
Submitted 21 June 2021
Accepted 12 October 2021
Published 12 November 2021

Corresponding authors
Zhonghua Hong,
zhhong@shou.edu.cn
Xiaohua Tong, xhtong@tongji.edu.cn

Academic editor
Chi-Hua Chen

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.770

Copyright
2021 Hong et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Prediction of COVID-19 epidemic
situation via fine-tuned IndRNN
Zhonghua Hong1,2, Ziyang Fan1, Xiaohua Tong2, Ruyan Zhou1, Haiyan Pan1,
Yun Zhang1, Yanling Han1, Jing Wang1, Shuhu Yang1, Hong Wu1 and
Jiahao Li1

1College of Information Technology, Shanghai Ocean University, Shanghai, China
2College of Surveying and Geo-Informatics, Tongji University, Shanghai, China

ABSTRACT
The COVID-19 pandemic is the most serious catastrophe since the SecondWorldWar.
To predict the epidemic more accurately under the influence of policies, a framework
based on Independently Recurrent Neural Network (IndRNN) with fine-tuning are
proposed for predict the epidemic development trend of confirmed cases and deaths in
the United Stated, India, Brazil, France, Russia, China, and the world to late May, 2021.
The proposed framework consists of four main steps: data pre-processing, model pre-
training and weight saving, the weight fine-tuning, trend predicting and validating. It is
concluded that the proposed framework based on IndRNN and fine-tuning with high
speed and low complexity, has great fitting and prediction performance. The applied
fine-tuning strategy can effectively reduce the error by up to 20.94% and time cost.
For most of the countries, the MAPEs of fine-tuned IndRNN model were less than
1.2%, the minimum MAPE and RMSE were 0.05%, and 1.17, respectively, by using
Chinese deaths, during the testing phase. According to the prediction and validation
results, theMAPEs of the proposed framework were less than 6.2% inmost cases, and it
generated lowest MAPE and RMSE values of 0.05% and 2.14, respectively, for deaths in
China.Moreover, Policies that play an important role in the development of COVID-19
have been summarized. Timely and appropriate measures can greatly reduce the spread
of COVID-19; untimely and inappropriate government policies, lax regulations, and
insufficient public cooperation are the reasons for the aggravation of the epidemic
situations. The code is available at https://github.com/zhhongsh/COVID19-Precdiction.
And the prediction by IndRNN model with fine-tuning are now available online
(http://47.117.160.245:8088/IndRNNPredict).

Subjects Bioinformatics, Artificial Intelligence
Keywords COVID-19, Deep Learning, Prediction Model, Fine-tuning, Independently Recurrent
Neural Network, Long-Short-Term-Memory, Gated-Recurrent-Unit

INTRODUCTION
The coronavirus disease 2019 (COVID-19) is brought on by infection from Severe Acute
Respiratory Syndrome (SARS) Coronavirus 2, and the reports of related cases were first
released by Wuhan, Hubei Province, China in December 2019 (Zhou et al., 2020). The
widespread COVID-19 epidemic is a serious threat, and has become one of the most
challenging global catastrophes facing mankind since the Second World War (China
Daily, 2020). On March 11th, 2020, the global development of COVID-19 was assessed by
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the World Health Organization (WHO) as having met the characteristics of a pandemic
(World Health Organization, 2020a). The mortality rate of COVID-19 is estimated to be
between 2% and 5%, i.e., lower than that of SARS and Middle East Respirator Syndrome
(Gasmi et al., 2020; Wu, Chen & Chan, 2020). However, COVID-19 has a higher infection
rate than bat-like SARS, and its pathogenicity is between that of SARS and bat-like SARS
(Benvecnuto et al., 2020). The heart may be damaged and developmyocardial inflammation
after recovery from COVID-19 (Puntmann et al., 2020). In addition, the widespread nature
of the disease also slows down activity on a national and global level, along with aggravating
unemployment and hunger (Mckibbin & Fernando, 2020; Armario, 2020).

On January 15th, 2020, the Chinese Center for Disease Control and Prevention (China
CDC) initiated a first-level emergency response (Li et al., 2020a). A series of policies
began to be implemented since January 23th, 2020 (Yang et al., 2020), and the epidemic
had stabilized by March 2020. In contrast, the epidemic situation overseas are not very
optimistic. The number of infected people continues to maintain substantial increase of
tens of thousands. According to the report by the WHO on April 25th, 2020, the global
epidemic has infected more than 146 million people, with 3,092,497 deaths, and the
epidemic in the Americas, Europe, and South-East Asia are the worst, especially in India
and the United States (World Health Organization, 2020b).

Predicting the development trend based on the increase of cases is useful for the
adjustment of epidemic prevention policy. However, in the current epidemic prediction
work, the models used are complex and slow (Yang et al., 2020; Bandyopadhyay & Dutta,
2020), and some methods are fast but not effective (Huang et al., 2020a). In addition, the
number of cumulative increases is not stable but variable, particularly, a sudden rapid or
modest increase affects the stability of modelling and therefore the accuracy of predicting
future trends. Thus, it is necessary to propose a model with coexistence of high precision,
high speed, and low model complexity to predict and analyze the development tendency
of COVID-19 with more efficiency and accuracy, and to summarise the meaningful and
positive policies.

In this paper, a framework combining IndRNN model and fine-tuning strategy is
proposed. Different from the existing models in the prediction of COVID-19, the fine-
tuning strategy is added to reduce error and time. The proposed framework consists of
four steps. First, the original data are pre-processed, including normalization and sequence
data generation. Then, the IndRNN model is used to iteratively train to learn information
or features hidden in COVID-19 sequence data, and weight parameters is obtained. Third,
the fine-tuning strategy is added to load the recently updated data into the model with
existing weight parameters for partial parameter adjustment. Finally, the model that has
learned the characteristics or information is used to predict the trend, and the prediction
results are compared with the real data for verification, and the policy events and social
economic influences under the epidemic situation are analyzed. The contributions in this
paper as follows:

(1) A framework based on IndRNNand fine-tuning strategy, which can be adept at longer
sequence data, was used in COVID-19 epidemic prediction with more accuracy and high
speed. IndRNN is used to retain effective information and better learn the characteristics

Hong et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.770 2/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.770


of changeable sequence data in COVID-19 due to the advantage of independent neurons
prevents gradient explosion and disappearance phenomenon. The fine-tuning strategy is
utilized to further improves the accuracy in a short time, and it avoids the consumption
brought by retraining after data update.

(2) The fitting performance of the proposed framework based on IndRNN and fine-
tuning are verified among the cumulative cases of India by comparing with the Long-Short-
Term-Memory (LSTM), bidirectional LSTM (Bi-LSTM), Gated-Recurrent-Unit (GRU),
Stacked_Bi_GRU, Convolutional Neural Network_LSTM (CNN_LSTM), Deep_CNN
models. And the prediction accuracy of the model is validated by the error between the
prediction results and the real data of the next four weeks in the cumulative case data of
the United State, India, Brazil, France, Russia, China, and world.

(3) The growth of the cumulative population is combined to analyze the positivity of
epidemic policies and activities. The phenomenon is found that the same proactive policies
have been implemented inconsistently in different countries because of lax regulation and
inadequate public cooperation.

The rest of the paper is organized as follows: ‘Related work’ describes the related
work of this research direction. ‘Materials & Methods’ introduces the data sources and
study area, the proposed framework, and performance metrics; the experimental results
are presented in ‘Results’. In ‘Discussion’, impact of fine-tuning on the prediction and
validation accuracy, and the influence of policies are discussed. Finally, some conclusions
are drawn in ‘Conclusions’.

RELATED WORK
There are two main methods for forecasting the epidemic development of COVID-19:
mathematical model and deep learning model.

A typical mathematical model in epidemic dynamics is the Susceptible-Exposed-
Infectious-Removed (SEIR)model, usingmathematical formulas to reflect the relationships
between the flows of people at four states: susceptible, exposed, infectious, and recovered
(Fang, Nie & Penny, 2020). The SEIR model was used to effectively predict the peaks
and sizes of COVID-19 epidemiological data with sufficient fitting performance (Yang
et al., 2020; Fang, Nie & Penny, 2020). A modified SEIR model also showed a good effect
for predicting the peaks and sizes (Yang et al., 2020). The peak deviation of the another
modified SEIR model in predicting epidemiological data in China was 3.02% (Fang, Nie &
Penny, 2020). However, SEIR focuses on predicting trends in sensitive, exposed, infected,
and recovered groups (Yang et al., 2020; Fang, Nie & Penny, 2020), rather than cumulative
confirmed and death cases. Moreover, it is necessary to comprehensively consider the
changes in some parameter values as affected by the changes in epidemic policies and
regional differences, such as the effective reproductive number, number of contacts, and
infection rate. And these parameters are not easy to obtain, and are uncertain.

Deep learning automatically extracts the features from the data and builds the model
without the need for other specific parameters. This method generates a series of sequence
data from COVID-19 epidemiological data and looks for regular changes in the sequence
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data. Some deep learningmodels based on LSTMwas used to predict COVID-19 trend, and
the results demonstrated that LSTM has good prospects for predicting the trend; however,
the fitting effect needs to be improved (Yang et al., 2020; Zandavi, Rashidi & Vafaee, 2020),
too many internal parameters of LSTM increase the complexity of model training, and
it can only learn forward. The Bi-LSTM, which adds bidirectional learning capability
on LSTM, and the GRU, which makes gates simplification on the internal structure of
LSTM, are used by Shahid, Zameer & Muneeb (2020) for epidemic prediction. Moreover,
a stacked-Bi-GRU model was applied for COVID-19 trend forecast, owing to the learning
adequacy of the bidirectional cyclic network (Bandyopadhyay & Dutta, 2020). LSTM and
GRU solve the problem of gradient vanishing explosion of RNN, but there is a gradient
attenuation problem of layer. In addition, the entanglement of neurons in the same layer
makes their behavior difficult to interpret.

The existence of these multiple gate operations in the recurrent unit of the RNN variants,
which is LSTM, Bi-LSTM, GRU, makes the parameters complicated. CNN does not need
many parameters in virtue of the advantage of weight sharing, in comparison with these
recurrent networks. A deep CNN model (Huang et al., 2020b) and a CNN-LSTM model
(Dutta, Bandyopadhyay & Kim, 2020) were proposed for analysing and predicting the
number of confirmed cases in China. However, the training speed of deep CNN is fast,
but the effect is not significantly improved. The CNN_LSTM model combines CNN and
LSTM, but increases the model complexity.

In the above deep learning network model, high precision, high speed, and low model
complexity cannot coexist. And the cumulative epidemic data is time series, so recurrent
networks are more suitable for processing such serialized data in comparing with CNN.
Similar to LSTM, GRU, Bi-LSTM, IndRNN is one of the variants of RNN, which can learn
longer sequence data, and it has no redundant gate operations, fewer parameters, and can
be more easily trained (Li et al., 2018). Simultaneously, IndRNN is designed to solve the
problems of gradient disappearance and explosion, and can be utilized to process sequence
data like LSTM, GRU and Bi-LSTM. IndRNN was used to learn relationships between
plant gene sequences, overcoming the uncertainty of artificially acquired traits, and has
higher accuracy than LSTM (Zhang et al., 2020). Therefore, Indrnn is adopted as the basic
model in this paper to improve the accuracy of epidemic prediction.

However, the epidemic data are updated daily, and the network weights need to be
retrained after obtaining the data of the last few weeks, which are time-consuming.
Fine-tuning can transfer the trained network model parameters to the required network
for partial parameter adjustments, without the need to train from scratch. Tajbakhsh et al.
(2016) used a fine-tuned pre-trained CNN network for medical image analysis and found
that the effect was better than training all data from scratch CNN. (Boyd, Czajka & Bowyer,
2020) demonstrated that fine-tuning existing network weights to extract iris features was
more accurate. Therefore, a fine-tuning strategy is added in this study to further improve
the accuracy and speed of prediction.

Combined with the above, in order to achieve rapid and more accurate epidemic
prediction, a framework based on IndRNN and fine-tuning to predict COVID-19
epidemiological data is proposed in this paper.
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Figure 1 China and top five countries of confirmed COVID-19 cases worldwide. The data on the left
represents the amount of cumulative confirmed cases in China and five countries with severe epidemic sit-
uation as of April 24, 2021.

Full-size DOI: 10.7717/peerjcs.770/fig-1

MATERIALS & METHODS
Data sources and study area
The study area of this research is shown in Fig. 1. In total, six countries are involved,
which are China, the United States, India, Brazil, France and Russia. China is the country
where the first COVID-19 has been reported in the world. The epidemiological data of
COVID-19 in China between January 18th, 2020 and May 22th, 2021 were downloaded
from http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml (National Health Commission of the
People’s Republic of China, 2020). The United States, India, Brazil, France and Russia are
the most severely affected countries in the world during this period. The data of these
top five countries were download from a dataset based on global COVID-19 epidemic
statistics, as published by https://github.com/CSSEGISandData/COVID-19 (Johns Hopkins
University in the United States, 2020). In addition, the cumulative overseas epidemic data
also analyzed, the data were retrieved from https://voice.baidu.com/act/newpneumonia/
newpneumonia/?from=osari_pc_3 (Baidu, 2020). The Chinese and overseas COVID-19
data were combined to generate the numbers of cumulative confirmed cases and cumulative
deaths worldwide. It should be noted that all of the three websites share the same definition
of cumulative confirmed and death cases, which ensures the consistency of the data. The
detailed information of the data used in this study is presented in Table 1.

Methods
The flowchart of the proposed framework is illustrated in Fig. 2. It mainly consists of
four steps as follows: (1) the cumulative confirmed and death cases obtained from various
websites are first preprocessed to generate sequence data of size in a uniform range, and
the sequence data are divided into training data, fine-tuning data, and testing data; (2) the
deep learning model trains and learns the features using the training data, then the weights
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Table 1 Detailed information of the COVID-19 epidemiological data used in this study.

Country
/Region

Statistical period Source

Confirmed Deaths Institution Website

China 2020/01/18∼
2021/5/22

2020/01/18∼
2021/5/22

National Health Commission of
the People’s Republic of China

http://www.nhc.gov.cn/xcs/yqtb/
list_gzbd.shtml

United States 2020/01/25∼
2021/5/22

2020/02/29∼
2021/5/22

India 2020/02/01∼
2021/5/22

2020/03/14∼
2021/5/22

Brazil 2020/02/29∼
2021/5/22

2020/03/21∼
2021/5/22

France 2020/03/07∼
2021/5/22

2020/02/15∼
2021/5/22

Russia 2020/02/01∼
2021/5/22

2020/03/21∼
2021/5/22

Johns Hopkins University in the
United States

https://github.com/
CSSEGISandData/COVID-19

Global 2020/01/15∼
2021/5/22

2020/02/15∼
2021/5/22

National Health Commission of
the People’s Republic of China;
Baidu

http://www.nhc.gov.cn/xcs/yqtb/
list_gzbd.shtml

are obtained. The training process is the process of establishing the optimal relationship
between the training data and the training labels, in which the training data is the input
and the training label is the perfect output. Through continuous iterative training, the
characteristics of training data are found, and the parameters in the network model are
adjusted to continuously fit the actual output and training labels; (3) the fine-tuning
data is loaded with the weight file, and the parameters are adjusted by fine-tuning model,
continuously reducing the error between the fine-tuning data and the fine-tuning labels;
(4) though applying the model built from the previous training and fine-tuning, the testing
data are used for testing, later trends are predicted, and validated using true data. The
testing data are input for testing by applying the model with weights, to determine the gap
between the actual output of test data and the test labels. After that, the model is used for
direct trend prediction, and the prediction results are compared with the real updated data
to judge the prediction performance of the proposed framework.

Specially, seven deep learning models which are LSTM, Bi-LSTM, GRU,
Stacked_Bi_GRU, CNN_LSTM, Deep_CNN, and IndRNN are used in this research
for model comparison. As shown in Fig. 3, the structures of the LSTM, Bi-LSTM, GRU,
and IndRNNmodels are approximately the same. The flatten layer in LSTM, Bi-LSTM and
GRU models is used to convert three-dimensional data into two-dimensional data. The
IndRNN model does not add the Flatten layer because the output of the IndRNN layer is
2-dimensional data. The details of the proposed framework are described below.

Pre-processing
Pre-processing includes MinMaxScaler operation and sequence data generation. To keep
the data at the same order of magnitude and facilitate characteristic analysis and model
convergence, the cumulative confirmed cases and deaths data are scaled to 0∼1 after
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Figure 2 Flow chart of the proposed scheme.
Full-size DOI: 10.7717/peerjcs.770/fig-2

MinMaxScaler operation based on the minimum and maximum values, and the original
proportion of the data is retained.

Sequence data generation is a crucial step, and it is the premise of sequence model
training. The sequence data can reflect changes in which no regularity can be traced in
single data. Therefore, the individual data were organised into sequential data. As shown
in Fig. 4, the dimensionality of the individual data for n weeks was (n,1), a window with a
sequence length of x and step size of 1 was initially selected for sliding orderly through the
weekly data. All of the data contained in the window was considered as a data sequence,
and the next week data outside the window was the corresponding label data. After the
window slid through all of the weekly data, the sequence data with dimension of (n−x,x)
was generated. It is noteworthy that the content of sequence data represents features. For
example, when the sequence length is 3, the data from the first to the third form a sequence,
and the data from the fourth day is the label data; next, the data of days 2 to 4 form a
sequence, and the data of day 5 is label data. The sequence data generation is completed
until the label data reaches the last data of the input data.
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Figure 3 The structures of LSTM, Bi-LSTM, GRU and the IndRNNmodel. The purple box indicates the
network layers that need to be fine-tuned.

Full-size DOI: 10.7717/peerjcs.770/fig-3
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Figure 4 Sequence data generation.
Full-size DOI: 10.7717/peerjcs.770/fig-4

LSTM and Bi-LSTM
In RNN, too many cyclic units may lead to the loss of previously learned rule information
and the existence of long-term dependence, and can lead to the problems such gradient
disappearance or gradient explosion (Goodfellow, Bengio & Courville, 2016). LSTM is
mainly used to learn and overcome the long-term dependence of RNN (Hochreiter &
Schmidhuber, 1997). The internal units of the LSTM include the memory cell, forget
gate, input gate, and output gate (Goodfellow, Bengio & Courville, 2016). In the LSTM
internal unit, the memory cell carries the necessary information transfers between the
LSTM internal circulation units, thereby solving the problem of gradient disappearance,
and learning long-term dependence (Olah, 2015). The sigmoid layers in the three gates
constrain the value between 0 and 1, so as to determine which information should be saved
or forgotten (Goodfellow, Bengio & Courville, 2016; Olah, 2015). When the information
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flow enters the circulation unit, the operation is as follows (Olah, 2015):

forget t = σ
(
Wforget ·

[
ht−1,xt

]
+bforget

)
(1)

inputt = σ
(
Winput ·

[
ht−1,xt

]
+binput

)
(2)

C̃t = tanh
(
WC ·

[
ht−1,xt

]
+bC

)
(3)

Ct = forgett ∗Ct−1+ inputt ∗ C̃t (4)

outputt = σ
(
Woutput ·

[
ht−1,xt

]
+boutput

)
(5)

ht = outputt ∗ tanh(Ct ) (6)

In the above, t stands for the moment, forgett ,inputt , and outputt represent the output
after the activation function σ in the forget gate, input gate and output gate, respectively.
Wforget ,Winput ,Woutput ,WC , bforget ,binput , boutput , bC symbolize the weight and bias offset of
the three gates and memory cell, respectively. ht−1 is the output at the previous moment,
xt is the input at the current moment. The updated memory cell Ct is obtained by adding
forgett ∗Ct−1 which represents unnecessary information to be discarded, and inputt ∗ C̃t

which represents the information to be updated. Finally, the information in the memory
unit Ct is controlled by the output gate to return the final output ht for this LSTM cell.

LSTM can only predict the output based on the previous content, but the later
information will also help understand the current text. Therefore, the Bi-LSTM proposed
by Schuster & Paliwal (1997) performs bidirectional input and makes full use of the context
information. The forward input is the sequence input at time t and the output at time t−1,
and the backward input is the sequence input at time t and the output at time t +1. The
final output is a combination of forward output hforword = (hf0,hf1,...,hfn−1) and reverse
output hbackword = (hbn−1),hbn−2,...,hb0).

GRU
The difference between GRU and LSTM is that the GRU changes the forgetting gate and
input gate in LSTM to update gate, and reduces the amount of gate controls (Chung et al.,
2014). The GRU transmits information directly through the hidden state, rather than
through the memory cell. The input information of the current moment and the output
information of the previous moment are firstly determined by the update gate whether to
be updated. The reset gate is then used to control whether the information is set to 0, i.e., to
determine the amount of information to be retained in the candidate information. Finally,
it is up to update gate to control how much information in the output at the previous
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time is forgotten and how much information is added to the hidden information, and the
retained information forms the output of the GRU recurrent unit at the current moment.
The main formulas of GRU internal structure are as follows (Chung et al., 2014):

updatet = σ
(
Wupdate ·

[
ht−1,xt

])
(7)

resett = σ(Wreset ·
[
ht−1,xt

]
) (8)

h̃t = tanh
(
W ·

[
resett ∗ht−1,xt

])
(9)

ht =
(
1−updatet

)
∗ht−1+updatet ∗ h̃t (10)

Where, updatet ,resett represent the output after the activation function σ in the update
gate and reset gate, respectively. h̃t is candidate information, and ht represents the output
at the current moment t .

IndRNN
IndRNN solves the problem of neuron independence in RNN and the gradient attenuation
that appears in LSTM and GRU, and can handle longer sequences. In addition, gate
computation is added to LSTM and GRU, which increases the computational complexity
of the network layer. In IndRNN, there are few parameters, and the neuron only receives
input from this moment and its own state input from the previous moment at any given
moment, making each neuron independent (Li et al., 2018). The state update formula of
the hidden layer is (Li et al., 2018):

ht = σ(Wxt +u�ht−1+b) (11)

Here,W and u are the weights of a certain neuron at the current and previous moment,
respectively.

Fine-tuning
Fine-tuning refers to copying the weight of the trained network model to the network that
needs to be used, and continuing to train and adjust part of the weight (Tajbakhsh et al.,
2016). The advantage of fine-tuning is that it can achieve better results in a shorter time
than training the network from scratch, owing to pre-training using a large amount of
data (Tajbakhsh et al., 2016). The fine-tuning model in this paper is consistent with the
pre-training model, as shown in Fig. 3. Firstly, the fine-tuning model copies and transfers
the weight of the pre-training model to itself. Then, the parameters of the net layer before
the dense layer in the Stacked_Bi_GRU, CNN_LSTM, Deep_CNN models, and the LSTM
layer, Bi-LSTM layer, GRU layer, IndRNN layer, are frozen, respectively, and do not
participate in the following training. The parameters of the dense layer and the activation
layer of each fine-tuning model are in an active state, waiting for adjustment. Finally,
import fine-tuning data to start fine-tuning training. The error between feature sequence
data and label data is gradually narrowed by iterative training with the full utilization of
the features or knowledge acquired by the pre-training model.
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Assessment metrics
To evaluate the effectiveness of the model, the RMSE and MAPE were used to access the
fitting performance between the output (prediction data) and label data of each sequence
data. The quations are as follows:

RMSE(L,h)=

√√√√ 1
m

m∑
i=1

(Li−hi)2 (12)

MAPE(L,h)=
100
m

m∑
i=1

∣∣∣∣Li−hiLi

∣∣∣∣ (13)

Here, m denotes the number of sequential data, and hi and Li represent the output of
each sequence i after testing in model and the corresponding label data, respectively. The
smaller the value of RMSE and MAPE, the better the prediction effect, which means that
the error between prediction data and label data is smaller.

RESULTS
This paper aims to achieve prediction of epidemic trends with more accurate by proposed
framework based on IndRNN and fine-tuning strategy on COVID-19 epidemiology data.
The deadline for training data is March 13th, 2021, the data from 3/20/2021 to 4/24/2021
is used for fine-tuning and testing, and we have taken cases from 5/1/2021 to 5/22/2021
for validation. The deep learning environment of our experiment was mainly built based on
the Ubuntu 16.04 system environment, which encoded by python Keras with the support
of Intel Core i9-10920X CPU @3.50 GHz ×24.

Three tasks are completed in this paper: (1) model comparison by LSTM, Bi-LSTM,
GRU, Stacked_Bi_GRU, CNN_LSTM, Deep_CNN, and IndRNN models, (2) the fine-
tuned IndRNN model is utilized to predict the number of confirmed cases in the United
Sates, India, Brazil, France, Russia, China and the world, and verify their accuracy, and
(3) the growth status of the cumulative cases in 6 countries in combination with current
policies are analyzed. All results in this section use the values in Table 2. The experimental
procedure for each model follows the steps in the method. Moreover, during fine-tuning,
the numbers of layers in the seven models that do not participate in training are set as
shown in Table 3.

Comparison of models
The performance of seven different models which are LSTM, Bi-LSTM, GRU,
Stacked_Bi_GRU, CNN_LSTM, Deep_CNN, and IndRNN models are compared based
on the COVID-19 statistical data of India. The reason for this selection lays on the fact
that India is the worst-affected country under the current situation, the weekly increase of
cases is dramatically higher than other countries, with vast changing data. Before adding
the updated data, the six countries and the world used in this paper have at least 55 weeks
of data. To find the most suitable sequence length, and to ensure that the number of
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Table 2 Consistent parameters and their values in LSTM, Bi-LSTM, GRU, Stacked_Bi_GRU,
CNN_LSTM, Deep_CNN, and IndRNNmodels.

Parameters Values

Loss Mean squared error
Optimizer Adam
Batch size 1
Epoch in training 3,000
Epoch in testing 3,000
Sequence length 45 weeks

Table 3 The numbers of network layers of the model and frozen network layers when fine-tuning.

Model Quantity of total layer Quantity of frozen layer when fine-tuning

LSTM 5 3
Bi-LSTM 5 3
GRU 5 3
IndRNN 4 2
Stacked_Bi_GRU 14 10
CNN_LSTM 19 14
Deep_CNN 8 7

training data is more than fine-tuning data, Indian dataset was used for training by LSTM,
Bi-LSTM, GRU, Stacked_Bi_GRU, CNN_LSTM, Deep_CNN, and IndRNN models with
sequence length between 5 and 45 weeks (separated by 4 weeks, i.e., one month) as single
data cannot become sequence data. The best results were obtained when the sequence
length was 45.

After normalization and sequence data generation, the dimensions of the sequence data
generated by using weekly cumulative confirmed and death cases in India are (20, 1, 45)
and (14, 1, 45), and the corresponding label data are 20 and 14 respectively. The last 6 of
them are used for fine-tuning and testing, and the other data are used for training.

These 7 models use Indian COVID-19 data to save the weights after pre-training,
respectively. Under the condition of freezing the network layer before the fully connected
layer, the pre-trainedmodels load the corresponding weights for iterative fine-tuning by the
fine-tuning data. In this process, to find the appropriate amount of fine-tuning data, 1, 3,
and 5 pieces of fine-tuning data are used for fine-tuning, and the number of corresponding
testing data are 5, 3, and 1 respectively.

Figure 5, Tables 4, and 5 show the comparison results. Where, in Table 4, ‘‘f’’ and
‘‘t’’ in the column ‘‘Split’’ represent the number of fine-tuning data and testing data,
respectively. As can be seen from the tables and the figure, IndRNN model shows the
best performance for both with no-fine-tuning and fine-tuning models, compared to
LSTM, Bi-LSTM, GRU, Stacked_Bi_GRU, CNN_LSTM, and Deep_CNN models. Where,
IndRNNmodel had the leastMAPE and RMSE before and after fine-tuning, the lowest total
runtime when using cumulative diagnosis data, the second lowest total runtime when using
cumulative death data, and minimum number of total parameters. The MAPE and RMSE
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Figure 5 Comparison among LSTM, Bi-LSTM, GRU, IndRNN in terms of RMSE. Prediction of cumu-
lative confirmed COVID-19 cases in India. The sequence length of 45 weeks is used in the model.

Full-size DOI: 10.7717/peerjcs.770/fig-5

of LSTM, BI-LLSTM andGRU are similar, and the effect ranking of the remainingmodels is
Deep_CNN, Stacked_Bi_GRU, CNN_LSTM, respectively. After fine-tuning, the RMSE and
MAPE of the sevenmodels are all significantly decreased, especially for IndRNN, theMAPE
of which is decreased by 0.27%∼12.36%, 0.12%∼14.29%, 0.3%∼10.91%, 0.69%∼8.89%,
2.21%∼11.84%, −1.59%∼13.79%, and 0.36%∼20.94%, respectively. The best test results
were obtained when five fine-tuning data were used to fine-tune the parameters of the
pre-trained IndRNN model. It is proved that fine-tuning plays a very important role in
reducing errors. In addition, IndRNN also exhibits superiority in computational efficiency.
That is also true for that with fine-tuning. Figure 6 shows the fitting performance of the
IndRNN model. The predicted value is very close to the true value and the two lines are
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Table 4 Comparison among LSTM, Bi-LSTM, GRU, Stacked_Bi_GRU, CNN_LSTM, Deep_CNN, and IndRNN in terms of MAPE. Prediction of
cumulative confirmed COVID-19 cases in India.

Data Model Training
time(s)

Split
(f, t)

MAPE (%) Fine-tuning
time(s)

No-fine-tuning Fine-tuning

1, 5 11.69 11.03 21.40
3, 3 17.13 12.07 47.19LSTM 733.38

5, 1 25.60 13.24 77.71
1, 5 11.72 11.10 28.82
3, 3 17.19 11.10 68.27

Bi-
LSTM

1296.12

5, 1 25.72 11.43 105.57
1, 5 11.72 11.05 20.14
3, 3 17.18 12.86 45.32GRU 581.84

5, 1 25.70 14.79 70.85
1, 5 17.02 15.33 69.52
3, 3 23.70 19.22 183.36

Stacked_
Bi_GRU 5291.32

5, 1 33.01 24.12 287.70
1, 5 17.58 15.29 41.15
3, 3 23.88 18.45 104.69CNN_LSTM 3006.03

5, 1 33.16 21.32 170.93
1, 5 11.63 13.22 13.11
3, 3 17.21 11.41 29.44Deep_CNN 261.37

5, 1 25.84 12.05 45.71
1, 5 9.74 9.11 14.85
3, 3 14.17 8.85 34.96

Confirmed cases

IndRNN 248.72

5, 1 21.40 0.46 57.08
1, 5 5.29 5.02 20.93
3, 3 7.94 5.19 48.49LSTM 413.85

5, 1 13.21 6.77 74.72
1, 5 5.20 5.08 29.68
3, 3 7.89 5.09 68.36

Bi-
LSTM

747.53

5, 1 13.21 6.16 104.81
1, 5 5.21 4.91 19.65
3, 3 7.80 4.49 44.93GRU 333.79

5, 1 12.96 5.14 69.41
1, 5 7.82 7.13 68.48
3, 3 11.30 9.17 166.58

Stacked_
Bi_GRU 2976.06

5, 1 17.40 11.90 274.43
1, 5 9.49 7.28 41.11
3, 3 12.91 9.55 100.99CNN_LSTM 1703.61

5, 1 18.90 13.45 173.57
1, 5 5.62 6.20 13.03
3, 3 8.60 7.45 29.32Deep_CNN 143.17

5, 1 14.37 9.21 44.42
1, 5 4.72 4.36 14.54
3, 3 6.89 3.42 33.95

Confirmed
deaths

IndRNN 142.34

5, 1 11.22 2.99 56.54
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Table 5 Comparison among LSTM, Bi-LSTM, GRU, Stacked_Bi_GRU, CNN_LSTM, Deep_CNN, and
IndRNN in terms of params.

Model Total params Fine-tuning params

LSTM 89217 129
Bi-LSTM 178433 257
GRU 66945 129
Stacked_Bi_GRU 1110905 569
CNN_LSTM 688161 673
Deep_CNN 13121 65
IndRNN 6145 129

almost overlapped, which demonstrates the effectiveness of the fine-tuned IndRNN model
in predicting the development of COVID-19 cases.

Predictive performance analysis of the COVID-19 epidemic situations
in six countries
In this section, the proposed fine-tuned IndRNN model is used to predict the COVID-19
epidemic trend in the cumulative confirmed and death cases of the China, the United
States, India, Brazil, France and Russia with 5 fine-tuning data. The prediction period is
one month, according to the fact that the impact of policies or events generally exhibits in
the future month. And then the actual data is utilized to validate the predict result. The
development tendency of the COVID-19 is analyzed, the significant phenomenon is then
detected and the reasons that responsible for this is further explored.

Figure 7 shows the development tendency and prediction result of COVID-19
cumulative confirmed and death cases in China, and the general development stages
of the epidemic in China are summarized in the Table S1. As can be seen from the figure,
the cumulative confirmed cases in China experienced dramatic changes. It firstly starts
to rise sharply in mid-January 2020, while the number of deaths continues to rise, and
the epidemic has entered the outbreak stage (The State Council Information Office of the
People’s Republic of China, 2020). During this period, the Chinese government issued
a timely emergency response, e.g., expanding the laboratories capacities for nucleic acid
detection, the construction of ‘Huoshenshan’, ‘Leishenshan’, and Fangcang shelter hospitals
for accommodating more patients, medical observation was conducted on close contacts,
people remained at home as much as possible, and wearing masks, avoiding gatherings,
and keeping a physical distance of 1 meter when going out were strictly required (Li et al.,
2020b; Chinese Center for Disease Control and Prevention, 2020a). The China CDC issued
prevention guidelines for people of different ages and places to strengthen the awareness of
safety (Chinese Center for Disease Control and Prevention, 2020b). As a result, the epidemic
has been promptly controlled, and the cumulative confirmed cases in China has gradually
flattened and stabilized by late April 2020. The COVID-19 deaths in China have been
basically flat since the end of April 2020, and have remained at 4,636 since January 25th,
2021. It is demonstrated that the epidemic in China has been adequately controlled since
the late April 2020.
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Figure 6 The fitting performance of the fine-tuned IndRNN.
Full-size DOI: 10.7717/peerjcs.770/fig-6
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Figure 7 Prediction of cumulative COVID-19 cases in China by the fine-tuned IndRNN. The solid line
is the actual value and the dashed line is the predicted value.

Full-size DOI: 10.7717/peerjcs.770/fig-7

Figure 8 illustrates the development trend of cumulative confirmed and death cases in
the United States, India, Brazil, France, Russia. Different from that of China, the growth
of cumulative cases of the top five countries is relatively slow before July 2020. After that,
it began to increase sharply, especially for the United States and India. The rudimentary
development of the COVID-19 epidemic in theUnited States is summarized in the Table S2.
After the first COVID-19 patient in the United States was recorded on January 20th, 2020
(Holshue et al., 2020), the following measures were taken: non-Americans who had visited
China in the past 14 days were banned from entering on February 2th, 2020 (National
Immigration Administration, 2020), cruise ship ban, and masks were promoted by the CDC
(Adams, 2020). Nevertheless, there were still a campaign of mass protests and campaign
rallies without protective measures (Schuchat, 2020). As a result, the account of confirmed
cases in the United States continued to increase significantly after surpassing China on
March 26th, 2020. In addition, the ‘opening up’ measures promoted by the American
government (Good Morning America, 2020a), and the opening of schools and holding of
the rally about the presidential campaign since August 2020 (Mansfield, Salman & Voyles
Pulver, 2020), promote the intensification of the epidemic, hence the cumulative confirmed
cases in the United Stated start to rise sharply in October 2020.

The India has no obvious growth before July 2020, in which the ‘city closure’ measures
implemented by the Indian government at the end ofMarch have played a key role (Xinhua,
2020a). But some areas have been re-blocked, and the number of people suffering from the
COVID-19 in India has increased extraordinary, because of an outbreak rebound caused
by the increase of outdoor activities after a gradual unsealing since June 2020 (Xinhua,
2020a; Associated Press, 2020). Many massive rallies had been held in India since March
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Figure 8 Prediction of cumulative COVID-19 cases in five countries by the fine-tuned IndRNN. (A)
Prediction of weekly cumulative confirmed cases. (B) Prediction of weekly cumulative death cases. The
solid line is the actual data, and the dotted line is the forecast data.

Full-size DOI: 10.7717/peerjcs.770/fig-8

2021, including political rallies and festival (Bhuyan, 2021), and the number of cumulative
confirmed cases has surged.

Brazil, France, and Russia do not show a significant increase in general, but the number
of cases in Brazil is higher than that in France and Russia. Brazil implemented a social
distancing policy, but some people neglected to wear masks at rallies (The paper, 2020),
and professional football matches were held in Rio, Brazil on June 18th, 2020 (Xinhua,
2020b), these events promoted the development of the epidemic. France implemented
a lockdown on March 17th, 2020, and gradually unblocked it from May 11th, 2020.
However, the amount of cumulative diagnoses in France starts to rise in October 2020, by
reason of the emergence of cases in school and surges in cases in many areas, hence the
French government closed cities for a second time on October 30th, 2020 (Government of
France, 2020; Bell & Bairin, 2020); The Russian government did not take timely measures
to prevent the European epidemic, causing a large number of imported cases (Kanka News,
2020); moreover, the holding of a military parade on June 24th, 2020 (Xinhua, 2020c), has
become one of the factors driving the curve of Russia upward.

According to Figs. 7 and 8, the trend forecasts in six countries are basically in line with
the curve trend. Table 6 is the testing and validation accuracy of cumulative confirmed and
death COVID-19 cases in five countries by IndRNN model with fine-tuning. As indicated
from the table, in most cases, the MAPE of testing and validation are less than 1.2%, and
6.2%, respectively. In the table, it generates lowest MAPE and RMSE values of 0.04% and
2.00 in testing results, and 0.05% and 1.17 in verification results, respectively, for deaths in
China, which shows the effectiveness of fitting and prediction by the proposed framework.

Verification of prediction accuracy in global diagnosis
The IndRNN model was used to predict epidemic trends by training the cumulative
confirmed weekly cases for the global from February 15th, 2020 to April 24th, 2021.
Figure 9 displays the prediction diagram. By May 22th, 2021, the number of global
cumulative confirmed cases may surpass 171.4 million, and deaths may reach 3.5 million,
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Table 6 Testing and validation of cumulative confirmed and death COVID-19 cases in five countries by the fine-tuned IndRNN.

Data Country Testing Validation

RMSE MAPE (%) RMSE MAPE (%)

United States 138,071.00 0.43 1355857.54 3.34
India 77,668.00 0.46 1587170.63 4.30
Brazil 164,181 1.15 1027451.51 6.18
France 320,132.50 5.89 719450.18 11.53
Russia 19,647.00 0.42 213593.59 3.77
China 17.90 0.02 187.94 0.17

Cumulative
cases

Global 558,483 0.38 2953263.00 1.60
United States 1273.06 0.22 25260.92 3.72
India 5,752.81 2.99 39954.53 13.92
Brazil 1,460.31 0.37 24974.75 4.90
France 300.83 0.29 3236.43 2.36
Russia 194.50 0.18 3333.14 2.47
China 2.00 0.04 2.14 0.05

Cumulative
deaths

Global 5,829.50 0.19 47980.75 1.17

Figure 9 Prediction of global cumulative COVID-19 cases by the fine-tuned IndRNN. The solid line is
actual data, the dotted line represents the predicted data.

Full-size DOI: 10.7717/peerjcs.770/fig-9

and the deviations between these results and the real data are 2.81%, and 2.30%, respectively.

DISCUSSION
Among the sevenmodels introduced in ‘Related work’, the IndRNNmodel with fine-tuning
strategy achieved the optimal result. In different models, fine-tuning can continuously
adjust the parameters in a relatively short time. Compared with the result without fine-
tuning, the error is decreased by up to 20.94%. It is confirmed that the fine-tuning takes
full advantage of the characteristics obtained from the pre-trained model, and this strategy
plays a good role in increasing accuracy.

According to the experimental results of LSTM, Bi-LSTM, GRU, Stacked_Bi_GRU,
CNN_LSTM, Deep_CNN, and IndRNNmodels, the IndRNNmodel takes the second least
time, but its RMSE andMAPE are the smallest. Among the seven networks, the errors of the

Hong et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.770 20/30

https://peerj.com
https://doi.org/10.7717/peerjcs.770/fig-9
http://dx.doi.org/10.7717/peerj-cs.770


stacked networks are increased compared with the simple networks, and the phenomenon
of overfitting occurs, which is because the stacked networks over-interpret information,
resulting in the weak generalization ability of the models; compared with CNN, the variant
network (i.e., LSTM, Bi-LSTM, GRU, IndRNN) of RNN has higher accuracy, due to the
memory function of the internal structure of RNN series network, which is able to extract
features from sequences of different moments. This ability to process time series is more
consistent with the characteristics of COVID-19 epidemiological data changing over time.
Among the variant networks of RNN, the accuracy of LSTM, Bi-LSTM and GRU is not
much different, which is inconsistent with the result that Bi-LSTM is better than LSTM
and GRU found by Shahid, Zameer & Muneeb (2020). The reason is that the Bi-LSTM
has insufficient learning ability on cumulative data of India with variable growth rate.
By contrast, IndRNN has the best performance as the non-interference of independent
neurons with each other, it is more adaptable to the changeable epidemic data, and is
capable of better extract and transmit information hidden in the COVID-19 sequence
data. Therefore, it can be considered that the IndRNN model can understand the regular
pattern of epidemic data, has good learning capabilities, and achieves the coexistence of
high precision and low time consumption.

The MAPE of the testing by IndRNN model with fine-tuning is less than 1.2%, except
for 5.89% of the cumulative confirmed cases in France and 2.99% of the cumulative deaths
in India, and the MAPE of the validation by this framework is less than 6.2%, except for
11.53% of the cumulative confirmed cases in France and 13.92% of the cumulative deaths
in India. This is due to the sudden increase in the cases and the short duration of the growth
trend, which affects the ability of model to obtain stable features and predict trend.

Themore fine-tuning data is used, and themore error is reduced after fine-tuning, owing
to enough fine-tuning data can make full use of the features extracted by the pre-trained
model. Concretely, the reduced errors of LSTM, Bi-LSTM, GRU, Stacked_Bi_GRU,
CNN_LSTM, Deep_CNN, and IndRNN models after fine-tuning are 0.27%∼12.36%,
0.12%∼14.29%, 0.3%∼10.91%, 0.69%∼8.89%, 2.21%∼11.84%, −1.59%∼13.79%,
0.36%∼20.94%, respectively. About Deep_CNN model, there is a slight increase in the
error after fine-tuning when the number of fine-tuning data is 1, and one possible reason is
that too few fine-tuning parameters and data affect the effect of parameter adjustment. The
degree of error reduction is affected by the ability of the model to learn features and the
fine-tuned model to learn features from the pre-trained model, and the different changes
in different data, as well as the amount of fine-tuning data. Among them, the fine-tuning
model using 5 fine-tuning data makes full use of features obtained from pre-trained
IndRNN model, and get best result.

The model speed is proportional to the number of parameters, but not to the fitting
effect. The parameters of IndRNN model are the least by reason of no gate calculations in
internal units in compare with LSTM, GRU, Bi-LSTM units. However, as the three gates
and memory cell in the recurrent unit of the LSTM model are more than the GRU model
with two gates, and Bi-LSTMmodel has bidirectional LSTM layer in the internal structure,
hence, LSTMmodel hasmore parameters thanGRUmodel, and the parameters of Bi-LSTM
model are about twice that of the LSTM model. Stacked_Bi_GRU and CNN_LSTM have
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Table 7 Positive and negative events.

Type Event

Positive (1) Release of emergency response
(2) Seal off the city, close entertainment venues
(3) The prohibition of activities
(4) Establishment of temporary hospital
(5) Border inspection
(6) Cruise ship ban
(7) Prevention and control guidelines
(8) Vigorously produce medical materials, improvement of
the detection ability of COVID-19

Negative (1) Relax restrictions too early for opening
(2) Policy implementation is not timely
(3) Hosying of great events: demonstration, campaign,
festival
(4) Face masks are not mandatory

a large number of parameters due to the stack of multiple network layers, which affects
the running speed. Among the seven networks, Deep_CNN is the model with the fewest
fine-tuning parameters because of a small number of dense layer parameters caused by
characteristic of shared parameters, hence the fine-tuning speed is the fastest. However, the
test RMSE of this model is up to 9.22% higher than that of IndRNN, which may be because
the reduction of parameters affects the effect of feature extraction of sequence data.

Through the policies mentioned above, we divide these policies into active measures
and inactive measures according to whether they contribute to the mitigation of the
epidemic (Table 7). We conclude that, on the final results of epidemic prevention and
control, the timely release of prevention and control policies by the government is the
most important. Local implementation and cooperation of residents are also crucial.
The COVID-19 epidemic of China gradually declines to a stable state in April 2020 as
good performance in these respects. Some countries have adopted the same policy as
China but the effect is not obvious, e.g., the United States, India, owing to the deficiency
of implementation of some regions and collaboration of residents, such as no mask,
organizing of the rally. The short implementation time of blockade measures in some
countries promoted the recurrence of the epidemic, for instance, India. Policy relaxation
and economic restarts should be conducted after the epidemic situation is relatively stable,
rather than prematurely. Large-scale activities with crowd gatherings should be cancelled as
much as possible, owing to the existence of a large potential infection rate. At the resident
level, some countries have promulgated corresponding measures, but citizens have not
strictly implemented them. Some citizens resist the ‘closing the city’ measure, for they think
it conflicts with personal freedom. Some people have negative emotions about the severe
epidemic and determination of them to protest together is insufficient, affecting the policy
response. It is essential to actively respond to the relevant prevention and control policies
issued by the state, and not to violate the prohibition without authorisation. Although the
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current epidemic situation in some countries is gradually stable, keeping vigilant, paying
attention to personal protection, and reducing long-distance travel remain important.

To ensure that the training data is more than the fine-tuning data to get good results,
if the time interval is long, it is necessary to download the continuously updated data for
retraining again, and then use the subsequent data for fine-tuning, so as to achieve the goal
of not needing to re-train the data in a short time and improving the accuracy.

CONCLUSIONS
In this work, deep learning models were utilized to research the development of COVID-
19 in China, the top five countries and the world. The framework based on IndRNN and
fine-tuning consists of four steps: data preprocessing, pre-training the model and saving
the weight, fine-tuning the weight, trend prediction and validation. The development
tendency of COVID-19 was analyzed, predicted, and validated. Some conclusions are draw
as follows:
(1) The validity of the proposed framework is verified by comparing it with LSTM,

Bi-LSTM, GRU, Stacked_Bi_GRU, CNN_LSTM, and Deep_CNN. The result
demonstrated that IndRNNmodel shows the best performance, andhas low complexity.
Compared with no-fine-tuning, the fine-tuned IndRNN model can effectively the
reduce the prediction errors by up to 20.94% and the time cost. For most of the
countries, the MAPE of IndRNN model with fine-tuning was less than 1.2%, and the
lowest MAPE and RMSE values of 0.04% and 2.00 in testing results were gendered, for
deaths in China, which indicated the effectiveness of the proposed framework.

(2) According the prediction and validation results, the MAPE of IndRNN model with
fine-tuning was less than 6.2% in most cases, and this framework obtained a minimum
MAPE and RMSE of 0.05% and 1.17, respectively, by using Chinese deaths. The
deviations between predicted cumulative confirmed and death cases on the world in
late May 2021 and the real data were 2.81%, and 2.30%, respectively, which confirmed
the predictive performance of the proposed framework.

(3) Policies play an important role in the development of COVID-19. Timely and
appropriate measures can greatly reduce the spread of COVID-19. Some countries
have adopted the same positive policy but the effect is not ideal due to the untimely and
inappropriate government policies, low implementation ability and the coordination
degree of the public. The positive measures include release of emergency response,
sealing off cities and closing entertainment venues, prohibiting activities, establishment
of temporary hospital, border inspection, cruise ship ban, the release of prevention
and control guidelines, the vigorously production of medical materials, improvement
of the detection ability of COVID-19. The negative measures are relaxing restrictions
too early for opening, timely policy implementation, hosting of great events, and that
face masks are not mandatory. Additionally, untimely and inappropriate government
policies, lax regulations, and insufficient public cooperation are the reasons for the
aggravation of the epidemic situations.
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