A10sRVUHDttkLF2ATb51CcpnIzD6u?usp=
sharing.
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Figure 2 (A–B) Autoencoder architecture.
Full-size DOI: 10.7717/peerjcs.782/fig-2

Performance metrics
Reconstruction error
The performance of the establishment of construct validity was evaluated using the mean
square error (MSE), mean absolute error (MAE), and the average of the Euclidean distance.

Denote inputs to the network by X and the outputs of the network by y. Then the
network can be described by mapping from inputs to outputs: y =f(x). Reconstruction
of the input is then a mapping from outputs to inputs X̂= g (y). It is then reasonable to
measure the reconstruction error as X− X̂ with a given error function, ε(x). In this study,
the reconstruction error is defined as the average of the squares of the errors for subject n
with dimension m, i.e.,

MSE=
1
n
·
1
m

n∑
i=1

m∑
j=1

(
Xi,j− x̂i,j

)2
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Table 1 Items on the curiosity questionnaire.

Item Description

1 I enjoy collecting and calculating statistics for my favorite
basketball team.

2 I often imagine how my favorite basketball team is playing
to defeat their opponent.

3 I enjoy exploring my favorite basketball stadiums or
facilities.

4 Watching basketball games with my friends is joyful.
5 I enjoy reading articles about basketball players, teams,

events, and games.
6 I am interested in learning how much it costs to build a

brand-new basketball stadium.
7 When I miss a game, I often look for information on

television, the internet, or newspaper to catch the game
results.

8 I am interested in learning how large a basketball court is.
9 I enjoy probing deeply into basketball.
10 I am eager to learn more about basketball.
11 I enjoy any movement that occurs during a basketball game.

Mean absolute error (MAE)
The MAE is defined as the deviation between the paired predicted value (X̂i) and original
value (X). That is, it is the average of the absolute errors for subject n with dimension m:

MAE=

∑n
i=1
∑m

j=1

∣∣x̂i,j−xi,j∣∣
nm

Normalized-euclidean distances (NEDs)
The average of the Euclidean distance between each pair of samples in X and X̂i was also
calculated to accommodate possible missing values for subject n with dimension m.

NED=

√√√√ n∑
i=1

m∑
j=1

(
x̂i,j∣∣x̂i,j∣∣− xi,j∣∣xi,j∣∣)

In summary, a 3×3×27 factorial design was implemented according to themanipulated
variables of community level, non-normality level, and sample size, resulting in a total of
243 population conditions (Table 2). Each of the scenario was simulated for 10 times.

RESULTS
The efficacy of the autoencoders was identified using a Monte Carlo simulation that
manipulated five population parameters. The correlation structure was determined with
three levels of communality (high, wide, and low), three levels of normality (normal, slightly
un-normal, and un-normal), and nine levels of hidden layers of neurons. One should be
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Table 2 Parameters for generating non-normal data.

Scenario no. Mean Standard deviation Skewness Kurtosis

1 0 1 0 0
2 0 1 1 3
3 0 1 2 20

Table 3 Performance metrics for three communality conditions.

High
communality

Wide
communality

Low
communality

Metric Algorithm Mean SD Mean SD Mean SD

MSE Simple encoder 0.343 0.175 0.382 0.203 0.458 0.146
Tied encoder 0.034 0.009 0.034 0.010 0.034 0.009
PCA 0.230 0.160 0.254 0.196 0.337 0.148
Deep autoencoder 0.032 0.019 0.036 0.022 0.044 0.017
Independent autoencoder 0.036 0.021 0.040 0.023 0.048 0.018

MAE Simple encoder 0.444 0.112 0.460 0.128 0.523 0.086
Tied encoder 0.126 0.018 0.126 0.018 0.127 0.017
PCA 0.357 0.116 0.356 0.144 0.443 0.101
Deep autoencoder 0.107 0.030 0.110 0.034 0.128 0.024
Independent autoencoder 0.113 0.031 0.117 0.035 0.133 0.025

NED Simple encoder 2.288 0.166 2.277 0.179 2.226 0.144
Tied encoder 1.053 0.076 1.055 0.074 1.060 0.073
PCA 4.730 0.303 4.745 0.341 4.634 0.291
Deep autoencoder 1.146 0.086 1.144 0.094 1.114 0.079
Independent autoencoder 1.138 0.099 1.132 0.104 1.111 0.085

Notes.
MSE, mean squared error; PCA, principal component analysis; MAE, mean absolute error; NED, non-Euclidian distance;
SD, standard deviation.

aware that the current study focused on the feasibility of analyzing small samples. As a
result, sample sizes beyond 1,000 were not considered.

Overall, the autoencoders had smaller reconstruction errors compared to the PCA
counterpart. Specifically, the tied-weight autoencoder, deep autoencoder, and independent-
feature autoencoder outperformed the PCA in all three communality conditions. The
Tied autoencoder was the most stable algorithm among all candidates, as its SD for
reconstruction was the smallest (Table 3). In general, the autoencoder family produced
smaller MAEs and NEDs compared to the PCA, except for the simple encoder. The simple
autoencoder generated larger MSEs and MAEs for all three communality conditions.
When the communality was low, performances of the deep autoencoder, tied-weight
autoencoder, and independent autoencoder were less affected, in contrast to the PCA and
simple encoder.

With respect to the input data distributions, it was observed that the performances
of the autoencoder family and PCA were not affected by non-normality conditions
for this small sample size simulation. However, it was interesting to observe that for
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Table 4 Performance metrics for three normality conditions.

Normal Slightly un-normal Un-normal

Metric Algorithm Mean SD Mean SD Mean SD

MSE Simple encoder 0.397 0.182 0.394 0.181 0.392 0.185
Tied encoder 0.034 0.009 0.034 0.009 0.034 0.010
PCA 0.277 0.174 0.275 0.175 0.269 0.177
Deep autoencoder 0.038 0.020 0.038 0.020 0.037 0.019
Independent autoencoder 0.042 0.021 0.041 0.021 0.041 0.021

MAE Simple encoder 0.484 0.117 0.473 0.114 0.471 0.115
Tied encoder 0.128 0.018 0.126 0.018 0.125 0.017
PCA 0.393 0.130 0.382 0.128 0.380 0.127
Deep autoencoder 0.117 0.032 0.114 0.031 0.114 0.030
Independent autoencoder 0.123 0.033 0.121 0.032 0.120 0.031

NED Simple encoder 2.305 0.158 2.263 0.164 2.223 0.166
Tied encoder 1.075 0.073 1.053 0.074 1.041 0.072
PCA 4.787 0.299 4.699 0.314 4.622 0.314
Deep autoencoder 1.155 0.086 1.134 0.087 1.116 0.087
Independent autoencoder 1.147 0.095 1.126 0.096 1.108 0.096

Notes.
MSE, mean squared error; MAE, mean absolute error; NED, non-Euclidian distance; PCA, principal component analysis;
SD, standard deviation.

data that was extremely un-normal, the tied-weight encoder, deep autoencoder, and
independent-feature encoder outperformed the PCA in terms of the MSE and MAE. Of
all autoencoder variations, the tied-weight encoder generated the smallest MSE (Table 4).
We also evaluated reconstruction errors under different combinations of communality
conditions and non-normality conditions. When input data were normally distributed, the
resulting reconstruction errors were similar among the three communalities. However, if
the correlation structure was low, the MSE increased for non-normal data, even if it only
slightly deviated from a normal distribution (Fig. 3).

Regarding the sample size, the MSE for the autoencoder family decreased as the sample
size increased. MSEs for the deep autoencoder, tied-weight encoder, and independent
encoder were smaller than that for the PCA for a small sample size. The MSE appeared
to decrease to a local minimum when the sample size reached 200 (Fig. 4). The simple
encoder had the largest MSE, while the tied-weight encoder had the smallest MSE for all of
the different sample sizes considered. On the other hand, the PCA had the largest Euclidean
distance between the original data and its predictions, while the NEDs were smaller for
the tied-weight encoder and deep autoencoder. We further analyzed reconstruction errors
for all of the autoencoder family and PCA under different combinations of normality
conditions and communality. MSEs for the tied-weight encoder continued to decrease
until the sample size reached 200 regardless of the deviation from a normal distribution
and communality conditions (Figs. 4 & 5). A similar trend was also found for the deep
autoencoder. The MSE was negatively associated with the sample size, and the MSE
stabilized for values of n greater than 400. In contrast, the reconstruction error for the
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Figure 3 Interaction of communality and non-normality condition on the mean squared error (MSE)
for the simple autoencoder.

Full-size DOI: 10.7717/peerjcs.782/fig-3

PCA was much contaminated by the weak commonality condition. If the correlation
structure was low communality, the MSE was always higher than those of the wide and
high communality. A similar pattern was also observed for the MAE, as the PCA had a
larger MAE when the correlation structure was low communality. In contrast, the deep
autoencoder seemed to be insensitive to community conditions and deviations from
normality in terms of the MAE compared to that obtained from PCA (Fig. 6).

There are several algorithms available for determining the number of retaining factors
for a PCA, e.g., a scree plot and parallel analysis. However, there are no guidelines to
choose the size of the bottleneck layer in the autoencoder. From the simulation results, the
autoencoder seemed to perform better compared to the PCA especially when k was small
(Fig. 7). Even when the number of components was correctly specified by the PCA (which
was k = 3 in our simulation), all of the autoencoder variations besides the simple encoder
outperformed the PCA in terms of MSE.

With a real dataset
We directly compared reconstruction errors of both the deep autoencoder and PCA on
the Sports Fan Curiosity questionnaire. Based on previous simulation result, a random
sample of 100 subjects was chosen from the original data of 400 subjects to examine the
performance with small data. When the PCA was applied to the curiosity data, three
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Figure 4 Reconstruction error for the autoencoder family under different sample sizes.
Full-size DOI: 10.7717/peerjcs.782/fig-4
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Figure 5 Mean square errors (MSEs) for different combinations of communality and normality.
Full-size DOI: 10.7717/peerjcs.782/fig-5
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Figure 6 Mean absolute errors (MAEs) for the principal component analysis (PCA) and deep autoen-
coder.

Full-size DOI: 10.7717/peerjcs.782/fig-6

components were extracted with an R2 of 0.53 and an MSE of 0.46 while R2 reached
to 60.1% and the MSE decreased to 0.36 for the autoencoder. We adopted t -distributed
stochastic neighboring entities (t-SNEs) to visualize the reduced dimension. It was observed
that the three latent components could separate the clusters using the PCA, but there was
clearly some information that overlapped the extracted components. In contrast to the
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Figure 7 Mean squared errors (MSEs) of the autoencoder and principal component analysis (PCA)
under various extracted components.

Full-size DOI: 10.7717/peerjcs.782/fig-7

Figure 8 TSNE visualizations for PCA and Autoencoder.
Full-size DOI: 10.7717/peerjcs.782/fig-8

PCA, the autoencoder could better separate the three underlying constructs, as we saw that
there was a significant improvement over the PCA (Fig. 8).

Regarding the sport fan curiosity questionnaire, if the questionnaire is construct valid,
all items together well represent the underlying construct. Based on the weights estimated
from the autoencoder’s bottleneck layers, each item could be classified into one of the three
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latent dimensions by its weights in absolute values. For example, the item ‘‘I enjoy collecting
and calculating statistics of my favorite basketball team’’ has the highest correlation with
construct 1. Similarly, we see that item ‘‘Watching basketball games with my friends is
joyful’’ has the highest correlation with construct 2. As such, autoencoders can elucidate
how different items and constructs relate to one another and help develop new theories.
For example, in Table 5, the items ‘‘I enjoy collecting and calculating statistics of my
favorite basketball team,’’ ‘‘I enjoy reading articles about basketball players, teams, events,
and games,’’ ‘‘I am eager to learn more about basketball’’ and ‘‘I enjoy any movement that
occurs during a basketball game’’ appear to have large coefficient on one latent construct,
which we assign as ‘‘Learning Motivation’’ factor. ‘‘Watching basketball games with my
friends is joyful,’’ ‘‘I enjoy probing deeply into basketball,’’ and ‘‘I often imagine how my
favorite basketball team is playing to defeat their opponent’’ depict the ‘‘Social Interaction
‘‘factor. The three extracted constructs were knowledge, social interaction, and facility.
From the weighted estimate from the bottleneck layer in the autoencoder, each item was
classified into one of three latent constructs based on the largest weights among the three
clusters. As a result, the first component consisted of items 1, 5, 10, and 11. Items 2, 3, and
6 were classified into cluster 2, while items 4, 7, 8, and 9 belonged to cluster 3. Based on
the items in each cluster, three latent constructs were identified, i.e., learning motivation,
social interaction, and facility (Table 5).

The results from the current studywere conceptually equivalent to the three constructs of
sport fan curiosity scale developed by Park, Ha & Mahony (2014), i.e., specific information,
general information and sport facility information. The slight differences between findings
from the study and the work of Park et al. may result from different research contexts. More
specifically, the real dataset used in the study was collected from a specific sports context
(i.e., basketball) whereas Park et al. developed the sport fan curiosity scale in a general
sport context. However, the findings from the study with small sample size (n= 100)
yielded psychometrically similar factor structure to the work of Park et al. with a much
larger sample size (n= 407). Consequently, the effectiveness and efficiency of the proposed
methodology in the study enrich the relevant literature theoretically and practically.

DISCUSSION
The PCA and autoencoders are two common ways of reducing the dimensionality of
a high-dimensional feature space. The PCA is a linear-transformation algorithm which
projects features onto an orthogonal basis and thus, generates uncorrelated features. An
autoencoder is an unsupervised learning technique that can be adopted to tackle the task
of representative learning. That is, a bottleneck layer in the network is imposed so that
knowledge is compressed through the bottleneck layer, and the output is a representation
of the original input. A correlation structure that exists in the data can be learned and
consequently leveraged when forcing the input through the network’s bottleneck. This
characteristic of an autoencoder allows the encoder to compress information into a
low-dimensional space to model complicated non-linear associations.

One of the major objectives of the current study was to provide a feasibility analysis
for adopting a neural network model for establishing construct validity as a psychometric
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Table 5 Absolute values of bottleneck weights on the Curiosity dataset.

a. Bottleneck weights estimates from the population.

Learning motivation Social interaction Facility

0.329 0.029 0.237 I enjoy collecting and calculating statistics of my favorite
basketball team.

0.474 0.178 0.293 I enjoy reading articles about basketball players, teams,
events, and games.

0.335 0.158 0.261 I am eager to learn more about basketball.

0.68 0.003 0.227 I enjoy any movement that occurs during a basketball game.

0.385 0.433 0.415 Watching basketball games with my friends is joyful.

0.351 0.575 0.114 I enjoy probing deeply into basketball.

0.314 0.662 0.039 I often imagine how my favorite basketball team is playing
to defeat their opponent.

0.125 0.519 0.469 I enjoy exploring my favorite basketball stadiums or
facilities.

0.011 0.385 0.023 I am interested in learning how much it costs to build a
brand new basketball stadium.

0.104 0.19 0.581 I am interested in learning how large a basketball court is.

0.099 0.127 0.231 When I miss a game, I often look for information on
television, the internet, or newspaper to catch the game
results.

b. Bottleneck weights estimates from sample of n= 100.

Learning motivation Social interaction Facility

0.431 0.090 0.138 I enjoy collecting and calculating statistics of my favorite
basketball team.

0.532 0.067 0.299 I enjoy reading articles about basketball players, teams,
events, and games.

0.322 0.239 0.312 I am eager to learn more about basketball.

0.541 0.051 0.170 I enjoy any movement that occurs during a basketball game.

0.308 0.767 0.124 Watching basketball games with my friends is joyful.

0.089 0.440 0.100 I enjoy probing deeply into basketball.

0.355 0.685 0.077 I often imagine how my favorite basketball team is playing
to defeat their opponent.

0.431 0.175 0.431 I enjoy exploring my favorite basketball stadiums or
facilities.

0.117 0.203 0.615 I am interested in learning how much it costs to build a
brand new basketball stadium.

(continued on next page)
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Table 5 (continued)

b. Bottleneck weights estimates from sample of n= 100.

0.126 0.344 0.383 I am interested in learning how large a basketball court is.

0.031 0.078 0.224 When I miss a game, I often look for information on
television, the internet, or newspaper to catch the game
results.

property. Our simulation results indicated that if a low communality correlation structure
existed, the reconstruction error for the autoencoder would increase for the non-normal
data scenario when the sample size was small. This result showed that although the
computational resources for the neural network were generally more expensive, besides
the simple encoder, the reconstruction error for the autoencoder was uniformly smaller
across three different communality conditions as well as three different non-normality
conditions.

CONCLUSIONS
A common practical question in conducting factor analyses and PCAs is how many
subjects are sufficient to obtain a reliable estimate. There aremany rules of thumb proposed
suggesting a certain absolute sample size, such as a minimum of 250 or 500. Some suggested
a size-to-time ratio to be as high as 10 times as many subjects as variables. There is no
universally applicable answer, but the answer depends upon the clarity of the structure being
examined, i.e., the communality of the variables. If there is well-structured communality
among the variables, the size of the sample required goes down. As the number of items
for a factor increase, the sample size needed decreases. That is, if the number of variables is
high relative to the number of factors (e.g.,15:3), and the communality is high, then sample
sizes as small as 60∼100 are adequate. In FA models, more subjects are always better, but
what is more important is to have good markers for each factor (high communality) as well
as many markers (a high item-to-factor ratio) than it is to increase the number of subjects.
Unfortunately, although it will never be wrong advice to have many markers of high
communality, if using an autoencoder to analyze the structure of items rather than tests,
the communality requirement will tend to be low. In cases where communality is low and
data are not linearly distributed, increasing the number of subjects is advised. Based on this
simulation study, the autoencoder tended to perform relatively better when the neurons
of the bottleneck, k, were small, which means that the same reconstruction accuracy of
the original scale could be achieved with fewer components and hence a smaller dataset.
This is important when dealing with many items or variables in a questionnaire. For all
sample sizes being considered, the tied-weight encoder had relatively small reconstruction
errors. Based on this Monte Carlo simulation, we demonstrated that it is feasible for an
autoencoder to be used in psychometric research to establish the construct validity with a
small sample size.
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