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We describe a method for assessing data set complexity based on the estimation of the
underlining probability distribution and Hellinger distance. Contrary to some popular
measures it is not focused on the shape of decision boundary in a classification task but on
the amount of available data with respect to attribute structure. Complexity is expressed
in terms of graphical plot, which we call complexity curve. We use it to propose a new
variant of learning curve plot called generalisation curve. Generalisation curve is a
standard learning curve with x-axis rescaled according to the data set complexity curve. It
is a classifier performance measure, which shows how well the information present in the
data is utilised. We perform theoretical and experimental examination of properties of the
introduced complexity measure and show its relation to the variance component of
classification error. We compare it with popular data complexity measures on 81 diverse
data sets and show that it can contribute to explaining the performance of specific
classifiers on these sets. Then we apply our methodology to a panel of benchmarks of
standard machine learning algorithms on typical data sets, demonstrating how it can be
used in practice to gain insights into data characteristics and classifier behaviour.
Moreover, we show that complexity curve is an effective tool for reducing the size of the
training set (data pruning), allowing to significantly speed up the learning process without
reducing classification accuracy. Associated code is available to download at:
https://github.com/zubekj/complexity_curve (open source Python implementation).
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ABSTRACT9

We describe a method for assessing data set complexity based on the estimation of the underlining
probability distribution and Hellinger distance. Contrary to some popular measures it is not focused on
the shape of decision boundary in a classification task but on the amount of available data with respect to
attribute structure. Complexity is expressed in terms of graphical plot, which we call complexity curve.
We use it to propose a new variant of learning curve plot called generalisation curve. Generalisation
curve is a standard learning curve with x-axis rescaled according to the data set complexity curve. It is a
classifier performance measure, which shows how well the information present in the data is utilised.
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We perform theoretical and experimental examination of properties of the introduced complexity measure
and show its relation to the variance component of classification error. We compare it with popular
data complexity measures on 81 diverse data sets and show that it can contribute to explaining the
performance of specific classifiers on these sets.
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Then we apply our methodology to a panel of benchmarks of standard machine learning algorithms on
typical data sets, demonstrating how it can be used in practice to gain insights into data characteristics
and classifier behaviour. Moreover, we show that complexity curve is an effective tool for reducing the
size of the training set (data pruning), allowing to significantly speed up the learning process without
reducing classification accuracy.
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Associated code is available to download at: https://github.com/zubekj/complexity_curve
(open source Python implementation).
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INTRODUCTION30

It is common knowledge in machine learning community that the difficulty of classification problems31

varies greatly. Sometimes it is enough to use simple out of the box classifier to get a very good result and32

sometimes careful preprocessing and model selection are needed to get any non-trivial result at all. The33

difficulty of a classification task clearly stems from certain properties of the data set, yet we still have34

problems with defining those properties in general.35

Bias-variance decomposition (Domingos, 2000) demonstrates that the error of a predictor can be36

attributed to three sources: bias, coming from inability of an algorithm to build an adequate model for the37

relationship present in data, variance, coming from inability to estimate correct model parameters from38

an imperfect data sample, and some irreducible noise. Following this line of reasoning, difficulty of a39

classification problem may come partly from the complexity of the relation between dependent variable40

and explanatory variables, partly from the scarcity of information in the training sample, and partly from41

an overlap between classes. This is identical to sources of classification difficulty identified by Ho and42

Basu (2002), who labelled the three components: ‘complex decision boundary’, ‘small sample size and43

dimensionality induced sparsity’ and ‘ambiguous classes’.44

In this article we introduce a new measure of data complexity targeted at sample sparsity, which45
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is mostly associated with variance error component. We aim to measure information saturation of a46

data set without making any assumptions on the form of relation between dependent variable and the47

rest of variables, so explicitly disregarding shape of decision boundary and classes ambiguity. Our48

complexity measure takes into account the number of samples, the number of attributes and attributes49

internal structure, under a simplifying assumption of attribute independence. The key idea is to check50

how well a data set can be approximated by its subsets. If the probability distribution induced by a small51

data sample is very similar to the probability distribution induced by the whole data set we say that the52

set is saturated with information and presents an opportunity to learn the relationship between variables53

without promoting the variance. To operationalise this notion we introduce two kinds of plots:54

• Complexity curve – a plot presenting how well subsets of growing size approximate distribution of55

attribute values. It is a basic method applicable to clustering, regression and classification problems.56

• Conditional complexity curve – a plot presenting how well subsets of growing size approximate57

distribution of attribute values conditioned on class. It is applicable to classification problems and58

more robust against class imbalance or differences in attributes structure between classes.59

Since the proposed measure characterise the data sample itself without making any assumptions as to60

how that sample will be used it should be applicable to all kinds of problems involving reasoning from61

data. In this work we focus on classification tasks since this is the context in which data complexity62

measures were previously applied. We compare area under the complexity curve with popular data63

complexity measures and show how it complements the existing metrics. We also demonstrate that it64

is useful for explaining classifier performance by showing that the area under the complexity curve is65

correlated with the area under the receiver operating characteristic (AUC ROC) for popular classifiers66

tested on 81 benchmark data sets.67

We propose two immediate applications of the developed method. The first one is connected with the68

fundamental question: how much of the original sample is needed to build a successful predictor? We69

pursue this topic by proposing a data pruning strategy based on complexity curve and evaluating it on large70

data sets. We show that it can be considered as an alternative to progressive sampling strategies (Provost71

et al., 1999).72

The second proposed application is classification algorithm comparison. Knowing characteristics73

of benchmark data sets it is possible to check which algorithms perform well in the context of scarce74

data. To fully utilise this information, we present a graphical performance measure called generalisation75

curve. It is based on learning curve concept and allows to compare the learning process of different76

algorithms while controlling the variance of the data. To demonstrate its validity we apply it to a set of77

popular algorithms. We show that the analysis of generalisation curves points to important properties of78

the learning algorithms and benchmark data sets, which were previously suggested in the literature.79

RELATED LITERATURE80

Problem of measuring data complexity in the context of machine learning is broadly discussed. Our81

beliefs are similar to Ho (2008), who stated the need for including data complexity analysis in algorithm82

comparison procedures. The same need is also discussed in fields outside machine learning, for example83

in combinatorial optimisation (Smith-Miles and Lopes, 2012).84

The general idea is to select a sufficiently diverse set of problems to demonstrate both strengths85

and weaknesses of the analysed algorithms. The importance of this step was stressed by Macià et al.86

(2013), who demonstrated how algorithm comparison may be biased by benchmark data sets selection,87

and showed how the choice my guided by complexity measures. Characterising problem space with88

some metrics makes it possible to estimate regions in which certain algorithms perform well (Luengo and89

Herrera, 2013), and this opens up possibilities of meta-learning (Smith-Miles et al., 2014).90

In this context complexity measures are used not only as predictors of classifier performance but91

more importantly as diversity measures capturing various properties of the data sets. It is useful when92

the measures themselves are diverse and focus on different aspects of the data to give as complete93

characterisation of the problem space as possible. In the later part of the article we demonstrate that94

complexity curve fits well into the landscape of currently used measures, offering new insights into data95

characteristics.96
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Measuring data complexity97

A set of practical measures of data complexity with regard to classification was introduced by Ho and98

Basu (2002), and later extended by Ho et al. (2006) and Orriols-Puig et al. (2010). It is routinely used in99

tasks involving classifier evaluation (Macià et al., 2013; Luengo and Herrera, 2013) and meta-learning100

(Dı́ez-Pastor et al., 2015; Mantovani et al., 2015). Some of these measures are based on the overlap101

of values of specific attributes, examples include Fisher’s discriminant ratio, volume of overlap region,102

attribute efficiency etc. The others focus directly on class separability, this groups includes measures103

such as the fraction of points on the boundary, linear separability, the ratio of intra/inter class distance. In104

contrast to our method, such measures focus on specific properties of the classification problem, measuring105

decision boundary and class overlap. Topological measures concerned with data sparsity, such as ratio of106

attributes to observations, attempt to capture similar properties as complexity curve.107

Li and Abu-Mostafa (2006) defined data set complexity in the context of classification using the108

general concept of Kolmogorov complexity. They proposed a way to measure data set complexity using109

the number of support vectors in support vector machine (SVM) classifier. They analysed the problems of110

data decomposition and data pruning using above methodology. A graphical representation of the data set111

complexity called the complexity-error plot was also introduced. The main problem with their approach112

is the selection of very specific and complex machine learning algorithms, which may render the results113

in less universal way, and which is prone to biases specific for SVMs. This make their method unsuitable114

for diverse machine learning algorithms comparison.115

Another approach to data complexity is to analyse it on instance level. This kind of analysis is116

performed by Smith et al. (2013) who attempted to identify which instances are misclassified by various117

classification algorithm. They devised local complexity measures calculated with respect to single118

instances and later tried to correlate average instance hardness with global data complexity measures119

of Ho and Basu (2002). They discovered that is mostly correlated with class overlap. This makes our120

work complementary, since in our complexity measure we deliberately ignore class overlap and individual121

instance composition to isolate another source of difficulty, namely data scarcity.122

Yin et al. (2013) proposed a method of feature selection based on Hellinger distance (a measure123

of similarity between probability distributions). The idea was to choose features, which conditional124

distributions (depending on the class) have minimal affinity. In the context of our framework this could be125

interpreted as measuring data complexity for single features. The authors demonstrated experimentally126

that for the high-dimensional imbalanced data sets their method is superior to popular feature selection127

methods using Fisher criterion, or mutual information.128

Evaluating classifier performance129

The basic schema of classifier evaluation is to train a model on one data sample (training set) and then130

collect its predictions on another, independent data set (testing set). Overall performance is then calculated131

using some measure taking into account errors made on the testing set. The most intuitive measure132

is accuracy, but other measures such as precision, recall or F-measure are widely used. When we are133

interested in comparing classification algorithms, not just trained classifiers, this basic schema is limited.134

It allows only to perform a static comparison of different algorithms under specified conditions. All135

algorithms’ parameters are fixed, so are the data sets. The results may not be conclusive since the same136

algorithm may perform very well or very poor depending on the conditions. Such analysis provides a137

static view of classification task – there is little to be concluded on the dynamics of the algorithm: its138

sensitivity to the parameter tuning, requirements regarding the sample size etc.139

A different approach, which preserves some of the dynamics, is receiver operating characteristic140

(ROC) curve (Fawcett, 2006). It is possible to perform ROC analysis for any binary classifier, which141

returns continuous decisions. The fraction of correctly classified examples in class A is plotted against the142

fraction of incorrectly classified in class B for different values of the classification threshold. The ROC143

curve captures not only the sole performance of a classifier, but also its sensitivity to the threshold value144

selection.145

Another graphical measure of classifier performance, which visualises its behaviour depending on a146

threshold value, is cost curve introduced by Drummond and Holte (2006). They claim that their method is147

more convenient to use because it allows to visualise confidence intervals and statistical significance of148

differences between classifiers. However, it still measures the performance of a classifier in a relatively149

static situation where only threshold value changes.150
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Both ROC curves and cost curves are applicable only to classifiers with continuous outputs and to two151

class problems, which limits their usage. What is important is the key idea behind them: instead of giving152

the user a final solution they give freedom to choose an optimal classifier according to some criteria from153

a range of options.154

The learning curve technique presents in a similar fashion the impact of the sample size on the155

classification accuracy. The concept itself originates from psychology. It is defined as a plot of156

learner’s performance against the amount of effort invested in learning. Such graphs are widely used in157

medicine (Schlachta et al., 2001), economics (Nemet, 2006), education (Karpicke and Roediger, 2008),158

or engineering (Jaber and Glock, 2013). They allow to describe the amount of training required for an159

employee to perform certain job. They are also used in entertainment industry to scale difficulty level of160

video games (Sweetser and Wyeth, 2005). In machine learning context they are sometimes referred to161

as the performance curve (Sing et al., 2005). The effort in such curve is measured with the number of162

examples in the training set.163

Learning curve is a visualisation of an incremental learning process in which data is accumulated164

and the accuracy of the model increases. It captures the algorithm’s generalisation capabilities: using the165

curve it is possible to estimate what amount of data is needed to successfully train a classifier and when166

collecting additional data does not introduce any significant improvement. This property is referred to in167

literature as the sample complexity – a minimal size of the training set required to achieve acceptable168

performance.169

As it was noted above, standard learning curve in machine learning expresses the effort in terms of the170

training set size. However, for different data sets the impact of including an additional data sample may171

be different. Also, within the same set the effect of including first 100 samples and last 100 samples is172

very different. Generalisation curve – an extension of learning curve proposed in this article – deals with173

these problems by using an effort measure founded on data complexity instead of raw sample size.174

DEFINITIONS175

In the following sections we define formally all measures used throughout the paper. Basic intuitions,176

assumptions, and implementation choices are discussed. Finally, algorithms for calculating complexity177

curve, conditional complexity curve, and generalisation curve are given.178

Measuring data complexity with samples179

In a typical machine learning scenario we want to use information contained in a collected data sample to180

solve a more general problem which our data describe. Problem complexity can be naturally measured by181

the size of a sample needed to describe the problem accurately. We call the problem complex, if we need182

to collect a lot of data in order to get any results. On the other hand, if a small amount of data suffices we183

say the problem has low complexity.184

How to determine if a data sample describes the problem accurately? Any problem can be described185

with a multivariate probability distribution P of a random vector X . From P we sample our finite data186

sample D. Now, we can use D to build the estimated probability distribution of X – PD. PD is the187

approximation of P. If P and PD are identical we know that data sample D describes the problem perfectly188

and collecting more observations would not give us any new information. Analogously, if PD is very189

different from P we can be certain that the sample is too small.190

To measure similarity between probability distributions we use Hellinger distance. For two continuous191

distributions P and PD with probability density functions p and pD it is defined as:192

H2(P,PD) =
1
2

∫ (√
p(x)−

√
pD(x)

)2
dx

The minimum possible distance 0 is achieved when the distributions are identical, the maximum 1 is193

achieved when any event with non-zero probability in P has probability 0 in PD and vice versa. Simplicity194

and naturally defined 0–1 range make Hellinger distance a good measure for capturing sample information195

content.196

In most cases we do not know the underlining probability distribution P representing the problem and197

all we have is a data sample D, but we can still use the described complexity measure. Let us picture our198

data D as the true source of knowledge about the problem and the estimated probability distribution PD as199
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the reference distribution. Any subset S⊂ D can be treated as a data sample and a probability distribution200

PS estimated from it will be an approximation of PD. By calculating H2(PD,PS) we can assess how well a201

given subset represent the whole available data, i.e. determine its information content.202

Obtaining a meaningful estimation of a probability distribution from a data sample poses difficulties
in practice. The probability distribution we are interested in is the joint probability on all attributes. In
that context most of the realistic data sets should be regarded as extremely sparse and naı̈ve probability
estimation using frequencies of occurring values would result in mostly flat distribution. This can be
called the curse of dimensionality. Against this problem we apply a naı̈ve assumption that all attributes
are independent. This may seem like a radical simplification but, as we will demonstrate later, it yields
good results in practice and constitute a reasonable baseline for common machine learning techniques.
Under the independence assumption we can calculate the joint probability density function f from the
marginal density functions f1, . . . , fn:

f (x) = f1(x1) f2(x2) . . . fn(xn)

We will now show the derived formula for Hellinger distance under the independence assumption.203

Observe that the Hellinger distance for continuous variables can be expressed in another form:204

1
2

∫ (√
f (x)−

√
g(x)

)2
dx =

1
2

∫ (
f (x)−2

√
f (x)g(x)+g(x)

)
dx =

1
2

∫
f (x)dx−

∫ √
f (x)g(x)dx+

1
2

∫
g(x)dx =

1−
∫ √

f (x)g(x)dx

In the last step we used the fact the that the integral of a probability density over its domain must be205

one.206

We will consider two multivariate distributions F and G with density functions:207

f (x1, . . . ,xn) = f1(x1) . . . fn(xn)

g(x1, . . . ,xn) = g1(x1) . . .gn(xn)

The last formula for Hellinger distance will now expand:208

1−
∫
· · ·
∫ √

f (x1, . . . ,xn)g(x1, . . . ,xn) dx1 . . .dxn =

1−
∫
· · ·
∫ √

f1(x1) . . . fn(xn)g1(x1) . . .gn(xn) dx1 . . .dxn =

1−
∫ √

f1(x1)g1(x1)dx1 . . .
∫ √

fn(xn)gn(xn)dxn

In this form variables are separated and parts of the formula can be calculated separately.209

Practical considerations210

Calculating the introduced measure of similarity between data set in practice poses some difficulties.211

First, in the derived formula direct multiplication of probabilities occurs, which leads to problems with212

numerical stability. We increased the stability by switching to the following formula:213

1−
∫ √

f1(x1)g1(x1)dx1 . . .
∫ √

fn(xn)gn(xn)dxn =
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1−
(

1− 1
2

∫ (√
f1(x1)−

√
g1(x1)

)2
dx1

)
. . .

(
1− 1

2

∫ (√
fn(xn)−

√
gn(xn)

)2
dx2

)
=

1−
(
1−H2(F1,G1)

)
. . .
(
1−H2(Fn,Gn)

)
For continuous variables probability density function is routinely done with kernel density estimation

(KDE) – a classic technique for estimating the shape continuous probability density function from a finite
data sample (Scott, 1992). For sample (x1,x2, . . . ,xn) estimated density function has a form:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− xi

h

)
where K is the kernel function and h is a smoothing parameter – bandwidth. In our experiments we used
Gaussian function as the kernel. This is a popular choice, which often yields good results in practice. The
bandwidth was set according to the modified Scott’s rule (Scott, 1992):

h =
1
2

n−
1

d+4 ,

where n is the number of samples and d number of dimensions.214

In many cases the independence assumption can be supported by preprocessing input data in a certain
way. A very common technique, which can be applied in this situation is the whitening transform. It
transforms any set of random variables into a set of uncorrelated random variables. For a random vector
X with a covariance matrix Σ a new uncorrelated vector Y can be calculated as follows:

Σ = PDP−1

W = PD−
1
2 P−1

Y = XW

where D is diagonal matrix containing eigenvalues and P is matrix of right eigenvectors of Σ. Naturally,215

lack of correlation does not implicate independence but it nevertheless reduces the error introduced by216

our independence assumption. Furthermore, it blurs the difference between categorical variables and217

continuous variables putting them on an equal footing. In all further experiments we use whitening218

transform preprocessing and then treat all variables as continuous.219

A more sophisticated method is a signal processing technique known as Independent Component220

Analysis (ICA) (Hyvärinen and Oja, 2000). It assumes that all components of an observed multivariate221

signal are mixtures of some independent source signals and that the distribution of the values in each222

source signal is non-gaussian. Under these assumption the algorithm attempts to recreate the source223

signals by splitting the observed signal into the components as independent as possible. Even if the224

assumptions are not met, ICA technique can reduce the impact of attributes interdependencies. Because225

of its computational complexity we used it as an optional step in our experiments.226

Machine learning task difficulty227

Our data complexity measure can be used for any type of problem described through a multivariate
data sample. It is applicable to regression, classification and clustering tasks. The relation between the
defined data complexity and the difficulty of a specific machine learning task needs to be investigated.
We will focus on supervised learning case. Classification error will be measured as mean 0-1 error.
Data complexity will be measured as mean Hellinger distance between real and estimated probability
distributions of attributes conditioned on target variable:

1
m

m

∑
i=1

H2(P(X |Y = yi),PD(X |Y = yi))

where X – vector of attributes, Y – target variable, y1,y2, . . .ym – values taken by Y .228

It has been shown that error of an arbitrary classification or regression model can be decomposed into
three parts:

Error = Bias+Variance+Noise
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Domingos (2000) proposed an universal scheme of decomposition, which can be adapted for different
loss functions. For a classification problem and 0-1 loss L expected error on sample x for which the true
label is t, and the predicted label given a traning set D is y can be expressed as:

ED,t [1(t 6= y)]

= 1(Et [t] 6= ED[y]) + c2ED[1(y 6= ED[y])] + c1Et [1(t 6= Et [t])]

= B(x) + c2V (x) + c1N(x)

where B – bias, V – variance, N – noise. Coefficients c1 and c2 are added to make the decomposition229

consistent for different loss functions. In this case they are equal to:230

c1 = PD(y = Et [t])−PD(y 6= Et [t])Pt(y = t |Et [t] 6= t)

c2 =

{
1 if Et [t] = ED[y]

−PD(y = Et [t] | y 6= ED[y]) otherwise.

Bias comes from an inability of the applied model to represent the true relation present in data,231

variance comes from an inability to estimate optimal model parameters from the data sample, noise is232

inherent to the solved task and irreducible. Since our complexity measure is model agnostic it clearly does233

not include bias component. As it does not take into account the dependent variable, it cannot measure234

noise either. All that is left to investigate is the relation between our complexity measure and variance235

component of the classification error.236

The variance error component is connected with overfitting, when the model fixates over specific237

properties of a data sample and looses generalisation capabilities over the whole problem domain. If the238

training sample represented the problem perfectly and the model was fitted with perfect optimisation239

procedure variance would be reduced to zero. The less representative the training sample is for the whole240

problem domain, the larger the chance for variance error.241

This intuition can be supported by comparing our complexity measure with the error of the Bayes
classifier. We will show that they are closely related. Let Y be the target variable taking on values
v1,v2, . . . ,vm, fi(x) an estimation of P(X = x|Y = vi) from a finite sample D, and g(y) an estimation of
P(Y = y). In such setting 0-1 loss of the Bayes classifier on a sample x with the true label t is:

1(t 6= y) = 1

(
t 6= argmax

i
(g(vi) fi(x))

)
Let assume that t = v j. Observe that:

v j = argmax
i

(g(vi) fi(x)) ⇔ ∀ig(v j) f j(x)−g(vi) fi(x)≥ 0

which for the case of equally frequent classes reduces to:

∀i f j(x)− fi(x)≥ 0

We can simultanously add and substract term P(X = x |Y = v j)−P(X = x |Y = vi) to obtain:

∀i ( f j(x)−P(X = x |Y = v j))+

(P(X = x |Y = vi)− fi(x))+

(P(X = x |Y = v j)−P(X = x |Y = vi))≥ 0

We know that P(X = x |Y = v j)−P(X = x |Y = vi) ≥ 0, so as long as estimations fi(x), f j(x) do242

not deviate too much from real distributions the inequality is satisfied. It will not be satisfied (i.e. an243

error will take place) only if the estimations deviate from the real distributions in a certain way (i.e.244

f j(x) < P(X = x|Y = v j) and fi(x) > P(X = x|Y = vi)) and the sum of these deviations is greater than245
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P(X = x|Y = v j)−P(X = x|Y = vi). The Hellinger distance between fi(x) and P(X = x|Y = vi) measures246

the deviation. This shows that by minimising Hellinger distance we are also minimising error of the Bayes247

classifier. Converse may not be true: not all deviations of probability estimates result in classification248

error.249

In the introduced complexity measure we assumed independency of all attributes, which is analogous to250

the assumption of naı̈ve Bayes. Small Hellinger distance between class-conditioned attribute distributions251

induced by sets A and B means that naı̈ve Bayes trained on set A and tested on set B will have only very252

slight variance error component. Of course, if the indepedence assumption is broken bias error component253

may still be substantial.254

Complexity curve255

Complexity curve is a graphical representation of a data set complexity. It is a plot presenting the expected
Hellinger distance between a subset and the whole set versus subset size:

CC(n) = E[H2(P,Qn)]

where P is the empirical probability distribution estimated from the whole set and Qn is the probability256

distribution estimated from a random subset of size n≤ |D|. Let us observe that CC(|D|) = 0 because257

P = Q|D|. Q0 is undefined, but for the sake of convenience we assume CC(0) = 1.258

Algorithm 1 Procedure for calculating complexity curve.
D – original data set, K – number of random subsets of the specified size.

1. Transform D with whitening transform and/or ICA to obtain DI .

2. Estimate probability distribution for each attribute of DI and calculate joint probability distribution
– P.

3. For i in 1 . . . |DI | (with an optional step size d):

(a) For j in 1 . . .K:

i. Draw subset S j
i ⊆ DI such that |S j

i |= i.

ii. Estimate probability distribution for each attribute of S j
i and calculate joint probability

distribution – Q j
i .

iii. Calculate Hellinger distance: l j
i = H2(P,Q j

i ).

(b) Calculate mean mi and standard error si:

mi =
1
K

K

∑
j=1

l j
i si =

√√√√ 1
K

K

∑
j=1

(
mi− l j

i

)2

Complexity curve is a plot of mi± si vs i.

To estimate complexity curve in practice, for each subset size K random subsets are drawn and the259

mean value of Hellinger distance, along with standard error, is marked on the plot. The Algorithm 1260

presents the exact procedure. Parameters K (the number of samples of a specified size) and d (sampling261

step size) controls the trade-off between the precision of the calculated curve and the computation time. In262

all experiments, unless stated otherwise, we used values K = 20, d = |D|
60 . Regular shapes of the obtained263

curves did not suggest the need for using larger values.264

Figure 1 presents a sample complexity curve. It demonstrates how by drawing larger subsets of the data265

we get better approximations of the original distribution, as indicated by the decreasing Hellinger distance.266

The logarithmic decrease of the distance is characteristic: it means that with a relatively small number267

of samples we can recover general characteristics of the distribution, but to model the details precisely268

we need a lot more data points. The shape of the curve is very regular, with just minimal variations. It269
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Figure 1. Complexity curve for iris data set. Red line represents the mean value, blue lines represent
mean ± standard deviation.

means that the subset size has a far greater impact on the Hellinger distance that the composition of the270

individual subsets.271

The shape of the complexity curve captures the information on the complexity of the data set. If the272

data is simple, it is possible to represent it relatively well with just a few instances. In such case, the273

complexity curve is very steep at the beginning and flattens towards the end of the plot. If the data is274

complex, the initial steepness of the curve is smaller. That information can be aggregated into a single275

parameter – the area under the complexity curve (AUCC). If we express the subset size as the fraction of276

the whole data set, then the value of the area under the curve becomes limited to the range [0,1] and can277

be used as an universal measure for comparing complexity of different data sets.278

Conditional complexity curve279

The complexity curve methodology presented so far deals with the complexity of a data set as a whole.280

While this approach gives information about data structure, it may assess complexity of the classification281

task incorrectly. This is because data distribution inside each of the classes may vary greatly from the282

overall distribution. For example, when the number of classes is larger, or the classes are imbalanced, a283

random sample large enough to represent the whole data set may be too small to represent some of the284

classes. To take this into account we introduce conditional complexity curve. We calculate it by splitting285

each data sample according to the class value and taking the arithmetic mean of the complexities of each286

sub-sample. Algorithm 2 presents the exact procedure.287

Comparison of standard complexity curve and conditional complexity curve for iris data set is given288

by Figure 2. This data set has 3 distinct classes. Our expectation is that estimating conditional distributions289

for each class would require larger data samples than estimating the overall distribution. Shape of the290

conditional complexity curve is consistent with this expectation: it is less steep than the standard curve291

and has larger AUCC value.292

Generalisation curve293

Generalisation curve is the proposed variant of learning curve based on data set complexity. It is the plot294

presenting accuracy of a classifier trained on a data subset versus subset’s information content, i.e. its295

Hellinger distance from the whole set. To construct the plot, a number of subsets of a specified size are296

drawn, the mean Hellinger distance and the mean classifier accuracy are marked on the plot. Trained297

classifiers are always evaluated on the whole data set, which represents the source of full information.298

Using such resubstitution in the evaluation procedure may be unintuitive since the obtained scores do299

not represent true classifier performance on independent data. However this strategy corresponds to300

information captured by complexity curve and allows to utilise full data set for evaluation without relying301

9/34

PeerJ Comput. Sci. reviewing PDF | (CS-2016:03:9443:1:2:CHECK 31 May 2016)

Manuscript to be reviewedComputer Science



Algorithm 2 Procedure for calculating conditional complexity curve.
D – original data set, C – number of classes, N – number of subsets, K – number of samples.

1. Transform D with whitening transform and/or ICA to obtain DI .

2. Split DI according to the class into D1
I ,D

2
I , . . . ,D

C
I .

3. From D1
I ,D

2
I , . . . ,D

C
I estimate probability distributions P1,P2, . . . ,PC.

4. For i in 1 . . . |DI | with a step size |DI |
N :

(a) For j in 1 . . .K:

i. Draw subset S j
i ⊆ DI such that |S j

i |= i.

ii. Split S j
i according to the class into S j,1

i ,S j,2
i , . . . ,S j,C

i .

iii. From S j,1
i ,S j,2

i , . . . ,S j,C
i estimate probability distributions Q j,1

i ,Q j,2
i , . . . ,Q j,C

i .

iv. Calculate mean Hellinger distance: l j
i =

1
C ∑

C
k=1 H2(Pk,Q j,k

i ).

(b) Calculate mean mi and standard error si:

mi =
1
K

K

∑
j=1

l j
i si =

√√√√ 1
K

K

∑
j=1

(
mi− l j

i

)2

Conditional complexity curve is a plot of mi± si vs i.
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Figure 2. Complexity curve (solid) and conditional complexity curve (dashed) for iris data set.
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on additional splitting procedures. It still allows for a meaningful classification algorithm comparison:302

the final part of the plot promotes classifiers which fit to the data completely, while the initial part favours303

classifiers with good generalisation capabilities.304

Algorithm 3 presents the exact procedure of calculating generalisation curve.305

Algorithm 3 Procedure for calculating generalisation curve.
D – original data set, K – number of samples.

1. Transform D with whitening transform and/or ICA to obtain DI .

2. Estimate probability distribution(s) from DI .

3. For i in 1 . . . |D|:

(a) For j in 1 . . .K:

i. Draw subset S j
i ⊆ D such that |S j

i |= i and its analogous subset O j
i ⊆ DI .

ii. Calculate distance l j
i between O j

i and DI according to the standard or conditional
formula.

iii. Train the classifier on S j
i and evaluate it on D to get its accuracy a j

i .

(b) Calculate mean li and mean ai:

li =
1
K

K

∑
j=1

l j
i ai =

1
K

K

∑
j=1

a j
i

Generalisation curve is a plot of ai vs li.

Standard learning curve and generalisation curve for the same data and classifier are depicted in306

Figure 3. The generalisation curve gives more insight into algorithm learning dynamics, because it307

emphasises initial learning phases in which new information is acquired. In the case of k-neighbours308

classifier we can see that it is unable to generalise if the training sample is too small. Then it enters a309

rapid learning phase which gradually shifts to a final plateau, when the algorithm is unable to incorporate310

any new information into the model.311

In comparison with standard learning curve, generalisation curve should be less dependent on data312

characteristics and more suitable for the comparison of algorithms. Again the score, which can be easily313

obtained from such plot is the area under the curve.314

PROPERTIES315

To support validity of the proposed method, we perform an in-depth analysis of its properties. We316

start from purely mathematical analysis giving some intuitions on complexity curve convergence rate317

and identifying border cases. Then we perform experiments with toy artificial data sets testing basic318

assumptions behind complexity curve. After that we compare it experimentally with other complexity319

data measures and show its usefulness in explaining classifier performance.320

Mathematical properties321

Drawing a random subset Sn from a finite data set D of size N corresponds to sampling without replacement.
Let assume that the data set contains k distinct values {v1,v2, . . . ,vk} occurring with frequencies P =
(p1, p2, . . . , pk). Qn =(q1,q2, . . . ,qk) will be a random vector which follows a multivariate hypergeometric
distribution.

qi =
1
n ∑

y∈Sn

1{y = vi}

The expected value for any single element is:

E[qi] = pi
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Figure 3. Learning curve (A) and generalisation curve (B) for data set IRIS and k-neighbours classifier
(k = 5).
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The probability of obtaining any specific vector of frequencies:

P(Qn = (q1,q2, . . . ,qk)) =

(p1N
q1n

)(p2N
q2n

)
· · ·
(pkN

qkn

)(N
n

)
with ∑

k
i=1 qi = 1.322

We will consider the simplest case of discrete probability distribution estimated through frequency
counts without using the independence assumption. In such case complexity curve is by definition:

CC(n) = E[H2(P,Qn)]

It is obvious that CC(N) = 0 because when n = N we draw all available data. This means that
complexity curve always converges. We can ask whether it is possible to say anything about the rate of
this convergence. This is the question about the upper bound on the tail of hypergeometric distribution.
Such bound is given by Hoeffding-Chvátal inequality (Chvátal, 1979; Skala, 2013). For the univariate
case it has the following form:

P(|qi− pi| ≥ δ )≤ 2e−2δ 2n

which generalises to a multivariate case as:

P(|Qn−P| ≥ δ )≤ 2ke−2δ 2n

where |Qn−P| is the total variation distance. Since H2(P,Qn)≤ |Qn−P| this guarantees that complexity323

curve converges at least as fast.324

Now we will consider a special case when n = 1. In this situation the multivariate hypergeometric
distribution is reduced to a simple categorical distribution P. In such case the expected Hellinger distance
is:

E[H2(P,Q1)] =
k

∑
i=1

pi√
2

√√√√ k

∑
j=1

(√
p j−1{ j = k}

)2

=
k

∑
i=1

pi√
2

√
1− pi +(

√
pi−1)2 =

k

∑
i=1

pi

√
1−√pi

This corresponds to the first point of complexity curve and determines its overall steepness.325

Theorem: E[H2(P,Q1)] is maximal for a given k when P is an uniform categorical distribution over k
categories, i.e.:

E[H2(P,Q1)] =
k

∑
i=1

pi

√
1−√pi ≤

√
1−
√

1
k

Proof: We will consider an arbitrary distribution P and the expected Hellinger distance E[H2(P,Q1)].
We can modify this distribution by choosing two states l and k occurring with probabilities pl and pk such
as that pl− pk is maximal among all pairs of states. We will redistribute the probability mass between the
two states creating a new distribution P′. The expected Hellinger distance for the distribution P′ will be:

E[H2(P′,Q1)] =
k

∑
i=1,i6=k,i6=l

pi

√
1−√pi +a

√
1−
√

a+(pk + pl−a)
√

1−
√

pk + pl−a

where a and pk + pl − a are new probabilities of the two states in P′. We will consider a function
f (a) = a

√
1−
√

a+(pk + pl−a)
√

1−
√

pk + pl and look for its maxima.

∂ f (x)
∂a

=−
√

1−
√

pk + pl−a+
√

pk + pl−a

4
√

1−
√

pk + pl−a
+

√
1−
√

a−
√

a

4
√

1−
√

a
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The derivative is equal to 0 if and only if a = pk+pl
2 . We can easily see that:

f (0) = f (pk + pl) = (pk + pl)

√
1−
√

pk + pl < (pk + pl)

√
1−
√

pk + pl

2

This means that f (a) reaches its maximum for a = pk+pl
2 . From that we can conclude that for any

distribution P if we produce distribution P′ by redistributing probability mass between two states equally
the following holds:

E[H2(P′,Q1)]≥ E[H2(P,Q1)]

If we repeat such redistribution arbitrary number of times the outcome distribution converges to uniform326

distribution. This proves that the uniform distribution leads to the maximal expected Hellinger distance327

for a given number of states.328

Theorem: Increasing the number of categories by dividing an existing category into two new categories
always increases the expected Hellinger distance, i.e.

k

∑
i=1

pi

√
1−√pi ≤

k

∑
i=1,i 6=l

pi

√
1−√pi +a

√
1−
√

a+(pl−a)
√

1−
√

pl−a

Proof: Without the loss of generality we can assume that a < 0.5pl . We can subtract terms occurring
on both sides of the inequality obtaining:

pl

√
1−√pl ≤ a

√
1−
√

a+(pl−a)
√

1−
√

pl−a

pl

√
1−√pl ≤ a

√
1−
√

a+ pl

√
1−
√

pl−a−a
√

1−
√

pl−a

pl

√
1−√pl +a

√
1−
√

pl−a≤ a
√

1−
√

a+ pl

√
1−
√

pl−a

Now we can see that:

pl

√
1−√pl ≤ pl

√
1−
√

pl−a

and

a
√

1−
√

pl−a≤ a
√

1−
√

a

which concludes the proof.329

From the properties stated by these two theorems we can gain some intuitions about complexity curves330

in general. First, by looking at the formula for the uniform distribution E[H2(P,Q1)] =

√
1−
√

1
k we331

can see that when k = 1 E[H2(P,Q1)] = 0 and when k→ ∞ E[H2(P,Q1)]→ 1. The complexity curve332

will be less steep if the variables in the data set take multiple values and each value occurs with equal333

probability. This is consistent with our intuition: we need a larger sample to cover such space and collect334

information. For smaller number of distinct values or distributions with mass concentrated mostly in a335

few points smaller sample will be sufficient to represent most of the information in the data set.336

Complexity curve and the performance of an unbiased model337

To confirm validity of the assumptions behind complexity curve we performed experiments with artificial338

data generated according to the known model. Error of the corresponding classifier trained on such data339

does not contain bias component, so it is possible to observe if variance error component is indeed upper340

bounded by the complexity curve. We used the same scenario as when calculating the complexity curve:341

classifiers were trained on random subsets and tested on the whole data set. We matched first and last342

points of complexity curve and learning curve and observed their relation in between.343
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Figure 4. Complexity curve and learning curve of the logistic regression on the logit data.

The first kind of data followed the logistic model (logit data set). Matrix X (1000 observations, 12
attributes) contained values drawn from normal distribution with mean 0 and standard deviation 1. Class
vector Y was defined as follows:

P(Y |x) = eβ ′x(
1+ eβ ′x

)
where β = (0.2,0.3,0.4,0.5,0.6,0.7,0,0,0,0,0,0). All attributes were independent and conditionally344

independent. Since Y values were not deterministic, there was some noise present – classification error of345

the logistic regression classifier trained and tested on the full data set was larger than zero.346

Figure 4 presents complexity curve and adjusted error of logistic regression for the generated data.347

After ignoring noise error component, we can see that the variance error component is indeed upper348

bounded by the complexity curve.349

Different kind of artificial data represented multidimensional space with parallel stripes in one350

dimension (stripes data set). It consisted of X matrix with 1000 observations and 10 attributes drawn from351

an uniform distribution on range [0,1). Class values Y dependent only on value of one of the attributes:352

for values lesser than 0.25 or greater than 0.75 the class was 1, for other values the class was 0. This kind353

of relation can be naturally modelled by a decision tree, and all the attributes are again independent and354

conditionally independent.355

Figure 5 presents complexity curve and adjusted error of decision tree classifier on the generated data.356

Once again the assumptions of complexity curve methodology are satisfied and the complexity curve is357

indeed an upper bound for the error.358

What would happen if the attribute conditional independence assumption was broken? To answer this
question we generated another type of data modelled after multidimensional chessboard (chessboard
data set). X matrix contained 1000 observations and 2, 3 attributes drawn from an uniform distribution on
range [0,1). Class vector Y had the following values:{

0 if Σm
i=0
⌊ xi

s

⌋
is even

1 otherwise

where s was a grid step in our experiments set to 0.5. There is clearly strong attribute dependence, but359

since all parts of decision boundary are parallel to one of the attributes this kind of data can be modelled360

with a decision tree with no bias.361

Figure 6 presents complexity curves and error curves for different dimensionalities of chessboard362

data. Indeed here classification error becomes larger than indicated by complexity curve. The more363
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Figure 5. Complexity curve and learning curve of the decision tree on the stripes data.

0 200 400 600 800 1000

Subset size

0.0

0.2

0.4

0.6

0.8

1.0

H
el
li
n
ge
r
d
is
ta
n
ce

0.0

0.1

0.2

0.3

0.4

0.5

E
rr
or

2 attributes

3 attributes

Figure 6. Complexity curve and learning curve of the decision tree on the chessboard data.
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Figure 7. Complexity curves for whitened data (dashed lines) and not whitened data (solid lines). Areas
under the curves are given in the legend. 8I – set of 8 independent random variables with Student’s t
distribution. 8R – one random variable with Student’s t distribution repeated 8 times. 8I w – whitened 8I.
8R w – whitened 8R.

dimensions, the more dependencies between attributes violating complexity curve assumptions. For 3364

dimensional chessboard the classification problem becomes rather hard and the observed error decreases365

slowly, but the complexity curve remains almost the same as for 2 dimensional case.366

Results of experiments with controlled artificial data sets are consistent with our theoretical expecta-367

tions. Basing on them we can introduce a general interpretation of the difference between complexity368

curve and learning curve: learning curve below the complexity curve is an indication that the algorithm is369

able to build a good model without sampling the whole domain, limiting the variance error component.370

On the other hand, learning curve above the complexity curve is an indication that the algorithm includes371

complex attributes dependencies in the constructed model, promoting the variance error component.372

Impact of whitening and ICA373

To evaluate the impact of the proposed preprocessing techniques (whitening and ICA – Independent374

Component Analysis) on complexity curves we performed experiments with artificial data. In the first375

experiment we generated two data sets of 300 observations and with 8 attributes distributed according to376

Student’s t distribution with 1.5 degrees of freedom. In one data set all attributes were independent, in the377

other the same attribute was repeated 8 times. To both sets small Gaussian noise was added. Figure 7378

shows complexity curves calculated before and after whitening transform. We can see that whitening379

had no significant effect on the complexity curve of the independent set. In the case of the dependent380

set complexity curve calculated after whitening decreases visibly faster and the area under the curve is381

smaller. This is consistent with our intuitive notion of complexity: data set with repeated attributes should382

be significantly less complex.383

In the second experiment two data sets with 100 observations and 4 attributes were generated. The384

first data set was generated from the continuous uniform distribution on interval [0,2], the second one385

from the discrete (categorical) uniform distribution on the same interval. To both sets small Gaussian386

noise was added. Figure 8 presents complexity curves for original, whitened and ICA-transformed data.387

Among the original data sets the intuitive notion of complexity is preserved: area under the complexity388

curve for categorical data is smaller. The difference disappears for the whitened data but is again visible389

in the ICA-transformed data.390

These simple experiments are by no means exhaustive but they confirm usefulness of the chosen391

signal processing techniques (data whitening and Independent Component Analysis) in complexity curve392

analysis.393
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Figure 8. Complexity curves for whitened data (dashed lines), not whitened data (solid lines) and
ICA-transformed data (dotted lines). Areas under the curves are given in the legend. U – data sampled
from uniform distribution. C – data sampled from categorical distribution. U w – whitened U. C w –
whitened C. U ICA – U w after ICA. C ICA – C w after ICA.

Complexity curve variability and outliers394

Complexity curve is based on the expected Hellinger distance and the estimation procedure includes395

some variance. The natural assumption is that the variability caused by the sample size is greater than396

the variability resulting from a specific composition of a sample. Otherwise averaging over samples of397

the same size would not be meaningful. This assumption is already present in standard learning curve398

methodology, when classifier accuracy is plotted against training set size. We expect that the exact399

variability of the complexity curve will be connected with the presence of outliers in the data set. Such400

influential observations will have a huge impact depending whether they will be included in a sample or401

not.402

To verify whether these intuitions were true, we constructed two new data sets by introducing403

artificially outliers to WINE data set. In WINE001 we modified 1% of values by multiplying them by a404

random number from range (−10,10). In WINE005 5% of values were modified in such manner.405

Figure 9 presents conditional complexity curves for all three data sets. WINE001 curve has indeed a406

higher variance and is less regular than WINE curve. WINE005 curve is characterised not only by a higher407

variance but also by a larger AUCC value. This means that adding so much noise increased the overall408

complexity of the data set significantly.409

The result support our hypothesis that large variability of complexity curve signify an occurrence of410

highly influential observations in the data set. This makes complexity curve a valuable diagnostic tool for411

such situations. However, it should be noted that our method is unable to distinguish between important412

outliers and plain noise. To obtain this kind of insight one has to employ different methods.413

Comparison with other complexity measures414

The set of data complexity measures developed by Ho and Basu (2002) and extended by Ho et al. (2006)415

continues to be used in experimental studies to explain performance of various classifiers (Dı́ez-Pastor416

et al., 2015; Mantovani et al., 2015). We decided to compare experimentally complexity curve with those417

measures. Descriptions of the measures used are given in Table 1.418

According to our hypothesis conditional complexity curve should be robust in the context of class419

imbalance. To demonstrate this property we used for the comparison 88 imbalanced data sets used420

previously in the study by Dı́ez-Pastor et al. (2015). These data sets come originally from HDDT (Cieslak421

et al., 2011) and KEEL (Alcalá et al., 2010) repositories. We selected only binary classification problems.422

The list of data sets with their properties is presented as Tables 2, 3.423
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Figure 9. Complexity curves for WINE and its counterparts with introduced outliers. For the sake of
clarity only contours were drawn.

Id Description

F1 Maximum Fisher’s discriminant ratio
F1v Directional-vector maximumline Fisher’s discriminant ratio
F2 Overlap of the per-classline bounding boxes
F3 Maximum individual feature efficiency
F4 Collective feature efficiency
L1 Minimized sum of the error distance of a linear classifier
L2 Training error of a linear classifier
L3 Nonlinearity of a linear classifier
N1 Fraction of points on the class boundary
N2 Ratio of average intra/inter class nearest neighbor distance
N3 Leave-one-out error rate of the one-nearest neighbor classifier
N4 Nonlinearity of the one-nearest neighbor classifier
T1 Fraction of maximum covering spheres
T2 Average number of points per dimension

Table 1. Data complexity measures used in experiments.
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Data set Instances Attributes Classes Imbalance ratio

HDDT BREAST-Y 286 9 2 2.36
HDDT COMPUSTAT 13657 20 2 25.26
HDDT COVTYPE 38500 10 2 13.02
HDDT CREDIT-G 1000 20 2 2.33
HDDT ESTATE 5322 12 2 7.37
HDDT GERMAN-NUMER 1000 24 2 2.33
HDDT HEART-V 200 13 2 2.92
HDDT HYPO 3163 25 2 19.95
HDDT ISM 11180 6 2 42.00
HDDT LETTER 20000 16 2 24.35
HDDT OIL 937 49 2 21.85
HDDT PAGE 5473 10 2 8.77
HDDT PENDIGITS 10992 16 2 8.63
HDDT PHONEME 5404 5 2 2.41
HDDT PHOSS 11411 480 2 17.62
HDDT SATIMAGE 6430 36 2 9.29
HDDT SEGMENT 2310 19 2 6.00

Table 2. Properties of HDDT data sets used in experiments.
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Figure 10. Pearson’s correlations between complexity measures.
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Data set Instances Attributes Classes Imbalance ratio

KEEL ABALONE19 4174 8 2 129.44
KEEL ABALONE9-18 731 8 2 16.40
KEEL CLEVELAND-0 VS 4 177 13 2 12.62
KEEL ECOLI-0-1-3-7 VS 2-6 281 7 2 39.14
KEEL ECOLI-0-1-4-6 VS 5 280 6 2 13.00
KEEL ECOLI-0-1-4-7 VS 2-3-5-6 336 7 2 10.59
KEEL ECOLI-0-1-4-7 VS 5-6 332 6 2 12.28
KEEL ECOLI-0-1 VS 2-3-5 244 7 2 9.17
KEEL ECOLI-0-1 VS 5 240 6 2 11.00
KEEL ECOLI-0-2-3-4 VS 5 202 7 2 9.10
KEEL ECOLI-0-2-6-7 VS 3-5 224 7 2 9.18
KEEL ECOLI-0-3-4-6 VS 5 205 7 2 9.25
KEEL ECOLI-0-3-4-7 VS 5-6 257 7 2 9.28
KEEL ECOLI-0-3-4 VS 5 200 7 2 9.00
KEEL ECOLI-0-4-6 VS 5 203 6 2 9.15
KEEL ECOLI-0-6-7 VS 3-5 222 7 2 9.09
KEEL ECOLI-0-6-7 VS 5 220 6 2 10.00
KEEL ECOLI-0 VS 1 220 7 2 1.86
KEEL ECOLI1 336 7 2 3.36
KEEL ECOLI2 336 7 2 5.46
KEEL ECOLI3 336 7 2 8.60
KEEL ECOLI4 336 7 2 15.80
KEEL GLASS-0-1-2-3 VS 4-5-6 214 9 2 3.20
KEEL GLASS-0-1-4-6 VS 2 205 9 2 11.06
KEEL GLASS-0-1-5 VS 2 172 9 2 9.12
KEEL GLASS-0-1-6 VS 2 192 9 2 10.29
KEEL GLASS-0-1-6 VS 5 184 9 2 19.44
KEEL GLASS-0-4 VS 5 92 9 2 9.22
KEEL GLASS-0-6 VS 5 108 9 2 11.00
KEEL GLASS0 214 9 2 2.06
KEEL GLASS1 214 9 2 1.82
KEEL GLASS2 214 9 2 11.59
KEEL GLASS4 214 9 2 15.46
KEEL GLASS5 214 9 2 22.78
KEEL GLASS6 214 9 2 6.38
KEEL HABERMAN 306 3 2 2.78
KEEL IRIS0 150 4 2 2.00
KEEL LED7DIGIT-0-2-4-5-6-7-8-9 VS 1 443 7 2 10.97
KEEL NEW-THYROID1 215 5 2 5.14
KEEL NEW-THYROID2 215 5 2 5.14
KEEL PAGE-BLOCKS-1-3 VS 4 472 10 2 15.86
KEEL PIMA 768 8 2 1.87
KEEL SHUTTLE-C0-VS-C4 1829 9 2 13.87
KEEL SHUTTLE-C2-VS-C4 129 9 2 20.50
KEEL VEHICLE0 846 18 2 3.25
KEEL VEHICLE1 846 18 2 2.90
KEEL VEHICLE2 846 18 2 2.88
KEEL VEHICLE3 846 18 2 2.99
KEEL VOWEL0 988 13 2 9.98
KEEL WISCONSIN 683 9 2 1.86
KEEL YEAST-0-2-5-6 VS 3-7-8-9 1004 8 2 9.14
KEEL YEAST-0-2-5-7-9 VS 3-6-8 1004 8 2 9.14
KEEL YEAST-0-3-5-9 VS 7-8 506 8 2 9.12
KEEL YEAST-0-5-6-7-9 VS 4 528 8 2 9.35
KEEL YEAST-1-2-8-9 VS 7 947 8 2 30.57
KEEL YEAST-1-4-5-8 VS 7 693 8 2 22.10
KEEL YEAST-1 VS 7 459 7 2 14.30
KEEL YEAST-2 VS 4 514 8 2 9.08
KEEL YEAST-2 VS 8 482 8 2 23.10
KEEL YEAST1 1484 8 2 2.46
KEEL YEAST3 1484 8 2 8.10
KEEL YEAST4 1484 8 2 28.10
KEEL YEAST5 1484 8 2 32.73
KEEL YEAST6 1484 8 2 41.40

Table 3. Properties of KEEL data sets used in experiments.
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AUCC logT2

LDA 0.0489 0.0227
Logistic regression -0.0539 0.1103
Naive Bayes -0.0792 0.0889
1-NN -0.1256 0.0772
3-NN -0.1311 0.0863
5-NN -0.1275 0.0952
10-NN -0.1470 0.1225
15-NN -0.1730 0.1584
20-NN -0.1842 0.1816
25-NN -0.1859 0.1902
30-NN -0.1969 0.2059
35-NN -0.2249 0.2395
Decision tree d = 1 0.0011 -0.0624
Decision tree d = 3 -0.1472 0.1253
Decision tree d = 5 -0.1670 0.1690
Decision tree d = 10 -0.1035 0.0695
Decision tree d = 15 -0.0995 0.0375
Decision tree d = 20 -0.0921 0.0394
Decision tree d = 25 -0.0757 0.0298
Decision tree d = 30 -0.0677 0.0227
Decision tree d = inf -0.0774 0.0345

Table 4. Pearson’s correlations coefficients between classifier AUC ROC performances and complexity
measures. Values larger than 0.22 or smaller than -0.22 are significant at α = 0.05 significance level.

For each data set we calculated area under the complexity curve using the previously described424

procedure and the values of other data complexity measures using DCOL software (Orriols-Puig et al.,425

2010). Pearson’s correlation was then calculated for all the measures. As T2 measure seemed to have426

non-linear characteristics destroying the correlation additional column logT2 was added to comparison.427

Results are presented as Figure 10. Clearly AUCC is mostly correlated with logT2 measure. This is428

to be expected as both measures are concerned with sample size in relation to attribute structure. The429

difference is that T2 takes into account only the number of attributes while AUCC considers also the430

complexity of distributions of the individual attributes. Correlations of AUCC with other measures are431

much lower and it can be assumed that they capture different aspects of data complexity and may be432

potentially complementary.433

The next step was to show that information captured by AUCC is useful for explaining classifier434

performance. In order to do so we trained a number of different classifiers on the 81 benchmark data sets435

and evaluated their performance using random train-test split with proportion 0.5 repeated 10 times. The436

performance measure used was the area under ROC curve. We selected three linear classifiers – naı̈ve437

Bayes with gaussian kernel, linear discriminant analysis (LDA) and logistic regression – and two families438

of non-linear classifiers of varying complexity: k-nearest neighbour classifier (k-NN) with different439

values of parameter k and decision tree (CART) with the limit on maximal tree depth. The intuition440

was as follows: the linear classifiers do not model attributes interdependencies, which is in line with441

complexity curve assumptions. Selected non-linear classifiers on the other hand are – depending on the442

parametrisation – more prone to variance error, which should be captured by complexity curve.443

Correlations between AUCC, logT2, and classifier performance are presented in Table 4. Most of the444

correlations are weak and do not reach statistical significance, however some general tendencies can be445

observed. As can be seen, AUC ROC scores of linear classifiers have very little correlation with AUCC446

and logT2. This may be explained by the high-bias and low-variance nature of these classifiers: they are447

not strongly affected by data scarcity but their performance depends on other factors. This is especially448

true for LDA classifier, which has the weakest correlation among linear classifiers.449

In k-NN classifier complexity depends on k parameter: with low k values it is more prone to variance450

22/34

PeerJ Comput. Sci. reviewing PDF | (CS-2016:03:9443:1:2:CHECK 31 May 2016)

Manuscript to be reviewedComputer Science



AUCC logT2

LDA - Logistic regression 0.2026 -0.2025
LDA - Naive Bayes 0.2039 -0.1219
LDA - 1-NN 0.2278 -0.0893
LDA - 3-NN 0.2482 -0.1063
LDA - 5-NN 0.2490 -0.1210
LDA - 10-NN 0.2793 -0.1609
LDA - 15-NN 0.3188 -0.2148
LDA - 20-NN 0.3365 -0.2510
LDA - 25-NN 0.3392 -0.2646
LDA - 30-NN 0.3534 -0.2868
LDA - 35-NN 0.3798 -0.3259
LDA - Decision tree d = 1 0.0516 0.1122
LDA - Decision tree d = 3 0.3209 -0.1852
LDA - Decision tree d = 5 0.3184 -0.2362
LDA - Decision tree d = 10 0.2175 -0.0838
LDA - Decision tree d = 15 0.2146 -0.0356
LDA - Decision tree d = 20 0.2042 -0.0382
LDA - Decision tree d = 25 0.1795 -0.0231
LDA - Decision tree d = 30 0.1636 -0.0112
LDA - Decision tree d = inf 0.1809 -0.0303

Table 5. Pearson’s correlations coefficients between classifier AUC ROC performances relative to LDA
performance and complexity measures. Values larger than 0.22 or smaller than -0.22 are significant at
α = 0.05 significance level.

error, with larger k it is prone to bias if the sample size is not large enough (Domingos, 2000). Both451

AUCC and logT2 seem to capture the effect of sample size in case of large k value well (correlations452

-0.2249 and 0.2395 for 35-NN). However, for k = 1 the correlation with AUCC is stronger (-0.1256 vs453

0.0772).454

Depth parameter in decision tree also regulates complexity: the larger the depth the more classifier is455

prone to variance error and less to bias error. This suggests that AUCC should be more strongly correlated456

with performance of deeper trees. On the other hand, complex decision trees explicitly model attribute457

interdependencies ignored by complexity curve, which may weaken the correlation. This is observed458

in the obtained results: for a decision stub (tree of depth 1), which is low-variance high-bias classifier,459

correlation with AUCC and logT2 is very weak. For d = 3 and d = 5 it becomes visibly stronger, and460

then for larger tree depth it again decreases. It should be noted that with large tree depth, as with small k461

values in k-NN, AUCC has stronger correlation with the classifier performance than logT2.462

A slightly more sophisticated way of applying data complexity measures is an attempt to explain463

classifier performance relative to some other classification method. In our experiments LDA is a good464

candidate for reference method since it is simple, has low variance and is not correlated with either AUCC465

or logT2. Table 5 presents correlations of both measures with classifier performance relative to LDA.466

Here we can see that correlations for AUCC are generally higher than for logT2 and reach significance467

for the majority of classifiers. Especially in the case of decision tree AUCC explains relative performance468

better than logT2 (correlation 0.1809 vs -0.0303 for d = inf).469

Results of the presented correlation analyses demonstrate the potential of complexity curve to comple-470

ment the existing complexity measures in explaining classifier performance. As expected from theoretical471

considerations, there is a relation between how well AUCC correlates with classifier performance and the472

classifier’s position in bias-variance spectrum. It is worth noting that despite the attribute independence473

assumption of complexity curve method it proved useful for explaining performance of complex non-linear474

classifiers.475
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Data set Instances Attributes Classes Source

ADENOCARCINOMA 76 9868 2 Ramaswamy et al. (2003)
BREAST2 77 4769 2 van ’t Veer et al. (2002)
BREAST3 95 4869 2 van ’t Veer et al. (2002)
COLON 62 2001 2 Alon et al. (1999)
LEUKEMIA 38 3052 2 Golub (1999)
LYMPHOMA 62 4026 2 Alizadeh et al. (2000)
PROSTATE 38 3052 2 Singh et al. (2002)

Table 6. Properties of microarray data sets used in experiments.

AUCC 1-NN 5-NN DT d-10 DT d-inf LDA NB LR
Dataset

ADENOCARCINOMA 0.9621 0.6354 0.5542 0.5484 0.5172 0.6995 0.5021 0.7206
BREAST2 0.9822 0.5869 0.6572 0.6012 0.6032 0.6612 0.5785 0.6947
BREAST3 0.9830 0.6788 0.7344 0.6274 0.6131 0.7684 0.6840 0.7490
COLON 0.9723 0.7395 0.7870 0.6814 0.6793 0.7968 0.5495 0.8336
LEUKEMIA 0.9611 1.0000 0.9985 0.7808 0.8715 0.9615 0.8300 1.0000
LYMPHOMA 0.9781 0.9786 0.9976 0.8498 0.8660 0.9952 0.9700 1.0000
PROSTATE 0.9584 0.5931 0.4700 0.4969 0.5238 0.4908 0.5000 0.4615

Table 7. Areas under conditional complexity curve (AUCC) for microarray data sets along AUC ROC
values for different classifiers. k-NN – k-nearest neighbour, DT – CART decision tree, LDA – linear
discriminant analysis, NB – naı̈ve Bayes, LR – logistic regression.

Large p, small n problems476

There is a special category of machine learning problems in which the number of attributes p is large477

with respect to the number of samples n, perhaps even order of magnitudes larger. Many important478

biological data sets, most notably data from microarray experiments, fall into this category (Johnstone479

and Titterington, 2009). To test how our complexity measure behaves in such situations, we calculated480

AUCC scores for a few microarray data sets and compared them with AUC ROC scores of some simple481

classifiers. Classifiers were evaluated as in the previous section. Detailed information about the data sets482

is given by Table 6.483

Results of the experiment are presented in Table 7. As expected, with the number of attributes much484

larger than the number of observations data is considered by our metric as extremely scarce – values of485

AUCC are in all cases above 0.95. On the other hand, AUC ROC classification performance is very varied486

between data sets with scores approaching or equal to 1.0 for LEUKEMIA and LYMPHOMA data sets, and487

scores around 0.5 baseline for PROSTATE. This is because despite the large number of dimensions the488

form of the optimal decision function can be very simple, utilising only a few of available dimensions.489

Complexity curve does not consider the shape of decision boundary at all and thus does not reflect490

differences in classification performance.491

From this analysis we concluded that complexity curve is not a good predictor of classifier performance492

for data sets containing a large number of redundant attributes, as it does not differentiate between493

important and unimportant attributes. The logical way to proceed in such case would be to perform some494

form of feature selection or dimensionality reduction on the original data, and then calculate complexity495

curve in the reduced dimensions.496

APPLICATIONS497

Interpreting complexity curves498

In order to prove the practical applicability of the proposed methodology, and show how complexity curve499

plot can be interpreted, we performed experiments with six simple data sets from UCI Machine Learning500

Repository (Frank and Asuncion, 2010). The sets were chosen only as illustrative examples. They have501
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Instances Attributes Classes

UCI IRIS 150 4 3
UCI CAR 1728 6 4
UCI MONKS-1 556 6 2
UCI WINE 178 13 3
UCI BREAST-CANCER-WISCONSIN (BCW) 683 9 2
UCI GLASS 214 9 7

Table 8. Basic properties of the benchmark data sets.

no missing values and represent only classification problems, not regression ones. Basic properties of the502

data sets are given in Table 8. For each data set we calculated conditional complexity curve, as it should503

capture data properties in the context of classification better than standard complexity curve. The curves504

are presented in Figure 11.505

Shape of the complexity curve portrays the learning process. The initial examples are the most506

important since there is a huge difference between having some information and having no information at507

all. After some point including additional examples still improves probability estimation, but does not508

introduce such a dramatic change.509

Looking at the individual graphs, it is now possible to compare complexity of different sets. From the510

sets considered, MONKS-1 and CAR are dense data sets with a lot of instances and medium number of511

attributes. The information they contain can be to a large extend recovered from relatively small subsets.512

Such sets are natural candidates for data pruning. On the other hand, WINE and GLASS are small data513

sets with a larger number of attributes or classes – they can be considered complex, with no redundant514

information.515

Besides the slope of the complexity curve we can also analyse its variability. We can see that the516

shape of WINE complexity curve is very regular with small variance in each point, while the GLASS curve517

displays much higher variance. This mean that the observations in GLASS data set are more diverse and518

some observations (or their combinations) are more important for representing data structure than the519

other.520

Data pruning with complexity curves521

The problem of data pruning in the context of machine learning is defined as reducing the size of training522

sample in order to reduce classifier training time and still achieve satisfactory performance. It becomes523

extremely important as the data grows and a) does not fit the memory of a single machine, b) training524

times of more complex algorithms become very long.525

A classic method for performing data pruning is progressive sampling – training the classifier on526

data samples of increasing size as long as its performance increases. Provost et al. (1999) analysed527

various schedules for progressive sampling and recommended geometric sampling, in which sample size528

is multiplied by a specified constant in each iteration, as the reasonable strategy in most cases. Geometric529

sampling uses samples of sizes ain0, where n0 – initial sample size, a – multiplier, i – iteration number.530

In our method instead of training classifier on the drawn data sample we are probing the complexity531

curve. We are not detecting convergence of classifier accuracy, but searching for a point on the curve532

corresponding to some reasonably small Hellinger distance value, e.g. 0.005. This point designates the533

smallest data subset which still contains the required amount of information.534

In this setting we were not interested in calculating the whole complexity curve but just in finding the535

minimal data subset, which still contains most of the original information. The search procedure should536

be as fast as possible, since the goal of the data pruning is to save time spent on training classifiers. To537

comply with these requirements we constructed a criterion function of the form f (x) = H2(Gx,D)− t,538

where D denotes a probability distribution induced by the whole data set, Gx a distribution induced by539

random subset of size x and t is the desired Hellinger distance. We used classic Brent method (Brent,540

1973) to find a root of the criterion function. In this way data complexity was calculated only for the points541

visited by Brent’s algorithm. To speed up the procedure even further we used standard complexity curve542

instead of the conditional one and settled for whitening transform as the only preprocessing technique.543
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Figure 11. Conditional complexity curves for six different data sets from UCI Machine Learning
repository with areas under complexity curve (AUCC) reported: A – CAR, AUCC: 0.08, B – MONKS-1,
AUCC: 0.05, C – IRIS, AUCC: 0.19, D – BREAST-CANCER-WISCONSIN, AUCC: 0.13, E – GLASS,
AUCC: 0.44, F – WINE, AUCC: 0.35.
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Instances Attributes Classes

UCI LED 100000 7 9
UCI WAVEFORM 100000 21 3
UCI ADULT 32561 14 2

Table 9. Basic properties of the data pruning benchmark data sets.

To verify if this idea is of practical use, we performed an experiment with three bigger data sets from544

UCI repository. Their basic properties are given by Table 9.545

For all data sets we performed a stratified 10 fold cross validation experiment. The training part of546

a split was pruned according to our criterion function with t = 0.005 (CC pruning) or using geometric547

progressive sampling with multiplier a = 2 and initial sample size n0 = 100 (PS pruning). Achieving548

the same accuracy as with CC pruning was used as a stop criterion for progressive sampling. Classifiers549

were trained on pruned and unpruned data and evaluated on the testing part of each cross validation split.550

Standard error was calculated for the obtained values. We have used machine learning algorithms from551

scikit-learn library (Pedregosa et al., 2011) and the rest of the procedure was implemented in Python with552

the help of NumPy and SciPy libraries. Calculations were done on a workstation with 8 core Intel R©553

CoreTM i7-4770 3.4 Ghz CPU working under Arch GNU/Linux.554

Table 10 presents measured times and obtained accuracies. As can be seen, the difference in classifica-555

tion accuracies between pruned and unpruned training data is negligible. CC compression rate differs for556

the three data sets, which suggests that they are of different complexity: for LED data only 5% is needed557

to perform successful classification, while ADULT data is pruned at 33%. CC compression rate is rather558

stable with only small standard deviation, but PS compression rate is characterised with huge variance. In559

this regard, complexity curve pruning is preferable as a more stable pruning criterion.560

In all cases when training a classifier on the unpruned data took more than 10 seconds, we observed561

huge speed-ups. With the exception of SVC on LED data set, complexity curve pruning performed562

better than progressive sampling in such cases. Unsurprisingly, real speed-ups were visible only for563

computationally intensive methods such as Support Vector Machines, Random Forest and Gradient564

Boosted Decision Trees. For simple methods such as Naı̈ve Bayes, Decision Tree or Logistic Regression565

fitting the model on the unpruned data is often faster than applying pruning strategy.566

These results present complexity curve pruning as a reasonable model-free alternative to progressive567

sampling. It is more stable and often less demanding computationally. It does not require additional568

convergence detection strategy, which is always an important consideration when applying progressive569

sampling in practice. What is more, complexity curve pruning can also be easily applied in the context of570

online learning, when the data is being collected on the fly. After appending a batch of new examples to571

the data set, Hellinger distance between the old data set and the extended one can be calculated. If the572

distance is smaller than the chosen threshold, the process of data collection can be stopped.573

Generalisation curves for benchmark data sets574

Another application of the proposed methodology is comparison of classification algorithms based on575

generalisation curves. We evaluated a set of standard algorithms available in scikit-learn library (Pedregosa576

et al., 2011). As benchmark data sets we used the same sets from UCI repository as in section demonstrat-577

ing interpretability of complexity curves. The following classification algorithms were evaluated:578

• MajorityClassifier – artificial classifier which always returns the label of the most frequent class in579

the training set,580

• GaussianNB – naı̈ve Bayes classifier with Gaussian kernel probability estimate,581

• KNeighborsClassifier – k-nearest neighbours, k = 5,582

• DecisionTreeClassifier – CART decision tree algorithm,583

• RandomForestClassifier – random forest with 10 CART trees,584

• LinearSVC – linear spport vector machine (without kernel transformation), cost parameter C = 1,585
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Classifier Score CC score Time CC time PS time PS rate

waveform
Mean CC compression rate: 0.19±0.02 Mean CC compression time: 4.01±0.14

LinearSVC 0.86±0.00 0.86±0.00 27.71±0.35 6.69±0.52 10.73±8.65 0.55±0.49
GaussianNB 0.80±0.01 0.80±0.01 0.02±0.00 4.02±0.14 0.03±0.01 0.01±0.00
RF 0.86±0.00 0.85±0.00 33.49±0.04 9.29±0.76 18.06±10.75 0.46±0.37
SVC 0.86±0.00 0.86±0.00 211.98±0.93 9.08±1.21 21.22±28.34 0.33±0.42
Tree 0.78±0.00 0.77±0.00 3.06±0.06 4.50±0.20 1.40±0.70 0.37±0.28
Logit 0.86±0.00 0.86±0.00 1.75±0.06 4.21±0.17 0.60±0.62 0.30±0.34
GBC 0.86±0.00 0.86±0.00 112.34±0.12 24.59±2.30 66.66±37.99 0.53±0.43

led
Mean CC compression rate: 0.04±0.01 Mean CC compression time: 1.38±0.03

LinearSVC 0.74±0.00 0.74±0.00 4.68±0.10 1.49±0.04 0.47±1.04 0.13±0.34
GaussianNB 0.74±0.00 0.73±0.00 0.02±0.00 1.38±0.03 0.07±0.02 0.26±0.44
RF 0.74±0.00 0.73±0.00 1.77±0.01 1.47±0.03 0.83±0.25 0.05±0.04
SVC 0.74±0.00 0.74±0.00 82.16±0.86 1.56±0.07 10.04±17.52 0.26±0.44
Tree 0.74±0.00 0.73±0.00 0.03±0.00 1.38±0.03 0.04±0.01 0.09±0.10
Logit 0.74±0.00 0.74±0.00 2.03±0.08 1.42±0.03 0.30±0.44 0.17±0.33
GBC 0.74±0.00 0.73±0.00 51.26±0.40 3.57±0.30 6.32±4.05 0.04±0.04

adult
Mean CC compression rate: 0.33±0.02 Mean CC compression time: 0.93±0.05

LinearSVC 0.69±0.19 0.67±0.20 1.79±0.08 1.53±0.08 0.30±0.84 0.18±0.52
GaussianNB 0.81±0.01 0.81±0.01 0.01±0.00 0.93±0.05 0.01±0.00 0.02±0.02
RF 0.86±0.01 0.85±0.01 2.04±0.01 1.60±0.09 2.11±1.18 0.69±0.59
SVC 0.76±0.00 0.76±0.00 81.70±0.56 10.52±2.31 5.06±7.17 0.16±0.19
Tree 0.81±0.00 0.81±0.01 0.12±0.00 0.97±0.05 0.10±0.08 0.72±0.72
Logit 0.80±0.00 0.80±0.00 0.08±0.01 0.96±0.05 0.05±0.07 0.42±0.68
GBC 0.86±0.00 0.86±0.00 2.33±0.01 1.80±0.09 2.37±1.22 0.67±0.57

Table 10. Obtained accuracies and training times of different classification algorithms on unpruned and
pruned data sets. Score corresponds to classifier accuracy, time to classifier training time (including
pruning procedure), rate to compression rate. CC corresponds to data pruning with complexity curves, PS
to data pruning with progressive sampling. LinearSVC – linear support vector machine, GaussianNB –
naı̈ve Bayes with gaussian kernel, RF – random forest 100 CART trees, SVC – support vector machine
with radial basis function kernel, Tree – CART decision tree, Logit – logistic regression, GBC – gradient
boosting classifier with 100 CART trees.
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Figure 12. Generalisation curves for various data sets and classification algorithms. A – CAR, B –
MONKS-1, C – IRIS, D – BREAST-CANCER-WISCONSIN, E – GLASS, F – WINE. 29/34
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• SVC – support vector machine with radial basis function kernel (RBF):586

exp(− 1
n |x− x′|2), n – number of features, cost parameter C = 1.587

Generalisation curves were calculated for all classifiers with the same random seed, to make sure588

that the algorithms are trained on exactly the same data samples. The obtained curves are presented in589

Figure 12.590

The performance of the majority classifier is used as a baseline. We expect that the worst-case591

performance of any classifier should be at least at the baseline level. This is indeed observed in the plots:592

most classifiers start at the baseline level and then their accuracy steadily increases as more data are593

accumulated. The notable exception is the CAR data set, where the accuracy of decision tree and linear594

SVM stays below the accuracy of the majority classifier in the initial phase of learning. We attribute this595

to the phenomena known as anti-learning (Kowalczyk and Chapelle, 2005). It occurs in certain situations,596

when the sample size is smaller than the number of attributes, and correct classification of the examples in597

the training set may lead to an inverted classification of the examples in the testing set.598

In an ideal situation the learning algorithm is able to utilise every bit of additional information599

identified by the complexity curve to improve the classification and the accuracy gain is linear. The600

generalisation curve should be then a straight line. Convex generalisation curve indicates that complexity601

curve is only a loose upper bound on classifier variance, in other words algorithm is able to fit a model602

using less information than indicated by the complexity curve. On the other hand, concave generalisation603

curve corresponds to a situation when the independence assumption is broken and including information on604

attributes interdependencies, not captured by complexity curve, is necessary for successful classification.605

On most of the benchmark data sets generalisation curves are generally convex, which means that606

the underlining complexity curves constitute proper upper bounds on the variance error component. The607

bound is relatively tight in the case of GLASS data set, looser in the case of IRIS, and the loosest for608

WINE and BREAST-CANCER-WISCONSIN data. A natural conclusion is that a lot of variability contained609

in this last data set and captured by the Hellinger distance is irrelevant to the classification task. The610

most straightforward explanation would be the presence of unnecessary attributes uncorrelated with class,611

which can be ignored altogether. This is consistent with the results of various studies in feature selection.612

Choubey et al. (1996) identified that in GLASS data 7-8 attributes (78-89%) are relevant, in IRIS data 3613

attributes (75%), and in BREAST-CANCER-WISCONSIN 5-7 attributes (56-78%). Similar results were614

obtained for BREAST-CANCER-WISCONSIN in other studies, which found that only 4 of the original615

attributes (44%) contribute to the classification (Ratanamahatana and Gunopulos, 2003; Liu et al., 1998).616

Dy and Brodley (2004) obtained best classification results for WINE data set with 7 attributes (54%).617

On MONKS-1 and CAR data generalisation curves for all algorithms besides naı̈ve Bayes and linear618

SVM are concave. This is an indication of models relying heavily on attribute interdependencies to619

determine the correct class. This is not the case for naı̈ve Bayes and linear SVM because these methods620

are unable to model attribute interactions. This is not surprising: both MONKS-1 and CAR are artificial621

data sets with discrete attributes devised for evaluation of rule-based and tree-based classifiers Thrun et al.622

(1991); Bohanec and Rajkovič (1988). Classes are defined with logical formulas utilising relations of623

multiple attributes rather than single values – clearly the attributes are interdependent.624

An interesting case is RBF SVM on WINE data set. Even though it is possible to model the problem625

basing on a relatively small sample, it overfits strongly by trying to include unnecessary interdependencies.626

This is a situation when variance of a model is greater than indicated by the complexity curve.627

To compare performance of different classifiers, we computed areas under generalisation curves628

(AUGC) for all data sets. Results are presented in Table 11. Random forest classifier obtained the highest629

scores on all data sets except MONKS-1 where single decision tree performed the best. On WINE data set630

naı̈ve Bayes achieved AUGC comparable with random forest.631

AUGC values obtained on different data sets are generally not comparable, especially when the base632

level – majority classifier performance – differs. Therefore, to obtain a total ranking we ranked classifiers633

separately on each data set and averaged the ranks. According to this criteria random forest is the best634

classifier on these data sets, followed by decision tree and support vector machine with radial basis635

function kernel.636

Comparison of algorithms using AUGC favours an algorithm which is characterised simultaneously637

by good accuracy and small sample complexity (ability to draw conclusions from a small sample). The638

proposed procedure helps to avoid applying an overcomplicated model and risking overfitting when a639
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Classifiers

Data set M NB kNN DT RF SVMl SVMr

CAR 0.70 (7) 0.71 (5.5) 0.76 (4) 0.79 (2.5) 0.80 (1) 0.71 (5.5) 0.79 (2.5)
MONKS-1 0.50 (7) 0.57 (6) 0.58 (5) 0.63 (1) 0.61 (2) 0.59 (4) 0.60 (3)
IRIS 0.33 (7) 0.79 (5) 0.76 (6) 0.87 (1.5) 0.87 (1.5) 0.85 (4) 0.86 (3)
BCW 0.64 (7) 0.91 (4) 0.92 (2) 0.91 (4) 0.93 (1) 0.89 (6) 0.91 (4)
GLASS 0.34 (7) 0.47 (5) 0.64 (3) 0.76 (2) 0.78 (1) 0.44 (6) 0.61 (4)
WINE 0.40 (7) 0.93 (1.5) 0.71 (5) 0.90 (3) 0.93 (1.5) 0.73 (4) 0.60 (6)

Avg. rank 7 4.5 4 2.33 1.33 4.92 3.75

Table 11. Areas under generalisation curves for various algorithms. Values given in brackets are ranks
among all algorithms (ties solved by ranking randomly and averaging ranks). M – majority classifier, NB
– naı̈ve Bayes, kNN – k-nearest neighbours, DT – decision tree, RF – random forest, SVMr – support
vector machine with RBF kernel, SVMl – linear support vector machine.

simpler model is adequate. It takes into account algorithm properties ignored by standard performance640

metrics.641

CONCLUSIONS642

In this article we introduced a measure of data complexity targeted specifically at data sparsity. This643

distinguish it from other measures focusing mostly on the shape of optimal decision boundary in classifi-644

cation problems. The introduced measure has a form of graphical plot – complexity curve. We showed645

that it exhibits desirable properties through a series of experiments on both artificially constructed and646

real-world data sets. We proved that complexity curve capture non-trivial characteristics of the data sets647

and is useful for explaining the performance of high-variance classifiers. With conditional complexity648

curve it was possible to perform a meaningful analysis even with heavily imbalanced data sets.649

Then we demonstrated how complexity curve can be used in practice for data pruning (reducing650

the size of training set) and that it is a feasible alternative to progressive sampling technique. This651

result is immediately applicable to all the situations when data overabundance starts to pose a problem.652

For instance, it is possible to perform a quick exploration study on a pruned data set before fitting653

computationally expensive models on the whole set. Pruning result may also provide a suggestion for654

choosing proper train-test split ratio or number of folds of cross-validation in the evaluation procedure.655

Knowing data sparseness is useful both for evaluating the trained classifiers and classification algo-656

rithms in general. Using the concept of the complexity curve, we developed a new performance measure –657

an extension of learning curve called generalisation curve. This method presents classifier generalisation658

capabilities in a way that depends on the data set information content rather than its size. It provided more659

insights into classification algorithm dynamics than commonly used approaches.660

We argue that new performance metrics, such as generalisation curves, are needed to move away from661

a relatively static view of classification task to a more dynamic one. It is worth to investigate how various662

algorithms are affected by certain data manipulations, for example when new data become available or663

the underlying distribution shifts. This would facilitate the development of more adaptive and universal664

algorithms capable of working in a dynamically changing environment.665

Experiments showed that in the presence of large number of redundant attributes not contributing to666

the classification task complexity curve does not correlate well with classifier performance. It correctly667

identifies dimensional sparseness of the data, but that is misleading since the actual decision boundary may668

still be very simple. Because of this as the next step in our research we plan to apply similar probabilistic669

approach to measure information content of different attributes in a data set and use that knowledge for670

performing feature selection. Graphs analogical to complexity curves and generalisation curves would671

be valuable tools for understanding characteristics of data sets and classification algorithms related to672

attribute structure.673

Our long-term goal is to gain a better understanding of the impact of data set structure, both in674

terms of contained examples and attributes, and use that knowledge to build heterogeneous classification675
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ensembles. We hope that a better control over data sets used in experiments will allow to perform a more676

systematic study of classifier diversity and consensus methods.677
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