
Submitted 30 June 2021
Accepted 12 October 2021
Published 19 November 2021

Corresponding author
Bérenger Bramas,
berenger.bramas@inria.fr

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.769

Copyright
2021 Bramas

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A fast vectorized sorting implementation
based on the ARM scalable vector
extension (SVE)
Bérenger Bramas
CAMUS, Inria Nancy - Grand Est, Nancy, France
ICPS Team, ICube, Illkirch-Graffenstaden, France

ABSTRACT
The way developers implement their algorithms and how these implementations
behave on modern CPUs are governed by the design and organization of these. The
vectorization units (SIMD) are among the few CPUs’ parts that can and must be
explicitly controlled. In the HPC community, the x86 CPUs and their vectorization
instruction sets were de-facto the standard for decades. Each new release of an
instruction set was usually a doubling of the vector length coupled with new operations.
Each generation was pushing for adapting and improving previous implementations.
The release of the ARM scalable vector extension (SVE) changed things radically for
several reasons. First, we expect ARM processors to equip many supercomputers
in the next years. Second, SVE’s interface is different in several aspects from the
x86 extensions as it provides different instructions, uses a predicate to control most
operations, and has a vector size that is only known at execution time. Therefore, using
SVE opens new challenges on how to adapt algorithms including the ones that are
already well-optimized on x86. In this paper, we port a hybrid sort based on the well-
known Quicksort and Bitonic-sort algorithms. We use a Bitonic sort to process small
partitions/arrays and a vectorized partitioning implementation to divide the partitions.
We explain how we use the predicates and how we manage the non-static vector size.
We also explain how we efficiently implement the sorting kernels. Our approach only
needs an array of O(log N) for the recursive calls in the partitioning phase, both in
the sequential and in the parallel case. We test the performance of our approach on a
modern ARMv8.2 (A64FX) CPU and assess the different layers of our implementation
by sorting/partitioning integers, double floating-point numbers, and key/value pairs of
integers. Our results show that our approach is faster than the GNUC++ sort algorithm
by a speedup factor of 4 on average.

Subjects Algorithms and Analysis of Algorithms, Distributed and Parallel Computing
Keywords ARM, SVE, Vectorization, Sort

INTRODUCTION
Sorting is a fundamental problem in computer science and a critical building block for
many types of applicationssuch as, but not limited to, database servers (Graefe, 2006),
image rendering engines (Bishop et al., 1998), mining of time series (Raoofy et al., 2020) or
JPEG steganography with particle swarm (Snasel et al., 2020). This has pushed the research
community to spendmany efforts to provide efficient sorting libraries on new architectures.

How to cite this article Bramas B. 2021. A fast vectorized sorting implementation based on the ARM scalable vector extension (SVE).
PeerJ Comput. Sci. 7:e769 http://doi.org/10.7717/peerj-cs.769

https://peerj.com/computer-science
mailto:berenger.bramas@inria.fr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.769
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.769

This research of performance is coupled to the changes in CPUs’ designs and organization,
which includes the vectorization capability.

The performance of CPUs has improved for several decades by increasing the clock
frequency. However, this approach has reached a steady-state due to power dissipation
and heat effects. To go beyond this limitation, the manufacturers have used parallelization
at multiple levels: by embedding multi-cores in a CPU, by allowing pipelining and out-
of-order execution at the instruction-level, by putting multiple computational units in
each core, and by supporting vectorization. In this context, vectorization consists in the
capability of a CPU core of applying a single instruction on multiple data, a concept called
SIMD by Flynn’s taxonomy (Flynn, 1972). The consequence of this hardware design is
that it is mandatory to vectorize a code to achieve high-performance. On the contrary, the
throughput can be reduced by at least a factor equivalent to the length of a vector compared
to the theoretical peak of the hardware. For instance, vector sizes for single precision values
are 8 in widespread CPUs (AVX2) and 16 (AVX-512) on many computing nodes.

We can convert many classes of algorithms and computational kernels from a scalar
code into a vectorized equivalent without difficulties. Besides, it can be done with auto-
vectorization for some of them.However, some algorithms are challenging to adapt because
of their memory/data access patterns. Data-processing algorithms (like sorting) are of this
kind and require a significant programming effort to be vectorized efficiently. Also, the
possibility of creating a fully vectorized implementation, with no scalar sections and with
few data transformations, is only possible and efficient if the instruction set extension (IS)
provides the needed operations. This is why new ISs together with their new operations
make it possible to invent approaches that were not feasible previously, at the cost of
reprogramming.

Vectorizing a code can be described as solving a puzzle, where the board is the target
algorithm and the pieces are the size of the vector and the instructions. However, the
paradigm changes with SVE (Stephens et al., 2017; ARM, 2020b; ARM, 2020a) because the
size of the vector is unknown at compile time. This can have a significant impact on the
transformation from scalar to vectorial. As an example, consider that a developer wants to
work on a fixed number of values, which could be linked to the problem to solve, e.g., a
16×16 matrix-matrix product, or based on other references, e.g., the size of the L1 cache.
When the size of the vector is known at development time, a block of data can be mapped
to the corresponding number of vectors and working on the vectors can be done with
static/known number of operations. With a variable size, it is required to either implement
different kernels for each of the possible sizes (like if they were different ISs) or by finding
a generic way to vectorize the kernel, which could be a tedious task. We could expect SVE
to be less upgraded than x86 ISs because there will be no need to release a new IS even
when new CPU generations will support larger vectors.

In the current paper, we focus on the adaptation of a sorting strategy and its efficient
implementation for the ARM CPUs with SVE. Our implementation is generic and works
for any size equal to a power of two. The contributions of this study are:

• Describe how we port our AVX-SORT algorithm (Bramas, 2017) to SVE;

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

1The current study provides a translation
of our AVX-SORT into SVE but also a
completely new approach which works
when the vector size is unknown at
compile time.

2The functions described in the current
study are available at https://gitlab.inria.fr/
bramas/sve-sort. This repository includes
a clean header-only library and a test file
that generates the performance study of
the current manuscript. The code is under
MIT license.

4 2 3 1 6

2 1 3 6 4

4 61 2

≤ 3

≤ 2 ≤ 6∅ ∅

l=0

r=1 r=5l=0 l=4

r=5

Figure 1 Quicksort algorithm example.Quicksort example to sort [3,1,2,0,5] to [0,1,2,3,5]. The pivot is
equal to the value in the middle: the first pivot is 2, then at second recursion level it is 1 and 5.

Full-size DOI: 10.7717/peerjcs.769/fig-1

• Define a new Bitonic-sort variant using SVE and how runtime vector size impact the
implementation1;
• Implement an efficient Quicksort variant using OpenMP (Board, 2013) tasks.

All in all, we show how we can obtain a fast and vectorized in-place sorting
implementation2.

The paper is organized as follows: We first give background information related to
vectorization and sorting in ‘Background’. Then, in ‘Sorting with SVE’, we describe our
strategies for sorting small arrays, for partitioning and for our parallel sort. Finally, the
performance study is detailed in ‘Performance study’.

BACKGROUND
Sorting algorithms
Quicksort (QS) overview
QS (Hoare, 1962) is a sorting algorithm that followed a divide-and-conquer strategy:
the input array is recursively partitioned until the partitions hold a single element. The
partitioning algorithm moves the values lower than a pivot at the beginning of the array,
and greater values at the end, with a linear complexity. The worst-case complexity of QS is
O(n2), but in practice it has an average complexity of O(n logn). The complexity is tied to
the pivot, and it must be close to the median to ensure a low complexity. However, it is a
very popular sorting algorithm thanks to its simplicity in terms of implementation, and its
speed in practice. An example of a QS execution is provided in Fig. 1.

To parallelize the QS and other divide-and-conquer approaches, it is common to create
a task for each recursive call followed by a wait statement. For instance, a thread partitions
the array in two, and then creates two tasks (one for each of the partition). To ensure

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 3/24

https://gitlab.inria.fr/bramas/sve-sort
https://gitlab.inria.fr/bramas/sve-sort
https://peerj.com
https://doi.org/10.7717/peerjcs.769/fig-1
http://dx.doi.org/10.7717/peerj-cs.769

3See the libstdc++ documentation on the
sorting algorithm available at https://gcc.
gnu.org/onlinedocs/libstdc++/libstdc++-
html-USERS-4.4/a01347.html#l05207.

coherency, the thread waits for the completion of the tasks before continuing. We refer to
this parallel strategy as the QS-par.

GNU std::sort implementation (STL)
The standard requires a worst-case complexity of O(n log n) (ISO, 2014) (it was an average
complexity until year 2003 (ISO, 2003) that a pure QS implementation cannot guarantee.
Consequently, the QS algorithm cannot be used alone as a standard C++ sort. As a result,
the current STL implementation relies on 3 different algorithms3. This i3-part hybrid
sorting algorithm is composed of an Introsort (Musser, 1997) to a maximum depth of 2 ×
log2 n to obtain small partitions. These partitions are then sorted using an insertion sort,
which is a 2-part hybrid composed of Quicksort and Heapsort.

Bitonic sorting network
In computer science, a sorting network is an abstract that describes how the values to sort
are compared and exchanged. A network is defined for a given number of values. It is
possible to represent graphically a sorting network where horizontal lines represent the
input values, and vertical connection between those lines represent compare and exchange
units. The literature provides various examples of sorting networks, and our approach
relies on the Bitonic sort (Batcher, 1968). This network is straightforward to implement
and its algorithm complexity for any input is of O(n log(n)2). This algorithm demonstrated
good performances on parallel computers (Nassimi & Sahni, 1979) and GPUs (Owens et
al., 2008). We provide a Bitonic sorting network to sort 16 values in Fig. 2A. The execution
of the example goes from left to right as a timeline. The values are moved from left to right,
and when they cross an exchange unit they are potentially transferred along the vertical
bar. Figure 2B provide a real example where we print the values along the horizontal lines
when sorting eight values. We use the terms symmetric and stair exchanges to refer to the
red and orange stages, respectively. A symmetric stage is always followed by stair stages
from half size to size two. The Bitonic sort does not maintain the original order of the
values and thus is not stable.

We can implement a sorting network by hard-coding the connections between the lines
only if we know the size of the input array. In this case, we simply translate the picture into
an algorithm. However, for a dynamic array size, the implementation has to be flexible by
relying on formulas that define when the lines cross (Grama et al., 2003).

Vectorization
The word vectorization defines a CPU capability of applying a single operation/instruction
to a vector of values, instead of a single/scalar value (Kogge, 1981). Thanks to this feature,
the peak performance of single cores had continued to increase despite the stagnation of the
clock frequency since the mid-2000s. In the meanwhile, the length of the SIMD registers
(i.e., the size of the vectors) has continuously increased, which increases the performance of
the chips accordingly. In the current study, the term vector has no relation to an expandable
vector data structure, such as std::vector, but refers to the data type managed by the CPU in
this sense. The size of the vectors is variable and depends on both the instruction set and
the type of vector’s elements, and corresponds to the size of the registers in the chip.

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 4/24

https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html#l05207
https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html#l05207
https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01347.html#l05207
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

(a)

6
5
2
3
6
9
8
7

5
4
2
1
6
6
0
5

5
4
2
1
6
6
5
0

6
5
3
2
9
6
8
7

6
5
3
2
9
8
6
7

6
5
3
2
9
8
7
6

6
7
8
9
2
3
5
6

8
9
6
7
5
6
2
3

9
8
7
6
6
5
3
2

(b)

Figure 2 (A-B) Bitonic sorting network examples. Bitonic sorting network examples. In red boxes, the exchanges are done from extremities to the
center and we refer to it as the symmetric stage, whereas in orange boxes, the exchanges are done with a linear progression and we refer to it as the
stair stage.

Full-size DOI: 10.7717/peerjcs.769/fig-2

float a; svfloat64_t a;

float b; svfloat64_t b;

a+b a+b

+

=

svfloat64_t a;

svfloat64_t b;

0 0 0 0

a+b using tf

T T F F T T F F

svbool_t tf;

Figure 3 Summation example of single precision floating-point values. Summation example of single
precision floating-point values using: (yellow) scalar standard C++ code, (red) SSE SIMD-vector of four
values, (green) AVX SIMD-vector of eight values.

Full-size DOI: 10.7717/peerjcs.769/fig-3

The SIMD instructions can be called in the assembly language or using intrinsic functions,
which are small functions that are intended to be replaced with a single assembly instruction
by the compiler. There is usually a one-to-one mapping between intrinsics and assembly
instructions, but this is not always true, as some intrinsics are converted into several
instructions. Moreover, the compiler is free to use different instructions as long as they
give the same results.

The SVE is a feature for ARMv8 processors. The size of the vector is not fixed at compile
time (the specification limits the size to 2048 bits and ensures that it is a multiple of 128
bits) such that a binary that includes SVE instructions can be executed on ARMv8 that
support SVE no matter the size of their registers. Figure 3 illustrates the difference between
a scalar summation and a vector summation with a vector size of 256 bits.

SVE provides most classic operations that also exist in x86 vectorization extensions, such
as loading a contiguous block of values from the main memory and transforming it into a
SIMD-vector (load), filling a SIMD-vector with a value (set), move back a SIMD-vector into
memory (store) and basic arithmetic operations. SVE also provides advanced operations

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 5/24

https://peerj.com
https://doi.org/10.7717/peerjcs.769/fig-2
https://doi.org/10.7717/peerjcs.769/fig-3
http://dx.doi.org/10.7717/peerj-cs.769

like gather, scatter, indexed accesses, permutations, comparisons, and conversions. It is
also possible to get the maximum or the minimum of a vector or element-wise between
two vectors.

Another significant difference with other ISs, is the use of predicate vectors i.e. the
use of Boolean vectors (svbool_t) that allow controlling more finely the instructions by
selecting the affected elements, for example. Also, while in AVX-512 the value returned by
a test/comparison (vpcmpd/vcmppd) is a mask (integer), in SVE, the result is svbool_t.

Aminor difference, but which impacts our implementation, is that SVE does not support
a store-some as it exists in AVX-512 (vpcompressps/vcompresspd), where some values of
a vector can be stored contiguously in memory. With SVE it is needed to first compact
the values of a vector to put the values to be saved at the beginning of the vector, and
then perform a store, or to use a scatter. However, both approaches need extra Boolean or
indices vectors and additional instructions.

Related work on vectorized sorting algorithms
The literature on sorting and vectorized sorting implementations is very large. Therefore,
we only cite some studies we consider most related to our work.

Sanders & Winkel (2004) provide a sorting technique that tries to remove branches and
improves the prediction of a scalar sort. The results show that the method provides a
speedup by a factor of 2 against the STL (the implementation of the STL was different).
This study illustrates the early strategy to adapt sorting algorithms to a given hardware, and
also shows the need for low-level optimizations, due to the limited instructions available.

Later, Inoue et al. (2007) propose a parallel sorting on top of combosort vectorized with
the VMX instruction set of IBM architecture. Unaligned memory access is avoided, and
the L2 cache is efficiently managed by using an out-of-core/blocking scheme. The authors
show a speedup by a factor of 3 against the GNU C++ STL.

In a different study (Furtak, Amaral & Niewiadomski, 2007), Furtak et al. use a sorting-
network for small-sized arrays, similar to our own approach. However, instead of dividing
the main array into sorted partitions (partitions of increasing contents), and applying a
small efficient sort on each of those partitions, the authors perform the opposite. They
apply multiple small sorts on sub-parts of the array, and then they finish with a complicated
merge scheme using extramemory to sort globally all the sub-parts. A very similar approach
was later proposed by Chhugani et al. (2008). More recently, Gueron & Krasnov (2016)
provided a new approach for AVX2. The authors use a Quicksort variant with a vectorized
partitioning function, and an insertion sort once the partitions are small enough (as the
STL does). The partition method relies on look-up tables, with a mapping between the
comparison’s result of an SIMD-vector against the pivot, and the move/permutation that
must be applied to the vector. The authors show a speedup by a factor of 4 against the STL,
but their approach is not always faster than the Intel IPP library. The proposed method is
not suitable for AVX-512 because the lookup tables will occupy too much memory. This
issue and the use of extra memory, can be solved with the new instructions of the AVX-512.
As a side remark, the authors do not compare their proposal to the standard C++ partition
function. It is the only part of their algorithm that is vectorized.

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 6/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

In our previous work (Bramas, 2017), we have proposed the first hybrid QS/Bitonic
algorithm implemented with AVX-512. We have described how we can vectorize the
partitioning algorithm and create a branch-free/vectorized Bitonic sorting kernel. To do
so, we put the values of the input array into SIMD vectors. Then, we sort each vector
individually, and finally we exchange values between vectors either during the symmetric or
stair stage. Ourmethod was eight times faster to sort small arrays and 1.7 times faster to sort
large arrays compared to the Intel IPP library. However, our method was sequential and
could not simply be converted to SVE when we consider that the vector size is unknown at
compile time. In this study, we refer to this approach as the AVX-512-QS.

Hou, Wang & Feng (2018) designed a framework for the automatic vectorization of
parallel sort on x86-based processors. Using a DSL, their tool generates a SIMD sorting
network based on a formula. Their approach shows a significant speedup against STL,
and especially they show a speedup of 6.7 in parallel against the sort from Intel TBB on
Intel Knights Corner MIC. The method is of great interest as it avoids programming by
hand the core of the sorting kernel. Any modification, such as the use of a new IS, requires
upgrading the framework. To the best of our knowledge, they do not support SVE yet.

Yin et al. (2019) described an efficient parallel sort on AVX-512-based multi-core and
many-core architectures. Their approach achieves to sort 1.1 billion floats per second on an
Intel KNL (AVX-512). Their parallel algorithm is similar to the one we use in the current
study because they first sort sub-parts of the input array and then merge them by pairs
until there is only one result. However, their parallel merging is out-of-place and requires
doubling the needed memory, which is not the case for us. Besides, their Bitonic sorting
kernel differs from ours, because we follow the Bitonic algorithm without the need for
matrix transposition inside the registers.

Watkins & Green (2018) provide an alternative approach to sort based on the merging
of multiple vectors. Their method is two times faster than the Intel IPP library and 5 times
faster than the C-lib qsort. They can sort 500 million keys per second on an Intel KNL
(AVX-512) but they also need to have an external array when merging, which we avoid in
our approach.

Related work on vectorized with SVE
Developing optimized kernels with SVE is a recent research topic. We refer to studies that
helped better understand this architecture, even if they did not focus on sorting.

Meyer et al. (2018) studied the assembly code generated when implementing lattice
quantum chromodynamics (LQCD) kernels. They evaluate if the compiler was capable of
generating vectorized assembly from a scalar C code, which was the case. LQCD has also
been studied by Alappat et al. (2021) in addition to sparse matrix vector product (SpMV).
The authors studied various effects and properties of the A64FX, and demonstrated that
for some kernels it competes with a V100 GPU.

Kodama et al. (2017) tried evaluating the impact on performance when changing the
vector size, while using the same hardware. Their objective was oriented to SVE since SVE
kernels are vector size independent. At the time of the study, no hardware was supported
SVE, hence the authors used an emulator. Additionally, they speculated on how the vector

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

size could be changed, which does not respect the current SVE technology. Nevertheless,
they concluded that using a larger vector than the hardware registers could be beneficial,
by reducing the number of instructions, but could also be negative by the need of more
registers.

Aoki & Murao (0000) implemented the H.265 video codec using SVE. Their
implementation reduces the number of instructions by half, but no performance results
were given.

Wan, Gu & Su (2021) implemented level-2 basic linear algebra routines (BLAS). They
evaluated their implementation using the Arm emulator ARMIE, which predicted a 17x
speedup against Neon, the previous ARM vector ISA.

Domke (2021) evaluated the performance differences for various benchmarks and five
different compilers on A64FX. The author advised Fujitsu for Fortran codes, GNU for
integer-intensive apps, and any clang-based compilers for C/C++, but concluded that there
was not a single perfect compiler and that it is advised to test for each application.

SORTING WITH SVE
Overview
Our SVE-QS shares similarities with the AVX-512-QS as it is composed of two key
steps. First, we partition the data recursively using the sve_partition function described in
‘Partitioning with SVE’, as in the classical QS. Second, once the partitions are smaller than
a given threshold, we sort them with the sve_bitonic_sort_wrapper function from ‘Bitonic-
based sort on SVE vectors’. To sort in parallel, we rely on the classical parallelization scheme
for the divide-and-conquer algorithm, but propose several optimizations. This allows an
easy parallelization method, which can be fully implemented using OpenMP.

Bitonic-based sort on SVE vectors
In this section, we detail our Bitonic-sort to sort small arrays that have less than 16 times
VEC_SIZE elements, where VEC_SIZE is the size of a SIMD vector. We used this function
in our QS implementation to sort partitions that are small enough.

Sorting one vector
We sort a single vector by applying the same operations as the ones shown in Fig. 2A. We
perform the compare and exchange following the indexes shown in the Bitonic sorting
network figure. Thanks to the vectorization, we are able to work on an entire vector without
the need of iterating on the values individually. However, we cannot hard-code the indices
of the elements that should be compared and exchanged, because we do not know the
size of the vector. Therefore, we use a loop-based scheme where we efficiently generate
permutation and Boolean vectors to perform the correct comparisons. We use the same
pattern for both the symmetric and the stair stages.

In the symmetric stage, the values are first compared by contiguous pairs, e.g. each
value at an even index i is compared with the value at i+ 1 and each value at en odd
index j is compared with the value at j−1. Additionally, we see in Fig. 2A that the width
of comparison doubles at each iteration and that the comparisons are from the sides to

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

the center. In our approach, we use three vectors. First, a Boolean vector that shows the
direction of the comparisons, e.i. for each index it tells if it has to be compared with a value
at a greater index (and will take the minimum of both) or with a value at a lower index (and
will take the maximum of both). Second, we need a shift coefficient vector which gives the
step of the comparisons, i.e. it tells for each index the relative position of the index to be
compared with. Finally, we need an index vector that contains increasing values from 0 to
N-1 (for any index i, vec[i] = i) and that we use to sum with the shift coefficient vector to
get a permutation vector. The permutation vector tells for any index which other index it
should be compared against.

We give the pseudo-code of our vectorized implementation in Algorithm 1 where the
corresponding SVE instructions and possible vector values are written in comments. In
the beginning, the Boolean vector must contain repeated false and true values because
the values are compared by contiguous pairs. To build it, we use the svzip1 instruction
which interleaves elements from low halves of two inputs, and pass one vector of true and
a vector of false as parameters (line 7). Then, at each iteration, the number of false should
double and be followed by the same number of true. To do so, we use again the svzip1
instruction, but we pass the Boolean vector as parameters (line 7). The vector of increasing
indexes is built with a single SVE instruction (line 5). The shift coefficients vector is built
by interleaving 1 and−1 (line 9). The permutation index is generated by summing the two
vectors (line 12) and uses to permute the input (line 14). So, at each iteration, we use the
updated Boolean vector to decide if we add or subtract two times the iteration index (line
22). Also, this algorithm is never used as presented here because each of its iterations must
be followed by a stair stage.

Algorithm 1: SVE Bitonic sort for one vector, symmetric stage.
Input: vec: a SVE vector to sort.
Output: vec: the vector sorted.

1 function sve_bitonic_sort_1v_symmetric(vec)
2 //Number of values in a vector
3 N = get_hardware_size()
4 //svindex - [O, 1,, N-1] vecIndexes = (i ∈ [0, N-1]→ i)
5 //svzip1 - [F, T, F, T, . . . , F, T]
6 falseTrueVecOut = (i ∈ [0, N-1]→ i is odd ? False: True)
7 //svneg/svdup - [1, -1, 1, -1, . . . , 1, -1]
8 vecIndexesPermOut = (i ∈ [0, N-1]→ falseTrueVecOut[i] ? -1: 1)
9 for stepOut from 1 to N-1, doubling stepOut at each step do
10 //svadd - [1, 0, 3, 2, . . . , N-1, N-2]
11 premuteIndexes = (i ∈ [0, N-1]→ vecIndexes[i] + vecIndexesPermOut[i])
12 //svtbl - [vec[1], vec[0], vec[3], vec[2], . . . , vec[N-1], vec[N-2]]
13 vecPermuted = (i ∈ [0, N-1]→ vec[premuteIndexes[i]])
14 //svsel/svmin/svmax - [..., Min(vec[i], vec[i+1]), Max(vec[i], vec[i+1]), . . .]
15 vec = (i ∈ [0, N-1]→ falseTrueVecOut[i] ?
16 ————————— Max(vec[i], vecPermuted[i]):
17 ————————— Min(vec[i], vecPermuted[i]))
18 //svzip1 - [F, F, T, T, F, F, T, T, . . .]
19 falseTrueVecOut = (i ∈ [0, N-1]→ falseTrueVecOut[i/2])
20 //svsel/svadd/svsub - [3, 2, 1, 0, 3, 2, 1, 0, . . .]
21 vecIndexesPermOut = (i ∈ [0, N-1]→ falseTrueVecOut[i] ?
22 ————————————————- vecIndexesPermOut[i]-stepOut*2:
23 ————————————————- vecIndexesPermOut[i]+stepOut*2)
24 end
25 return vec

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

We use the same principle in the stair stage, with one vector for the Boolean that shows
the direction of the exchange and another to store the relative index for comparison. We
sum this last vector with the index vector to get the permutation indices. If we study again
to Fig. 2A, we observe that the algorithm starts by working on parts of half the size of
the previous symmetric stage. Then, at each iteration, the parts are subdivided until they
contain two elements. Besides, the width of the exchange is the same for all elements in an
iteration and is then divided by two for the next iteration.

We provide a pseudo-code of our vectorized algorithm in Algorithm 2. To manage the
Boolean vector: we use the svuzp2 instruction that select odd elements from two inputs and
concatenate them. In our case, we give a vector that contains a repeated pattern composed
of false x times, followed by true x times (x a power of two) to svuzp2 to get a vector
with repetitions of size x/2. Therefore, we pass the vector of Boolean generated during
the symmetric stage to svuzp2 to initialize the new Boolean vector (line 7). We divide the
exchange step by two for all elements (line 23). The permutation (line 15) and exchange
(line 17) are similar to what is performed in the symmetric stage.

Algorithm 2: SVE Bitonic sort for one vector, stair stage. The gray lines are copied
from the symmetric stage (Algorithm 1)
Input: vec: a SVE vector to sort.
Output: vec: the vector sorted.

1 function sve_bitonic_sort_1v_stairs(vec)
2 N = get_hardware_size()
3 vecIndexes = (i ∈ [0, N-1]→ i)
4 falseTrueVecOut = (i ∈ [0, N-1]→ i is odd ? False: True)
5 for stepOut from 1 to N-1, doubling stepOut at each step do
6 //svuzp2
7 falseTrueVecIn = (i ∈ [0, N-1]→ falseTrueVecOut[(i*2+1)%N])
8 //svdup - [stepOut/2, stepOut/2, . . .]
9 vecIncrement = (i ∈ [0, N-1]→ stepOut/2)
10 for stepIn from stepOut/2 to 1, dividing stepIn by 2 at each step do
11 //svadd/svneg - [stepOut/4, stepOut/4, . . . , -stepOut/4, -stepOut/4]
12 premuteIndexes = (i ∈ [0, N-1]→ vecIndexes[i] +
13 ———————— (falseTrueVecIn[i] ? -vecIncrement[i]: vecIncrement[i]))
14 //svtbl
15 vecPermuted = (i ∈ [0, N-1]→ vec[premuteIndexes[i]])
16 //svsel/svmin/svmax
17 vec = (i ∈ [0, N-1]→ falseTrueVecIn[i] ?
18 ————————— Max(vec[i], vecPermuted[i]):
19 ————————— Min(vec[i], vecPermuted[i]))
20 //svuzp2
21 falseTrueVecIn = (i ∈ [0, N-1]→ falseTrueVecIn[(i*2+1)%N])
22 //svdiv
23 vecIncrement = (i ∈ [0, N-1]→ vecIncrement[i] / 2);
24 end
25 falseTrueVecOut = (i ∈ [0, N-1]→ falseTrueVecOut[i/2])
26 end
27 return vec

The complete function to sort a vector is a mix of the symmetric (sve_bitonic_sort_1v_
symmetric) and stair (sve_bitonic_sort_1v_stairs) functions; each iteration of the symmetric
stage is followed by the inner loop of the stair stage. The corresponding C++ source code
of a fully vectorized implementation is given in Appendix A.1.

Sorting more than one vectors
To sort more than one vector, we profit that the same patterns are repeated at different
scales; to sort V vectors, we re-use the function that sorts V /2 vectors and so on. We

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

provide an example to sort two vectors in Algorithm 3, where we start by sorting each
vector individually using the sve_bitonic_sort_1v function. Then, we compare and exchange
values between both vectors (line 9), and we finish by applying the same stair stage on
each vector individually. Our real implementation uses an optimization that consists in
a full inlining followed by a merge of the same operations done on different data. For
instance, instead of two consecutive calls to sve_bitonic_sort_1v (lines 7 and 8), we inline
the functions. But since they are similar but on different data, we merge them into one that
works on both vectors at the same time. In our sorting implementation, we provide the
functions to sort up to 16 vectors.

Algorithm 3: SIMD bitonic sort for two vectors of double floating-point values.
Input: vec1 and vec2: two double floating-point SVE vectors to sort.
Output: vec1 and vec2: the two vectors sorted with vec1 lower or equal than vec2.

1 function sve_bitonic_exchange_rev(vec1, vec2)
2 vec1_copy = (i ∈ [0, N-1]→ vec1[N-1-i])
3 vec1 = (i ∈ [0, N-1]→ Min(vec1[i], vec2[i])
4 vec2 = (i ∈ [0, N-1]→ Max(vec1_copy[i], vec2[i])
5 return {vec1, vec2}
6 function sve_bitonic_sort_2v(vec1, vec2)
7 vec1 = sve_bitonic_sort_1v(vec1)
8 vec2 = sve_bitonic_sort_1v(vec2)
9 [vec1, vec2] = sve_bitonic_exchange_rev(vec1, vec2)
10 vec1 = sve_bitonic_sort_1v_stairs(vec1)
11 vec2 = sve_bitonic_sort_1v_stairs(vec2)

Sorting small arrays
Once a partition contains less than 16 SIMD-vector elements, it can be sorted with our
SVE-Bitonic functions. We select the appropriate SVE-Bitonic function (the one that
matches the size of the array to sort) with a switch statement, in a function interface that
we refer to as sve_bitonic_sort_wrapper. However, the partitions obtained from the QS do
not necessarily have a size multiple of the vector’s length. Therefore, we pad the last vector
with an extra value, which is the greatest possible value for the target data type. During
the execution of the sort, these last values will be compared but never exchanged and will
remain at the end of the last vector.

Optimization by comparing vectors’ min/max values or whether vectors are
already sorted
There are two main points where we can apply optimization in our implementation. The
first one is to avoid exchanging values between vectors if their contents are already in the
correct order, i.e. no values will be exchanged between the vectors because their values
respect the ordering objective. For instance, in Algorithm 3, we can compare if the greatest
value in vector vec2 (SVE instruction svmaxv) is lower than or equal to the lowest value in
vector vec1 (SVE instruction svminv). If this is the case, the function can simply sort each
vector individually. The same mechanism can be applied to any number of vectors, and it
can be used at function entry or inside the loops to break when it is known that no more
values will be exchanged. The second optimization can be applied when we want to sort
a single vector by checking if it is already sorted. Similarly to the first optimization, this
check can be done at function entry or in the loops, such as at lines 2 and 10, in Algorithm

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

2. We propose two implementations to test if a vector is sorted and provide the details in
Appendix A.2.

Partitioning with SVE
Our partitioning strategy is based on the AVX-512-partition. In this algorithm, we start
by saving the extremities of the input array into two vectors that remain unchanged until
the end of the algorithm. By doing so, we free the extremity of the array that can be
overwritten. Then, in the core part of the algorithm, we load a vector and compare it to the
pivot. The values lower than the pivot are stored on the left side of the array, and the values
greater than the pivot are stored on the right side while moving the corresponding cursor
indexes. Finally, when there is no more value to load, the two vectors that were loaded at
the beginning are compared to the pivot and stored in the array accordingly.

When we implement this algorithm using SVE we obtain a Boolean vector b when we
compare a vector to partition with the pivot. We use b to compact the vector and move the
values lower or equal than the pivot on the left, and then we generate a secondary Boolean
vector to store only as a sub-part of the vector. We manage the values greater than the
pivot similarly by using the negate of b.

Sorting key/value pairs
The sorting methods we have described are designed to sort arrays of numbers. However,
some applications need to sort key/value pairs. More precisely, the sort is applied on the
keys, and the values contain extra information such as pointers to arbitrary data structures,
for example. We extend our SVE-Bitonic and SVE-Partition functions by making sure that
the same permutations/moves apply to the keys and the values. In the sort kernels, we
replace the minimum and maximum statements with a comparison operator that gives us
a Boolean vector. We use this vector to transform both the vector of keys and the vector
of values. For the partitioning kernel, we already use a comparison operator, therefore, we
add extra code to apply the same transformations to the vector of values and the vector of
keys.

In terms of high-level data structure, we support two approaches. In the first one, we
store the keys and the values in two distinct arrays, which allow us to use contiguous
load/store. In the second one, the key/value is stored by pair contiguously in a single array,
such that loading/storing requires non-contiguous memory accesses.

Parallel sorting
Our parallel implementation is based on the QS-par that we extend with several
optimizations. In the QS-par parallelization strategy, it is possible to avoid having too
many tasks or tasks on too small partitions by stopping creating tasks after a given
recursive level. This approach allows to fix the number of tasks at the beginning, but could
end in an unbalanced configuration (if the tasks have different workload) that is difficult
to resolve on the fly. Therefore, in our implementation, we create a task for every partition
larger than the L1 cache, as shown in Algorithm 4 line 26. However, we do not rely on the
OpenMP task statement because it is impossible to control the data locality. Instead, we use
one task list per thread (lines 2, 11 and 33). Each thread uses its list as a stack to store the

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 12/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

intervals of the recursive calls and also as a task list where each interval can be processed
in a task. In a steady-state, each thread accesses only its list: after each partitioning, a
thread puts the interval of the first sub-partition in the list and continues with the second
sub-partition (line 35). When the partition is smaller than the L1 cache, the thread executes
the sequential SVE-QS. We use a work-stealing strategy when a thread has an empty list
such that the thread will try to pick a task in others’ lists. The order of access to others’
lists is done such that a thread accesses the lists from threads of closer ids to far ids, e.g. a
thread of id i will look at i+1, i−1, i+2, and so on. We refer to this optimized version as
the SVE-QS-par.

Algorithm 4: Simplified algorithm of SVE-QS-par.
Input: array: data to sort.

1 function sve_par_sort(array, N)
2 buckets = init_buckets()
3 nb_threads_idle = 0
4 #pragma omp parallel
5 current_thread_idle = False
6 #pragma omp master
7 core_par_sort(array, 0, N, buckets)
8 while nb_threads_idle 6= nb_threads do
9 //Try to get a task, from current thread’s list
10 //then neighbors’ lists, etc.
11 interval = steal_task(buckets)
12 if interval is null then
13 if current_thread_idle is False then
14 current_thread_idle = True
15 nb_threads_idle += 1
16 end
17 else
18 if current_thread_idle is True then
19 current_thread_idle = False
20 nb_threads_idle -= 1
21 end
22 core_par_sort(array, interval.start, interval.end, buckets)
23 end
24 end
25 function core_par_sort(array, start, end, buckets)
26 if (start-end) × size of element ≤ size of L1 then
27 //Sort sequentially
28 sve_bitonic_sort(array, start, end)
29 else
30 //Partition the array
31 p = sve_partition(array, start, end)
32 //Put first partition in the buckets
33 insert(buckets[current_thread_id()], p.second_partition)
34 //Directly work on first partition
35 core_par_sort(array, p.first_partition.start, p.first_partition.end, buckets)
36 end

PERFORMANCE STUDY
Configuration
We assess ourmethod on an ARMv8.2A64FX - Fujitsuwith 48 cores at 1.8 GHz and 512-bit
SVE, i.e. a vector can contain 16 integers and eight double floating-point values. The node
has 32 GB HBM2 memory arranged in four core memory groups (CMGs) with 12 cores
and 8GB each, 64KB private L1 cache, 8MB shared L2 cache per CMG. For the sequential
executions, we pinned the process with taskset -c 0, and for the parallel executions, we use
OMP_PROC_BIND =TRUE. We use the ARM compiler 20.3 (based on LLVM 9.0.1) with
the aggressive optimization flag -O3. We compare our sequential implementations against

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 13/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

4It can be executed on any CPU using the
Farm-SVE library (https://gitlab.inria.fr/
bramas/farm-sve)

5This implementation is partially
implemented in the branch optim of the
code repository.

the GNU STL 20200312 from which we use the std::sort and std::partition functions. We
also compare against SVE512-Bitonic, which is an implementation that we have obtained
by performing a translation of our original AVX-512 into SVE. This implementation works
only for 512-bit SVE, but this makes it possible to hard-code all the indices of the compare
and exchange of the Bitonic algorithm. Moreover, SVE512-Bitonic does not use any loop,
i.e. it can be seen as if we had fully unrolled the loops of the SVE-Bitonic.

We compare our parallel implementation against the Boost (https://www.boost.org/)
1.73.0 from which we use the block_in direct_sort function. The test file used for the
following benchmark is available online (https://gitlab.inria.fr/bramas/arm-sve-sort) and
includes the different sorts presented in this study, plus some additional strategies and
tests4. Our QS uses a 5-values median pivot selection (whereas the STL sort function uses
a 3-values median). The arrays to sort are populated with randomly generated values. Our
implementation does not include the potential optimizations described in ‘Optimization
by comparing vectors’ min/max values or whether vectors are already sorted’ that can be
applied when there is a chance that parts or totality of the input array are already sorted5.

As it is possible to virtually change the size of the SIMD vectors at runtime, we evaluated
if using different vector sizes (128 or 256) could increase the performance of our approach.
It appears that the performance was always worse, and consequently we decided not to
include these results in the current study.

Performance to sort small arrays
We provide in Fig. 4 the execution times to sort arrays of 1 element to 16 × VEC_SIZE
elements. This corresponds to at most 128 double floating-point values, or 256 integer
values. We test all the sizes by step 1, such that we include sizes not multiple of the
SIMD-vector’s length. For more than 20 values, the SVE-Bitonic always delivers better
performance than the STL. The speedup is significant and increases with the number
of values to reach 5 for 256 integer values. The execution time per item increases every
VEC_SIZE values because the cost of sorting is not tied to the number of values but to the
number of SIMD-vectors to sort, as explained in ‘Sorting small arrays’. For example, we
have to sort two SIMD-vector of 16 values to process from 17 to 32 integers. Our method
reaches a speedup of 3.6 to sort key/value pairs. To sort key/value pairs, we obtain similar
performance if we sort pairs of integers stored contiguously or two arrays of integers, one
for the keys and one for the values. Comparing our two SVE implementations, SVE-Bitonic
appears more efficient than SVE512-bitonic, except for very small number of values. This
means that considering a static vector size of 512 bits, with compare-exchange indices
hard coded and no loops/branches, does not provide any benefit, and is even slower for
more than 70 values. This means that, for our kernels, the CPU manages more easily
loops with branches (SVE-bitonic) than a large amount of instructions without branches
(SVE512-bitonic). Moreover, the hard-coded exchange indices are stored in memory and
should be load to register, which appear to hurt the performance compared to building
these indices using several instructions. Sorting double floating-points values or pairs of
integers takes similar duration up to 64 values, then with more values it is faster to sort
pairs of integers.

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 14/24

https://gitlab.inria.fr/bramas/farm-sve
https://gitlab.inria.fr/bramas/farm-sve
https://peerj.com
https://www.boost.org/
https://gitlab.inria.fr/bramas/arm-sve-sort
http://dx.doi.org/10.7717/peerj-cs.769

Integers (int) std::sort SVE-Bitonic SVE512-Bitonic

0 20 40 60 80 100 120 140 160 180 200 220 24010−9

10−8

0.62

1.97
2.69

3.20 3.36
3.89 4.34 4.83

3.88 4.05 4.17 4.29 4.09 4.48 4.64 4.87

Number of integer values n
Ti

m
e

in
s/

n
ln

(n
)

Floating-points (double) std::sort SVE-Bitonic SVE512-Bitonic

0 10 20 30 40 50 60 70 80 90 100 110 12010−9

10−8

0.59

1.42
1.84

2.48 2.27 2.39 2.34 2.72

Number of floating-point values n

Ti
m

e
in

s/
n

ln
(n

)

Key/value integers (int*[2])
Key/value integer pairs (std::pair)

std::sort SVE-Bitonic SVE512-Bitonic

0 20 40 60 80 100 120 140 160 180 200 220 24010−9

10−8

0.39

1.61 1.83
2.48 2.56 3.00 3.53 3.90

3.06 3.17 3.04 3.18 3.13 3.27 3.41 3.57

Number of pair values n

Ti
m

e
in

s/
n

ln
(n

)

Figure 4 Execution time to sort small arrays (in sequential). Execution time divided by n ln(n) to
sort from 1 to 16× VEC_SIZE values. The execution time is obtained from the average of 2E3 sorts
with different values for each size. The speedup of the SVE-Bitonic against the STL is shown above the
SVE-Bitonic lines. Key/value integers as a std::pair are plot with dashed lines and as two distinct integer
arrays (int*[2]) are plot with dense lines.

Full-size DOI: 10.7717/peerjcs.769/fig-4

Partitioning performance
Figure 5 shows the execution times to partition using our SVE-Partition or the STL’s
partition function. Our method provides again a speedup of an average factor of 4 for
integers and key/values (with two arrays), and 3 for floating-point values. We see no
difference if the data fit in the caches L1/L2 or not, neither in terms of performance nor
in the difference between the STL and our implementation. However, there is a significant
difference between partitioning two arrays of integers (one for the key and the other for the
values) or one array of pairs of integers. The only difference between both implementations
is that we work with distinct svint32_t vectors in the first one, and with svint32x2_t vector
pairs in the second. But the difference is mainly in the memory accesses during the
loads/stores. The partitioning of one array or two arrays of integers appears equivalent,
and this can be unexpected because we need more instructions when managing the latter.

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 15/24

https://peerj.com
https://doi.org/10.7717/peerjcs.769/fig-4
http://dx.doi.org/10.7717/peerj-cs.769

Integers (int) Key/value integers (int*[2])
Floating-points (double) Key/value integer pairs (std::pair)

std::partition
SVE-Partition

102 103 104 105 106 107 108 10910−9

10−8

3.29

4.54

5.48 5.37 4.84 4.40 4.39 4.55 5.01

2.71

2.79
3.03 2.96 2.60 2.39 2.38 2.45 2.76

2.75

4.26
4.94 4.83 4.36 3.93

4.20 4.35 4.77

1.87

1.94 1.99 1.99 1.76 1.67 1.65 1.68 1.85

Number of values n

Ti
m

e
in

s/
n

Figure 5 Execution time to partition arrays (in sequential). Execution time divided by n of elements
to partition arrays filled with random values with sizes from 64 to 109 elements. The pivot is selected
randomly. The execution time is obtained from the average of 20 executions with different values. The
speedup of the SVE-partition against the STL is shown above the lines. The vertical lines represent the
caches relatively to the processed data type (- for the integers and .-. for floating-points and the key/value
integers). Key/value integers as a std::pair are plot with dashed lines and as two distinct integer arrays
(int*[2]) are plot with dense lines.

Full-size DOI: 10.7717/peerjcs.769/fig-5

Indeed, we have to apply the same transformations to the keys and the values, and we have
twice memory accesses.

Performance to sort large arrays
Figure 6 shows the execution times to sort arrays up to a size of≈ 109 items. Our SVE-QS is
always faster in all configurations. The difference between SVE-QS and the STL sort is stable
for size greater than 103 values with a speedup of more than 4 to our benefit to sort integers.
There is an effect when sorting 64 values (the left-wise points) as the execution time is not
the same as the one observed when sorting less than 16 vectors (Fig. 4). The only difference
is that here we call the main SVE-QS functions, which call the SVE-Bitonic functions after
just one test on the size, whereas in the previous results we call the SVE-Bitonic functions
directly. We observe that when sorting key/value pairs, there is again a benefit when using
two distinct arrays of scalars compared with a single array of pairs. From the previous
results, it is clear that this difference comes from the partitioning for which the difference
also exists (Fig. 6), whereas the difference is negligible in the sorting of arrays smaller than
16 vectors (Fig. 4). However, as the size of the array increases, this difference vanishes, and
it becomes even faster to sort Floating-point values than keys/values.

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 16/24

https://peerj.com
https://doi.org/10.7717/peerjcs.769/fig-5
http://dx.doi.org/10.7717/peerj-cs.769

Integers (int)
Floating-points (double)

std::sort SVE-QS SVE512-QS

102 103 104 105 106 107 108 109

10−8.6

10−8.4

10−8.2

10−8

10−7.8

2.89

3.63

4.17
4.32 4.39 4.44 4.46 4.45 4.49

2.70 2.29

2.58
2.71 2.70 2.73 2.72 2.75 2.73

Number of integer or floating-point values n

Ti
m

e
in

s/
n

ln
(n

)

Key/value integers (int*[2])
Key/value integer pairs (std::pair)

std::sort SVE-QS SVE512-QS

102 103 104 105 106 107 108 109

10−8.6

10−8.4

10−8.2

10−8

10−7.8

1.54

2.75

3.43
3.63 3.74 3.83

4.05 4.10 4.16

2.54

2.57 2.51 2.40 2.29 2.23 2.18 2.14 2.12

Number of pair values n

Ti
m

e
in

s/
n

ln
(n

)

Figure 6 Execution time divided by n ln(n) to sort arrays filled with random values with sizes from
64 to 109 elements. The execution time is obtained from the average of 5 executions with different val-
ues. The speedup of the SVE-QS against the STL is shown above the SVE-QS lines. The vertical lines rep-
resent the caches relatively to the processed data type (- for the integers and .-. for floating-points and the
integer pairs). Key/value integers as a std::pair are plot with dashed lines and as two distinct integer arrays
(int*[2]) are plot with dense lines.

Full-size DOI: 10.7717/peerjcs.769/fig-6

Performance of the parallel version
Figure 7 shows the performance for different number of threads of a parallel sort
implementation from the boost library (block_indirect_sort) against our task-based
implementation (SVE-QS-par). Our approach is faster in all configurations, but the results

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 17/24

https://peerj.com
https://doi.org/10.7717/peerjcs.769/fig-6
http://dx.doi.org/10.7717/peerj-cs.769

Integers (int) boost::block indirect sort
SVE-QS-par

1 Thread 16 Thread 48 Thread
8 Thread 32 Thread

103 104 105 106 107 108 10910−10

10−9

10−8

1.07

1.00 0.94

4.92

8.66

11.96 12.08
14.65

Number of integer values n

Ti
m

e
in

s/
n

ln
(n

)

Floating-points (double) boost::block indirect sort
SVE-QS-par

1 Thread 16 Thread 48 Thread
8 Thread 32 Thread

103 104 105 106 107 108 109

10−9

10−8

1.02

1.00

1.59

6.10

10.46
12.04

13.57 13.54

Number of floating-point values n

Ti
m

e
in

s/
n

ln
(n

)

Figure 7 Execution time to sort large arrays (in parallel). Execution time divided by n ln(n) to sort in
parallel arrays filled with random values with sizes from 512 to∼109 elements. The execution time is ob-
tained from the average of 5 executions with different values. The speedup of the parallel SVE-QS-par
against the sequential execution is shown above the lines for 16 and 48 threads. The vertical lines represent
the caches relatively to the processed data type (- for the integers and .-. for the floating-points).

Full-size DOI: 10.7717/peerjcs.769/fig-7

show the benefit of using a merge strategy to sort large arrays, as in block_indirect_sort.
Indeed, as the number of threads increases, the SVE-QS-par becomes faster but reaches
a limit. Using more than 8 threads (16, 32 or 48 threads) does not provide any benefit,
and the four curves for 8, 16, 32, and 48 threads, overlap or are very close for both data

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 18/24

https://peerj.com
https://doi.org/10.7717/peerjcs.769/fig-7
http://dx.doi.org/10.7717/peerj-cs.769

types. Moreover, while 1 thread executions show that our SVE-QS-par is faster for both
data types, for large arrays the block_indirect_sort provides very close performance. This
illustrates the limit of the divide-and-conquer parallelization strategy to process large
arrays since the first steps, i.e. the partitioning steps, are not or poorly parallel. Moreover,
using more than 12 threads (the number of threads per CMG), while working in place
on the original array implies memory transfers across the memory nodes, which impacts
the scalability. Whereas the block_indirect_sort, which uses a merge kernel but at the cost
of using additional data buffers, has a more stable scalability. Nevertheless, our approach
is trivial to implement and delivers high performance when using few threads, which is
valuable when an application uses multiple processes per node.

Comparison with the AVX-512 implementation
The results obtained in our previous study on Intel Xeon Platinum 8170 Skylake CPU at
2.10 GHz (Bramas, 2017) shows that our AVX-512-QS was sorting at a speed of ≈ 10−9

second per element (obtained by T/N · ln(N)). This was almost 10 times faster than the
STL (10−8 second per element). The speedup obtained with SVE in the current study is
lower and does not come from our new implementation, which is generic regarding the
vector size, because the SVE512-QS is not faster, either. The difference does not come
either from the memory accesses, because it is significant for small arrays (that fit in the
L1 cache), or the number of vectorial registers, which is 32 for both hardware. Profiling
the code reveals that the cycles per instruction is around 1.7 for both SVE512-QS and
SVE-QS in sequential, which is not ideal. The L2 cache miss rate is lower than 10%, which
indicates that the memory access pattern is adequate. The memory bandwidth is given in
Table 1. We observe that the peak of HBM2 (256GB/s) is not reached. Additionally, the
table indicates that to sort 4GB of data, our approach will read/write 252GB of data, but
it was already the case for AVX-512-QS. From the hardware specification of the A64FX
(Fujitsu, 0000), we can observe that most SIMD SVE instructions have a latency between
4 and 9 cycles. Therefore, we conclude that the difference between our AVX-512 and SVE
versions comes from the cost of the SIMD instructions and the pipelining of these because
the memory access appears fine, and the difference is already significant for small arrays.

CONCLUSIONS
In this paper, we described new implementations of the Bitonic sorting network and
the partition algorithm that have been designed for the SVE instruction set. These two
algorithms are used in our Quicksort variant, which makes it possible to have a fully
vectorized implementation. Our approach shows superior performance on ARMv8.2
(A64FX) in all configurations against the GNU C++ STL. It provides a speedup up of
five when sorting small arrays (less than 16 SIMD-vectors), and a speedup above four for
large arrays. We also demonstrate that our algorithm is less efficient when we fully unroll
the loops and use hard-coded exchange indices in the Bitonic stage (by considering that
the vector if of size 512bits). This strategy was efficient when implemented with AVX512
and executed on Intel Skylake. Our parallel implementation is efficient, but it could be
improved when working on large arrays by using a merge on sorted partitions instead of

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

Table 1 Amount of memory accessed and corresponding bandwidth for SVE-QS and SVE512-QS to
sort arrays of integers of sizeN . The accesses are measured by capturing the calls to SIMD loads/stores.

SVE-QS SVE512-QS

N Size (GB) Memory Bandwith Memory Bandwith
read/write (GB) (GB/s) read/write (GB) (GB/s)

26 2.56E−07 5.12E−07 3.76E−01 2.75E−06 1.471
29 2.05E−06 1.38E−05 1.325 3.88E−05 3.370
212 1.64E−05 2.26E−04 2.427 3.96E−04 3.768
215 1.31E−04 2.67E−03 3.064 4.19E−03 4.289
218 1.05E−03 2.95E−02 3.651 4.05E−02 4.467
221 8.39E−03 3.10E−01 4.192 3.98E−01 4.870
224 6.71E−02 2.947 4.420 3.644 4.995
227 5.37E−01 27.726 4.645 33.051 5.087
230 4.294 252.233 4.822 299.740 5.257

a recursive parallel strategy (at a cost of using external memory buffers). In addition, we
would like to compare the performance obtained with different compilers because there
are many ways to transform and optimize a C++ code with intrinsics into a binary.

Besides, these results is a good example to foster the community to revisit common
problems that have kernels for x86 vectorial extensions but not for SVE yet. Indeed,
as the ARM-based architecture will become available on more HPC platforms, having
high-performance libraries of all domains will become critical. Moreover, some algorithms
that were not competitive when implemented with x86 ISA may be easier to vectorize
with SVE, thanks to the novelties it provides, and achieve high-performance. Finally, the
source code of our implementation is publicly available and ready to be used and compared
against.

APPENDIX
A.1 Source code of sorting one vector of integers
In Code 1, we provide the implementation of sorting one vector using Bitonic sorting
network and SVE.

1 i n l i n e void Sor t1Vec (s v i n t 3 2 _ t& vecToSor t) {
2 cons t i n t N = svcntw () ; / / Number of v a l u e s in a v e c t o r
3 cons t s v i n t 3 2 _ t v e c I nd e x e s = s v i nd e x _ s 3 2 (0 , 1) ; / / [O, 1 , , N−1]
4 s v b o o l _ t f a l s eT ru eVe cOu t = s v z i p 1_b32 (s v p f a l s e _ b () , s vp t r u e_b32 ()) ; / / [F , T , F , . . . , T]
5 s v i n t 3 2 _ t vec IndexesPermOut = s v s e l _ s 3 2 (f a l s eT rueVecOut , svdup_s32 (−1) , svdup_s32 (1)) ;
6 f o r (long i n t s t epOut = 1 ; s t epOut < N ; s t epOut ∗= 2) {
7 {
8 cons t s v i n t 3 2 _ t p r emute Indexe s = svadd_ s32_z (s vp t ru e_b32 () , v e c Index e s , vec IndexesPermOut) ;
9 cons t s v i n t 3 2 _ t vecToSor tPermuted = s v t b l _ s 3 2 (vecToSor t , s v r e i n t e r p r e t _ u 3 2 _ s 3 2 (p r emute Indexe s)) ;
10 v e cToSor t = s v s e l _ s 3 2 (f a l s eT rueVecOut ,
11 svmax_s32_z (s vp t ru e_b32 () , vecToSor t , vecToSor tPermuted) ,
12 svmin_s32_z (s vp t ru e_b32 () , vecToSor t , vecToSor tPermuted)) ;
13 }
14 s v b o o l _ t f a l s e T r u eV e c I n = svuzp2_b32 (f a l s eT rueVecOut , f a l s eT ru eVe cOu t) ; / / [F , F , . . . , T , T]
15 s v i n t 3 2 _ t v e c In c r emen t = svdup_s32 (s t epOut / 2) ;
16 f o r (long i n t s t e p I n = s t epOut / 2 ; s t e p I n >= 1 ; s t e p I n /=2) {
17 cons t s v i n t 3 2 _ t p r emute Indexe s = svadd_ s32_z (s vp t ru e_b32 () , v e c Index e s ,
18 s v s e l _ s 3 2 (f f t t , s v s e l _ s 3 2 (f a l s eT r u eVe c I n , s vn e g_ s 32_ z (f a l s eT ru eVe c I n ,
19 v e c In c r emen t) , v e c In c r emen t) , v e c In c r emen t)) ;
20 cons t s v i n t 3 2 _ t vecToSor tPermuted = s v t b l _ s 3 2 (vecToSor t , s v r e i n t e r p r e t _ u 3 2 _ s 3 2 (p r emute Indexe s)) ;
21 v e cToSor t = s v s e l _ s 3 2 (f a l s eT ru eVe c I n ,
22 svmax_s32_z (s vp t ru e_b32 () , vecToSor t , vecToSor tPermuted) ,
23 svmin_s32_z (s vp t ru e_b32 () , vecToSor t , vecToSor tPermuted)) ;
24 f a l s e T r u eV e c I n = svuzp2_b32 (f a l s eT ru eVe c I n , f a l s e T r u eV e c I n) ;
25 v e c In c r emen t = s vd i v _n_ s 32_ z (s vp t ru e_b32 () , v ec Inc rement , 2) ;
26 }
27 f a l s eT ru eVe cOu t = s v z i p 1_b32 (f a l s eT rueVecOut , f a l s eT ru eVe cOu t) ;
28 vec IndexesPermOut = s v s e l _ s 3 2 (f a l s eT rueVecOut ,

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769

29 sv sub_n_s32_z (s vp t ru e_b32 () , vecIndexesPermOut , s t epOut ∗2) ,
30 svadd_n_s32_z (s vp t ru e_b32 () , vecIndexesPermOut , s t epOut ∗2)) ;
31 }
32 }
33

Code 1: Implementation of sorting a single SVE vector of integers.

A.2 Source code to check if a vector of integers is sorted
In Code 2, we provide two implementations to test if a vector is already sorted. These
functions can be used if there is a chance that parts or totality of the input vector are
already sorted.

1 i n l i n e bool I s S o r t e d (cons t s v i n t 3 2 _ t& inpu t) {
2 / / Methode 1 : 1 vec op , 1 comp , 2 bool vec op , 2 bool vec count
3 s v i n t 3 2 _ t r e v i n pu t = s v r e v _ s 3 2 (i npu t) ;
4 s v b o o l _ t mask = svcmpgt_s32 (s vp t r u e_b32 () , input , r e v i n pu t) ;
5 s v b o o l _ t v1100 = svbrkb_b_z (s vp t r u e_b32 () , mask) ;
6 r e tu rn s v cn tp_b32 (s vp t ru e_b32 () , s vno t_b_z (s vp t ru e_b32 () , v1100)) == svcn tp_b32 (s vp t r u e_b32 () , mask) ;
7 }
8
9 i n l i n e bool I s S o r t e d (cons t s v i n t 3 2 _ t& inpu t) {
10 / / Methode 2 : 1 vec op , 1 comp , 2 bool vec op , 1 bool vec count
11 s v b o o l _ t FTTT = svno t_b_z (s vp t r u e_b32 () , s vwh i l e l t _ b 3 2 _ s 3 2 (0 , 1) ;
12 s v i n t 3 2 _ t compac t input = svcompac t_ s32 (FTTT , i npu t) ;
13 cons t s i z e _ t vecS i zeM1 = (s v cn t b () / s i z e o f (i n t)) −1;
14 s v b o o l _ t TTTF = s vwh i l e l t _ b 3 2 _ s 3 2 (0 , vecS i zeM1) ;
15 s v b o o l _ t mask = svcmp l e_ s32 (s vp t r u e_b32 () , input , compac t input) ;
16 r e tu rn s v cn tp_b32 (TTTF , mask) == vecS izeM1 ;
17 }
18

Code 2: Possible implementations to test if a vector of integers is already sorted.

ACKNOWLEDGEMENTS
Thisworkused the Isambard 2UKNational Tier-2HPCService (http://gw4.ac.uk/isambard/)
operated by GW4 and the UK Met Office, which is an EPSRC project (EP/T022078/1). In
addition, this work used the Farm-SVE library (Bramas, 2020).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The author received no funding for this work

Competing Interests
The author declares there are no competing interests.

Author Contributions
• Bérenger Bramas conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source code and the scripts to reproduce the results are publicly available at GitLab:
https://gitlab.inria.fr/bramas/arm-sve-sort.

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 21/24

https://peerj.com
http://gw4.ac.uk/isambard/
https://gitlab.inria.fr/bramas/arm-sve-sort
http://dx.doi.org/10.7717/peerj-cs.769

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.769#supplemental-information.

REFERENCES
Alappat C, Meyer N, Laukemann J, Gruber T, Hager G,Wellein G,Wettig T. 2021.

ECMmodeling and performance tuning of SpMV and Lattice QCD on A64FX.
ArXiv preprint. arXiv:2103.03013.

Aoki R, Murao H. Optimization of x265 encoder using ARM SVE. In: International
Conference on High-Performance Computing in Asia-Pacific Region (HPC Asia 2020).
Fukuoka, Japan. Available at https://sighpc.ipsj.or.jp/HPCAsia2020/hpcasia2020_
posters/poster_04.pdf .

ARM. 2020a. ARM Architecture Reference Manual Supplement, The Scalable Vector
Extension (SVE), for ARMv8-A (version Beta). Available at https://developer.arm.
com/documentation/ddi0584/ag/ (accessed on July 2020).

ARM. 2020b. ARM C Language Extensions for SVE (version 00bet1). Available at https:
//developer.arm.com/documentation/100987/0000 (accessed on July 2020).

Batcher KE. 1968. Sorting networks and their applications. In: Proceedings of the April
30–May 2, 1968, spring joint computer conference. 307–314.

Bishop L, Eberly D,Whitted T, FinchM, Shantz M. 1998. Designing a PC game engine.
IEEE Computer Graphics and Applications 18(1):46–53.

Board OAR. 2013. OpenMP application program interface. Available at https://www.
openmp.org/wp-content/uploads/OpenMP4.0.0.pdf .

Bramas B. 2017. A Novel Hybrid Quicksort Algorithm Vectorized using AVX-512 on
Intel Skylake. International Journal of Advanced Computer Science and Applications
8(10) DOI 10.14569/IJACSA.2017.081044.

Bramas B. 2020. Farm-SVE: a scalar C++ implementation of the ARM Scalable Vector
Extension (SVE). Available at https://hal.inria.fr/hal-02906179 .

Chhugani J, Nguyen AD, Lee VW,MacyW, HagogM, Chen Y-K, Baransi A, Kumar
S, Dubey P. 2008. Efficient implementation of sorting on multi-core SIMD CPU
architecture. Proceedings of the VLDB Endowment 1(2):1313–1324.

Domke J. 2021. A64FX–your compiler you must Decide!
ArXiv preprint. arXiv:2107.07157.

FlynnMJ. 1972. Some computer organizations and their effectiveness. IEEE Transactions
on Computers 100(9):948–960.

Fujitsu. A64fx microarchitecture manual. Available at https://www.fujitsu.com/global/
products/computing/servers/supercomputer/a64fx/.

Furtak T, Amaral JN, Niewiadomski R. 2007. Using SIMD registers and instructions
to enable instruction-level parallelism in sorting algorithms. In: Proceedings of the
nineteenth annual ACM symposium on Parallel algorithms and architectures. New
York: ACM, 348–357.

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 22/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.769#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.769#supplemental-information
http://arXiv.org/abs/2103.03013
https://sighpc.ipsj.or.jp/HPCAsia2020/hpcasia2020_posters/poster_04.pdf
https://sighpc.ipsj.or.jp/HPCAsia2020/hpcasia2020_posters/poster_04.pdf
https://developer.arm.com/documentation/ddi0584/ag/
https://developer.arm.com/documentation/ddi0584/ag/
https://developer.arm.com/documentation/100987/0000
https://developer.arm.com/documentation/100987/0000
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://dx.doi.org/10.14569/IJACSA.2017.081044
https://hal.inria.fr/hal-02906179
http://arXiv.org/abs/2107.07157
https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
http://dx.doi.org/10.7717/peerj-cs.769

Graefe G. 2006. Implementing sorting in database systems. ACM Computing Surveys
(CSUR) 38(3):10.

Grama A, Kumar V, Gupta A, Karypis G. 2003. Introduction to parallel computing. New
York: Pearson Education.

Gueron S, Krasnov V. 2016. Fast quicksort implementation using AVX instructions. The
Computer Journal 59(1):83–90.

Hoare CA. 1962. Quicksort. The Computer Journal 5(1):10–16.
Hou K,Wang H, FengW. 2018. A framework for the automatic vectorization of parallel

sort on x86-Based processors. IEEE Transactions on Parallel and Distributed Systems
29(5):958–972.

Inoue H, Moriyama T, Komatsu H, Nakatani T. 2007. AA-sort: a new parallel sorting
algorithm for multi-core SIMD processors. In: Proceedings of the 16th international
conference on parallel architecture and compilation techniques. 189–198.

ISO. 2003. ISO/IEC 14882:2003(E): programming Languages - C++. ü25.3.1.1 sort
[lib.sort] para. 2. Available at https://www.iso.org/standard/38110.html .

ISO. 2014. Standard for Programming Language C++, ISO/IEC 14882:2014(E): pro-
gramming Languages - C++. 25.4.1.1 sort (p. 911). Available at https://www.iso.org/
standard/64029.html .

Kodama Y, Odajima T, MatsudaM, Tsuji M, Lee J, Sato M. 2017. Preliminary per-
formance evaluation of application kernels using ARM SVE with multiple vector
lengths. In: 2017 IEEE international conference on cluster computing (CLUSTER).
Piscataway: IEEE, 677–684 DOI 10.1109/CLUSTER.2017.93.

Kogge PM. 1981. The architecture of pipelined computers. Boca Raton: CRC Press.
Meyer N, Georg P, Pleiter D, Solbrig S, Wettig T. 2018. SVE-Enabling lattice QCD

codes. In: 2018 IEEE international conference on cluster computing (CLUSTER). IEEE,
Piscataway, 623–628 DOI 10.1109/CLUSTER.2018.00079.

Musser DR. 1997. Introspective sorting and selection algorithms. Software: Practice and
Experience 27(8):983–993.

Nassimi D, Sahni S. 1979. Bitonic sort on a mesh-connected parallel computer. IEEE
Transactions on Computers 28(1):2–7.

Owens JD, HoustonM, Luebke D, Green S, Stone JE, Phillips JC. 2008. GPU comput-
ing. Proceedings of the IEEE 96(5):879–899.

Raoofy A, Karlstetter R, Yang D, Trinitis C, Schulz M. 2020. Time series mining at
petascale performance. In: Sadayappan P, Chamberlain BL, Juckeland G, Ltaief
H, eds. High performance computing. Cham: Springer International Publishing,
104–123.

Sanders P, Winkel S. 2004. Super scalar sample sort. In: European Symposium on
Algorithms. 784–796.

Snasel V, Kromer P, Safarik J, Platos J. 2020. JPEG steganography with particle swarm
optimization accelerated by AVX. Concurrency and Computation: Practice and
Experience 32(8):e5448 DOI 10.1002/cpe.5448.

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 23/24

https://peerj.com
https://www.iso.org/standard/38110.html
https://www.iso.org/standard/64029.html
https://www.iso.org/standard/64029.html
http://dx.doi.org/10.1109/CLUSTER.2017.93
http://dx.doi.org/10.1109/CLUSTER.2018.00079
http://dx.doi.org/10.1002/cpe.5448
http://dx.doi.org/10.7717/peerj-cs.769

Stephens N, Biles S, Boettcher M, Eapen J, Eyole M, Gabrielli G, Horsnell M, Magklis G,
Martinez A, Premillieu N, Reid A, Rico A,Walker P. 2017. The ARM scalable vector
extension. IEEE Micro 37(2):2639 DOI 10.1109/MM.2017.35.

Wan X, Gu N, Su J. 2021. Accelerating Level 2 BLAS based on ARM SVE. In: 2021 4th
international conference on advanced electronic materials, computers and software
engineering (AEMCSE). 1018–1022 DOI 10.1109/AEMCSE51986.2021.00208.

Watkins A, Green O. 2018. A fast and simple approach to merge and merge sort using
wide vector instructions. In: 2018 IEEE/ACM 8th workshop on irregular applications:
architectures and algorithms (IA3). Piscataway, IEEE, 37–44.

Yin Z, Zhang T, Müller A, Liu H,Wei Y, Schmidt B, LiuW. 2019. Efficient parallel sort
on AVX-512-based multi-core and many-core architectures. In: 2019 IEEE 21st
international conference on high performance computing and communications; IEEE
17th international conference on smart city; IEEE 5th international conference on data
science and systems (HPCC/SmartCity/DSS). Piscataway: IEEE, 168–176.

Bramas (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.769 24/24

https://peerj.com
http://dx.doi.org/10.1109/MM.2017.35
http://dx.doi.org/10.1109/AEMCSE51986.2021.00208
http://dx.doi.org/10.7717/peerj-cs.769

