
A bio-inspired adaptive model for search
and selection in the Internet of Things
environment
Soukaina Bouarourou1, Abdelhak Boulaalam2 and El Habib Nfaoui1

1 Computer Science Department, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben
Abdellah University, Fez, Morocco

2 Computer Science Department, National School of Applied Sciences, Sidi Mohamed Ben
Abdellah University, Fez, Morocco

ABSTRACT
The Internet of Things (IoT) is a paradigm that can connect an enormous number of
intelligent objects, share large amounts of data, and produce new services. However,
it is a challenge to select the proper sensors for a given request due to the number of
devices in use, the available resources, the restrictions on resource utilization, the
nature of IoT networks, and the number of similar services. Previous studies have
suggested how to best address this challenge, but suffer from low accuracy and high
execution times. We propose a new distributed model to efficiently deal with
heterogeneous sensors and select accurate ones in a dynamic IoT environment.
The model’s server uses and manages multiple gateways to respond to the request
requirements. First, sensors were grouped into three semantic categories and
several semantic sensor network types in order to define the space of interest. Second,
each type’s sensors were clustered using the Whale-based Sensor Clustering
(WhaleCLUST) algorithm according to the context properties. Finally, the
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
was improved to search and select the most adequate sensor matching users’
requirements. Experimental results from real data sets demonstrate that our proposal
outperforms state-of-the-art approaches in terms of accuracy (96%), execution time,
quality of clustering, and scalability of clustering.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Distributed and Parallel Computing, Embedded Computing, Emerging Technologies
Keywords IoT, Sensor, Context properties, WhaleCLUST, TOPSIS, Clustering, Service search,
Sensor selection

INTRODUCTION
The Internet of Things (IoT) is a technology used to connect people and physical
devices (sensors, actuators, Radio-Frequency Identification (RFID), etc.) via the
Internet, while continuously collecting and sharing data (Fig. 1) (Perera et al., 2013b).
This interconnection defines three types of interactions: people to people, people to
things/machine, and things/machine to machine/things (Guillemin & Friess, 2009).

The integration of the IoT and the web (Web of Things) had led to the creation of
new kinds of services and applications in different domains: remote healthcare (Kadhim
et al., 2020), indoor air quality (Saini & Dutta, 2020), vehicular traffic management
(Lalitha & Pounambal, 2020), and air pollution monitoring (Arora et al., 2019).
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Figure 2 illustrates this integration. These applications have sought to create a smart
environment between the real and the virtual that makes energy, transport, cities, and
other areas more intelligent in order to enhance human life (Patel & Patel, 2016).

A market analysis company group predicted that there will be over 100 billion devices
connected the IoT by 2025 (Global Sensors in Internet of Things (IoT) Devices Market,
2016–2022, https://www.bisresearch.com/industry-report/global-sensors-in-iot-devices-
market-report-forecast.html). There will be a significant impact worldwide as the number
of connected IoT devices that communicate, sense, and share information grows.

Figure 1 The definition of IoT. Full-size DOI: 10.7717/peerj-cs.762/fig-1

Figure 2 The integration of IoT and web services. Full-size DOI: 10.7717/peerj-cs.762/fig-2
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These interconnected devices generate a large amount of data, which must then be
collected, analyzed, and used; this demonstrates we have an enormously searching space
(Zhang, Yang & Huang, 2011).

Different interconnected sensors may be especially useful for monitoring and recording
environmental phenomena such as temperature, sound, pollution levels, humidity,
and wind (Abdmeziem, Tandjaoui & Romdhani, 2016). Therefore, it is important to
determine which sensors/devices should be selected to retrieve the desired data.
This wireless sensor network suffers from various limitations, including unbalanced energy
consumption, hardware malfunction, deliberate attacks, physical localization, and
weak security (Laouid et al., 2017, 2019; Mahmood, Seah & Welch, 2015; Saoudi et al.,
2017). It is impossible to collect all data from all of the existing sensors in the network due
to the increasing number of networks. Thus, our main goal is to determine which sensors
should be selected, taking into consideration of required processing time and overall
accuracy.

We sought to overcome these limitations with an efficient approach to searching for and
selecting the appropriate sensors for a query with minimal time consumption and a high
quality. The proposed architecture consists of categorizing all current sensors in the
network into three semantic categories (SCs); Society, Industry, and Environment. In
parallel, for each semantic category, several semantic sensor network types (SSNTs)
were created, and then the Whale-based Sensor Clustering Algorithm was applied to
cluster the sensors using their contextual information. The Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) was then used to select the appropriate
sensors for the user query.

The remainder of this article is organized as follows: “Related works” is devoted to a
description and review of the most studies focused on sensor search and selection
techniques. The “Preliminaries” section includes a definition of the problem, the
WhaleCLUST Algorithm, and the TOPSIS Algorithm. “Proposal” presents the proposed
model on suitable way formulation. “Experiments” discusses the main implementation
results. Finally, “Conclusion” provides a concluding summary and future work.

RELATED WORKS
Existing methods used to address sensor search issues can be categorized into content-
based methods that look for sensors that generate such data, and context-based methods
that use the sensors properties.

Content-based approaches
Content-based sensor searches can be conducted by processing and clustering the data
generated by the different sensors, respectively. The aim is to obtain the optimal subset of
devices that provide the desired data at any instance of time.

Bu (2018) proposed a fuzzy c-means approach to process and analyze data handling in
IoT by which the data are grouped into clusters using the canonical decomposition
method, which reduces the attributes of each object before loading the dataset into the
memory. This approach enhances clustering efficiency and optimizes execution time,
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although it employs only a limited number of attributes to evaluate data (Tang & Fong,
2018).

A meta-heuristic algorithm for clustering and automatic clustering on big IoT data was
proposed by Tang & Fong (2018). This partitioned clustering method optimizes the
mini-batch and parallel partition-based Dynamic Group Clustering (DGC) for the IoT
big data environment. The method is comprised of three activities: first, a sample of the
dataset is partitioned into mini-batches; then the centroids of the mini-batches of data
are adjusted; lastly, the mini-batches are collated to form clusters. This method maximizes
the quality of the clusters related to the choice of the optimal batch size.

Another meta-heuristic algorithm for clustering and automatic clustering on big IoT
data was suggested by Jabeur et al. (2020). This approach has highlighted the impact
of spatial events on IoT clustering. The performed clustering for IoT depends on
the following six main features: location, energy, connectivity, users’ requirements,
communication, and semantics based on the Firefly Algorithm (FICA). This approach
is inconsistent in its efficient selection of CH; however, it has registered more energy
consumption and a high complexity.

Elahi et al. (2009) introduced a predictive model by calculating the estimation
probability. Their model can find sensors satisfying a user query by predicting the current
resources’ real data. However, this model is limited in that it can be used only on sensors
that present periodic patterns and, therefore, is not highly accurate.

Ostermaier et al. (2010) developed a real-time search engine for the Web of Things
named DYSER. This predictive engine assists in finding real-world entities using statistical
models to make predictions based on their real-time state and assists in the discovery of
resources with a limited number of sensor data retrievals.

Truong, Römer & Chen (2012) used the fuzzy set to calculate a similarity score between
two candidate sensors, which were then used to obtain a ranked list of matching
sensors. This method becomes time-consuming when the number of sensors within the
network is increased.

Tables 1 and 2 summarize and compare different content-based and context-based
search techniques with the following parameters: number of used sensors, processing time,
attributes or properties, accuracy, and dynamicity (e.g., removal or connection of new
sensors in the sensor network).

Context-aware approaches
The content-based method summarizes the processing of all collected data obtained from
an enormous number of connected sensors in an IoT network; it is not practical to treat all
the collected data, leading many researchers to choose context-based method approach.
Context-awareness is an efficient technique for selecting data that requires additional
processing and attention.

Context is the characterization of an object in an environment at any place and time;
this is extracted from the expression of one or more IoT resources (Abowd et al., 1999).
Below, we present an overview of works focused on a sensor search based on context
properties.
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The Global Sensor Networks (GSN) (Aberer, Hauswirth & Salehi, 2007) is a data-
processing engine aimed at providing flexible middleware to address sensor data
integration and distributed query processing. This approach allows registering sensors
with their meta-data in an XML structure. The query is a text-based search; however,
this engine features ambiguous descriptions of sensors that users add. Similar to GSN
model, the Microsoft SensorMap (Nath, Liu & Zhao, 2007) enables the user to choose
appropriate sensors based on their location, type, and keywords.

Ebrahimi et al. (2017), Kertiou et al. (2018), Le-Phuoc et al. (2011), Perera et al. (2013a),
(2013b) addressed the issue of using the Semantic Sensor Network (SSN) Ontology
(Compton et al., 2012) as the basis for conceptual modeling in the IoT domain (Janowicz
et al., 2010). Among these works, Linked Sensor Middleware (LSM) (Le-Phuoc et al., 2011)
is a platform that pairs real-world data with the Semantic Web in a unified model, where
raw data are saved in relational databases, and the database schema is mapped to the
ontology for improvement. This platform, however, offers limited functionalities for
searching based on logical queries. For example, querying the resources relies on selecting

Table 1 Functional and non-functional comparison of content-based search approaches.

Researches Number
of sensors

Properties Execution time Accuracy Dynamicity

Elahi et al. (2009) 250 Unlimited – – Unconsidered

Ostermaier et al. (2010) 385 Unlimited – – Unconsidered

Truong, Römer & Chen (2012) 42 Unlimited – – Unconsidered

Bu (2018) Unlimited Limited 650 min/64 Clusters 0.94/64 Clusters Considered

Tang & Fong (2018) 12,000 100 1.20E+00 – Considered

Jabeur et al. (2020) 800 Unlimited – – Unconsidered

Table 2 Functional and non-functional comparison of context-based search approaches.

Researches Number of
sensors

Number of
properties

Execution Time(s) Accuracy Dynamicity

Aberer, Hauswirth & Salehi (2007) 100,000 2 – – Unconsidered

Nath, Liu & Zhao (2007) 100,000 2 – – Unconsidered

Le-Phuoc et al. (2011) 100,000 2 – – Unconsidered

Perera et al. (2013a) 1,000,000 6 9.5 98% Unconsidered

Hsu, Lin & Chen (2014) 50 1 600 – Unconsidered

Ebrahimi et al. (2017) 1,000,000 6 8 92% Considered

Nunes et al. (2017) 10,000 6 – – Unconsidered

Nunes et al. (2018) 209,555 6 785 – Unconsidered

Kertiou et al. (2018) 1,000,000 6 9 95% Unconsidered

Babu, Prathap & Samuel (2019) 20 4 2,009 91.99% Unconsidered

Singh, Baranwal & Tripathi (2020) 100 9 2.85 – Unconsidered

Zannou, Boulaalam & Nfaoui (2021) 3,000 4 – – Unconsidered

Bouarourou et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.762 5/26

http://dx.doi.org/10.7717/peerj-cs.762
https://peerj.com/computer-science/


services based only on the sensor location and its type, assuming that the obtained data are
static and not subject to frequent changes.

A context-aware sensor search selection and ranking model called CASSARAM (Perera
et al., 2014; Perera et al., 2013a, 2013c) suggests collecting point-based and proximity-
based demands from users before plotting them in a multidimensional space. This method
employs a distributed search by executing parallel processing over different server nodes
to collect local high-ranking sensors. This collection and management of context-
properties is a challenging approach for a large number of sensors due to its disregard for
system performance in dealing with changes (add or delete) in the sensor network.

Ebrahimi et al. (2017) was inspired by the behavior of ants when developing the
Ant-Clustering (AntCLUST) algorithm to cluster sensors based on their contextual
information in the form of Sensor Semantic Overlay Networks (SSONs). The search
queries are transmitted to each SSON to select the clusters that contain the most
appropriate sensors. Although this strategy is meant to maintain its performance against
dynamicity in the IoT, the system suffers from vulnerability to dynamicity issues and a
time-consuming off-line computing phase.

Nunes et al. (2017) proposed a resource discovery and selection process based on the
required parameters. The authors evaluated and compared the overall quality of this
selection among three multi-objective decision methods: the Simple Additive Weight
method (SAW), TOPSIS, and VIseKriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) with the Pareto optimal solutions.

The Elimination-Selection (ES) model (Nunes et al., 2018) combined the Fast-Non-
Dominated sort algorithm and the multiple-criteria decision method TOPSIS to enhance
quality and response time. The selections given by TOPSIS were reordered and chosen
as the prominent best option by using a Fast-Non-Dominated sort, which was applied
in an agricultural case study (Nunes et al., 2016) using a real dataset. The ES model
increased the proportion of the non-dominated selections and increased the processing
time by tens of times.

Hsu, Lin & Chen (2014) proposed an architecture allowing sensor search and
selection based on identification of the sensors’ characteristics, such as sensing range,
accuracy, or residual energy among a large set of available sensors. SSN ontology was used
to represent the properties of the sensor and this architecture has three components:
server, gateway, and sensor. The user posts a request to the server that is connected to
different gateways to offer a response. In the simulation study, however, they focused only
on the network lifetime.

Kertiou et al. (2018) based their proposed architecture on work by Hsu, Lin & Chen
(2014), which employed the context information of sensors with dynamic skylines
operators to decrease the search space and select the best sensors depending on the user
request. This requires use of distributed gateways connected to a server, where each
gateway responds to the users’ local requests. There is lower time complexity of the
dynamic skyline algorithm, but it does require users to input the ideal values of sensor
properties (Zheng et al., 2019).

Bouarourou et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.762 6/26

http://dx.doi.org/10.7717/peerj-cs.762
https://peerj.com/computer-science/


A comparison of the above-mentioned search techniques (context-based and content-
based approaches) is summarized in Table 3, including the search approach, system
architecture, data, algorithm/ontology, and prototype/simulation.

Babu, Prathap & Samuel (2019) presented a different context-aware reliable sensor
selection method in the IoT environment. The proposed method senses secure data from a
sensor that fulfills the user requirements. It also utilizes methods including user addition,
context specification, location sensing, user context counting, reliable information
storage in the cloud, and the ability to select the provider's best results. However, this
method requires a more accurate sensor selection model based on context information and
user priority for cyber-physical systems (CPS) such as smart farming, and smart cities.

Singh, Baranwal & Tripathi (2020) proposed an IoT framework for conducting the
selection process in QoS-Aware Selection of IoT services, which assumed the sensor, the
network, and application layers. The multi-criteria decision making (MCDM) was applied
as a combination of two methods under the analytic hierarchy process (AHP) and
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The AHP
method was used to measure the weight of the QoS criteria, and TOPSIS ordered the
services. These methods define the QoS parameter based on three potential IoT
components: things, computing entity, and communication entity. Without regard to
illustrating the adaptability framework, they presented only the selection part of the service
composition.

Table 3 Comparison of different search techniques approaches.

Approach Search
publication

Search
approach

Architecture Data
used

Algorithm/ontology
used

Prototype/
simulation

Content-
based
sensor

Elahi et al.
(2009)

Time-related
search

Centralized ETH & MERL Single and multi-period
prediction model

Simulation

Ostermaier et al.
(2010)

Real-time
search

Centralized Bicing Aggregated prediction
model

Web-based
prototype

Truong, Römer
& Chen (2012)

Event-based
search

Centralized NOAA, IntelLab , MavHome Fuzzy logic Web-based
prototype

Bu (2018) Time-related
search

Distributed eGSAD, sWSN (Zhang, Chen & Leng, 2015) Fuzzy c-means
algorithm

Simulation

Jabeur et al.
(2020)

Spatiotemporal-
based search

Distributed Randomly generated Bio-inspired algorithms Java-based
prototype

Context-
aware
sensor

Perera et al.
(2013a)

Context-based
search

Distributed Phenonet project,
LSM project,
and Bureau of Meteorology

SSN Ontology and
Apache Jena SDB &
TDB

Java-based
prototype

Ebrahimi et al.
(2017)

Context-based
search

Centralized LSM project, Bureau of Meteorology,
MesoWes and AirQuality sensor dataset

SSN Ontology (Compton
et al., 2012)

Simulation

Nunes et al.
(2017, 2018)

Context-based
search

Centralized Open Weather Map – Simulation

Hsu, Lin & Chen
(2014)

Event-based
search

Centralized ViSIoT SSN Ontology
(Compton et al., 2012)

Web-based
prototype

Kertiou et al.
(2018)

Context-based
search

Centralized LSM Project, Bureau of Meteorology, and
Phenonet project

SSN Ontology (Compton
et al., 2012)

Simulation
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With the same aims as content-based and context-aware methods, Zannou,
Boulaalam & Nfaoui (2021) paired sensor nodes. In this, the best pairing creates a better
search for a required service in an optimal path and takes into regard the residual energy.
This approach was only applied when the search process for a specific service was
demanded by a sensor node in a social network.

There are several architectures and methods that may be used to search for a service
based on the content and the context of sensors. However, each study has its restrictions, as
mentioned above. The mechanisms to resolve a search task are specific to a given goal.
Here, we propose an architecture consisting of several gateways distributed in the network
and managed by a server. We applied new methods on this architecture to consider their
limitations while keeping an acceptable response time and a low network overload.
Furthermore, the deletion or addition of sensors is a crucial challenge that should be
considered in the context of a dynamic IoT environment.

Preliminaries
This section includes the necessary background for understanding the context of our
study, including the problem definition, WhaleCLUST, and TOPSIS algorithms.

Problem definition
An IoT network is composed of a set of devices (sensors, actuators, etc.), gateways, and a
server. These devices have a specific communication/transmission, sensing /reception
ranges, and different constraints in terms of energy consumption and processing
capacities. The gateways should be able to collect and process the data generated from
sensors based on their constraints. Each gateway manages its sub-network and the
server manages those gateways in the same manner. There are many sensors in each
sub-network (gateway) that can be abstracted as services and the combination of these
devices within these services is the basis of the IoT application within IoT middleware
solutions.

The search task for a requested service in a network is the most important functionality
in IoT (Barnaghi et al., 2012) due to the huge number of sensors/services, similar services
in each sub-network, and the consequently enormous amount of collected data. Thus,
sensors may be clustered physically or virtually with minimal and sufficient context
information. Figure 3 illustrates this distributed architecture.

When a greater number of available services are higher, the consumption will be greater;
therefore, the search space must be minimized without affecting the solution quality.

Table 4 summarizes the main notations used.

WhaleCLUST algorithm
The Whale-based Clustering Algorithm was derived from a desire to improve the
Whale Optimization Algorithm (WOA) (Mirjalili & Lewis, 2016) with the principle of
clustering. We defined a population as a set of search agents, and each search agent
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determines k centers, where k is the number of clusters. Each search agent is defined as
follows:

Sp ¼ Zp;1;Zp;2; . . . ;Zp;k
� �

(1)

where Zp; j represents the cluster center of the pth search agent in the cluster j.
We can represent the vector properties of a cluster center j named Zj as follows:

Zj ¼ zj;1; . . . ; zj;m
� �

(2)

where zj; i denotes the value of the ith property of the jth cluster center, and m is the
number of properties.

Hence, a swarm (search agent) refers to several candidate centers for a given area.
Figure 4 shows how a population that contains S search agents at a certain iteration t is
formed.

For each search agent, object Xi is first assigned to the nearest cluster center j that is
verified by Eq. (3)

Figure 3 The distributed environment. Full-size DOI: 10.7717/peerj-cs.762/fig-3

Table 4 Notations used in the rest of this paper.

Symbol Description

Ncategory The Number of Semantic Category (= 3).

SCi The Semantic Category (i = {environment, society, industry}).

SSNTi,j The Sensor Semantic Type Network of the SCi and the type j.

Ph,k The List of index sensor of the hth cluster and kth property.

Ph,k (SSNTi,j) The existing cluster sensors in SSNTi,j.

Qj The Matrix of center cluster of each cluster belonging to SSNTi,j for the SCi.

Ch,k Center cluster of the hth cluster and kth property.

N The number of sensors existing in the hth cluster.

Cj List of centers of all clusters in SSNTi,j.

Bcenter The best center cluster with required sensor.

BCsensors All sensors existing in BC.

Bsensor The most similar sensor to required sensor.
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d Xi;Zp
� � ¼ minj¼1;2;...;kd Xi;Zpj

� �
(3)

d Xi;Zp
� �

corresponds to the squared Euclidean distance between the vector properties

of object Xi, and the vector properties of cluster center Zp, as shown below in Eq. (4):

d Xi;Zpj
� � ¼ Xi � Zpj

�� �� (4)

We computed the fitness function of each search agent Sp, based on the distance
between each cluster center j (j belongs to Sp) and the vector properties of object Xi

(i belong to cluster j), by minimizing the following Euclidean distance:

fitness Sp
� � ¼ Xk

j¼1

XN
i¼1

WijdðXi;ZpjÞ (5)

where k is the number of clusters/centers in search agent Sp, and Wij is the association
weight of object Xi and cluster j, and is defined by:

Wij ¼ 1 if dðXi;ZpjÞ ¼ min1�j�kdðXi;ZpjÞ
0 else

�
(6)

Simulating the spiral bubble-net feeding behavior process, the search agents update
their position and orient themselves towards the best search agent. The description and the
mathematical model for the spiral bubble-net feeding behavior process is broken down
into three main aspects: encircling prey, bubble-net attacking method, and search for prey.

Encircling prey
Humpback whales can locate the position of prey and encircle it. The algorithm considers
that the existing best search agent position is the target as a prey or close to the optimum
point. The other search agents will enhance their position near the best search agent.
This behavior is expressed by the following equations:

~S tþ 1ð Þ ¼ S�
!

tð Þ �~A:~D (7)

Figure 4 Population of S search agents at specific iterations.
Full-size DOI: 10.7717/peerj-cs.762/fig-4
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~A ¼ 2:~a:~r �~a (8)

~D ¼ ~C:S�
!

tð Þ �~S tð Þ (9)
~C ¼ 2:~r (10)

~S tþ 1ð Þ is defined as the new position of the search agent; S�
!

is the best search
agent; ~A is the coefficient vector;~a is linearly reduced within the range of 2 to 0 over the
course of iterations;~r is a random vector that varies in range [0, 1]; ~D is the distance
between the vector position of the best search agent S�

!
and the current position of a search

agent~S at the current iteration t; ‘| |’’ is the absolute value;~C is the coefficient vector; and .
is an element-by-element multiplication.

Bubble-net attacking method (exploitation phase)
The bubble-net behavior of the humpback whale is characterized by two main
mechanisms: shrinking encircling and spiral updating position. The two mechanisms
have the same probabilities p (0.5 for each), where p is a random variable generated in the
range [0, 1]. In the shrinking encircling mechanism, the value of~a is decreased from two to
zero over the total number of iterations in Eq. (8). The value of |A| is also decreased
between -a and a. The spiral updating position mechanism is applied between prey
(the best search agent) and the position of whale (the current search agent) to simulate the
helix-shaped movement of humpback whale. Setting random values for |A| in the range
[−1, 1], the search agent’s new position can be defined as anywhere between the original
position of the current search agent and the position of the best search agent as shown
below:

D0! ¼ S�
!

tð Þ �~S tð Þ (11)

where D0�!
is the new distance between the current search agent and the best search agent.

The new position of the current search agent was updated as follows:

~S tþ 1ð Þ ¼ D0!:ebl:cos 2plð Þ þ S�
!

tð Þ (12)

where b is a constant that defines the logarithmic shape, l is a random number in [−1, 1],
and ‘.’ is an element-by-element multiplication.

The value of p is adopted to make the decision on the Equation used for updating the
position of the current search agent; it is given as follows:

~S tþ 1ð Þ ¼ S�
!

tð Þ �~A:~D p < 0:5

D0!:ebl:cos 2plð Þ þ S�
!

tð Þ p � 0:5

(
(13)

Search for prey (exploration phase)
Most meta-heuristic algorithms search for the optimum solution using a random selection.
In the bubble-net method, the humpback whales randomly search for the best search agent
when the values of |A| are greater than 1 or less than −1. With this consideration, the
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search agent moves far away from a reference whale (the best search agent chosen at first);
it is expressed as follows:

~S tþ 1ð Þ ¼~Srand �~A:~D (14)
~D ¼ ~C:~Srand �~S (15)

where~Srand is a random position vector.
The WhaleCLUST algorithm (Algorithm 1) initiates the search agent from a set of

random solutions. The search agents update their position according to the above details.

The TOPSIS algorithm
The TOPSIS algorithm is a classical MCDA method and is of great interest to researchers
in the subject. The TOPSIS algorithm is based on finding the best solution, where the best
option is nearest to the ideal solution and farthest to the inferior anti-ideal solutions
(Tzeng & Huang, 2011). The MCDA problem is typically defined by an M×N matrix Qj

called an analysis matrix. The element qi matches the performance value of the i option
regarding the decision criteria cj, such as represented by Eq. (16).

Qj ¼
q11 � � � qn1
� � � � � � � � �
q1m � � � qnm

2
4

3
5

C1..................Cn

(16)

The TOPSIS algorithm can be summarized as:
The first step: the normalization of the analysis matrix Q to Q

0
, the normalized value

ri;j of each performance ci;j is calculated as follows:

ri;j ¼ qi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1 qi;j

2
q (17)

The second step: the determination of the Ideal pþd and Anti-ideal p�d solutions using
the decision matrix for each criterion. The formulas to compute pþd and Anti-ideal p�d for
a maximization problem are:

pþd ¼ max ri;j
� �

p�d ¼ max ri;j
� ��

(18)

The third step: the calculation of the distances of each alternative (the normalized value
ri;j) from the Ideal and Anti-ideal solutions, according to the equation below:

Sþi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1

ri;j � pþd

� �2s

S�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1

ri;j � p�d

� �2s
8>>>><
>>>>:

(19)
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The fourth step: the computation of the relative closeness Ciþ of each solution to the
ideal solution according to the following equation:

Ciþ ¼ S�i

Sþi þ S�i
(20)

The fifth step: Sort the options in ascending order according to the Ciþ value.

Algorithm 1 The Whale-based clustering algorithm.

Input: Sp (i = 1, 2, …, s): The population set of search agent.

Output: S′: The best search agent

1. Procedure Cluster _Formulation (Si):

2. Initialize data Xi (i = 1, 2, …, N)

3. Choose S search agent Sp (i = 1, 2, …, s) to contain k randomly cluster centers

4. for each search agent Si

5. for each data vector Xm

6. Calculate the distance using Eq. (4)

7. Assign sensors to the nearest cluster using Eq. (3)

8. End for

9. End for

10. S′: The best search agent

11. While t < Maximum_iteration

12. for each search agent

13. Update ~a, ~A , ~C, l and p

14. if p<0.5 then:

15. if |A| < 1 then:

16. Update search agents position using Eq. (7)

17. end if

18. Else if |A| ≥ 1 then:

19. Select random search agent

20. Update the position of current search agent by Eq. (14)

21. End if

22. Else if p < 0.5 then:

23. Use Eq.(12)

24. End if

25. End for

26. Update ~a, ~A , ~C, l and p

27. Update S0
!

if there is a better solution

28. End while

29. return S′

30. End procedure

Bouarourou et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.762 13/26

http://dx.doi.org/10.7717/peerj-cs.762
https://peerj.com/computer-science/


Our proposal
Multiple factors may impact the search for and selection of appropriate sensors that match
the users’ requirements in the Internet of Things environment. These include finding
accurate sensors, optimizing time-consuming tasks for users, and managing system
performance against the dynamicity of IoT. Therefore, we suggested a new method to
search for and select an appropriate service considering the above-mentioned criteria
simultaneously.

System architecture
To improve the performance of sensor search in IoT; including time-consumption and
dynamicity, we propose classifying the current sensors in the network into three
semantic categories and create several SSNTs (temperature, pressure, vibration, light,
weather, etc.) in each category. The server extracts the semantic category, type, and values
of the different properties from the user query. Next, the server sends them to the gateways.
In each SSNT, sensors are clustered by the Whale-based Sensor Clustering Algorithm
based on their context properties (accuracy, reliability, cost, availability, energy, etc.) before
forwarding the queries to those related SSNTs. Consequently, the relevant cluster to the
requested sensor properties is selected.

In order to ensure the parallel nature of IoT architecture and to minimize the network
traffic caused by the dynamic context properties and number of sensors we chose a
distributed architecture. Context properties are then stored in the local gateway and they
are not globally updated.

The proposed architecture consists of three components: sensor, gateway, and server.
The sensors: these contain information and context properties and are registered within

the gateways.
The gateway: this is responsible for managing a local network composed of three

semantic categories of sensors clustered in the area of interest, and for connecting to the
server.

The server: this is capable of processing users’ requests, connecting to several gateways
to obtain the local response from each gateway (local search and selection phases), and
returning the response to the user (global search and selection phases).

Figure 5 depicts an overview of the system architecture and shows the following steps:
Connection: the user connects to the system and expresses its requirements via a

system interface.
User requirements: the user’s system sends the request (the user ID and user

requirements) to the server.
Request: the server can extract the semantic category, type of the requested sensor, and

users’ requirements from a request. Next, it forwards them to the gateways. Figure 6
depicts a decomposed query (request).

Local search and selection: using the clustering process, each gateway determines
the corresponding service according to the semantic category, type, and users’
requirements from a request. The adequate service to the request is returned to the server.
The details of this phase are described in the “Creation of SSNTs” section.
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Global search and selection: the server determines the gateways that can provide the
appropriate service (sensor) for each request.

Semantic modeling
We adopted the SSN Ontology (Compton et al., 2012) to model the sensor descriptions and
context properties, and to publish the information of sensors in a standard format.
Compton et al. (2009) presented a comparison of different semantic sensor ontologies is
presented. The SSN ontology provides the most common context properties, such as
accuracy, precision, drift, sensitivity, selectivity, measurement range, detection limit,
response time, frequency, and latency. Figure 7 illustrates a segment of the SSN ontology
used in our work.

Creation of SSNTs
The application of IoT can be categorized into three semantic categories (SCs) based on
their focus (Sundmaeker et al., 2010; Atzori, Iera & Morabito, 2010): industry,
environment, and society. For example: transportation and logistics (Yuqiang, Jianlan &
Xuanzi, 2010), supply chain management (SCM) (Chaves & Decker, 2010), and aerospace,
aviation, and automotive are some industry-oriented applications of IoT. Agriculture
and breeding (Shifeng et al., 2011), disaster alerting, recycling, and environmental

Figure 5 Sensor search architecture. Full-size DOI: 10.7717/peerj-cs.762/fig-5

Figure 6 The request decomposition. Full-size DOI: 10.7717/peerj-cs.762/fig-6
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monitoring (Jang, Healy & Skibniewski, 2008) are some examples environment-oriented
applications. Smart building (Minoli, Sohraby & Occhiogrosso, 2017), telecommunication,
medical technology (Lu & Liu, 2011), healthcare, media, ticketing, and entertainment
are some society-oriented applications.

We propose an unsupervised and a decentralized creation of SSNT to improve the
efficiency of routing the queries to the appropriate SSNT (type). The SSNT is based on
context properties (accuracy, reliability, energy, availability, cost, etc.) for the three SCs
(environment, society, industry) in one of the gateways (Fig. 8). For this reason, we
recommend a new bio-inspired meta-heuristic that mimics the bubble-net hunting and
foraging behavior of a humpback whale (WhaleCLUST-A).

We assume that a given SSNT consists of N sensors, which are described by real-value m
dimensional vector properties as follows:

Xi ¼ xi;1; xi;2; . . . ; xi;m
� �

(21)

where Xi is a vector property of sensor i, xi;1 denotes the value of the jth property of the ith

sensor, and m is the number of the properties.
The WhaleCLUST algorithm has been performed on each SSNTi;j to cluster sensors

using their context information (availability, accuracy, reliability, response time, and cost),
where i is a SC such that i ¼ 1; 2; 3f g and j is the index of a SSNT.

The WhaleCLUST is regarded as a global optimizer because it has more abilities than
other algorithm. The algorithm has a high exploration capability due to the position
updating mechanism of Whales using Eq. (14), and a high emphasized exploitation and
convergence, which initiate from Eqs. (7) and (12). These equations clarify that
WhaleCLUST can run away from local minima with a quick convergence. WhaleCLUST

Figure 7 SSN ontology from a sensor perspective. Full-size DOI: 10.7717/peerj-cs.762/fig-7
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solves continuous and convex problems in addition to having a larger search area, simple
structure, and is adaptable in dynamic conditions.

In particular, the mobile sensors will move from a gateway to another without any
change in their context properties values. The gateway that receives the new joined sensor
will apply the same search process by determining the most similar group based on the
semantic category, SSNT, and distance similarity of each context property. The SSNT was
obtained by the WhaleCLUST algorithm. Posteriorly, we calculated the center of each
cluster h noted Ch as follows:

Ch;k ¼ 1
nh

Xnh
i¼1;i2cluster hð Þ

xi;k (22)

where Ch;k is the value of the attribute k in the cluster h, nh is the number of sensors in
cluster h, and xi;k is the value of the attribute k in the sensor i. Algorithm 2 illustrates the
steps for calculating the center of clusters.

Search for the relevant sensor
Here, we present the proposed technique for searching and selecting the relevant sensors
in an IoT network to a given user query. The first step classifies the existing sensors into
three SCs, the SSNTs within a clustered sensor are created using the WhaleCLUST
algorithm in parallel for each SC. Then, Algorithm 2 is applied to the list of the centers of
clusters j is elaborated as an analysis matrix with size M×N as follows:

Figure 8 Parallel-based context-aware clustering using the WhaleCLUST algorithm in one of the
gateways. Full-size DOI: 10.7717/peerj-cs.762/fig-8
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Qj ¼
c11 � � � cn1
� � � � � � � � �
c1m � � � cnm

2
4

3
5

C1..................Cn

(23)

Each element ci;k (the performance value) corresponds to the value of the center cluster i
of attribute j (j named also criterion).

In terms of quality and response time, we improved the TOPSIS algorithm (Rahim et al.,
2018). TOPSIS was applied in each center of cluster of a SSNT against all the used sensors,
which minimized the time consumed to select and search for the requested services.

After employing the TOPSIS algorithm for each center cluster in Ch;k, the best center
cluster Bcenter was selected; this was the most similar center cluster to the ideal sensors.
Then, the list of all sensors belonging to the cluster BCsensors was extracted, where the
Euclidean distance between the BCsensors and the Bcenter was computed to select the best
sensor Bsensor between them. Algorithm 3 is shown in detail below.

The last phase is the global search selection. Here, the server receives the responses
(the selected sensors) from the gateways. It chooses the appropriate sensors based on the
user requirements by calculating the distance between each suggested solution (selected
sensor) and the user requirements using Eq. (3), where a sensor with the minimal
Euclidian distance is selected. The final solution provided by the service is then returned.

EXPERIMENTS
Experiments setup and data sets
We used a HP- EliteBook 8440p computer with Intel i5 CPU running at 2.40 GHz,
under Windows 7 (64-bit) and 8 GB of RAM to evaluate our proposed method.
Accordingly, the simulation software was written in Python3 using the WhaleCLUST
algorithm and the TOPSIS search method.

Algorithm 2 Parallel calculation of the center of cluster.

Input: Ncategory: The number of categories (=3)

SCi: The set of categories

SSNTi,j: The type j corresponds to the category i.

Ph (SSNTi,j): The current hth cluster sensor in the SSNTi,j

Output: Cj: Centers of all clusters in SSNTi,j

1. While (Ncategory < 3) do

2. For each SSNTi,j, ph (SSNTi,j) do

3. Calculate center cluster of Ch using Eq. (22).

4. Add Ch to Cj

5. End for

6. End while

7. return Cj
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It was difficult to determine some context properties related to the sensors in public
datasets therefore we used a combination of real and synthetically generated data to
evaluate our proposed method on a large scale. We collected datasets from the Linked
Sensor Middleware (LSM) project (Digital Enterprise Research Institute (2011), the Bureau
of Meteorology (Australian Government, Bureau of Meteorology (2012), and the Phenonet
project (Patni, Henson & Sheth, 2010).

In all experiments, we considered five context properties (availability, accuracy,
reliability, response time, and cost) and 10,000 sensors. We took the averages of some
experimental results and the parameters used in the WhaleCLUST model are shown in
Table 5.

We created a model for the proposed architecture and datasets to evaluate the
robustness, efficiency, and parameter impact of our proposed approach. We also explained
the results obtained from the different experiments. Finally, we compared AntCLUST
(Ebrahimi et al., 2017) and ParticuleCLUST (Wang et al., 2017) as state-of-the-art
methods. Our proposed method was performed with the highest accuracy and lowest
processing time required to search and select the suitable sensors to the users’
requirements.

Algorithm 3 Search and selection the best sensors.

Input: Ncategory: The number of categories (=3)

SCi: The set of categories

Cj: Centers of all clusters in SSNTi,j

Output: Bsensor: List of centers of all clusters in SSNTi,j

1. While (Ncategory < 3) do

2. For each SSNTi,j do

3. Apply TOPSIS algorithm to Cj

4. Add Ch to Cj

5. Get Bcenter: the best center cluster (higher relative closeness value)

6. End for

7. Compute the Euclidean distance between each BCsensors and Bcenter.

8. Get the Bsensor that has the minimal Euclidean distance with Bcenter

9. End while

10. return Bsensor

Table 5 The parameters used in our model.

Parameters Values

Number of iterations (t) 600

Number of search agents 50

Number of clusters (k) 3
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RESULTS AND DISCUSSION
We evaluated the accuracy of the WhaleCLUST algorithm and compared it with the
AntCLUST and ParticuleCLUST algorithms using the number of iterations and the
number of sensors. The greater the number of iterations and sensors the higher accuracy of
our algorithm (Figs. 9 and 10). When the number of sensors exceeded 5,000, the
accuracy of our algorithm was 96%, 92% for the AntCLUST, and 91% for the
ParticuleCLUST. As a result, our algorithm was shown to be more efficient and scalable
than the two other ones.

We used three trials with the number of search agents set to 10, 15, and 50 according
to the number of iterations to evaluate the quality of clustering and the system
performance when applying the proposed algorithm. The results show that the best quality
of clustering was over 96% when the number of search agents was set to 50 (Fig. 11).
This demonstrates the impact of change in the number of search agents on the quality of
clustering.

Figure 9 Accuracy comparisons of WhaleCLUST, AntCLUST, and ParticuleCLUST according to the
number of iterations. Full-size DOI: 10.7717/peerj-cs.762/fig-9

Figure 10 Accuracy comparisons of WhaleCLUST, AntCLUST, and ParticuleCLUST according to
the number of sensors. Full-size DOI: 10.7717/peerj-cs.762/fig-10
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Figure 12 shows the processing time to respond to the request requirements with a
different number of sensors and context properties. More time was consumed as the
number of context properties and sensors grew. More precisely, when the number of
sensors increased to 5,000, the consumed time slowly increased. This means that the search
and selection tasks are efficient in a large space of interest.

To demonstrate the efficiency of the search and selection phases of our approach
compared to the AntCLUST and the ParticuleCLUST approaches, we measured the
required processing time (Fig. 13). When the number of sensors was more than 5,000, the
consumed time is semi-equal for all approaches. However, when the number of sensors

Figure 11 The impact of the number of search agents on the quality of clustering according to the
number of iterations. Full-size DOI: 10.7717/peerj-cs.762/fig-11

Figure 12 The processing time during the search and selection phases according to the number of
context properties and sensors. Full-size DOI: 10.7717/peerj-cs.762/fig-12
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was more than 5,000, the consumed was less with our approach compared to the other
approaches due to the distributed model used in our approach that processes the request
on a parallelized way.

CONCLUSION
The advanced technology in the IoT environment allows access to multiple sensors that
have similar utility. Searching and selecting the relevant and suitable sensors for user
requirements is challenging. We studied the accuracy, time complexity, and scalability of
the search and selection tasks to satisfy the requirements based on the context properties of
sensors. We categorized the sensors into three semantic categories named environment,
society, and industry. Within each SC, the SSNTs are created, where the improved
Whale clustering is applied to cluster the sensors of SSNT according to the context
properties. The distributed architecture consists of gateways that are connected to sensors
and managed by a server, where the response is performed jointly and simultaneously
among the server and the gateways. The experimental results showed that our proposed
solution was promising in terms of accuracy, quality clustering, scalability, and execution
time when compared to other approaches.

Furthermore, the current work can provide many benefits for practitioners and
researchers who want to develop or integrate IoT applications to exploit the services
provided by smart city, industry, agriculture, and healthcare systems. Our work is designed
to support new technologies such as 5th generation and edge computing to efficiently and
quickly respond to complex IoT requests.

We plan to apply our model in specific domains including pollution control based
on storage capacity, energy consumption, and processing power. We will compare
our study with works in the same context and domain and will consider the user
request processing phase and the method used to extract the user requirements in future
studies.

Figure 13 The performance of our proposed algorithm (WhaleCLUST) compared to the AntCLUST
and ParticuleCLUSTalgorithms. Full-size DOI: 10.7717/peerj-cs.762/fig-13
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