
Submitted 9 June 2021
Accepted 19 October 2021
Published 17 January 2022

Corresponding author
Mawussi Zounon,
mawussi.zounon@manchester.ac.uk

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.778

Copyright
2022 Zounon et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Performance impact of precision
reduction in sparse linear systems
solvers
Mawussi Zounon1,2, Nicholas J. Higham1, Craig Lucas2 and Françoise Tisseur1

1 School of Mathematics, University of Manchester, Manchester, United Kingdom
2The Numerical Algorithms Group, Manchester, Greater Manchester, United Kingdom

ABSTRACT
It is well established that reduced precision arithmetic can be exploited to accelerate
the solution of dense linear systems. Typical examples are mixed precision algorithms
that reduce the execution time and the energy consumption of parallel solvers for
dense linear systems by factorizing a matrix at a precision lower than the working
precision. Much less is known about the efficiency of reduced precision in parallel
solvers for sparse linear systems, and existing work focuses on single core experiments.
We evaluate the benefits of using single precision arithmetic in solving a double
precision sparse linear system using multiple cores. We consider both direct methods
and iterative methods and we focus on using single precision for the key components
of LU factorization and matrix–vector products. Our results show that the anticipated
speedup of 2 over a double precision LU factorization is obtained only for the very
largest of our test problems.We point out two key factors underlying the poor speedup.
First, we find that single precision sparse LU factorization is prone to a severe loss of
performance due to the intrusion of subnormal numbers.We identify amechanism that
allows cascading fill-ins to generate subnormal numbers and show that automatically
flushing subnormals to zero avoids the performance penalties. The second factor is
the lack of parallelism in the analysis and reordering phases of the solvers and the
absence of floating-point arithmetic in these phases. For iterative solvers, we find
that for the majority of the matrices computing or applying incomplete factorization
preconditioners in single precision provides at best modest performance benefits
compared with the use of double precision. We also find that using single precision
for the matrix–vector product kernels provides an average speedup of 1.5 over double
precision kernels. In both cases some form of refinement is needed to raise the single
precision results to double precision accuracy, which will reduce performance gains.

Subjects Algorithms and Analysis of Algorithms, Distributed and Parallel Computing
Keywords Reduced precision , Sparse linear systems, Subnormal numbers, LU factorization,
Iterative refinement, Mixed precision

INTRODUCTION
Ever since early versions of Fortran offered real and double precision data types, we
have been able to choose between single and double precision floating-point arithmetics.
Although single precision was no faster than double precision on most processors up to
the early 2000s, on modern processors it executes twice as fast as double precision and

How to cite this article Zounon M, Higham NJ, Lucas C, Tisseur F. 2022. Performance impact of precision reduction in sparse linear sys-
tems solvers. PeerJ Comput. Sci. 8:e778 http://doi.org/10.7717/peerj-cs.778

https://peerj.com/computer-science
mailto:mawussi.zounon@manchester.ac.uk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.778
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.778

has the additional benefit of halving the data movement. As a result, single precision (as
well as half precision) is starting to be used in applications such as weather and climate
modelling (Dawson et al., 2018; Váňa et al., 2017) and seismic modeling (Fabien-Ouellet,
2020), where traditionally double precision was used. Mixed precision algorithms, which
use some combination of half, single, double, and perhaps even quadruple precisions, are
increasingly being developed and used in high performance computing (Abdelfattah et al.,
2021).

In 2006, Langou et al. (2006) and Buttari et al. (2007), drew the attention of the HPC
community to the potential of mixed precision iterative refinement algorithms for solving
dense linear systems with unprecedented efficiency. The underlying principle is to carry out
the most expensive part of the computation, the LU factorization or Cholesky factorization,
in single precision instead of double precision (the working precision) and then refine the
initial computed solution using residuals computed in double precision. This contrasts
with traditional iterative refinement, in which only a precision higher than the working
precision is used. The resulting algorithms are now implemented in LAPACK (Anderson et
al., 1999) (as DSGETRS, and DSPOTRS for general and symmetric positive definite problems,
respectively), and are generally twice as fast as a full double precision solve for sufficiently
well conditioned matrices.

A decade after the two-precision iterative refinement work by Buttari et al., Carson and
Higham introduced a GMRES-based iterative refinement algorithm that uses up to three
precisions for the solution of linear systems (Carson & Higham, 2017; Carson & Higham,
2018). This algorithm enabled Haidar et al. (Haidar et al., 2018a;Haidar et al., 2020;Haidar
et al., 2018b) to successfully exploit the half-precision floating-point arithmetic units of
NVIDIA tensor cores in the solution of linear systems. Compared with linear solvers using
exclusively double precision, their implementation shows up to a 4×–5× speedup while
still delivering double precision accuracy (Haidar et al., 2020; Haidar et al., 2018b). This
algorithm is now implemented in the MAGMA library (Agullo et al., 2009; Magma, 2021)
(routine magma_dhgesv_iteref_gpu) and in cuSOLVER, the NVIDIA library that provides
LAPACK-like routines (routine cusolverDnDHgesv). Most recently, a five-precision form
of GMRES-based iterative refinement has been proposed by Amestoy et al. (2021), which
provides extra flexibility in exploiting multiple precisions.

Mixed precision iterative refinement algorithms can be straightforwardly applied to
parallel sparse direct solvers. But the variability of sparsematrix patterns and the complexity
of sparse direct solvers make the estimation of the performance speedup difficult to predict.
The primary aim of this work is to provide insight into the speedup to expect from mixed
precision parallel sparse linear solvers. It is important to note that it is not our objective to
design a new mixed precision algorithm, but rather we focus on analysing whether using
single precision arithmetic in parallel sparse linear solvers has enough performance benefit
to motivate mixed precision implementations.

After discussing existing work and the need for new studies we describe our experimental
settings, including details of the sparse matrices and the hardware selected for our
benchmark and analysis. We then introduce the issue of subnormal numbers appearing
in single precision sparse LU factorization, explain how the subnormal numbers can

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.778

be generated, and propose different mitigation strategies. We present experimental
performance results and show that by reducing the working precision from double
precision to single precision for parallel sparse LU factorization, the expected speedup of
2 is only achieved for very large matrices. We provide a detailed performance profiling
to explain the results and we present a similar analysis for iterative solvers by studying
performance implications of precision reduction in sparse matrix–vector product and
incomplete LU factorization preconditioner kernels.

DISCUSSION OF EXISTING STUDIES
The performance benefits of mixed precision iterative refinement have been widely
demonstrated for dense linear systems. The few such performance studies for sparse linear
systems are summarized below, with an emphasis on the performance metrics reported.

Mixed precision iterative refinement for sparse direct solvers
Buttari et al. (2008) studied the performance of mixed precision iterative refinement
algorithms for sparse linear systems. They used Algorithm 1, in which the precision in
which each line should be executed is shown at the end of the line, with FP32 denoting
single precision and FP64 double precision. To implement Algorithm 1 they selected two
existing sparse direct solvers: a multifrontal sparse direct solver MUMPS, by Amestoy, Duff &
L’Excellent (2000) and a supernodal sparse direct solver SuperLU, by Li & Demmel (2003).
Multifrontal and supernodal methods are the two main variants of sparse direct methods;
for a full description and a performance comparison see Amestoy et al. (2001).

Algorithm 1Mixed-precision iterative refinement. Given a sparse matrix A ∈Rn×n, and a
vector b∈Rn, this algorithm solves Ax = b using a single precision sparse LU factorization
of A then refines x to double precision accuracy.
1: Carry out the reordering and analysis for A.
2: LU← sparse_lu(A) F (FP32)
3: Solve Ax = b using the LU factors. F (FP32)
4: while not converged do
5: r← b−Ax F (FP64)
6: Solve Ad = r using the LU factors. F (FP32)
7: x← x+d F (FP64)
8: end while

Buttari et al. (2008) showed that the version of SuperLU used in their study does not
benefit from using low-precision arithmetic. Put differently, the time spent in matrix
factorization, which is the most time-consuming part of the algorithm, is hardly reduced
when single precision arithmetic is used in place of double precision. They concluded
that a mixed precision iterative refinement based on SuperLU would be no faster than the
standard double precision algorithm.

For MUMPS, their experimental results showed that the mixed precision version can be up
to two times faster than the standard double precision MUMPS. While this result is consistent

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.778

with the performance observed for dense linear systems, there is an important difference
to point out here: all the experimental results in Buttari et al. (2008) were obtained using a
single core.

In 2010, Hogg & Scott (2010) designed a mixed precision iterative solver for the solution
of sparse symmetric linear systems. The algorithm is similar to Algorithm 1, except they
perform LDLT factorization instead of LU factorization and they also considered flexible
GMRES (Saad, 1993) for the refinement process. Their experimental results show that the
advantage of mixed precision is limited to very large problems, where the computation
time can be reduced by up to a factor of two. But the results of this study are again based
on single core benchmarks and also involve out-of-core techniques.

As these existing works are limited to a single core, further study is required to evaluate
how the performance will be affected in fully-featured parallel sparse direct solvers using
many cores. The main objective of using single precision arithmetic in sparse direct solvers
is to reduce the time to solution. A safe way to improve performance without risking
accuracy loss or inducing numerical stability is by exploiting the thread-level parallelism
available in modern multicore processors. It is then sensible to first take advantage of core
parallelism before usingmixed precision algorithms for further performance enhancement.
We aim to provide new insights into how far the exploitation of single precision arithmetic
can advance the performance of parallel sparse solvers when computing a double precision
accuracy solution.

Mixed precision methods for iterative solvers
Herewe summarize studies that usemixed precision arithmetic to improve the performance
of iterative solvers. The existing works can be classified in three categories.

The first approach consists of using a single precision preconditioner or a few steps
of a single precision iterative scheme as a preconditioner in a double precision iterative
method. Buttari et al. (2008) have demonstrated the performance potential of this method
using a collection of five sparse matrices, with a speedup ranging from 1.5x to 2.x. But the
experiment has been performed on a single core using a diagonal preconditioner with an
unvectorized sparse matrix–vector multiplication (SpMV) kernel.

The second approach, proposed in Anzt et al. (2019) and Flegar et al. (2021) uses low
precision data storage whenever possible to accelerate data movement while performing
all the computation in high precision. This concept is appealing, but hard to implement
in practice as it requires an optimized data conversion routine and knowledge of key
numerical properties of the matrices, such as the condition number. To illustrate this idea
the authors of Anzt et al. (2019) designed a mixed precision block-Jacobi preconditioning
method where the explicit inversion of the block diagonals is required.

The third category consists of studies that focus on designing a mixed precision SpMV
kernel for iterative solvers. This approach has been implemented by Ahmad, Sundar &
Hall (2019) by proposing a new sparse matrix format that stores selected entries of the
input matrix in single precision and the remainder in double precision. Their algorithm
accelerates data movement and computation with a small accuracy loss compared with
double precision SpMV. Their implementation demonstrates up to 2× speedup in the

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.778

best case, but hardly achieves any speedup on most of the matrices due to data format
conversion overhead. A similar approach has been implemented by Grigoraş et al. (2016)
with a better speedup for FPGA architectures.

Our contribution is to assess from a practical point of view the benefit of using single
precision arithmetic in iterative solvers for a double precision accuracy solution, by
evaluating optimized vendor kernels used in applications.

EXPERIMENTAL SETUP
The experimental results are reported using the Intel dual-socket Skylake with 40 cores and
the NVIDIA V100 GPU. We have also performed experiments using the AMD dual-socket
EPYC Naples system with 64 cores and the NVIDIA P100 GPU; and we obtained similar
results. We note that the arithmetic properties of the NVIDIA GPUs are investigated
in Fasi et al. (2021). The sparse matrices selected for the benchmark are from various
scientific and engineering applications and are summarized in Table 1. The Intel Skylake
node has 50 GB of main memory, and consequently sparse matrices whose factors require
more than 50 GB storage are not included. The matrices are divided in two groups. The
first 21 matrices are from the medium size group with 700,000 to 5,000,000 nonzero
elements. It takes a few seconds on average to factorize these matrices. The second group
contains larger matrices with 7,000,000 to 64,000,000 nonzeros and it takes on average a
few minutes to factorize most of the matrices in this group. For each matrix, the largest
absolute value maxi,j |aij | and the smallest nonzero absolute value mini,j{|aij | : aij 6= 0} of
the elements are reported in Table 1. For medium size matrices, an estimate for the 1-norm
condition number, κ1(A)=‖A−1‖1‖A‖1, computed using the MATLAB condest routine,
is also provided.

For each experiment, we consider the average time over 10 executions and we clear the
L1 and L2 caches between consecutive runs.

APPEARANCE OF SUBNORMAL NUMBERS IN SINGLE
PRECISION SPARSE LU AND MITIGATION TECHNIQUES
From Table 1, one can observe that the entries of the matrices fit in the range of single
precision arithmetic, which from Table 2 we see comprises numbers of modulus roughly
between 10−45 and 1038. There is no risk of underflow or overflow in converting these
matrices to single precision format. However, the smallest absolute value of matrix
ASIC_320ks, 1.26× 10−39, is a subnormal number in single precision. A subnormal
floating-point number is a nonzero number with magnitude less than the absolute value
of the smallest normalized number (Higham, 2002, Chap. 2), (Muller et al., 2018, Chap.
2). Floating-point operations on subnormals can be very slow, because they often require
extra clock cycles, which introduces a high overhead.

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 5/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.778

Table 1 Selected matrices from the SuiteSparse Matrix Collection (Davis, 2021;Davis & Hu, 2011).
The first 21 matrices are of medium size and each can be factorized in a few seconds. Matrices 22 to 36
are larger and require more time andmemory to solve.

Matrix Size nnz κ1(A) maxi,j |aij | mini,j{|aij | : aij 6= 0}

1 2cubes_sphere 101,492 1,647,264 2.93e+09 2.52e+10 6.68e−15
2 ASIC_320ks 321,67 1,316,085 5.06e+22 1.00e+06 1.26e−39
3 Baumann 112,211 748,331 1.368+09 1.29e+04 5.00e−02
4 cfd2 123,440 3,085,406 3.66e+06 1.00e+00 6.66e−09
5 crashbasis 160,000 1,750,416 1.78e+03 4.08e+02 6.42e−11
6 ct20stif 52,329 2,600,295 2.22e+14 8.86e+11 3.02e−34
7 dc1 116,835 861,071 1.01e+10 5.67e+4 3.00e−12
8 Dubcova3 146,689 3,636,643 1.14e+04 2.66e+00 8.47e−22
9 ecology2 999,999 4,995,991 6.66e+07 4.00e+01 1.00e+01
10 FEM_3D_thermal2 147,900 3,489,300 1.66e+03 2.92e−01 1.16e−05
11 G2_circuit 150,102 726,674 1.97e+07 2.22e+04 3.27e−01
12 Goodwin_095 100,037 3,226,066 3.43e+07 1.00e+00 1.41e−21
13 matrix-new_3 125,329 893,984 3.47e+22 1.00e+00 1.27e−21
14 offshore 259,789 4,242,673 2.32e+13 7.47e+14 7.19e−21
15 para-10 155,924 2,094,873 8.13e+18 6.44e+11 2.26e−20
16 parabolic_fem 525,825 3,674,625 2.11e+05 4.00e−01 3.18e−07
17 ss1 205,282 845,089 1.29e+01 1.00e+00 1.06e−11
18 stomach 213,360 3,021,648 8.01e+1 1.38e+00 1.47e−09
19 thermomech_TK 102,158 711,558 1.62e+20 1.96e+02 4.83e−03
20 tmt_unsym 917,825 4,584,801 2.26e+09 4.00e+00 1.00e+00
21 xenon2 157,464 3,866,688 1.76e+05 3.17e+28 5.43e+23
22 af_shell10 1,508,065 52,259,885 5.72e+05 1.00e−06
23 af_shell2 504,855 17,588,875 1.51e+06 4.55e−13
24 atmosmodd 1,270,432 8,814,880 2.22e+04 3.19e+03
25 atmosmodl 1,489,752 10,319,760 7.80e+04 3.96e+04
26 cage13 445,315 7,479,343 9.31e−01 1.15e−02
27 CurlCurl_2 806,529 8,921,789 4.42e+10 8.84e+06
28 dielFilterV2real 1,157,456 48,538,952 6.14e+01 3.25e−13
29 Geo_1438 1,437,960 60,236,322 6.69e+12 4.75e−07
20 Hook_1498 1,498,023 59,374,451 1.58e+05 5.17e−26
31 ML_Laplace 377,002 27,689,972 1.22e+07 1.24e−09
32 nlpkkt80 1,062,400 28,192,672 2.00e+02 4.08e−01
33 Serena 1,391,349 64,131,971 5.51e+13 2.19e−01
34 Si87H76 240,369 10,661,631 1.83e+01 2.57e−13
35 StocF-1465 1,465,137 21,005,389 3.10e+11 9.57e−09
36 Transport 1,602,111 23,487,281 1.00e+00 1.62e−12

The risk of underflow, overflow or generating subnormal numbers during the conversion
from higher precision to lower precision can be reduced using scaling techniques proposed
byHigham, Pranesh & Zounon (2019). However, even ifmatrices have been safely converted

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 6/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.778

Table 2 Parameters for IEEE single and double precision point arithmetic. xmin,s is the smallest
nonzero subnormal number and xmin and xmax are the smallest and largest normalized floating-point
numbers.

xmin,s xmin xmax Unit roundoff

FP32 1.4×10−45 1.2×10−38 3.4×1038 6.0×10−8

FP64 4.9×10−324 2.2×10−308 1.8×10308 1.1×10−16

from double to normalized single precision numbers, subnormal numbers may still be
generated during the computation.We first suspected this behavior in our benchmarkwhen
some single precision computations took significantly more time than the corresponding
double precision computations. For example, the sparse direct solver MUMPS computed
the double precision LU decomposition of the matrix Baumann (#3 in Table 1) in 1.6251
seconds, while the single precision factorization took 3.586 seconds. Instead of being two
times faster than the double precision computation, the single precision computation is
two times slower. A further analysis reveals that the smallest magnitude entries of the single
precision factors L and U are of the order of 10−88, which is a subnormal number in single
precision but a normalized number in double precision. The appearance of subnormal
numbers in the single precision factors may be surprising, since the absolute values of the
entries of this matrix range from 5×10−2 to 1.29×104, which appears to be innocuous
for single precision.

This phenomenon of LU factorization generating subnormal numbers does not appear
to have been observed before. How can it happen? The elements at the (k+1)st stage of
Gaussian elimination are generated from the formula

a(k+1)ij = a(k)ij −mika
(k)
kj , mik =

a(k)ik

a(k)kk

,

where mik is a multiplier. If A is a dense matrix of normalized floating-point numbers

with norm of order 1, it is extremely unlikely that any of the a(k)ij will become subnormal.
However, for sparse matrices we can identify a mechanism whereby fill-in cascades down
a column and small multipliers combine multiplicatively. Consider the upper Hessenberg
matrix

A=

d1 0 0 1
−a1 d2 0 ... 0 0

−a2 d3 0 ...
...

−a3 d4
. . .

...

. . .
. . . 0
−an−1 dn

.

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 7/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.778

1Subnormal numbers are also referred to as
denormal numbers.

LU factorization without row or column permutations produces the LU factorization

LU ≡

1

−
a1
d1

1

−
a2
d2

. . .

. . . 1

−
an−1
dn−1

1

d1 0 0 1

d2 0 ... 0
a1
d1

d3 0 ...
a1a2
d1d2

d4
. . .

...

. . .
a1a2 ...an−2
d1d2 ...dn−2

dn+
a1a2 ...an−1
d1d2 ...dn−2

.

The elements −ai/di on the subdiagonal of L are multipliers. The problem is in the last
column of U . If |ai/di|< 1 for all i then |uin| will decrease monotonically with i, and if
|ai/di|� 1 for many i then |uin| will eventually become subnormal as i increases. This can
happen because of large di or small ai. As illustrated in this example, subnormal numbers are
mainly generated in the fill-in process, with zero entries gradually replaced with subnormal
numbers. Consequently, sparse matrix reordering algorithms for fill-in reduction can
naturally help decrease the appearance of subnormal numbers, but unless fill-in is fully
eliminated, different mitigation techniques are required to prevent performance drop.

The performance loss caused by arithmetic on subnormal numbers is often mitigated by
two options: Flush to Zero (FTZ) and Denormals1 Are Zero (DAZ). With the FTZ option,
when an operation results in a subnormal output, zero is returned instead, while with the
DAZ option any subnormal input is replaced with zero. For the sake of simplicity we will
refer to both options as FTZ in the rest of this paper. It may be possible to enable the FTZ
option using compiler flags. For example this is automatically activated by Intel’s C and
Fortran compilers whenever the optimization level is set higher than -O0. However, we
have used the GNU Compiler Collection (GCC) in this study, and the only option to flush
subnormals to zero is via the -fast-math option. But the -fast-math flag is dangerous
as it also disables checking for NaNs and +-Infs and does not maintain IEEE arithmetic
compatibility, so it can result in incorrect output for programs that depend on an IEEE-
compliant implementation (https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html).
As a safe alternative to the -fast-math flag, we use the x86 assembly code; see the listing in
Fig. 1. Calling SetFTZ() before the factorization routines guarantees flushing subnormals to
zero without compromising the numerical robustness of the software. Once the SetFTZ()
routine is called at the beginning of a program, it is effective during the whole execution,
unless it is explicitly deactivated by calling another ×86 assembly code not listed in this
paper.

SINGLE PRECISION SPEEDUP OVER DOUBLE PRECISION
FOR SPARSE LU FACTORIZATION
The main performance gain of mixed precision iterative refinement algorithms comes
from using low precision arithmetic to factorize the coefficient matrix associated with the
linear system. The factorization stage dominates the cost of the algorithm, assuming that

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 8/22

https://peerj.com
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://dx.doi.org/10.7717/peerj-cs.778

1 void SetFTZ(void_zou)
2 {
3 asm("stmxcsr -0x4(%rsp)\n\t" /* store MXCSR register on stack */
4 "orl $0x8040,-0x4(%rsp)\n\t" /* set bits 15(FTZ) and 7(DAZ) */
5 "ldmxcsr -0x4(%rsp)"); /* load MXCSR register from stack */
6 }

Figure 1. x86 assembly code for flushing subnormals to zero, while maintaining IEEE arithmetic
compatibility.

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

St
oc
F-
14
65

Ge
o_
14
38

Se
re
na ss
1

nl
pk
kt
80

Si
87
H7

6
ca
ge
13

Tr
an
sp
or
t

Ho
ok
_1
49
8

at
m
os
m
od

d
ML

_L
ap
lac

e
Cu

rlC
ur
l_2

AS
IC
_3
20
ks

m
at
rix

-n
ew

_3
pa
ra
-1
0

di
elF

ilt
er
V2

re
al

2c
ub

es
_s
ph

er
e

at
m
os
m
od

l
af
_s
he
ll1
0

of
fs
ho

re
xe
no

n2
cf
d2

Ba
um

an
n

af
_s
he
ll2

ct
20
st
if

st
om

ac
h

cr
as
hb

as
is

tm
t_
un

sy
m

FE
M_

3D
_t
he
rm

al2
Go

od
wi
n_
09
5

G2
_c
irc

ui
t

pa
ra
bo

lic
_f
em

Du
bc
ov
a3

th
er
m
om

ec
h_
TK

ec
ol
og

y2 dc
1

LU Fact. with FTZ LU Fact. without FTZ

Figure 2. Single precision speedup over double precision for sparse LU factorization using PARDISO
on a single Intel Skylake core.

In addition to SuperLU and MUMPS, we have added PARDISO (Schenk et al., 2001), which is212

available in the Intel Math Kernel Library (MKL), to the set of sparse direct solvers for the benchmarks.213

PARDISO combines left- and right-looking level 3 BLAS supernodal algorithms for better parallelism.214

The solvers also include the multithreaded version of SuperLU, called SuperLU_MT Li (2005). We will215

refer to both packages as SuperLU unless there is ambiguity. We also considered adding UMFPACKDavis216

(2004), but this package does not have support for single precision.217

For each sparse direct solver, we report the factorization speedup for both sequential and parallel218

runs. Even though the Intel Skylake has 40 cores, we report parallel results with 10 cores as for most219

of the experiments the performance stagnates and sometimes declines beyond 10 cores. To stress the220

performance penalty induced by subnormals in the single precision computations, the results with and221

without FTZ are reported.222

The experimental results with serial PARDISO are summarized in Figure 2. For each matrix two bars223

are shown, which give the speedup for LU factorization with and without FTZ. Without FTZ, up to 15224

matrices out of 36 show a speedup below 1. In other words, single precision decreases the performance for225

42% of the problems compared with double precision. This anomaly is corrected by flushing subnormals226

to zero. By comparing the results with FTZ with results without FTZ, we see that more than half of the227

problems generated subnormals during the single precision computation. As for the performance benefit228

of using single precision for the matrix factorization, half of the matrices show a speedup above the 1.5x229

threshold. The matrices that did not exceed 1.5x speedup are predominately of medium size. The parallel230

results in Figure 3 show that with 10 cores the proportion of problems that reach 1.5x speedup drops from231

7/17PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62001:1:1:NEW 21 Sep 2021)

Manuscript to be reviewedComputer Science

Figure 1 x86 assembly code for flushing subnormals to zero, while maintaining IEEE arithmetic com-
patibility.

Full-size DOI: 10.7717/peerjcs.778/fig-1

the refinement converges quickly. We therefore focus on the speedup achieved during the
matrix factorization step to evaluate the potential of low-precision arithmetic for solving
sparse linear systems. For each problem from Table 1, we report the speedup achieved
during the factorization, and we use a threshold of 1.5× to decide whether low precision
is beneficial. Note that in the case of dense linear systems, the factorization step speedup is
usually close to 2×.

In addition to SuperLU and MUMPS, we have added PARDISO (Schenk et al., 2001), which
is available in the Intel Math Kernel Library (MKL), to the set of sparse direct solvers
for the benchmarks. PARDISO combines left- and right-looking level 3 BLAS supernodal
algorithms for better parallelism. The solvers also include the multithreaded version of
SuperLU, called SuperLU_MT Li (2005). We will refer to both packages as SuperLU unless
there is ambiguity. We also considered adding UMFPACKDavis (2004), but this package does
not have support for single precision.

For each sparse direct solver, we report the factorization speedup for both sequential
and parallel runs. Even though the Intel Skylake has 40 cores, we report parallel results with
10 cores as for most of the experiments the performance stagnates and sometimes declines
beyond 10 cores. To stress the performance penalty induced by subnormals in the single
precision computations, the results with and without FTZ are reported.

The experimental results with serial PARDISO are summarized in Fig. 2. For each matrix
two bars are shown, which give the speedup for LU factorization with and without FTZ.
Without FTZ, up to 15 matrices out of 36 show a speedup below 1. In other words, single
precision decreases the performance for 42% of the problems compared with double
precision. This anomaly is corrected by flushing subnormals to zero. By comparing the
results with FTZ with results without FTZ, we see that more than half of the problems
generated subnormals during the single precision computation. As for the performance
benefit of using single precision for the matrix factorization, half of the matrices show a
speedup above the 1.5× threshold. The matrices that did not exceed 1.5× speedup are
predominately of medium size. The parallel results in Fig. 3 show that with 10 cores the
proportion of problems that reach 1.5× speedup drops from 50% to 30%. The problems
that still reach 1.5× speedup with 10 cores are exclusively from the large matrices and
represent 65% of them.

The results for serial MUMPS are summarized in Fig. 4. The matrices that suffered
performance degradation due to subnormals in the PARDISO experiments exhibit similar
behavior with MUMPS. Similarly, half of the matrices did not reach the threshold of 1.5×,

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 9/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-1
http://dx.doi.org/10.7717/peerj-cs.778

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

St
oc
F-
14
65

Ge
o_
14
38

Se
re
na ss
1

nl
pk
kt
80

Si
87
H7

6
ca
ge
13

Tr
an
sp
or
t

Ho
ok
_1
49
8

at
m
os
m
od

d
ML

_L
ap
lac

e
Cu

rlC
ur
l_2

AS
IC
_3
20
ks

m
at
rix

-n
ew

_3
pa
ra
-1
0

di
elF

ilt
er
V2

re
al

2c
ub

es
_s
ph

er
e

at
m
os
m
od

l
af
_s
he
ll1
0

of
fs
ho

re
xe
no

n2
cf
d2

Ba
um

an
n

af
_s
he
ll2

ct
20
st
if

st
om

ac
h

cr
as
hb

as
is

tm
t_
un

sy
m

FE
M_

3D
_t
he
rm

al2
Go

od
wi
n_
09
5

G2
_c
irc

ui
t

pa
ra
bo

lic
_f
em

Du
bc
ov
a3

th
er
m
om

ec
h_
TK

ec
ol
og

y2 dc
1

LU Fact. with FTZ LU Fact. without FTZ

Figure 2 Single precision speedup over double precision for sparse LU factorization using PARDISO on
a single Intel Skylake core.

Full-size DOI: 10.7717/peerjcs.778/fig-2

and the matrices beyond 1.5× are mainly the large ones. The parallel results in Fig. 5 are
less attractive as only five matrices deliver a speedup beyond 1.5×. These matrices are from
the large size group.

Unlike PARDISO and MUMPS, the multithreaded SuperLU ran out of memory for 15
problems out of the 36, predominantly the large size ones. Results are reported for only the
21 remaining matrices. The serial results in Fig. 6 show that only 33% of the 21 problems,
successfully solved exceed 1.5x speedup, against 24% for the parallel results in Fig. 7.

These results show that mixed precision iterative refinement may only be beneficial for
large sparse matrices. However, a large matrix size and higher density are not enough to
predict the speedup, as matrix dielFilterV2real is much larger and denser than cage13

but its speedup is lower than cage13’s speedup in all the experiments. We note the contrast
with dense linear systems, where a 2× speedup is often achieved even for matrices of size
as small as 200×200.

ANALYSIS OF RESULTS FOR SPARSE LU FACTORIZATION
Apart from the unforeseen high occurrence of subnormal numbers in single precision
sparse LU factorization, two other unexpected observations require further explanation.
These are the poor speedup of the matrices from the medium size group, and the fact that
manymatrices show better speedup in single core experiments than with parallel execution.
This section aims to address these questions.

Sparse direct solvers employ more elaborate algorithms than dense solvers. Given a
sparse linear system to solve, the rows and the columns of the sparse matrix are first
reordered to reduce the number of nonzero elements in the factors, or such that the matrix

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 10/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-2
http://dx.doi.org/10.7717/peerj-cs.778

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

nl
pk
kt
80

ca
ge
13

Ge
o_
14
38

Si
87
H7

6
Se

re
na

St
oc
F-
14
65

at
m
os
m
od

l
at
m
os
m
od

d
Tr
an
sp
or
t

Ho
ok
_1
49
8

Cu
rlC

ur
l_2

di
elF

ilt
er
V2

re
al

2c
ub

es
_s
ph

er
e

pa
ra
-1
0

AS
IC
_3
20
ks

m
at
rix

-n
ew

_3
of
fs
ho

re ss
1

af
_s
he
ll1
0

ML
_L
ap
lac

e
xe
no

n2
cf
d2

st
om

ac
h

Ba
um

an
n

af
_s
he
ll2

ct
20
st
if

FE
M_

3D
_t
he
rm

al2
cr
as
hb

as
is

Go
od

wi
n_
09
5

tm
t_
un

sy
m

ec
ol
og

y2
th
er
m
om

ec
h_
TK

G2
_c
irc

ui
t

pa
ra
bo

lic
_f
em

Du
bc
ov
a3 dc
1

LU Fact. with FTZ LU Fact. without FTZ

Figure 3 Single precision speedup over double precision for sparse LU factorization using PARDISO on
10 Intel Skylake cores.

Full-size DOI: 10.7717/peerjcs.778/fig-3

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

ca
ge
13

Se
re
na

Ge
o_
14
38

Si
87
H7

6
at
m
os
m
od

d
nl
pk
kt
80

Tr
an
sp
or
t

at
m
os
m
od

l
Ho

ok
_1
49
8

m
at
rix

-n
ew

_3
St
oc
F-
14
65

pa
ra
-1
0

Cu
rlC

ur
l_2

ML
_L
ap
lac

e
af
_s
he
ll1
0

di
elF

ilt
er
V2

re
al

xe
no

n2
af
_s
he
ll2

2c
ub

es
_s
ph

er
e

of
fs
ho

re
cf
d2 ss
1

Ba
um

an
n

ct
20
st
if

st
om

ac
h

FE
M_

3D
_t
he
rm

al2
cr
as
hb

as
is

pa
ra
bo

lic
_f
em

ec
ol
og

y2
G2

_c
irc

ui
t

th
er
m
om

ec
h_
TK

tm
t_
un

sy
m

Go
od

wi
n_
09
5

Du
bc
ov
a3 dc
1

AS
IC
_3
20
ks

LU Fact. with FTZ LU Fact. without FTZ

Figure 4 Single precision speedup over double precision for sparse LU factorization using MUMPS on a
single Intel Skylake core.

Full-size DOI: 10.7717/peerjcs.778/fig-4

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 11/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-3
https://doi.org/10.7717/peerjcs.778/fig-4
http://dx.doi.org/10.7717/peerj-cs.778

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

Si
87
H7

6
ca
ge
13

Se
re
na

Ge
o_
14
38

nl
pk
kt
80

Ho
ok
_1
49
8

at
m
os
m
od

d
at
m
os
m
od

l
m
at
rix

-n
ew

_3
Tr
an
sp
or
t

pa
ra
-1
0

St
oc
F-
14
65

Cu
rlC

ur
l_2

af
_s
he
ll1
0

di
elF

ilt
er
V2

re
al

xe
no

n2
af
_s
he
ll2

Ba
um

an
n

ct
20
st
if

of
fs
ho

re
2c
ub

es
_s
ph

er
e

cf
d2

FE
M_

3D
_t
he
rm

al2
cr
as
hb

as
is

st
om

ac
h

ss
1

ML
_L
ap
lac

e
ec
ol
og

y2
tm

t_
un

sy
m dc
1

AS
IC
_3
20
ks

pa
ra
bo

lic
_f
em

G2
_c
irc

ui
t

th
er
m
om

ec
h_
TK

Du
bc
ov
a3

Go
od

wi
n_
09
5

LU Fact. with FTZ LU Fact. without FTZ

Figure 5 Single precision speedup over double precision for sparse LU factorization using MUMPS on 10
Intel Skylake cores.

Full-size DOI: 10.7717/peerjcs.778/fig-5

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

of
fs
ho

re

xe
no

n2

Ba
um

an
n

pa
ra
-1
0

st
om

ac
h

tm
t_
un

sy
m

FE
M_

3D
_t
he
rm

al2

Go
od

wi
n_
09
5

2c
ub

es
_s
ph

er
e

cr
as
hb

as
is

AS
IC
_3
20
ks

af
_s
he
ll1
0

af
_s
he
ll2

pa
ra
bo

lic
_f
em

th
er
m
om

ec
h_
TK

Du
bc
ov
a3

ec
ol
og

y2

G2
_c
irc

ui
t

Cu
rlC

ur
l_2 cf
d2

ct
20
st
if

LU Fact. with FTZ LU Fact. without FTZ

Figure 6 Single precision speedup over double precision of sparse LU factorization using SuperLU on a
single Intel Skylake core. SuperLU ran out of memory for 15 problems.

Full-size DOI: 10.7717/peerjcs.778/fig-6

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 12/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-5
https://doi.org/10.7717/peerjcs.778/fig-6
http://dx.doi.org/10.7717/peerj-cs.778

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

xe
no

n2

pa
ra
-1
0

of
fs
ho

re

FE
M_

3D
_t
he
rm

al2

Ba
um

an
n

st
om

ac
h

Cu
rlC

ur
l_2

2c
ub

es
_s
ph

er
e

tm
t_
un

sy
m

Go
od

wi
n_
09
5

cr
as
hb

as
is

AS
IC
_3
20
ks

ec
ol
og

y2

cf
d2

ct
20
st
if

af
_s
he
ll1
0

af
_s
he
ll2

Du
bc
ov
a3

G2
_c
irc

ui
t

th
er
m
om

ec
h_
TK

pa
ra
bo

lic
_f
em

LU Fact. with FTZ LU Fact. without FTZ

Figure 7 Single precision speedup over double precision for sparse LU factorization using SuperLU on
10 Intel Skylake cores. SuperLU ran out of memory for 15 problems.

Full-size DOI: 10.7717/peerjcs.778/fig-7

has dense clusters to take advantage of BLAS 3 kernels. This pre-processing step is called
reordering, and it is critical for the overall performance and the memory consumption.
After the ordering, the resulting matrix is analyzed to determine the nonzero structures
of the factors and allocate the required memory accordingly. This step is called symbolic
factorization. It is followed by the numerical factorization step that computes the LU
factors, and finally the solve step.

The reordering and the analysis steps do not involve floating-point arithmetic. Therefore,
they do not benefit from lowering the arithmetic precision. If the reordering and the
analysis represent 50% of the overall factorization time, for example, then using single
precision instead of double will only reduce the overall time by a quarter in the best case.
This explains the poor speedup on average size matrices compared with the large size
group. This is illustrated in Fig. 8 where one can observe that the majority of average
size matrices spend more than 25% of the overall time in the reordering and analysis
steps. The matrices for which the reordering and analysis time is negligible are the ones
that reach up to 2× speedup with single precision. In general, the matrix sparsity pattern
and the effectiveness of the reordering algorithms will impact the speedup observed. For
example, for some small or moderate size matrices with a complex sparsity pattern, some
reordering algorithmsmay suffer a large amount of fill-in, causing the cost of the numerical
factorization to dominate and leading to a significant benefit from using single precision.
Further analysis of how the speedup depends on the matrix characteristics and the fill-in
rate observed during the symbolic and reordering steps is outside the scope of this work.

The second issue, the decrease of speedup in parallel experiments compared with single
core executions, is due to the lack of parallelism in the reordering and analysis steps. For

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 13/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-7
http://dx.doi.org/10.7717/peerj-cs.778

dc
1

th
er
m
om

ec
h_
TK

Du
bc
ov
a3

Go
od

wi
n_
09
5

pa
ra
bo

lic
_f
em

G2
_c
irc

ui
t

ec
ol
og

y2
tm

t_
un

sy
m

FE
M_

3D
_t
he
rm

al
cr
as
hb

as
is

AS
IC
_3
20
ks

ct
20
st
if

st
om

ac
h

af
_s
he
ll2 cf
d2

Ba
um

an
n

of
fs
ho

re
xe
no

n2
af
_s
he
ll1
0

2c
ub

es
_s
ph

er
e

ML
_L
ap
lac

e
di
elF

ilt
er
V2

re
al

pa
ra
-1
0

m
at
rix

-n
ew

_3
Cu

rlC
ur
l_2

St
oc
F-
14
65

Tr
an
sp
or
t

ss
1

Ho
ok
_1
49
8

at
m
os
m
od

l
at
m
os
m
od

d
Ge

o_
14
38

Se
re
na

nl
pk
kt
80

Si
87
H7

6
ca
ge
13

Figure 8 Time spent by double precision sequential PARDISO LU in each step on a single Intel Skylake
core. The bars are sorted by decreasing time associated with the reordering and analysis step.

Full-size DOI: 10.7717/peerjcs.778/fig-8

example in this work, all the sparse solvers except PARDISO use sequential reordering and
analysis algorithms on shared memory multicore architectures. PARDISO provides the
parallel version of the nested dissection algorithm for reordering, but compared with the
sequential version, it reduces the reordering time only by a factor of 2 while the numerical
factorization time decreases significantly, by up to a factor of 8 using 10 cores. Consequently,
by increasing the number of cores, the proportion of time spent in reordering and analysis
steps increases as illustrated in Fig. 9. One can observe that in the parallel experiment, half
of the matrices spent more than 50% of the overall factorization time in reordering and
analysis, which explains the limited acceleration from lowering the precision.

SINGLE PRECISION SPEEDUP OVER DOUBLE PRECISION
FOR SPARSE ITERATIVE SOLVERS
The performance of an iterative solver depends not only on the algorithm implemented
but also on the eigenvalue distribution and condition number of the matrix, the choice of
preconditioner, and the accuracy targeted. It is therefore hard to make general statements
about how mixed precision techniques will affect the performance of an iterative solver.
Therefore, in this section, we focus instead on analyzing the impact of low precision in
SpMv kernels and preconditioners, as they are the building blocks of iterative solvers.

The results in Fig. 10 illustrate the speedup from using single precision incomplete LU
factorization (ILU0) from the cuSPARSE (https://docs.nvidia.com/cuda/cusparse) library on
an NVIDIA V100 GPU. The cuSPARSE library provides an optimized implementation of

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 14/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-8
https://docs.nvidia.com/cuda/cusparse
http://dx.doi.org/10.7717/peerj-cs.778

dc
1

Du
bc
ov
a3

th
er
m
om

ec
h_
TK

ct
20
st
if

pa
ra
bo

lic
_f
em

FE
M_

3D
_t
he
rm

al
Go

od
wi
n_
09
5

G2
_c
irc

ui
t

cr
as
hb

as
is

ec
ol
og

y2
af
_s
he
ll2

tm
t_
un

sy
m

st
om

ac
h

cf
d2

AS
IC
_3
20
ks

ML
_L
ap
lac

e
Ba

um
an
n

xe
no

n2
of
fs
ho

re
af
_s
he
ll1
0

2c
ub

es
_s
ph

er
e

ss
1

di
elF

ilt
er
V2

re
al

pa
ra
-1
0

m
at
rix

-n
ew

_3
Cu

rlC
ur
l_2

Tr
an
sp
or
t

St
oc
F-
14
65

Ho
ok
_1
49
8

at
m
os
m
od

l
Ge

o_
14
38

at
m
os
m
od

d
Se

re
na

Si
87
H7

6
nl
pk
kt
80

ca
ge
13

Figure 9 Time spent by double precision parallel PARDISO LU in each step on 10 Intel Skylake cores.
The bars are sorted by decreasing time associated with the reordering and analysis step.

Full-size DOI: 10.7717/peerjcs.778/fig-9

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

of
fs
ho

re
Ba

um
an
n

cr
as
hb

as
is

at
m
os
m
od

d
2c
ub

es
_s
ph

er
e

ML
_L
ap
lac

e
Tr
an
sp
or
t

at
m
os
m
od

l
ca
ge
13

Cu
rlC

ur
l_2

xe
no

n2
st
om

ac
h

Si
87
H7

6
Ho

ok
_1
49
8

St
oc
F-
14
65

pa
ra
bo

lic
_f
em

FE
M_

3D
_t
he
rm

al2
af
_s
he
ll1
0

cf
d2

Se
re
na

pa
ra
-1
0

di
elF

ilt
er
V2

re
al

ss
1

af
_s
he
ll2

Ge
o_
14
38

m
at
rix

-n
ew

_3 dc
1

ct
20
st
if

AS
IC
_3
20
ks

Du
bc
ov
a3

Factorization Solve

Figure 10 Speedup of single precision versus double precision for sparse incomplete LU factorization
(ILU0) using cuSPARSE on NVIDIA V100 GPU.

Full-size DOI: 10.7717/peerjcs.778/fig-10

a set of sparse linear algebra routines for NVIDIA GPUs. For the sake of readability, the
matrices are sorted in a decreasing order of the solve step speedup.

The most critical part of the preconditioner application is the forward and backward
solve, because it is executed at each iteration and can easily become themost time consuming

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 15/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-9
https://doi.org/10.7717/peerjcs.778/fig-10
http://dx.doi.org/10.7717/peerj-cs.778

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

Tr
an
sp
or
t

ca
ge
13

Go
od

wi
n_
09
5

pa
ra
-1
0

m
at
rix

-n
ew

_3
cf
d2

st
om

ac
h

cr
as
hb

as
is

at
m
os
m
od

l
nl
pk
kt
80

Se
re
na

Ho
ok
_1
49
8

St
oc
F-
14
65

tm
t_
un

sy
m

Si
87
H7

6
af
_s
he
ll2

Ge
o_
14
38

ML
_L
ap
lac

e
ct
20
st
if

ec
ol
og

y2 ss
1

af
_s
he
ll1
0

of
fs
ho

re dc
1

G2
_c
irc

ui
t

xe
no

n2
2c
ub

es
_s
ph

er
e

pa
ra
bo

lic
_f
em

Du
bc
ov
a3

AS
IC
_3
20
ks

th
er
m
om

ec
h_
TK

Cu
rlC

ur
l_2

di
elF

ilt
er
V2

re
al

Ba
um

an
n

at
m
os
m
od

d
FE

M_
3D

_t
he
rm

al

Factorization Solve

Figure 11 Speedup of single precision versus double precision for sparse incomplete LU factorization
(ILU) using SuperLU on Intel Skylake. The SuperLU ILU implementation is serial but it has been com-
piled against a multithreaded MKL BLAS and run with 10 cores.

Full-size DOI: 10.7717/peerjcs.778/fig-11

part of iterative solvers. The dark green bars in Fig. 10 represent the speedup of the single
precision ILU0 preconditioner application. The performance shows that lowering the
precision in the preconditioner application did not enhance the performance. The same is
true for the incomplete factorization itself, so there is no benefit to using single precision in
place of double precision. The results from SuperLU ILU in Fig. 11 show a better speedup
for the solve step compared with the results from cuSPARSE ILU0. However, the speedup
is still under the threshold of 1.5× speedup, except for one matrix (Transport). For the
incomplete LU factorization step itself, the performance gain from using single precision
is insignificant. As the factorization step is more time-consuming than the solve steps, the
overall speedup of the preconditioner computation and application remains very small and
does not seem to present enough potential to accelerate parallel iterative solvers. Note that
from the libraries evaluated in this work only SuperLU and cuSPARSE provide incomplete
LU factorization implementation.

To evaluate how low precision can accelerate SpMV kernels, we have considered
the compressed row storage (CSR) format, as it is widely used in applications. In the CSR
format, a double precision sparsematrix with nnz nonzero elements requires approximately
12nnz bytes for the storage (each nonzero element requires 8 bytes for its value and 4 bytes
for its column index). In single precision the matrix will occupy approximately 8nnz bytes
of memory. As SpMV kernels are memory bandwidth-bound, the use of single precision
will only provide a 1.5x (12nnz divided by 8nnz) speedup in theory. Note that, for simplicity
we have ignored the 4n bytes for row indices, where n is the number of rows, and the extra
memory for left- and right-hand side vectors. The results in Fig. 12 for the optimized

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 16/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-11
http://dx.doi.org/10.7717/peerj-cs.778

Matrices

Sp
ee

du
p

(F
P6

4/
FP

32
)

0.0x

0.5x

1.0x

1.5x

2.0x

af
_s
he
ll1
0

af
_s
he
ll2

Tr
an
sp
or
t

Ho
ok
_1
49
8

Se
re
na

nl
pk
kt
80

Ge
o_
14
38

ca
ge
13

di
elF

ilt
er
V2

re
al

xe
no

n2
at
m
os
m
od

l
St
oc
F-
14
65

at
m
os
m
od

d
tm

t_
un

sy
m

Du
bc
ov
a3

pa
ra
bo

lic
_f
em

Cu
rlC

ur
l_2

FE
M_

3D
_t
he
rm

al2
ML

_L
ap
lac

e
ec
ol
og

y2
st
om

ac
h

Go
od

wi
n_
09
5

G2
_c
irc

ui
t

cr
as
hb

as
is

cf
d2

Si
87
H7

6
of
fs
ho

re ss
1

th
er
m
om

ec
h_
TK

2c
ub

es
_s
ph

er
e

Ba
um

an
n

ct
20
st
if

AS
IC
_3
20
ks

pa
ra
-1
0

m
at
rix

-n
ew

_3 dc
1

Figure 12 Speedup of single precision versus double precision for SpMV using cuSPARSE on NVIDIA
V100 GPU.

Full-size DOI: 10.7717/peerjcs.778/fig-12

cuSPARSE SpMV on the NVIDIA V100 GPU show that the speedup is oscillating around
1.5x. Similarly, the benchmark of the MKL SpMV in Fig. 13 shows that the single precision
kernel has approximately 1.5× speedup over the double precision kernel.

This study shows that computing or applying the ILU preconditioner in single precision
usually offers at best a modest speedup over double precision. Taking advantage of efficient
single precision SpMV kernels typically gives a 1.5 speedup. However, in both cases the
results will have at best single precision accuracy, so some form of refinement to double
precision will be necessary, which will reduce the speedups.

CONCLUSION
The benefits of using single precision arithmetic to accelerate compute intensive operations
when solving double precision dense linear systems are well documented in the HPC
community. Much less is known about the speedup to expect when using single precision
arithmetic in parallel algorithms for double precision sparse linear systems, and existing
work focuses on single core experiments. In this work, we have assessed the benefit of using
single precision arithmetic in solving double precision sparse linear systems on multicore
architectures. We have evaluated two classes of algorithms: iterative refinement based
on single precision LU factorization and iterative methods using single precision for the
matrix–vector product kernels or preconditioning.

Our first finding is that a limiting factor in the performance of single precision sparse
LU factorization is the generation of subnormal numbers, which occurs for the majority
of our test matrices. We have identified a mechanism whereby fill-in can cascade down a
column, creating and then propagating subnormal numbers with it. We have demonstrated

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 17/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-12
http://dx.doi.org/10.7717/peerj-cs.778

Ge
o_
14
38

at
m
os
m
od

d
ML

_L
ap
lac

e
Tr
an
sp
or
t

ec
ol
og

y2
af
_s
he
ll1
0

xe
no

n2
2c
ub

es
_s
ph

er
e

nl
pk
kt
80

AS
IC
_3
20
ks

ct
20
st
if

at
m
os
m
od

l
th
er
m
om

ec
h_
TK

St
oc
F-
14
65

pa
ra
bo

lic
_f
em

tm
t_
un

sy
m

pa
ra
-1
0

FE
M_

3D
_t
he
rm

al2
Ba

um
an
n

dc
1

st
om

ac
h

cr
as
hb

as
is

m
at
rix

-n
ew

_3
Du

bc
ov
a3

Si
87
H7

6
of
fs
ho

re
ca
ge
13

Cu
rlC

ur
l_2

G2
_c
irc

ui
t

Ho
ok
_1
49
8

cf
d2 ss
1

Se
re
na

af
_s
he
ll2

di
elF

ilt
er
V2

re
al

Go
od

wi
n_
09
5

Figure 13 Speedup of single precision versus double precision for SpMV usingMKL on 10 Intel Sky-
lake cores.

Full-size DOI: 10.7717/peerjcs.778/fig-13

the severe performance drop that can result and have shown how flushing subnormals to
zero can mitigate it.

Our second finding is that the anticipated speedup of 2 from using single precision
arithmetic is obtained only for the very largest of our test problems, where the analysis and
reordering time is negligible compared with numerical factorization time.

Our last finding concerns iterative solvers. Our results show that the performance gain
in computing or applying incomplete factorization preconditioners in single precision
is typically much less than a factor 1.5, but we have observed a speedup of around 1.5
by evaluating matrix–vector product kernels in single precision. In future work, we will
explore new approaches to integrate efficiently single precision matrix–vector product
kernels and single precision preconditioners in double precision iterative solvers without
accuracy loss.

Finally, we note that half precision arithmetic is of growing interest, because of the further
benefits it brings through faster arithmetic and reduced data movement. For dense systems,
GMRES-based iterative refinement(discussed in the introduction) successfully exploits a
half precision LU factorization to deliver double precision accuracy in the solution. We
are not aware of any half precision implementations of sparse LU factorization but if and
when they become available we hope to extend our investigation to them.

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 18/22

https://peerj.com
https://doi.org/10.7717/peerjcs.778/fig-13
http://dx.doi.org/10.7717/peerj-cs.778

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Innovate UK under grant number KTP011064, by the
Engineering and Physical Sciences Research Council under grant number EP/P020720/1,
and by the Royal Society. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Innovate UK: KTP011064.
The Engineering and Physical Sciences Research Council: EP/P020720/1.
The Royal Society.

Competing Interests
Nicholas J. Higham is an Academic Editor for PeerJ. Mawussi Zounon is employed by the
University of Manchester and The Numerical Algorithms Group. Craig Lucas is employed
by the Numerical Algorithms Group. We state that there is no competing interest resulting
from the fact that Mawussi Zounon and Craig Lucas are working for a non-academic
institution.

Author Contributions
• Mawussi Zounon conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
• Nicholas J. Higham conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.
• Craig Lucas and Françoise Tisseur analyzed the data, prepared figures and/or tables,

authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The codes used for the experimentation and all details to compile and reproduce the
experiments are available at GitHub: https://github.com/mawussi/ReSpaSol.

REFERENCES
Abdelfattah A, Anzt H, Boman EG, Carson E, Cojean T, Dongarra J, Fox A, Gates

M, HighamNJ, Li XS, Loe J, Luszczek P, Pranesh S, Rajamanickam S, Ribizel
T, Smith BF, Swirydowicz K, Thomas S, Tomov S, Tsai YM, Yang UM. 2021. A
survey of numerical linear algebra methods utilizing mixed-precision arithmetic.
International Journal of High Performance Computing Applications 35(4):344–369
DOI 10.1177/10943420211003313.

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 19/22

https://peerj.com
https://github.com/mawussi/ReSpaSol
http://dx.doi.org/10.1177/10943420211003313
http://dx.doi.org/10.7717/peerj-cs.778

Agullo E, Demmel J, Dongarra J, Hadri B, Kurzak J, Langou J, Ltaief H, Luszczek
P, Tomov S. 2009. Numerical linear algebra on emerging architectures: the
PLASMA and MAGMA projects. Journal of Physics: Conference Series 180(1):012037
DOI 10.1088/1742-6596/180/1/012037.

Ahmad K, Sundar H, Hall M. 2019. Data-driven mixed precision sparse matrix vector
multiplication for GPUs. ACM Transactions on Architecture and Code Optimization
16(4):51:1–51:24 DOI 10.1145/3371275.

Amestoy P, Buttari A, HighamNJ, L’Excellent J-Y, Mary T, Vieublé B. 2021. Five-
precision GMRES-based iterative refinement. Manchester: Manchester Institute for
Mathematical Sciences, The University of Manchester, UK. MIMS EPrint 2021.5.

Amestoy PR, Duff IS, L’Excellent J-Y. 2000.Multifrontal parallel distributed symmetric
and unsymmetric solvers. Computer Methods in Applied Mechanics and Engineering
184(2–4):501–520 DOI 10.1016/S0045-7825(99)00242-X.

Amestoy PR, Duff IS, L’Excellent J-Y, Li XS. 2001. Analysis and comparison of two
general sparse solvers for distributed memory computers. ACM Transactions on
Mathematical Software 27(4):388–421 DOI 10.1145/504210.504212.

Anderson E, Bai Z, Bischof CH, Blackford S, Demmel JW, Dongarra JJ, Du Croz
JJ, Greenbaum A, Hammarling SJ, McKenney A, Sorensen DC. 1999. LA-
PACK Users’ guide. Third edition. Philadelphia: Society for Industrial and Ap-
plied Mathematics. xxvi+407. Available at http://www.netlib.org/lapack/lug/
DOI 10.1137/1.9780898719604.

Anzt H, Dongarra J, Flegar G, HighamNJ, Quintana-Ortí ES. 2019. Adaptive precision
in block-Jacobi preconditioning for iterative sparse linear system solvers. Concur-
rency and Computation: Practice and Experience 31(6):e4460 DOI 10.1002/cpe.4460.

Buttari A, Dongarra J, Kurzak J, Luszczek P, Tomov S. 2008. Using mixed precision
for sparse matrix computations to enhance the performance while achieving 64-
Bit accuracy. ACM Transactions on Mathematical Software 34(4):17:1–17:22
DOI 10.1145/1377596.1377597.

Buttari A, Dongarra J, Langou J, Langou J, Luszczek P, Kurzak J. 2007.Mixed pre-
cision iterative refinement techniques for the solution of dense linear systems.
International Journal of High Performance Computing Applications 21(4):457–466
DOI 10.1177/1094342007084026.

Carson E, HighamNJ. 2017. A new analysis of iterative refinement and its application to
accurate solution of ill-conditioned sparse linear systems. SIAM Journal on Scientific
Computing 39(6):A2834–A2856 DOI 10.1137/17M1122918.

Carson E, HighamNJ. 2018. Accelerating the solution of linear systems by iter-
ative refinement in three precisions. SIAM Journal on Scientific Computing
40(2):A817–A847 DOI 10.1137/17M1140819.

Davis TA. 2004. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern mul-
tifrontal method. ACM Transactions on Mathematical Software 30(2):196–199
DOI 10.1145/992200.992206.

Davis TA. 2021. SuiteSparse: a suite of sparse matrix software. Available at https://people.
engr.tamu.edu/davis/suitesparse.html .

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 20/22

https://peerj.com
http://dx.doi.org/10.1088/1742-6596/180/1/012037
http://dx.doi.org/10.1145/3371275
http://dx.doi.org/10.1016/S0045-7825(99)00242-X
http://dx.doi.org/10.1145/504210.504212
http://www.netlib.org/lapack/lug/
http://dx.doi.org/10.1137/1.9780898719604
http://dx.doi.org/10.1002/cpe.4460
http://dx.doi.org/10.1145/1377596.1377597
http://dx.doi.org/10.1177/1094342007084026
http://dx.doi.org/10.1137/17M1122918
http://dx.doi.org/10.1137/17M1140819
http://dx.doi.org/10.1145/992200.992206
https://people.engr.tamu.edu/davis/suitesparse.html
https://people.engr.tamu.edu/davis/suitesparse.html
http://dx.doi.org/10.7717/peerj-cs.778

Davis TA, Hu Y. 2011. The university of florida sparse matrix collection. ACM Transac-
tions on Mathematical Software 38(1):1:1–1:25 DOI 10.1145/2049662.2049663.

Dawson A, Düben PD, MacLeod DA, Palmer TN. 2018. Reliable low precision
simulations in land surface models. Climate Dynamics 51(7):2657–2666
DOI 10.1007/s00382-017-4034-x.

Fabien-Ouellet G. 2020. Seismic modeling and inversion using half-precision floating-
point numbers. Geophysics 85(3):F65–F76 DOI 10.1190/geo2018-0760.1.

Fasi M, HighamNJ, Mikaitis M, Pranesh S. 2021. Numerical behavior of NVIDIA tensor
cores. PeerJ Computer Science 7:e330 1–19 DOI 10.7717/peerj-cs.330.

Flegar G, Anzt H, Cojean T, Quintana-Ortí ES. 2021. Adaptive precision block-jacobi
for high performance preconditioning in the ginkgo linear algebra software. ACM
Transactions on Mathematical Software 47(2):1–28 DOI 10.1145/3441850.

Grigoraş P, Burovskiy P, LukW, Sherwin S. 2016. Optimising Sparse Matrix Vec-
tor multiplication for large scale FEM problems on FPGA. In: 2016 26th in-
ternational conference on field programmable logic and applications (FPL). 1–9
DOI 10.1109/FPL.2016.7577352.

Haidar A, Abdelfattah A, ZounonM,Wu P, Pranesh S, Tomov S, Dongarra J.
2018a. The design of fast and energy-efficient linear solvers: on the potential
of half-precision arithmetic and iterative refinement techniques. In: Shi Y,
Fu H, Tian Y, Krzhizhanovskaya VV, Lees MH, Dongarra J, Sloot PMA, eds.
Computational Science—ICCS 2018. Cham, Switzerland: Springer, 586–600
DOI 10.1007/978-3-319-93698-7_45.

Haidar A, Bayraktar H, Tomov S, Dongarra J, HighamNJ. 2020.Mixed-precision
iterative refinement using tensor cores on GPUs to accelerate solution of lin-
ear systems. Proceedings of the Royal Society of London A 476(2243):20200110
DOI 10.1098/rspa.2020.0110.

Haidar A, Tomov S, Dongarra J, HighamNJ. 2018b.Harnessing GPU tensor cores
for fast FP16 arithmetic to speed up mixed-precision iterative refinement solvers.
In: Proceedings of the international conference for high performance computing,
networking, storage, and analysis, SC18 (Dallas, TX). Piscataway: IEEE, 47:1–47:11
DOI 10.1109/SC.2018.00050.

HighamNJ. 2002. Accuracy and stability of numerical algorithms. Second edition.
Philadelphia: Society for Industrial and Applied Mathematics
DOI 10.1137/1.9780898718027.

HighamNJ, Pranesh S, ZounonM. 2019. Squeezing a matrix into half precision, with
an application to solving linear systems. SIAM Journal on Scientific Computing
41(4):A2536–A2551 DOI 10.1137/18M1229511.

Hogg JD, Scott JA. 2010. A fast and robust mixed-precision solver for the solution
of sparse symmetric linear systems. ACM Transactions on Mathematical Software
37(2):17:1–17:24 DOI 10.1145/1731022.1731027.

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 21/22

https://peerj.com
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1007/s00382-017-4034-x
http://dx.doi.org/10.1190/geo2018-0760.1
http://dx.doi.org/10.7717/peerj-cs.330
http://dx.doi.org/10.1145/3441850
http://dx.doi.org/10.1109/FPL.2016.7577352
http://dx.doi.org/10.1007/978-3-319-93698-7_45
http://dx.doi.org/10.1098/rspa.2020.0110
http://dx.doi.org/10.1109/SC.2018.00050
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1137/18M1229511
http://dx.doi.org/10.1145/1731022.1731027
http://dx.doi.org/10.7717/peerj-cs.778

Langou J, Langou J, Luszczek P, Kurzak J, Buttari A, Dongarra J. 2006. Exploiting the
performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (Revis-
iting iterative refinement for linear systems). In: Proceedings of the 2006 ACM/IEEE
conference on supercomputing. Piscataway: IEEE. DOI 10.1109/SC.2006.30.

Li XS. 2005. An overview of SuperLU: algorithms, implementation, and user interface.
ACM Transactions on Mathematical Software 31(3):302–325
DOI 10.1145/1089014.1089017.

Li XS, Demmel JW. 2003. SuperLU_DIST: a scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Transactions on Mathematical Software
29(2):110–140 DOI 10.1145/779359.779361.

Magma. 2021.Matrix algebra on GPU and multicore architectures (MAGMA). Available
at https://icl.cs.utk.edu/magma/.

Muller J-M, Brunie N, de Dinechin F, Jeannerod C-P, Joldes M, Lefèvre V, Melquiond
G, Revol N, Torres S. 2018.Handbook of floating-point arithmetic. Second edition.
Boston: Birkhäuser, xxv+627 DOI 10.1007/978-3-319-76526-6.

Saad Y. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM Journal on
Scientific Computing 14(2):461–469 DOI 10.1137/0914028.

Schenk O, Gärtner K, FichtnerW, Stricker A. 2001. PARDISO: a high-performance
serial and parallel sparse linear solver in semiconductor device simulation. Future
Generation Computer Systems 18(1):69–78 DOI 10.1016/S0167-739X(00)00076-5.

Váňa F, Düben P, Lang S, Palmer T, Leutbecher M, Salmond D, Carver G. 2017.
Single precision in weather forecasting models: an evaluation with the IFS.Monthly
Weather Review 145(2):495–502 DOI 10.1175/MWR-D-16-0228.1.

Zounon et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.778 22/22

https://peerj.com
http://dx.doi.org/10.1109/SC.2006.30
http://dx.doi.org/10.1145/1089014.1089017
http://dx.doi.org/10.1145/779359.779361
https://icl.cs.utk.edu/magma/
http://dx.doi.org/10.1007/978-3-319-76526-6
http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1016/S0167-739X(00)00076-5
http://dx.doi.org/10.1175/MWR-D-16-0228.1
http://dx.doi.org/10.7717/peerj-cs.778

