
Submitted 13 May 2021
Accepted 4 October 2021
Published 18 November 2021

Corresponding author
Artem Ryzhikov, aryzhikov@hse.ru

Academic editor
Donghyun Kim

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj-cs.757

Copyright
2021 Ryzhikov et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

NFAD: fixing anomaly detection using
normalizing flows
Artem Ryzhikov, Maxim Borisyak, Andrey Ustyuzhanin and Denis Derkach
Laboratory of Methods for Big Data Analysis, HSE University, Moscow, Russia

ABSTRACT
Anomaly detection is a challenging task that frequently arises in practically all areas of
industry and science, from fraud detection and data quality monitoring to finding rare
cases of diseases and searching for new physics. Most of the conventional approaches
to anomaly detection, such as one-class SVM and Robust Auto-Encoder, are one-
class classification methods, i.e., focus on separating normal data from the rest of
the space. Such methods are based on the assumption of separability of normal
and anomalous classes, and subsequently do not take into account any available
samples of anomalies. Nonetheless, in practical settings, some anomalous samples are
often available; however, usually in amounts far lower than required for a balanced
classification task, and the separability assumption might not always hold. This leads to
an important task—incorporating known anomalous samples into training procedures
of anomaly detectionmodels. In this work, we propose a novel model-agnostic training
procedure to address this task. We reformulate one-class classification as a binary
classification problem with normal data being distinguished from pseudo-anomalous
samples. The pseudo-anomalous samples are drawn from low-density regions of a
normalizing flow model by feeding tails of the latent distribution into the model. Such
an approach allows to easily include known anomalies into the training process of an
arbitrary classifier. We demonstrate that our approach shows comparable performance
on one-class problems, and, most importantly, achieves comparable or superior results
on tasks with variable amounts of known anomalies.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Data
Science
Keywords Anomaly detection, Deep learning, Semi-supervised learning, Normalizing flows

INTRODUCTION
The anomaly detection (AD) problem is one of the important tasks in the analysis of
real-world data. Possible applications range from the data-quality certification (for
example, Borisyak et al., 2017) to finding the rare specific cases of the diseases in
medicine (Spence, Parra & Sajda, 2001). The technique can be also used in credit card fraud
detection (Aleskerov, Freisleben & Rao, 1997), complex systems failure predictions (Xu &
Li, 2013), and novelty detection in time series data (Schmidt & Simic, 2019).

Formally, AD is a classification problem with a representative set of normal samples
and a small, non-representative or empty set of anomalous examples. Such a setting makes
conventional binary classificationmethods to be overfitted and not to be robust w.r.t. novel
anomalies (Görnitz et al., 2012). In contrast, conventional one-class classification (OC-)

How to cite this article Ryzhikov A, Borisyak M, Ustyuzhanin A, Derkach D. 2021. NFAD: fixing anomaly detection using normalizing
flows. PeerJ Comput. Sci. 7:e757 http://doi.org/10.7717/peerj-cs.757

https://peerj.com/computer-science
mailto:aryzhikov@hse.ru
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.757
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.757

1Source code is available at https://gitlab.
com/lambda-hse/nfad.

2Moreover, anomalies typically cover a
much larger ‘‘phase space’’ than normal
samples, thus, generic models (e.g., a
deep neural network with fully connected
layers) might require significantly more
anomalous examples than normal ones.

methods (Breunig et al., 2000; Liu, Ting & Zhou, 2012) are typically robust against all types
of outliers. However, OC-methods do not take into account known anomalies which often
result to suboptimal performance in cases when normal and anomalous classes are not
perfectly separable (Campos et al., 2016; Pang, Shen & Van den Hengel, 2019). The research
in the area addresses several challenges (Pang et al., 2021) that lie in the field of increasing
precision, generalizing to unknown anomaly classes, and tackling multi-dimensional data.
Several reviews of classical (Zimek, Schubert & Kriegel, 2012; Aggarwal, 2016; Boukerche,
Zheng & Alfandi, 2020; Belhadi et al., 2020) and deep-learning methods (Pang et al., 2021)
were published that describe the literature in detail. With the advancement of the neural
generative modeling, methods based on generative adversarial networks (Schlegl et al.,
2017), variational autoencoders (Xu et al., 2018), and normalizing flows (Pathak, 2019) are
introduced for the AD task.

We propose1 addressing the class-imbalanced classification task by modifying the
learning procedure that effectively makes anomaly detection methods suitable for a two-
class classification. Our approach relies on imbalanced dataset augmentation by surrogate
anomalies sampled from normalizing flow-based generative models.

PROBLEM STATEMENT
Classical AD methods consider anomalies a priori significantly different from the
normal samples (Aggarwal, 2016). In practice, while such samples are, indeed, most
likely to be anomalous, often some anomalies might not be distinguishable from normal
samples (Hunziker et al., 2017; Pol et al., 2019; Borisyak et al., 2017). This provides a strong
motivation to include known anomalous samples into the training procedure to improve
the performance of the model on these ambiguous samples. Technically, this leads to a
binary classification problem which is typically solved by minimizing cross-entropy loss
function LBCE :

f ∗(x)= arg minf LBCE(f); (1)

LBCE(f)= P(C+)Ex∼C+ log f (x)+P(C−)Ex∼C− log
(
1− f (x)

)
; (2)

where: f is a arbitrary model (e.g., a neural network), C+ and C− denote normal and
anomalous classes. In this case, the solution f ∗ approaches the optimal Bayesian classifier:

f ∗(x)= P(C+|x)=
p(x|C+)p(C+)

p(x|C+)p(C+)+p(x|C−)p(C−)
. (3)

Notice that f ∗ implicitly relies on the estimation of the probability densities P(x|C+)
and P(x|C−). A good estimation of these densities is possible only when a sufficiently large
and representative sample is available for each class. In practical settings, this assumption
certainly holds for the normal class. However, the anomalous dataset is rarely large or
representative, often consisting of only a few samples or covering only a portion of all
possible anomaly types.2 With only a small number of examples (or a non-representative
sample) to estimate the second term of Eq. (2), LBCE effectively does not depend on f (x)

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 2/16

https://gitlab.com/lambda-hse/nfad
https://gitlab.com/lambda-hse/nfad
https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.757

in x ∈ suppC− \ suppC+, which leads to solutions with arbitrary predictions in the area,
i.e., to classifiers that are not robust to novel anomalies.

One-class classifiers avoid this problem by aiming to explicitly separate the normal class
from the rest of the space (Liu, Ting & Zhou, 2008; Scholkopf & Smola, 2018). As discussed
above, this approach, however, ignores available anomalous samples, potentially leading
to incorrect predictions on ambiguous samples.

Recently, semi-supervised AD algorithms like 1+ε-classification method (Borisyak et
al., 2020), Deep Semi-supervised AD method (Ruff et al., 2019), Feature Encoding with
AutoEncoders for Weakly-supervised Anomaly Detection (Zhou et al., 2021) and Deep
Weakly-supervised Anomaly Detection (Pang et al., 2019) were put forward. They aim to
combine the main properties of both unsupervised (one-class) and supervised (binary
classification) approaches: proper posterior probability estimations of binary classification
and robustness against novel anomalies of one-class classification.

In this work, we propose a method that extends the 1+ε-classificationmethod (Borisyak
et al., 2020) scheme by exploiting normalizing flows. The method is based on sampling the
surrogate anomalies to augment the existing anomalies dataset using advanced techniques.

NORMALIZING FLOWS
The normalizing flows (Rezende & Mohamed, 2015b) generative model aims to fit the exact
probability distribution of data. It represents a set of invertible transformations {fi(·;θi)}
with parameters θi, to obtain a bijection between the given distribution of training samples
and some domain distribution with known probability density function(PDF). However,
in the case of non-trivial bijection z0↔ zk , the distribution density at the final point zk
(training sample) differs from the density at point z0 (domain). This is due to the fact that
each non-trivial transformation fi(·;θi) changes the infinitesimal volume at some points.
Thus, the task is not only to find a flow of invertible transformations {fi(·;θi)}, but also
to know how the distribution density is changed at each point after each transformation
fi(·;θi).

Consider the multivariate transformation of variable zi= fi(zi−1;θi) with parameters θi
for i> 0. Then, Jacobian for a given transformation fi(zi−1;θi) at given point zi−1 has the
following form:

J (fi|zi−1)=
[
∂fi
∂z1i−1

...
∂fi
∂zni−1

]
=


∂f 1i−1
∂z1i−1

...
∂f 1i−1
∂zni−1

...
. . .

...

∂f mi−1
∂z1i−1

...
∂f mi−1
∂zni−1

 (4)

Then, the distribution density at point zi after the transformation fi of point zi−1 can be
written in a following common way:

p(zi)=
p(zi−1)

|detJ (fi|zi−1)|
, (5)

where detJ (fi|zi−1) is a determinant of the Jacobian matrix J (fi|zi−1) (Rezende & Mohamed,
2015).

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.757

Thus, given a flow of invertible transformations f = {fi(·;θi)}Ni=1 with known
{detJ (fi|·)}Ni=1 and domain distribution of z0 with known p.d.f. p(z0), we obtain likelihood
p(x) for each object x = zN . This way, the parameters {θi}Ni=1 of NFmodel f can be fitted by
explicit maximizing the likelihood p(x) for training objects x ∈X . In practice, Monte-Carlo
estimate of logp(X)= log5x∈Xp(x)=6x∈X logp(x) is optimized, which is an equivalent
optimization procedure. Also, the likelihood p(X) can be used as a metric of how well the
NF model f fits given data X .

The main bottleneck of that scheme is located in that detJ (·|·) computation, which is
O(n3) in a common case (n is the dimension of variable z). In order to deal with that
problem, specific normalizing flows with specific families of transformations f are used,
for which Jacobian computation is much faster (Rezende & Mohamed, 2015; Papamakarios,
Pavlakou & Murray, 2017; Kingma et al., 2016; Chen et al., 2019).

ALGORITHM
The suggested NF-based AD method (NFAD) is a two-step procedure. In the first step,
we train normalizing flow on normal samples to sample new surrogate anomalies. Here,
we assume that anomalies differ from normal samples, and its likelihood pNF (x−|C+) is
less than likelihood of normal samples pNF (x+|C+). In the second step, we sample new
surrogate anomalies from tails of normal samples distribution using NF and train an
arbitrary binary classifier on normal samples and a mixture of real and sampled surrogate
anomalies.

Step 1. Training normalizing flow
We train normalizing flow on normal samples. It can be trained by a standard for
normalizing flows scheme of maximization the log-likelihood (see ‘Normalizing flows’):

max
θ

LNF (6)

LNF =Ex∼C+ log pf (x) (7)

=Ez∼f −1(C+;θ)
[
logp(z)− log|detJ (f |z)|

]
, (8)

where f (·;θ) is NF transformation with parameters θ , J (f |z) is Jacobian of transformation
f (z;θ) at point z , z are samples from multivariate standard normal domain distribution
p(z)=N (z |0,I), x are normal samples from the training dataset, pf (x)=

p(z)
J (f |z)

∣∣
z=f −1(x;θ).

After NF for sampling is trained, it can be used to sample new anomalies. To produce
new anomalies, we sample z from tails of normal domain distribution, where p-value of
tails is a hyperparameter (see Fig. 1).

Here, we assume that test time anomalies are either represented in the given anomalous
training set or novelties w.r.t. normal class. In other words, p(x|C+) of novelties x must
be relatively small. Nevertheless, p(x) obtained by NF might be drastically different from

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 4/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.757

Figure 1 NF bijection between tails of standard normal domain distribution (left) and 2DMoon
dataset (Pedregosa et al., 2011) samples (right). Rows represent different tail p-values choices. The
value of the ROC AUC of the anomaly classifier is shown on the right side. The classifier is trained on the
mixture of C+ samples from the Moon dataset and surrogate anomalies sampled from the tails.

Full-size DOI: 10.7717/peerjcs.757/fig-1

the corresponding domain point likelihood p(z) because of non-unit Jacobian of NF
transformations Eq. (8). Such distribution density distortion is illustrated in Fig. 2 and
makes the proposed sampling scheme of anomalies to be incomplete. Because of such
distortion, some points in the tails of the domain can correspond to normal samples, and
some points in the body of domain distribution can correspond to anomalies. To fix it,
we propose Jacobian regularization of normalizing flows (Fig. 2) by introducing extra
regularization term. It penalizes the model for non-unit Jacobian:

LJ =Ez∼N (0,1) log(|detJ (f |z)|)2 (9)

max
θ

[
LNF−λ∗LJ

]
,λ≥ 0, (10)

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 5/16

https://peerj.com
https://doi.org/10.7717/peerjcs.757/fig-1
http://dx.doi.org/10.7717/peerj-cs.757

Figure 2 Density distortion of normalizing flows on theMoon dataset (Pedregosa et al., 2011). Without extra regularization distribution density
of domain distribution (A) significantly differs from the target distribution (B) because of non-unit Jacobian. To preserve the distribution density
after NF transformations, Jacobian regularization Eq. (9) can be used (C and D, respectively).

Full-size DOI: 10.7717/peerjcs.757/fig-2

where λ denotes the regularization hyperparameter. We estimate the regularization term
LJ in Eq. (9) by direct sampling of z from the domain distribution N (0,I) to cover the
whole sampling space. The theorem below proofs that any level of expected distortion can
be obtained with such a regularization:
Theorem 4.1 Let � ⊂ Rd a sample space with probability (domain) distribution D,
C+ ⊂� a class of normal samples, f (·;θ) :Rd

→Rd is a set of invertible transformations
parametrized by θ and ∃θ0 : f (·;θ0) = (identical transformation exists). Then I∀ε > 0
∃λ≥ 0 such that [Ez∼D log(|detJ (f |z)|)2]θ∗ < ε

∣∣ ∀z ∼� ∈Rd , where θ∗ ∈ arg minθ
[
−

Ex∼C+ logpf (x)+λEz∼D log(|detJ (f |z)|)2
]
, pf (x)=

p(z)
J (f |z)

∣∣
z=f −1(x;θ).

Proof. Suppose the opposite. Let ∃ε > 0 s.t. ∀λ≥ 0 :
[
Ez∼D log(|J (f |z)|)2

]
θ∗
≥ ε for all

θ∗ ∈ arg minθ
[
−Ex∼C+ logpf (x)+λEz∼D log(|detJ (f |z)|)2

]
.

Since ∃θ0 : f (·;θ0)= I , pf (f (z;θ0))= p(z)
∣∣∀z ∼�, the term[

Ez∼D log(|detJ (f |z)|)2
]
θ0
= 0

since
p(z)

p(f (z;θ0))
= |detJ (f |z)|θ0 = 1

∣∣∀z ∈�
Let

[
−Ex∼C+ logpf (x)

]
θ0
=−Ez∼C+ logp(z)= c0, minθ

[
−Ex∼C+ logpf (x)

]
= cmin< c0

(minimum exists since negative log likelihood is lower bounded by 0). Then ∀λ:

c0> cmin+λ
[
Ez∼D log(|detJ (f |z)|)2

]
θ∗
≥ cmin+λε

But λ> c0−cmin
ε

leads to contradiction. �
In this work, we use Neural Spline Flows (NSF, Durkan et al., 2019) and Inverse (IAF,

Kingma et al., 2016) Autoregressive Flows for tabular anomalies sampling. We also use
Residual Flow (ResFlow, Chen et al., 2019) for anomalies sampling on image datasets.
All the flows satisfy the conditions of Theorem 4.1. The proposed algorithms are called
‘nfad-nsf‘, ‘nfad-iaf‘ and ‘nfad-resflow‘ respectively.

Step 2. Training classifier
Once normalizing flow for anomaly sampling is trained, a classifier can be trained on
normal samples and a mixture of real and surrogate anomalies sampled from NF (Fig. 3).

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 6/16

https://peerj.com
https://doi.org/10.7717/peerjcs.757/fig-2
http://dx.doi.org/10.7717/peerj-cs.757

During the research, we used binary cross-entropy objective Eq. (2) to train the classifier.
We do not focus on classifier configuration since any classification model can be used at
this step.

Final algorithm
The final scheme of the algorithm is shown in Fig. 3 accompanied with pseudocode
Algorithm 1. All training details are given in Appendix A.

Input : Normal samples C+, anomaly samples C− (may be empty), p-value of tail ppp,
number of epochs for NF ENF , number of epochs for classifier ECLF

Output: Anomalies classifier gφ
for epoch from 1 to ENF do

sample minibatch of normal samples X+∼C+;
calculate NF bijection between points on gaussian Z+ and normal samples X+:
Z+= f −1(X+;θ);
update parameters θ of NF f with the following gradient ascend: ∇θ logp(X+) =
∇θ

[
logp(Z+)− log|detJ (f |Z+)|

]
;

end
for epoch from 1 to ECLF do

sample Z̃ from gaussian tail: Z̃ ∼N (0,1) s.t. p(Z̃)≤ppp;
sample surrogate anomalies X̃ using NF: X̃ = f (Z̃ ;θ);
sample minibatch of normal samples: X+∼C+;
sample minibatch of anomalies (if C− is not empty): X−∼C−;
update parameters φ of classifier gφ with the following gradient descent:
∇φ

[
loggφ(X+)+ log

(
1−gφ(X−)

)
+ log

(
1−gφ(X̃)

)]
;

end
Algorithm 1: NFAD algorithm

RESULTS
We evaluate the proposed method on the following tabular and image datasets: KDD-99
(Stolfo et al., 1999), SUSY (Whiteson, 2014), HIGGS (Baldi, Sadowski & Whiteson, 2014),
MNIST (LeCun et al., 1998a), Omniglot (Lake, Salakhutdinov & Tenenbaum, 2015) and
CIFAR (Krizhevsky, Hinton et al., 2009). In order to reflect typical AD cases behind the
approach, we derive multiple tasks from each dataset by varying sizes of anomalous
datasets.

As the proposed method targets problems that are intermediate between one-class and
two-class problems, we compare the proposed approach with the following algorithms:

• one-class methods: Robust AutoEncoder (RAE-OC, (Chalapathy, Krishna Menon &
Chawla, 2017)) and Deep SVDD (Ruff et al., 2018).
• conventional two-class classification;
• semi-supervised methods: dimensionality reduction by an Deep AutoEncoder followed
by two-class classification (DAE), Feature Encoding with AutoEncoders for Weakly-
supervised Anomaly Detection (FEAWAD, (Zhou et al., 2021)), DevNet (Pang, Shen &

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 7/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.757

Figure 3 Normalizing flows for anomaly detection (NFAD). Surrogate anomalies are sampled from the
tails of gaussian distribution and transformed by NF to be mixed into real samples. Then, any classifier can
be trained on that mixture.

Full-size DOI: 10.7717/peerjcs.757/fig-3

Van den Hengel, 2019), 1+ε method (Borisyak et al., 2020) (‘*ope’), Deep SAD (Ruff et
al., 2019) and Deep Weakly-supervised Anomaly Detection (PRO, (Pang et al., 2019))

We compare the algorithms using the ROC AUC metric to avoid unnecessary
optimization for threshold-dependentmetrics like accuracy, precision, or F1. Tables 1, 2 and
3 show the experimental results on tabular data. Tables 4, 5 and 6 show the experimental
results on image data. Also, some of the aforementioned algorithms like DevNet are
applicable only to tabular data and not reported on image data. In these tables, columns
represent tasks with a varying number of negative samples presented in the training set:
numbers in the header indicate either number of classes that form negative class (in case of
KDD, CIFAR, OMNIGLOT and MNIST datasets) or a number of negative samples used
(HIGGS and SUSY); ‘one-class’ denotes the absence of known anomalous samples. As
one-class algorithms do not take into account negative samples, their results are identical
for the tasks with any number of known anomalies. The best score in each column is
highlighted in bold font.

DISCUSSION
Our tests suggest that the best results are achieved when the normal class distribution has
single mode and convex borders. These requirements are data-specific and can not be
effectively addressed in our algorithm. The effects can be seen in Fig. 2, where two modes
result in the ‘‘bridge’’ in the reconstructed standard class shape, and the non-convexity of
the borders ends up in the worse separation line description.

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 8/16

https://peerj.com
https://doi.org/10.7717/peerjcs.757/fig-3
http://dx.doi.org/10.7717/peerj-cs.757

Table 1 ROC AUC on the KDD-99 dataset. ‘nfad*’ is our algorithm.

one class 1 2 4 8

rae-oc 0.972 ± 0.006 0.972 ± 0.006 0.972 ± 0.006 0.972 ± 0.006 0.972 ± 0.006
deep-svdd-oc 0.939 ± 0.014 0.939 ± 0.014 0.939 ± 0.014 0.939 ± 0.014 0.939 ± 0.014
two-class – 0.571 ± 0.213 0.700 ± 0.182 0.687 ± 0.268 0.619 ± 0.257
dae – 0.685 ± 0.258 0.531 ± 0.286 0.758 ± 0.171 0.865 ± 0.087
brute-force-ope 0.564 ± 0.122 0.667 ± 0.175 0.606 ± 0.261 0.737 ± 0.187 0.541 ± 0.257
hmc-eope 0.739 ± 0.245 0.885 ± 0.152 0.919 ± 0.055 0.863 ± 0.094 0.958 ± 0.023
rmsprop-eope 0.765 ± 0.216 0.960 ± 0.017 0.854 ± 0.187 0.964 ± 0.016 0.976 ± 0.011
deep-eope 0.602 ± 0.279 0.701 ± 0.230 0.528 ± 0.300 0.749 ± 0.209 0.785 ± 0.259
devnet – 0.557 ± 0.104 0.594 ± 0.111 0.698 ± 0.163 0.812 ± 0.164
feawad – 0.862 ± 0.088 0.913 ± 0.069 0.892 ± 0.101 0.937 ± 0.083
deep-sad 0.803 ± 0.236 0.868 ± 0.182 0.942 ± 0.022 0.943 ± 0.069 0.968 ± 0.007
pro – 0.726 ± 0.179 0.728 ± 0.163 0.870 ± 0.128 0.905 ± 0.106
nfad (iaf) 0.981± 0.001 0.984± 0.002 0.993± 0.002 0.997± 0.002 0.997± 0.002
nfad (nsf) 0.704 ± 0.007 0.875 ± 0.121 0.901 ± 0.082 0.926 ± 0.041 0.945 ± 0.022

Table 2 ROC AUC on the HIGGS dataset. ‘nfad*’ is our algorithm.

one class 100 1000 10000 1000000

rae-oc 0.531 ± 0.000 0.531 ± 0.000 0.531 ± 0.000 0.531 ± 0.000 0.531 ± 0.000
deep-svdd-oc 0.513 ± 0.000 0.513 ± 0.000 0.513 ± 0.000 0.513 ± 0.000 0.513 ± 0.000
two-class – 0.504 ± 0.017 0.529 ± 0.007 0.566 ± 0.006 0.858 ± 0.002
dae – 0.502 ± 0.003 0.522 ± 0.003 0.603 ± 0.002 0.745 ± 0.005
brute-force-ope 0.508 ± 0.000 0.500 ± 0.009 0.520 ± 0.003 0.572 ± 0.005 0.859 ± 0.001
hmc-eope 0.509 ± 0.000 0.523 ± 0.005 0.567 ± 0.008 0.648 ± 0.005 0.848 ± 0.001
rmsprop-eope 0.503 ± 0.000 0.506 ± 0.008 0.531 ± 0.008 0.593 ± 0.011 0.861± 0.000
deep-eope 0.531 ± 0.000 0.537 ± 0.011 0.560 ± 0.008 0.628 ± 0.005 0.860 ± 0.001
devnet – 0.565 ± 0.011 0.697± 0.006 0.748± 0.004 0.748 ± 0.003
feawad – 0.551 ± 0.009 0.555 ± 0.014 0.554 ± 0.020 0.549 ± 0.018
deep-sad 0.502 ± 0.010 0.511 ± 0.006 0.561 ± 0.016 0.740 ± 0.011 0.833 ± 0.002
pro – 0.533 ± 0.022 0.569 ± 0.011 0.570 ± 0.012 0.582 ± 0.015
nfad (iaf) 0.572± 0.009 0.574± 0.008 0.586 ± 0.009 0.623 ± 0.007 0.750 ± 0.008
nfad (nsf) 0.531 ± 0.010 0.519 ± 0.008 0.554 ± 0.009 0.659 ± 0.007 0.807 ± 0.007

Also, hyperparameters like Jacobian regularization λ and tail size p must be accurately
chosen. This fact is illustrated in Figs. 1 and 2, where we show the different samples quality
and the performance of our algorithm for different hyperparameters values. To find suitable
values, some heuristics can be used. For instance, optimal tail location p can be estimated
based on known anomalies from the training dataset, whereas Jacobian regularization λ in
the NF training process can be linearly scheduled like KL factor in (Hasan et al., 2020).

On tabular data (Tables 1, 2 and 3), the proposed NFAD method shows statistically
significant improvement over other AD algorithms in many experiments, where the
amount of anomalous samples is extremely low.

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 9/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.757

Table 3 ROC AUC on the SUSY dataset. ‘nfad*’ is our algorithm.

one class 100 1000 10000 1000000

rae-oc 0.586 ± 0.000 0.586 ± 0.000 0.586 ± 0.000 0.586 ± 0.000 0.586 ± 0.000
deep-svdd-oc 0.568 ± 0.000 0.568 ± 0.000 0.568 ± 0.000 0.568 ± 0.000 0.568 ± 0.000
two-class – 0.652 ± 0.031 0.742 ± 0.011 0.792 ± 0.004 0.878 ± 0.000
dae – 0.715 ± 0.020 0.766 ± 0.009 0.847 ± 0.002 0.876 ± 0.000
brute-force-ope 0.597 ± 0.000 0.672 ± 0.020 0.748 ± 0.012 0.792 ± 0.003 0.878 ± 0.000
hmc-eope 0.528 ± 0.000 0.738 ± 0.019 0.770 ± 0.012 0.816 ± 0.006 0.877 ± 0.000
rmsprop-eope 0.528 ± 0.000 0.714 ± 0.019 0.760 ± 0.016 0.807 ± 0.004 0.877 ± 0.000
deep-eope 0.652 ± 0.000 0.670 ± 0.054 0.746 ± 0.024 0.813 ± 0.003 0.878 ± 0.000
devnet – 0.747 ± 0.023 0.849 ± 0.002 0.853 ± 0.002 0.854 ± 0.004
feawad – 0.758 ± 0.019 0.760 ± 0.028 0.760 ± 0.022 0.762 ± 0.025
deep-sad 0.534 ± 0.022 0.581 ± 0.027 0.785 ± 0.014 0.860 ± 0.009 0.872 ± 0.008
pro – 0.833± 0.008 0.861± 0.002 0.863 ± 0.001 0.863 ± 0.002
nfad (iaf) 0.701 ± 0.007 0.801 ± 0.007 0.829 ± 0.007 0.868± 0.006 0.880± 0.000
nfad (nsf) 0.785± 0.001 0.811 ± 0.013 0.855 ± 0.012 0.865 ± 0.001 0.876 ± 0.003

Table 4 ROC AUC on theMNIST dataset. ‘nfad*’ is our algorithm.

one class 1 2 4

nn-oc 0.787 ± 0.139 0.787 ± 0.139 0.787 ± 0.139 0.787 ± 0.139
rae-oc 0.978± 0.017 0.978± 0.017 0.978 ± 0.017 0.978 ± 0.017
deep-svdd-oc 0.641 ± 0.086 0.641 ± 0.086 0.641 ± 0.086 0.641 ± 0.086
two-class – 0.879 ± 0.108 0.957 ± 0.050 0.987 ± 0.014
dae – 0.934 ± 0.035 0.964 ± 0.032 0.984 ± 0.012
brute-force-ope 0.783 ± 0.120 0.915 ± 0.096 0.968 ± 0.041 0.986 ± 0.015
hmc-eope 0.694 ± 0.167 0.933 ± 0.060 0.974 ± 0.023 0.989 ± 0.011
rmsprop-eope 0.720 ± 0.186 0.933 ± 0.062 0.977 ± 0.023 0.990 ± 0.009
deep-eope 0.793 ± 0.129 0.942 ± 0.048 0.979± 0.016 0.991± 0.007
deep-sad 0.636 ± 0.114 0.859 ± 0.094 0.908 ± 0.071 0.947 ± 0.059
pro – 0.911 ± 0.096 0.944 ± 0.065 0.952 ± 0.079
nfad (resflow) 0.682 ± 0.115 0.909 ± 0.959 0.935 ± 0.111 0.972 ± 0.019

On image data (Tables 4, 5 and 6), the proposed method shows competitive quality
along with other state-of-the-art AD methods, significantly outperforming the existing
algorithms on CIFAR dataset.

Our experiments suggest the main reason for the proposed method to have lower
performance with respect to others on image data is a tendency of normalizing flows to
estimate the likelihood of images by its local features instead of common semantics, as
described by Kirichenko, Izmailov & Wilson (2020). We also find that the overfitting of the
classifier must be carefully monitored and addressed, as this might lead to the deterioration
of the algorithm.

However, the results obtained on HIGGS, KDD, SUSY and CIFAR-10 datasets
demonstrated the big potential of the proposed method over previous AD algorithms.

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 10/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.757

Table 5 ROC AUC on the CIFAR-10 dataset. ‘nfad*’ is our algorithm.

one class 1 2 4

nn-oc 0.532 ± 0.101 0.532 ± 0.101 0.532 ± 0.101 0.532 ± 0.101
rae-oc 0.585 ± 0.126 0.585 ± 0.126 0.585 ± 0.126 0.585 ± 0.126
deep-svdd-oc 0.546 ± 0.058 0.546 ± 0.058 0.546 ± 0.058 0.546 ± 0.058
two-class – 0.659 ± 0.093 0.708 ± 0.086 0.748 ± 0.082
dae – 0.587 ± 0.109 0.634 ± 0.109 0.671 ± 0.093
brute-force-ope 0.540 ± 0.101 0.688 ± 0.087 0.719 ± 0.079 0.757 ± 0.073
hmc-eope 0.547 ± 0.116 0.678 ± 0.091 0.709 ± 0.084 0.739 ± 0.074
rmsprop-eope 0.565 ± 0.111 0.678 ± 0.081 0.715 ± 0.083 0.746 ± 0.069
deep-eope 0.564 ± 0.094 0.674 ± 0.100 0.690 ± 0.092 0.719 ± 0.099
deep-sad 0.532 ± 0.061 0.653 ± 0.072 0.680 ± 0.069 0.689 ± 0.065
pro – 0.635 ± 0.081 0.653 ± 0.075 0.670 ± 0.069
nfad (resflow) 0.597± 0.083 0.800± 0.095 0.863± 0.042 0.877± 0.045

Table 6 ROC AUC on the Omniglot dataset. Note that for this task only Greek, Futurama and Braille
alphabets were considered as normal classes. ‘nfad*’ is our algorithm.

one class 1 2 4

nn-oc 0.521 ± 0.166 0.521 ± 0.166 0.521 ± 0.166 0.521 ± 0.166
rae-oc 0.771 ± 0.221 0.771 ± 0.221 0.771 ± 0.221 0.771 ± 0.221
deep-svdd-oc 0.640 ± 0.153 0.640 ± 0.153 0.640 ± 0.153 0.640 ± 0.153
two-class – 0.799 ± 0.162 0.862 ± 0.115 0.855 ± 0.125
dae – 0.737 ± 0.134 0.821 ± 0.104 0.805 ± 0.121
brute-force-ope 0.503 ± 0.213 0.724 ± 0.222 0.765 ± 0.208 0.825 ± 0.126
hmc-eope 0.710 ± 0.178 0.801 ± 0.139 0.842 ± 0.112 0.842 ± 0.115
rmsprop-eope 0.678 ± 0.274 0.821 ± 0.143 0.855 ± 0.112 0.863 ± 0.111
deep-eope 0.696 ± 0.172 0.808 ± 0.140 0.851 ± 0.110 0.842 ± 0.122
deep-sad 0.832± 0.123 0.856± 0.123 0.885± 0.095 0.884± 0.091
pro – 0.750 ± 0.160 0.765 ± 0.163 0.787 ± 0.153
nfad (resflow) 0.567 ± 0.108 0.727 ± 0.188 0.868 ± 0.111 0.870 ± 0.102

With the advancement of new ways of NF application to images, the results are expected to
improve for this class of datasets as well. In particular, we believe our method to be widely
applicable in the industrial environment, where the task of AD can take advantage of both
tabular and image-like datasets.

It also should be emphasized that unlike state-of-the-art AD algorithms (Pang et al.,
2019; Zhou et al., 2021; Ruff et al., 2019), we propose a model-agnostic data augmentation
algorithm that does not modify ADmodel training scheme and architecture. It enriches the
input training anomalies set requiring only normal samples in the augmentation process
(Fig. 3).

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 11/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.757

A TRAIN AND IMPLEMENTATION DETAILS330

All the code is implemented using PyTorch (Paszke et al., 2019) framework. For augmentation, Res-331

flow (Chen et al., 2019), NSF (Durkan et al., 2019) and IAF (Kingma et al., 2016) are trained with default332

parameters. As a classifier, a dense classifier with three layers is used for tabular data (see Figure 4) and333

built-in ResFlow classification head is used for images. Tabular data classifier is trained 10 epochs with334

batch size 100 using AdamW (Loshchilov and Hutter, 2017) optimizer with default PyTorch parameters.335

For image data, ResFlow classification head is trained 8 epochs with batch size 40 using Adam (Kingma336

and Ba, 2014) optimizer with default PyTorch parameters.337

Classifier: DNN(
(0): Linear(in_features=D, out_features=3*D, bias=True)
(1): ReLU()
(2): Linear(in_features=3*D, out_features=2*D, bias=True)
(3): ReLU()
(4): Linear(in_features=2*D, out_features=1, bias=True)

)

Figure 4. Tabular data classifier architecture.

13/13PeerJ Comput. Sci. reviewing PDF | (CS-2021:05:60998:2:0:NEW 28 Sep 2021)

Manuscript to be reviewedComputer Science

Figure 4 Tabular data classifier architecture.
Full-size DOI: 10.7717/peerjcs.757/fig-4

CONCLUSION
In this work, we present a new model-agnostic anomaly detection training scheme that
deals efficiently with hard-to-address problems both by one-class or two-class methods.
The solution combines the best features of one-class and two-class approaches. In contrast
to one-class approaches, the proposed method makes the classifier effectively utilize any
number of known anomalous examples, but, unlike conventional two-class classification,
does not require an extensive number of anomalous samples. The proposed algorithm
significantly outperforms the existing anomaly detection algorithms in most realistic
anomaly detection cases. This approach is especially beneficial for anomaly detection
problems, in which anomalous data is non-representative, or might drift over time.

The proposed method is fast, stable and flexible both in terms of training and inference
stages; unlike previous methods, any classifier can be used in the scheme with any number
of anomalies in the training dataset. Such a universal augmentation scheme opens wide
prospects for further anomaly detection study and makes it possible to use any classifier
on any kind of data. Also, the results on datasets with images are improvable with new
techniques of normalizing flows become available.

APPENDIX A. TRAIN AND IMPLEMENTATION DETAILS
All the code is implemented using the PyTorch (Paszke et al., 2019) framework. For
augmentation, Resflow (Chen et al., 2019), NSF (Durkan et al., 2019) and IAF (Kingma et
al., 2016) are trained with default parameters. As a classifier, a dense classifier with three
layers is used for tabular data (see Fig. 4) and built-in ResFlow classification head is used
for images. Tabular data classifier is trained 10 epochs with batch size 100 using AdamW
(Loshchilov & Hutter, 2017) optimizer with default PyTorch parameters. For image data,
ResFlow classification head is trained 8 epochs with batch size 40 using Adam (Kingma &
Ba, 2014) optimizer with default PyTorch parameters.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research leading to these results has received funding fromRussian Science Foundation
under grant agreement no. 19-71-30020. The research was also supported through

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 12/16

https://peerj.com
https://doi.org/10.7717/peerjcs.757/fig-4
http://dx.doi.org/10.7717/peerj-cs.757

computational resources of HPC facilities at NRU HSE. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Russian Science Foundation: No. 19-71-30020.
NRU HSE.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Artem Ryzhikov conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
• Maxim Borisyak conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.
• Andrey Ustyuzhanin and Denis Derkach conceived and designed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitLab: https://gitlab.com/lambda-hse/nfad.
The data is available at:
- Moons dataset: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_

moons.html
- SUSY dataset: https://archive.ics.uci.edu/ml/datasets/SUSY
- HIGGS dataset: https://archive.ics.uci.edu/ml/datasets/HIGGS
- MNIST dataset: http://yann.lecun.com/exdb/mnist/
- CIFAR dataset: https://www.cs.toronto.edu/~kriz/cifar.html
- KDD dataset: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
- OMNIGLOT dataset: https://github.com/brendenlake/omniglot.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.757#supplemental-information.

REFERENCES
Aggarwal CC. 2016.Outlier analysis. 2nd edition. Luxembourg: Springer Publishing

Company, Incorporated.
Aleskerov E, Freisleben B, Rao B. 1997. Cardwatch: a neural network based database

mining system for credit card fraud detection. In: Proceedings of the IEEE/IAFE

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 13/16

https://peerj.com
https://gitlab.com/lambda-hse/nfad
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/HIGGS
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://github.com/brendenlake/omniglot
http://dx.doi.org/10.7717/peerj-cs.757#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.757#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.757

1997 computational intelligence for financial engineering (CIFEr). Piscataway: IEEE,
220–226.

Baldi P, Sadowski P, Whiteson D. 2014. Searching for exotic particles in high-energy
physics with deep learning. Nature Communications 5:4308
DOI 10.1038/ncomms5308.

Belhadi A, Djenouri Y, Lin JC-W, Cano A. 2020. Trajectory outlier detection: al-
gorithms, taxonomies, evaluation, and open challenges. ACM Transactions on
Management Information Systems 11(3):1–29 DOI 10.1145/3399631.

BorisyakM, Ratnikov F, Derkach D, Ustyuzhanin A. 2017. Towards automation of
data quality system for CERN CMS experiment. Journal of Physics: Conference Series
898(9):092041.

BorisyakM, Ryzhikov A, Ustyuzhanin A, Derkach D, Ratnikov F, Mineeva O. 2020. (1+
epsilon)-class classification: an anomaly detection method for highly imbalanced or
incomplete data sets. Journal of Machine Learning Research 21(72):1–22.

Boukerche A, Zheng L, Alfandi O. 2020. Outlier detection: methods, models, and
classification. ACM Computing Surveys 53(3):1–37 DOI 10.1145/3381028.

Breunig M, Kriegel H-P, Ng RT, Sander J. 2000. LOF: identifying density-based local
outliers. In: Proceedings of the 2000 ACM sigmod international conference on manage-
ment of data. New York: ACM, 93–104.

Campos G, Zimek A, Sander J, Campello R, Micenkov B, Schubert E, Assent I, Houle
M. 2016. On the evaluation of unsupervised outlier detection: measures, datasets,
and an empirical study. Data Mining and Knowledge Discovery 30:891–927
DOI 10.1007/s10618-015-0444-8.

Chalapathy R, KrishnaMenon A, Chawla S. 2017. Robust, deep and inductive anomaly
detection. ArXiv preprint. arXiv:1704.06743.

Chen RTQ, Behrmann J, Duvenaud D, Jacobsen J-H. 2019. Residual flows for invertible
generative modeling. ArXiv preprint. arXiv:1906.02735.

Durkan C, Bekasov A, Murray I, Papamakarios G. 2019. Neural spline flows. ArXiv
preprint. arXiv:1906.04032.

Görnitz N, Kloft M, Rieck K, Brefeld U. 2012. Toward supervised anomaly detection.
Journal of Artificial Intelligence Research (JAIR) 45:235–262 DOI 10.1613/jair.3623.

Hasan A, Pereira JM, Farsiu S, Tarokh V. 2020. Learning latent stochastic differential
equations with variational auto-encoders. ArXiv preprint. arXiv:2007.06075.

Hunziker S, Gubler S, Calle J, Moreno I, AndradeM, Velarde F, Ticona Ticona L,
Carrasco G, Castelln Y, Oria C, Croci-Maspoli M, Konzelmann T, Rohrer M,
Brönnimann S. 2017. Identifying, attributing, and overcoming common data
quality issues of manned station observations. International Journal of Climatology
37:4131–4145 DOI 10.1002/joc.5037.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. ArXiv preprint.
arXiv:1412.6980.

Kingma DP, Salimans T, Jozefowicz R, Chen X, Sutskever I, WellingM. 2016. Im-
proved variational inference with inverse autoregressive flow. In: Advances in neural
information processing systems. New York: ACM, 4743–4751.

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 14/16

https://peerj.com
http://dx.doi.org/10.1038/ncomms5308
http://dx.doi.org/10.1145/3399631
http://dx.doi.org/10.1145/3381028
http://dx.doi.org/10.1007/s10618-015-0444-8
http://arXiv.org/abs/1704.06743
http://arXiv.org/abs/1906.02735
http://arXiv.org/abs/1906.04032
http://dx.doi.org/10.1613/jair.3623
http://arXiv.org/abs/2007.06075
http://dx.doi.org/10.1002/joc.5037
http://arXiv.org/abs/1412.6980
http://dx.doi.org/10.7717/peerj-cs.757

Kirichenko P, Izmailov P,Wilson AG. 2020.Why normalizing flows fail to detect out-
of-distribution data. ArXiv preprint. arXiv:2006.08545.

Krizhevsky A, Hinton G. 2009. Learning multiple layers of features from tiny images.
Available at https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf .

Lake BM, Salakhutdinov R, Tenenbaum JB. 2015.Human-level concept learn-
ing through probabilistic program induction. Science 350(6266):1332–1338
DOI 10.1126/science.aab3050.

LeCun Y, Bottou L, Bengio Y, Haffner P. 1998a. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86(11):2278–2324
DOI 10.1109/5.726791.

Liu FT, Ting KM, Zhou Z-H. 2008. Isolation forest. In: 2008 Eighth IEEE international
conference on data mining. Piscataway: IEEE, 413–422.

Liu FT, Ting KM, Zhou Z-H. 2012. Isolation-based anomaly detection. ACM Transac-
tions on Knowledge Discovery from Data 6(1):1–39 DOI 10.1145/2133360.2133363.

Loshchilov I, Hutter F. 2017. Decoupled weight decay regularization. ArXiv preprint.
arXiv:1711.05101.

Pang G, Shen C, Cao L, Hengel AVD. 2021. Deep learning for anomaly detection. ACM
Computing Surveys 54(2):138 DOI 10.1145/3439950.

Pang G, Shen C, Van den Hengel A. 2019. Deep anomaly detection with deviation
networks. In: Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining. New York: ACM, 353–362.

Pang G, Shen C, Jin H, Van den Hengel A. 2019. Deep weakly-supervised anomaly
detection. ArXiv preprint. arXiv:1910.13601.

Papamakarios G, Pavlakou T, Murray I. 2017.Masked autoregressive flow for density
estimation. In: Advances in Neural Information Processing Systems. 2338–2347.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z,
Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, RaisonM, Tejani
A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S. 2019. PyTorch: an imper-
ative style, high-performance deep learning library. In: Wallach H, Larochelle H,
Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, eds. Advances in neural information
processing systems 32. New York: Curran Associates, Inc, 8024–8035.

Pathak C. 2019. Exploring normalizing flow for anomaly detection. dissertation, TU
Delft Electrical Engineering.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Müller A, Nothman J, Louppe G, Prettenhofer P, Weiss R, Dubourg V, Van-
derplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. 2011.
Scikit-learn: machine learning in Python. Journal of Machine Learning Research
12(Oct):2825–2830.

Pol A, Azzolini V, Cerminara G, Guio F, Franzoni G, Pierini M, Sirok F, Vlimant J-R.
2019. Anomaly detection using Deep Autoencoders for the assessment of the quality
of the data acquired by the CMS experiment. EPJ Web of Conferences 214:06008
DOI 10.1051/epjconf/201921406008.

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 15/16

https://peerj.com
http://arXiv.org/abs/2006.08545
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://dx.doi.org/10.1126/science.aab3050
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/2133360.2133363
http://arXiv.org/abs/1711.05101
http://dx.doi.org/10.1145/3439950
http://arXiv.org/abs/1910.13601
http://dx.doi.org/10.1051/epjconf/201921406008
http://dx.doi.org/10.7717/peerj-cs.757

Rezende DJ, Mohamed S. 2015. Variational inference with normalizing flows. ArXiv
preprint. arXiv:1505.05770.

Ruff L, Vandermeulen RA, Görnitz N, Binder A, Müller E, Müller K-R, Kloft M. 2019.
Deep semi-supervised anomaly detection. ArXiv preprint. arXiv:1906.02694.

Ruff L, Vandermeulen RA, Görnitz N, Deecke L, Siddiqui SA, Binder A, Müller E,
Kloft M. 2018. Deep one-class classification. In: Proceedings of the 35th international
conference on machine learning, volume 80. 4393–4402.

Schlegl T, Seeböck P,Waldstein SM, Schmidt-Erfurth U, Langs G. 2017. Unsuper-
vised anomaly detection with generative adversarial networks to guide marker
discovery. In: Niethammer M, ed. Information Processing in Medical Imaging. IPMI
2017. Lecture notes in Computer Science, vol. 10265. Cham: Springer, 146–157
DOI 10.1007/978-3-319-59050-9_12.

Schmidt M, Simic M. 2019. Normalizing flows for novelty detection in industrial time
series data. ArXiv preprint. arXiv:1906.06904.

Scholkopf B, Smola AJ. 2018. Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond. Cambridge: MIT Press.

Spence C, Parra L, Sajda P. 2001. Detection, synthesis and compression in mammo-
graphic image analysis with a hierarchical image probability model. In: Proceedings
IEEE workshop on mathematical methods in biomedical image analysis (MMBIA 2001).
Piscataway: IEEE, 3–10.

Stolfo S, FanW, LeeW, Prodromidis A, Chan P. 1999. KDD Cup 1999 dataset. Available
at https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data.

Whiteson D. 2014. SUSY dataset. Available at http://archive.ics.uci.edu/ml/datasets/SUSY .
XuH, Feng Y, Chen J, Wang Z, Qiao H, ChenW, Zhao N, Li Z, Bu J, Li Z , et al. 2018.

Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in
web applications. In: Proceedings of the 2018 world wide web conference on world wide
web - WWW 18. DOI 10.1145/3178876.3185996.

Xu J, Li H. 2013. The failure prediction of cluster systems based on system logs. In:
Wang M, ed. Knowledge Science, Engineering and Management. KSEM 2013.
Lecture Notes in Computer Science, vol. 8041. Berlin, Heidelberg: Springer
DOI 10.1007/978-3-642-39787-5_44.

Zhou Y, Song X, Zhang Y, Liu F, Zhu C, Liu L. 2021. Feature encoding with autoen-
coders for weakly-supervised anomaly detection. IEEE Transactions on Neural
Networks and Learning Systems PP:1–12 Available at https://ieeexplore.ieee.org/
document/9465358.

Zimek A, Schubert E, Kriegel H-P. 2012. A survey on unsupervised outlier detection
in high-dimensional numerical data. Statistical Analysis and Data Mining: The ASA
Data Science Journal 5(5):363–387 DOI 10.1002/sam.11161.

Ryzhikov et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.757 16/16

https://peerj.com
http://arXiv.org/abs/1505.05770
http://arXiv.org/abs/1906.02694
http://dx.doi.org/10.1007/978-3-319-59050-9_12
http://arXiv.org/abs/1906.06904
https://archive.ics.uci.edu/ml/datasets/kdd+cup+1999+data
http://archive.ics.uci.edu/ml/datasets/SUSY
http://dx.doi.org/10.1145/3178876.3185996
http://dx.doi.org/10.1007/978-3-642-39787-5_44
https://ieeexplore.ieee.org/document/9465358
https://ieeexplore.ieee.org/document/9465358
http://dx.doi.org/10.1002/sam.11161
http://dx.doi.org/10.7717/peerj-cs.757

