In this paper, the design of a controller for an anti-vibration glove is presented. The aim is to keep the level of vibrations transferred from the tool to the hands within a healthy zone.

My main comments are summarized as follows:

- 1- More recent research results should be added and commented in the introduction.
- 2- What is the criterion used to avoid vibration in your work?
- 3- The novelty of your results over earlier ones should be clearly discussed in the introduction.
- 4- In your work, you assumed that the premise variables are known, what about unknown premise variables?
- 5- In the industry, all control systems work in noisy environment in which there exist faults, disturbances/noise and delays, what about these uncertainties in your work. Please discuss
 - Fault-tolerant control for a class of quantised networked control of nonlinear systems with unknown time-varying sensor faults, International Journal of Control 93 (3), 619-628.
 - A new online delay estimation-based robust adaptive stabilizer for multi-input neutral systems with unknown actuator nonlinearities, ISA transactions 2017, 139-148.
 - Less-conservative robust adaptive control of neutral systems with mixed timedelays, International Journal of Systems Science 48 (4), 675-685.
 - Anti-windup adaptive PID control design for a class of uncertain chaotic systems with input saturation, ISA transactions 66, 176-184.
 - Adaptive stabilization of neutral systems with nonlinear perturbations and mixed time-varying delays, International Journal of Adaptive Control and Signal Processing 29, 1328-1340.
 - A new unmatched-disturbances compensation and fault-tolerant control for partially known nonlinear singular systems, ISA Transactions 104, September 2020, 310-320
 -
- 6- There are many design parameters. Therefore, a complete flowchart or design procedure should be added to the text.
- 7- You should compare your results with the existing results.
- 8- Some remarks should be added to declare the effects of the design parameters in the simulation results.