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ABSTRACT12

This paper continues the work initiated by the authors on the feasibility of using ParaView as visualization

software for the analysis of parallel Computational Fluid Dynamics (CFD) codes’ performance. Current

performance tools have limited capacity of displaying their data on top of three-dimensional, framed (i.e.

time-stepped) representations of the cluster’s topology. In our first paper, a plugin for the open-source

performance tool Score-P was introduced, which intercepts an arbitrary number of manually selected

code regions (mostly functions) and sends their respective measurements – amount of executions and

cumulative time spent – to ParaView (through its in situ library, Catalyst), as if they were any other

flow-related variable. Our second paper added to such plugin the capacity to (also) map communication

data (messages exchanged between MPI ranks) to the simulation’s geometry. So far the tool was limited

to codes which already have the in situ adapter; but in this paper, we will take the performance data

and display it – also in codes without in situ – on a three-dimensional representation of the hardware

resources being used by the simulation. Testing is done with the Multi-Grid and Block Tri-diagonal NPBs,

as well as Rolls-Royce’s CFD code, Hydra. The benefits and overhead of the plugin’s new functionalities

are discussed.
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INTRODUCTION27

Computers have become crucial in solving engineering problems. However, standard computers do not28

have enough power to run more complex simulations (such as those involved in modern engineering29

problems, like designing an aircraft) on their own. They require parallelized simulation (for instance of30

the air flowing through the airplane’s engine) to be run in High Performance Computing (HPC) hardware.31

Such infrastructures are expensive, as well as time and energy consuming. It is thus imperative that the32

application has its parallel performance tuned for maximum productivity.33

There are several tools for analyzing the performance of parallel applications. An example is Score-P1
34

(Knüpfer et al., 2012), which is developed in partnership with the Centre for Information Services and35

HPC (ZIH) of the Technische Universität Dresden. It allows the user to instrument the simulation’s code36

and monitor its execution, and can easily be turned on or off at compile time. When applied to a source37

code, the simulation will not only produce its native outputs at the end, but also the performance data.38

Figure 1 below illustrates the idea.39

However, the tools currently available to visualize the performance data (generated by software like40

Score-P) lag in important features, like three-dimensionality, time-step association (i.e. frame playing),41

color encoding, manipulability of the generated views etc.42

1Scalable Performance Measurement Infrastructure for Parallel Codes – an open-source “highly scalable and easy-to-use tool

suite for profiling, event tracing, and online analysis of HPC applications” [tool’s website].
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parallel application

performance add-on

output

in-situ add-on

Figure 1. Schematic of software components for parallel applications

As a different category of add-ons, tools for enabling in situ visualization of applications’ output43

data – like temperature or pressure in a Computational Fluid Dynamics (CFD) simulation – already exist44

too; one example is Catalyst2 (Ayachit et al., 2015). They also work as an optional layer to the original45

code and can be activated upon request, by means of preprocessor directives at compilation stage. The46

simulation will then produce its native outputs, if any, plus the coprocessor’s (a piece of code responsible47

for permitting the original application to interact with the in situ methods) ones, in separate files. This is48

illustrated in the bottom part of Figure 1. These tools have been developed by visualization specialists for49

a long time and feature sophisticated visual resources.50

In this sense, why not apply such in situ tools (which enable data extraction from the simulation by51

separate side channels, in the same way as performance instrumenters) to the performance analysis of52

parallel applications, thus filling the blank left by the lack of visual resources of the performance tools?53

This work is the third in a series of our investigations on the feasibility of merging the aforementioned54

approaches. First, by unifying the coinciding characteristics of both types of tools, insofar as they augment55

a parallel application with additional features (which are not required for the application to work). Second,56

by using the advanced functionalities of specialized visualization software for the goal of performance57

analysis. Figure 2 illustrates the idea.58

In our first paper (Alves and Knüpfer, 2019), we mapped performance measurements of code regions59

– amount of executions and cumulative time spent – to the simulation’s geometry, just like it is done60

for flow-related properties. In our second paper (Alves and Knüpfer, 2020), we added to such mapping61

communication data (messages exchanged between MPI ranks). Henceforth this feature shall be called62

geometry mode.63

Following feedback we have received since, we thought about how our approach could be used to64

assist with the performance optimization of codes without an in situ adapter. What happens if you move65

such adapter inside our tool? This corresponds to flipping the positions of the performance and the in66

situ add-ons on Figure 2; i.e. so far we were doing performance analysis inside in situ, now we will do67

in situ inside performance. In this paper, we present the result of such investigation: a new feature in68

our tool, called topology mode – the capacity of matching the performance data to a three-dimensional69

representation of the cluster’s architecture.70

There are two approaches to HPC performance analysis. One uses performance profiles which contain71

congregated data about the parallel execution behavior. Score-P produces them in the Cube4 format, to72

be visualized with Cube3. The other uses event traces collecting individual run-time events with precise73

timings and properties. Score-P produces them in the OTF2 format, to be visualized with Vampir4. The74

outputs of our tool are somehow a mixture of both: aggregated data, but by time step.75

The presented solution is not intended for permanent integration into the source code of the target76

application. Instead it should be applied on demand only with little extra effort. This is solved in77

accordance with the typical approaches of parallel performance analysis tools on the one hand and in situ78

processing toolkits on the other hand. As evaluation cases, the Multi-Grid and Block Tri-diagonal NAS79

Parallel Benchmarks (NPB) (Frumkin et al., 1998) will be used, together with Rolls-Royce’s in-house80

CFD code, Hydra (Lapworth, 2004).81

2https://www.paraview.org/in-situ/
3http://www.scalasca.org/software/cube-4.x/download.html
4https://vampir.eu/
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Figure 2. Schematic of the software components for a combined add-on

This paper is organized as follows: in section 1 we discuss the efforts made so far at the literature82

to map performance data to the computing architecture’s topology and the limitations of their results.83

In section 2 we present the methodology of our approach, which is then evaluated in the test-cases in84

section 3. Finally, section 4 discusses the overhead associated with using our tool. We then conclude the85

article with a summary.86

1 RELATED WORK87

In order to support the developer of parallel codes in his optimization tasks, many software tools have88

been developed. For an extensive list of them, including information about their:89

• scope, whether single or multiple nodes (i.e. shared or distributed memory);90

• focus, be it performance, debugging, correctness or workflow (productivity);91

• programming models, including MPI, OpenMP, Pthreads, OmpSs, CUDA, OpenCL, OpenACC,92

UPC, SHMEM and their combinations;93

• languages: C, C++, Fortran or Python;94

• processor architectures: x86, Power, ARM, GPU;95

• license types, platforms supported, contact details, output examples etc.96

the reader is referred to the Tools Guide5 of the Virtual Institute – High Productivity Supercomputing97

(VI-HPS). Only one of them matches the performance data to the cluster’s topology: ParaProf (Bell et al.,98

2003), whose results can be seen in the tool’s website6. The outputs are indeed three-dimensional, but99

their graphical quality is low, as one could expect from a tool which tries to recreate the visualization100

environment from scratch. The same hurdle can be found on the works of Isaacs et al. (2012) and Schnorr101

et al. (2010), which also attempt to create a whole new three-dimensional viewing tool (just for the sake of102

performance analysis). Finally, Theisen et al. (2014) combined multiple axes onto two-dimensional views:103

the generated visualizations are undeniably rich, but without true three-dimensionality, the multiplicity104

of two-dimensional planes overlapping each other can quickly become cumbersome and preclude the105

understanding of the results.106

On the other hand, when it comes to display messages exchanged between MPI ranks during the107

simulation, Vampir is the current state-of-the-art tool on the field, but it is still unable to generate three-108

dimensional views. This impacts e.g. on the capacity to distinguish between messages coming from109

ranks running within the same compute node from those coming from ranks running in other compute110

nodes. Also, Vampir is not able to apply a color scale to the communication lines. Finally, it has no111

knowledge of the simulation’s time-step, whereas this is the code execution delimiter the developers112

of CFD codes are naturally used to deal with. Isaacs et al. (2014) got close to it, by clustering event113

traces according to the self-developed idea of logical time, “inferred directly from happened-before114

relationships”. This represents indeed an improvement when compared with not using any sorting, but it115

is not yet the time-step loop as known by the programmer of a CFD code. Alternatively, it is possible to116

5https://www.vi-hps.org/cms/upload/material/general/ToolsGuide.pdf
6https://www.cs.uoregon.edu/research/tau/images/KG_48r_topo_alltoallv.png
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isolate the events pertaining to the time step by manually instrumenting the application code and inserting117

a region called e.g. “Iteration” (see section 2.1.1 below). Solórzano et al. (2021) and Miletto et al. (2021)118

have applied such method. We would like then to simplify this process and make it part of the tool’s119

functioning itself.7120

Finally, with regards to in situ methods, for a comprehensive study of the ones currently available, the121

reader is referred to the work of Bauer et al. (2016).122

2 METHODOLOGY123

This section presents what is necessary to implement our work.124

2.1 Prerequisites125

The objective aimed by this research depends on the combination of two scientifically established methods:126

performance measurement and in situ processing.127

2.1.1 Performance Measurement128

When applied to a source file’s compilation, Score-P automatically inserts probes between each code129

“region”8, which will at run-time measure a) the number of times that region was executed and b) the130

total time spent in those executions, by each process (MPI rank) within the simulation. It is applied by131

simply prepending the word scorep into the compilation command, e.g.: scorep [Score-P’s132

options] mpicc foo.c. It is possible to suppress regions from the instrumentation (e.g. to keep the133

associated overhead low), by adding the flag --nocompiler to the command above. In this scenario,134

Score-P sees only user-defined regions (if any) and MPI-related functions, whose detection can be135

easily (de)activated at run-time, by means of an environment variable: export SCOREP MPI ENABLE136

GROUPS=[comma-separated list]. Its default value is set to catch all of them. If left blank,137

instrumentation of MPI routines will be turned off.138

Finally, the tool is also equipped with an API, which permits the user to increase its capabilities139

through plugins (Schöne et al., 2017). The combined solution proposed by this paper takes actually the140

form of such a plugin.141

2.1.2 In Situ Processing142

In order for Catalyst to interface with a simulation code, an adapter needs to be created, which is143

responsible for exposing the native data structures (grid and flow properties) to the coprocessor component.144

Its interaction with the simulation code happens through three function calls (initialize, run and finalize),145

illustrated in blue at Figure 3. Once implemented, the adapter allows the generation of post-mortem files146

(by means of the VTK9 library) and/or the live visualization of the simulation, both through ParaView10.147

2.2 Combining both Tools148

In our previous works (Alves and Knüpfer, 2019; Alves and Knüpfer, 2020), a Score-P plugin has been149

developed, which allows performance measurements for an arbitrary number of manually selected code150

regions and communication data (i.e. messages exchanged between MPI ranks) to be mapped to the151

simulation’s original geometry, by means of its Catalyst adapter (a feature now called geometry mode).152

In this paper, we are extending our software to map those measurements to a three-dimensional repre-153

sentation of the cluster’s topology, by means of the plugin’s own Catalyst adapter (a new feature named154

topology mode). The plugin must be turned on at run-time through an environment variable (export155

SCOREP SUBSTRATE PLUGINS=Catalyst), but works independently of Score-P’s profiling or trac-156

ing modes being actually on or off. Like Catalyst, it needs three function calls (initialize, run and finalize)157

to be introduced in the source code, illustrated in violet at Figure 3. However, if the tool is intended to be158

used exclusively in topology mode, the blue calls shown at Figure 3 are not needed, given in this mode159

the plugin depends only on its own Catalyst adapter (i.e. the simulation code does not need to have any160

reference to VTK whatsoever).161

7The correspondent drawback is that the tool will not be suitable for detecting variations inside the course of one time step. For

such analyses, the user is referred to the currently available tools, like Vampir.
8Every “function” is naturally a “region”, but the latter is a broader concept and includes any user-defined aggregation of code

lines, which is then given a name. It could be used e.g. to gather all instructions pertaining to the main solver (time-step) loop.
9https://www.vtk.org/

10https://www.paraview.org/

4/16PeerJ Comput. Sci. reviewing PDF | (CS-2021:03:58866:1:1:NEW 2 Aug 2021)

Manuscript to be reviewedComputer Science



int main(int argc, char **argv)

{
MPI_Init(& argc, & argv);

#ifdef USE_CATALYST

initialize_coprocessor_();

#endif

// STARTING PROCEDURES...

#ifdef CATALYST_SCOREP

// tell the plugin that the time-step loop is about to start

cat_sco_initialize_();

#endif

// MAIN SOLVER LOOP

for (int time_step = 0; time_step < num_time_steps; time_step++)

{
// COMPUTATIONS...

#ifdef USE_CATALYST

run_coprocessor_(time_step, time_value, ...);

#endif

#ifdef CATALYST_SCOREP

// tell the plugin to process the current time step

cat_sco_run_(time_step, time_value);

#endif

}

#ifdef CATALYST_SCOREP

// tell the plugin that the time-step loop is over

cat_sco_finalize_();

#endif

// ENDING PROCEDURES...

#ifdef USE_CATALYST

finalize_coprocessor_();

#endif

MPI_Finalize();

return 0;

}

Figure 3. Illustrative example of changes needed in a simulation code due to Catalyst (blue) and then

due to the plugin (violet)
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#ifdef CATALYST_SCOREP

! send the following region’s measurements to ParaView

CALL cat_sco_pipeline_next_()

#endif

CALL desired_function(argument_1, argument_2...)

Figure 4. Illustrative example of the call to tell the plugin to show the upcoming function’s

measurements in ParaView

Finally, a call must be inserted before each function to be pipelined, as illustrated in Figure 4 below.162

This layout ensures that the desired region will be captured when executed at that specific moment and163

not in others (if the same routine is called multiple times – with distinct inputs – throughout the code, as it164

is common for CFD simulations). The selected functions may even be nested. This is not needed when165

tracking communications between ranks, as the instrumentation of MPI regions is made independently at166

run-time (see section 2.1.1 above).167

3 EVALUATION168

This section presents how our work is going to be evaluated.169

3.1 Settings170

Three test-cases will be used to demonstrate the new functionality of the plugin: two well-known171

benchmarks and an industry-grade CFD Code. All simulations were done in Dresden University’s HPC172

cluster (Taurus), whose nodes are interconnected through Infiniband. Everything was built / tested with173

release 2018a of Intel® compilers in association with versions 6.0 of Score-P and 5.7.0 of ParaView.174

3.1.1 Benchmarks175

The NAS Parallel Benchmarks (NPB) (Frumkin et al., 1998) “are a small set of programs designed to help176

evaluate the performance of parallel supercomputers. The benchmarks are derived from computational177

fluid dynamics (CFD) applications and consist of five kernels and three pseudo-applications”. Here one178

of each is used: the Multi-Grid (MG) and the Block Tri-diagonal (BT) respectively (version 3.4). Both179

were run in a Class D layout by four entire Sandy Bridge nodes, each with 16 ranks (i.e. pure MPI,180

no OpenMP), one per core and with the full core memory (1875 MB) available. Their grids consist of181

a parallelepiped with the same number of points in each cartesian direction. Finally, both are sort of182

“steady-state” cases (i.e. the time-step is equivalent to an iteration-step).183

In order for the simulations to last at least 30 minutes,11 MG was run for 3000 iterations (each184

comprised of 9 multigrid levels), whereas BT for 1000. The plugin generated VTK output files every 100185

iterations for MG (i.e. 30 “stage pictures” by the end of the simulation, 50 MB of data in total), every 50186

iterations for BT (20 frames in the end, same amount of data), measuring the solver loop’s central routine187

(mg3P and adi respectively) in each case.188

3.1.2 Industrial CFD Code189

Hydra is Rolls-Royce’s in-house CFD code (Lapworth, 2004), based on a preconditioned time marching190

of the Reynolds-averaged Navier-Stokes (RANS) equations. They are discretized in space using an edge-191

based, second-order finite volume scheme with an explicit, multistage Runge-Kutta scheme as a steady192

time marching approach. Steady-state convergence is improved by multigrid and local time-stepping193

acceleration techniques (Khanal et al., 2013). Figure 5 shows the test case selected for this paper: it194

represents a simplified (single cell thickness), 360° testing mesh of two turbine stages in an aircraft engine,195

discretized through approximately 1 million points. Unsteady RANS calculations have been made with196

time-accurate, second-order dual time-stepping. Turbulence modelling was based on standard 2-equation197

11Less than that would make the relative (percentage) statistical oscillation of the run time too big for valid comparisons (see

section 4 below).
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Figure 5. Geometry used in the industrial CFD code simulations (left) and its partitioning among

processes for parallel execution (right)

closures. Preliminary analyses with Score-P and Cube revealed two code functions to be especially198

time-consuming: iflux edge and vflux edge; they were selected for pipelining.199

Here the simulations were done using two entire Haswell nodes, each with 24 ranks (again pure200

MPI), one per core and with the entire core memory (2583 MB) available. Figure 5 shows the domain’s201

partitioning among the processes. The shape of the grid, together with the rotating nature of two of its four202

blade rings (the rotors), anticipates that the communication patterns here are expected to be extremely203

more complex than in the benchmarks.204

One full engine’s shaft rotation was simulated, comprised of 200 time-steps (i.e. one per 1,8°), each205

internally converged through 40 iteration steps. The plugin was generating post-mortem files every 20th
206

time-step (i.e. every 36°), what led to 10 stage pictures (12 MB of data) by the end of the simulation.207

3.2 Results208

The second part of this section presents the results of applying our work on the selected test-cases. The209

benchmarks will be used more to illustrate how the tool works, whereas a true performance optimization210

task will be executed with the industrial CFD code.211

3.2.1 Benchmarks212

Figure 6 shows the plugin outputs for an arbitrary time-step in the MG benchmark. The hardware213

information (i.e. in which core, socket etc. each rank is running) is plotted on constant z planes; the214

network information (i.e. switches that need to be traversed in order for inter-node communications to be215

performed), on its turn, is shown on the x = 0 plane.216

Score-P’s measurements, as well as the rank id number, are shown just below the processing unit217

(PU) where that rank is running, ordered from left to right (in the x direction) within one node, then from218

back to front (in the z direction) between nodes. Finally, the MPI communication made in the displayed219

time-step is represented through the lines connecting different rank ids’ cells.220

Here, notice how each compute node allocated to the job becomes a plane in ParaView. They are221

ordered by their id numbers (see the right-hand side of Figure 6) and separated by a fixed length (adjustable222

at run-time through the plugin’s input file). Apart from the node id, it is also possible to color the planes223

by the topology type, i.e. if the cell refers to a socket, a L3 cache, a processing unit etc., as done on the224

left side of the figure.225

Only the resources being used by the job are shown in ParaView, as to minimize the plugin’s overhead226
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Figure 6. Plugin outputs for an arbitrary time-step at the MG benchmark, visualized from the same

camera angle, but with different parameters on each side

and in view that drawing the entire cluster would not help the user to understand the code’s behaviour 12.227

This means that, between any pair of planes in Figure 6 there might be other compute nodes (by order228

of id number) in the cluster infrastructure; but, if that is the case, none of its cores are participating in229

the current simulation. The inter-node distance in ParaView will be bigger, however, if the user activated230

the drawing of network topology information and the compute nodes involved in the simulation happen231

to be located in different network islands, as shown on Figure 7. This is indeed intuitive, as messages232

exchanged between nodes under different switches will need to travel longer in order to be delivered233

(when compared to those exchanged between nodes under the same switch).234

Taurus uses Slurm13, which carefully allocates the MPI ranks by order of compute node id (i.e. the235

node with lower id will receive the first processes, whereas the node with higher id will receive the last236

processes). It also attempts to place those ranks as close as possible to one another (both from an intra and237

inter node perspectives), as to minimize their communications’ latency. But just to illustrate the plugin’s238

potential, Figure 8 shows the results when forcing the scheduler to use at least a certain amount of nodes239

for the job. Notice how only the sockets (the cyan rectangles in the figure) where there are allocated cores240

are drawn in the visualization; the same applies to the L3 cache (the blue rectangles). Also, notice how the241

switches are positioned in a way that looks like a linkage between the machines (the yellow rectangles242

in the figure) they connect. This is intentional (it makes the visualization intuitive).243

With regards to messages sent between ranks, in order to facilitate the understanding of the communi-244

cation behavior, the source / destination data is also encoded in the position of the lines themselves: they245

start from the bottom of the sending rank and go downwards toward the receiving one. This way, it is246

possible to distinguish – and simultaneously visualize – messages sent from A to B and from B to A. In247

Figure 9, notice how the manipulation of the camera angle (an inherent feature of visualization software248

like ParaView) allows the user to immediately get useful insights about its code behaviour (e.g. the even249

nature of the communication channels in MG versus the cross-diagonal shape in BT).250

In Figure 9, notice also how all ranks on both benchmarks talk either to receivers within the same node251

or the nodes immediately before / after. The big lines connecting the first and last nodes suggest some252

sort of periodic boundary condition inside the grid. This can be misleading: lines between cores in the253

first and last nodes will need to cross the entire visualization space, making it harder to understand. For254

12Companies like Rolls-Royce usually purchase computational resources: they are not willing to buy the compute time of e.g. 16

nodes when they only need 4 for a specific simulation. In this sense, performance degradation due to nearby jobs (sharing the same

network switch) is seen as “part of life”.
13https://slurm.schedmd.com/
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Figure 7. Plugin outputs for the MG benchmark. The leaf switch information is encoded both on the

color (light brown, orange and dark brown) and on the position of the node planes (notice the extra gap

when they do not belong to the same switch)

Figure 8. Poorly distributed ranks across compute nodes, for illustration purposes

that reason the plugin’s runtime input file has an option to activate a periodic boundary condition tweak,255

whose outputs are visible in Figure 10. It shows the topology when using Haswell nodes, whose sockets256

have 4 more cores than Sandy Bridge. The communication lines are colored by destination rank of the257

messages; they refer to the MG benchmark. Notice how the periodic nature of this test-case’s boundary258

conditions become clearer in the top picture: the big lines mentioned above are gone.259

Finally, Slurm comes with a set of tools which will go through the cluster network (Infiniband, in our260

case) and automatically generate its connectivity information, saving it into a file. This file has been used261

as the network topology configuration file and is read by the plugin at run time. If it is not found, the262

drawing of the planes in ParaView will not take the switches into account.263
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Figure 9. Side-by-side comparison of the communication pattern between the MG (left) and BT (right)

benchmarks, at an arbitrary time-step, colored by source rank of messages

Figure 10. Side-by-side comparison of the communication pattern in the MG benchmark when using

the periodic boundary condition feature (top) or not (bottom); communication lines are colored by

destination rank of messages

3.2.2 Industrial CFD Code264

Figure 11 shows the plugin outputs for an arbitrary time-step in the Hydra test-case, from two different265

camera angles; the communication lines are colored by number of MPI Isend calls (left) and total amount266

of bytes sent on those calls (right) on that time-step. Notice on the right-hand side how many of the267

communication channels (the lines) did not properly transfer any data in that time-step (their color is blue,268

which from the scale is mapped to zero) and should therefore be removed. Also because the least used269

channels were used 1500 times within that time-step, as seen from the lower limit of the scale on the left270

part of the figure (counter isend, which refers to the total amount of times MPI Isend was called in the271

time-step shown). In other words, the plugin was able to estimate how many communication calls (per272

sender/receiver pair) could be spared per time-step in Rolls-Royce’s code, and where (i.e. which ranks are273
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Figure 11. Visualization of the communication pattern in Hydra from two different camera angles, at an

arbitrary time-step, colored by number of MPI Isend calls (left) and total amount of bytes sent on those

calls (right) on that time-step

Figure 12. Visualization of the new communication pattern in Hydra from two different camera angles,

at an arbitrary time-step, colored by number of MPI Isend calls (left) and total amount of bytes sent on

those calls (right) on that time-step

involved).274

We submitted such results to Rolls-Royce, whose developers then changed their code and sent it back275

to us. The new communication behavior can be seen in Figure 12. Notice how the minimum number of276

messages sent between any pair of processes dropped from 1500 to 170 (see the lower limit of the scale at277

the upper-right corner of the left picture); analogously, how the minimum amount of data sent raised from278

0 to 68 kB (see the lower limit of the scale at the upper-right corner of the right picture). I.e. now there279

are no more empty messages being sent, and this is visible in the visualization of the communication lines.280

The plugin has been successfully used in a real life performance optimization problem, whose detection281
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#ifdef SCOREP_USER

#include "scorep/SCOREP_User.inc"

#endif

! {...}

subroutine IFLUX_EDGE(...)

implicit none

#ifdef SCOREP_USER

SCOREP_USER_REGION_DEFINE( iflux_region )

#endif

! {variable declarations}

#ifdef SCOREP_USER

if(MODULO(time_step, 20) == 0 .OR. time_step == 1) then

SCOREP_USER_REGION_BEGIN(iflux_region, "iflux_edge",

& SCOREP_USER_REGION_TYPE_COMMON)

endif

#endif

! {function body}

#ifdef SCOREP_USER

if(MODULO(time_step, 20) == 0 .OR. time_step == 1) then

SCOREP_USER_REGION_END( iflux_region )

endif

#endif

return

end

Figure 13. Example of a manual (user-defined) code instrumentation with Score-P; the optional if

clauses ensure measurements are collected only at the desired time-steps

would be difficult if using the currently available tools14.282

4 OVERHEAD283

Provided we are talking about performance analysis, it is necessary to investigate the impact of our tool284

itself on the performance of the instrumented code execution.285

4.1 Settings286

In the following tables, the baseline results refer to the pure simulation code, running as per the settings287

presented in Sec. 3; the numbers given are the average of 5 runs ± 1 relative standard deviation. The +288

Score-P results refer to when Score-P is added onto it, running with both profiling and tracing modes289

deactivated (as neither of them is needed for the plugin to work)15. Finally, ++ plugin refers to when the290

plugin is also used: running only in topology mode and in only one feature (regions or communication) at291

a time16 and on the iterations when there would be generation of output files17. The percentages shown292

in these two columns are not the variation of the measurement itself, but its deviation from the average293

baseline result.294

Score-P was always applied with the --nocompiler flag. This option is enough when the plugin295

is used to show communication between ranks, as no instrumentation (manual or automatic) is needed296

14Vampir, for instance, is not able to show an aggregated view of the communication pattern inside the time step, as it has no

knowledge about it (when it starts and when it finishes). The data scales shown on Figures 11 and 12 are not available then, what

makes it difficult to spot channels (pairs of sender/receiver) through which no proper data is sent (messages with 0 size).
15If activated, there would be at the end of the simulation, apart from the simulation’s output files, those generated by Score-P for

visualization in Cube (profiling mode) or Vampir (tracing mode). Their generation can co-exist with the plugin usage, but it is not

recommended: the overheads sum up.
16The plugin can perfectly run in all its modes and features at the same time (geometry mode requires the simulation to have a

Catalyst adapter; see our previous papers). However, this is not recommended: the overheads sum up.
17Given the simulation was not being visualized live in ParaView, there was no need to let the plugin work in time-steps when no

data would be saved to disk.
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when solely MPI calls are being tracked. On the other hand, the instrumentation overhead is considerably297

higher when the target is to measure code regions, as every single function inside the simulation code is a298

potential candidate for analysis (as opposed to when tracking communications, when only MPI-related299

calls are intercepted). In this case, it was necessary to add the --user Score-P compile flag and manually300

instrument the simulation code (i.e. only the desired regions were visible to Score-P). An intervention301

as illustrated in Figure 13 achieves this: if MODULO... additionally guarantees measurements are302

collected only when there would be generation of output files and at time-step 1 – the reason for it is that303

Catalyst runs even when there is no post-mortem files being saved to disk (as the user may be visualizing304

the simulation live) and the first time-step is of unique importance, as all data arrays must be defined then305

(i.e. the (dis)appearance of variables in later time-steps is not allowed)18. Finally, when measuring code306

regions, interception of MPI-related routines was turned off at run-time19.307

4.2 Results308

Tables 1 and 2 show the impact of the proposed plugin on the test-cases performance. The memory section309

refers to the peak memory consumption per parallel process, reached somewhen during the simulation; it310

neither means that all ranks needed that amount of memory (at the same time or not), nor that the memory311

consumption was like that during the entire simulation. Score-P itself introduced no perceptible overhead;312

on its turn, the plugin did, an that is because it is equipped with a Catalyst adapter (whose footprint lies313

mostly on memory consumption (Ayachit et al., 2015)). Catalyst needs this memory to store the artificial314

geometry’s (the topological representation of the hardware resources being used) coordinates and cells315

definition, plus all the data arrays associated with them (amount of times a function was executed, amount316

of messages sent between two ranks etc.), for each time-step during the simulation. Hence the added317

memory footprint is higher.318

The run time overhead, on its turn, is only critical when measuring the two code regions selected in319

Hydra: they are called millions of times per time-step, hence their instrumentation is heavy. Otherwise320

the plugin’s or Score-P’s footprints lie within the statistical oscillation of the baseline results.321

Table 1. Plugin’s overhead when measuring code functions on topology mode.

running time memory (MB)

++ plugin + Score-P baseline ++ plugin + Score-P baseline

MG 31m42s (0%) 31m09s (-1%) 31m37s ± 2% 648 (42%) 479 (5%) 455 ± 0%

BT 34m28s (0%) 34m26s (0%) 34m28s ± 1% 648 (42%) 478 (5%) 455 ± 0%

Hydra 47m04s (12%) 43m52s (4%) 42m00s ± 0% 382 (22%) 323 (3%) 314 ± 0%

Table 2. Plugin’s overhead when showing communication on topology mode.

running time memory (MB)

++ plugin + Score-P baseline ++ plugin + Score-P baseline

MG 31m34s (0%) 31m09s (-1%) 31m37s ± 2% 648 (42%) 479 (5%) 455 ± 0%

BT 34m24s (0%) 34m08s (-1%) 34m28s ± 1% 648 (42%) 477 (5%) 455 ± 0%

Hydra 42m53s (2%) 43m50s (4%) 42m00s ± 0% 397 (26%) 316 (1%) 314 ± 0%

CONCLUSIONS322

In this paper, we have extended our software to allow mapping performance data to a three-dimensional323

representation of the cluster’s architecture, by means of (combining) the code instrumenter Score-P324

and the graphics manipulation program ParaView. The tool, which takes the form of a Score-P plugin,325

introduces the following novel capabilities to the spectrum of code analysis resources:326

• detailed view up to topology component level (i.e. in which core of which socket of which node a327

specific MPI rank is running);328

18Hence, there were two narrowing factors for Score-P in the end: the spacial (i.e. accompany only the desired functions) and the

temporal (accompany only at the desired time-steps) ones.
19By means of the SCOREP MPI ENABLE GROUPS environment variable (see Sec. 2.1.1 above).
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• limit visualization to resources being used by the simulation;329

• native association with the simulation’s time-step;330

• individual components of the visualization (like the network switches) are optional to produce and331

to display (i.e. see only what you want to see);332

• easily distinguish between messages coming from ranks within the same compute node from those333

coming from ranks running in other compute nodes, something not possible in a tool like Vampir;334

• individually applicable color scale to each element of the visualization, allowing, for example, to335

color the communication lines by amount of bytes sent, receiver id, sender id etc (something also336

not possible in Vampir);337

All that under the graphic quality of today’s top-of-the-art visualization program, ParaView: render338

views are fully manipulatable and tens of filters are available to further dig into the data. ParaView is the339

best option as visualization software because of all the resources already available in – and experience340

accumulated by – it after decades of continuous development. Visualization techniques do not use to be341

the specialization field of programmers working with code performance: it is more reasonable to take342

advantage of the currently available graphic programs than attempting to equip the performance tools343

with their own GUIs (from scratch).344

Our tool is based exclusively on open-source dependencies; its source code is freely available20,345

as the raw data of the benchmark results presented in this paper21. It works with either automatic or346

manual code instrumentation and independently of Score-P’s profiling or tracing modes. Lastly, its output347

frequency (when doing post-mortem analyses) is adjustable at run-time (through the plugin input file),348

like in Catalyst itself.349

FUTURE WORK350

We plan to continue this work in multiple directions:351

Scale the tool: To keep testing our tool in bigger and bigger test cases, in order to investigate its scalability352

limits (if any).353

Develop new visualization schemes for performance data: To take advantage of the multiple filters354

available in ParaView for the benefit of the performance optimization branch, e.g. by recreating in355

it the statistical analysis – display of average and standard deviation between the threads/ranks’356

measurements – already available in other tools.357

Remove the necessity of the topology configuration file: When running the plugin in topology mode,358

get the network details directly from system libraries (as done with the hardware details). Both359

Slurm and the hwloc team – through its sister project, netloc22 (Goglin et al., 2014) – are straining360

in that direction, but it is currently not yet possible (partially because the retrieval of the switches361

configuration requires root access and therefore needs to be executed by the cluster’s admins).362

Extend list of supported communication calls: To make the tool capable of detecting calls of other363

communication protocols, like GPI-223 (Grünewald and Simmendinger, 2013). This will require a364

respective extension of Score-P’s substrate plugin API.365

Extend list of detectable performance phenomena: To extend the list of performance-relevant phe-366

nomena which can be detected by the plugin, for example: cache misses, memory accesses, I/O367

flows etc. This will also require a respective extension of Score-P’s substrate plugin API.368

Use plugin for teaching: Finally, explore the possibility of using the tool for teaching of parallel com-369

puting, especially in topics like data locality, job allocation, computer architecture, sharing of370

computational resources etc.371

20https://gitlab.hrz.tu-chemnitz.de/alves--tu-dresden.de/catalyst-score-p-plugin
21https://dx.doi.org/10.25532/OPARA-119. We are unable to provide the raw data related to Rolls-Royce’s code

due to copyright issues.
22https://www.open-mpi.org/projects/netloc/
23The open-source implementation of the GASPI standard, see https://www.gaspi.de/.
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Solórzano, A. L. V., Navaux, P. O. A., and Schnorr, L. M. (2021). Temporal Load Imbalance on Ondes3D430

Seismic Simulator for Different Multicore Architectures. In The 2020 International Conference on431

High Performance Computing & Simulation (HPCS 2020).432

Theisen, L., Shah, A., and Wolf, F. (2014). Down to Earth – How to Visualize Traffic on High-dimensional433

Torus Networks. In 2014 First Workshop on Visual Performance Analysis, pages 17–23.434

16/16PeerJ Comput. Sci. reviewing PDF | (CS-2021:03:58866:1:1:NEW 2 Aug 2021)

Manuscript to be reviewedComputer Science


	Related Work
	Methodology
	Prerequisites
	Performance Measurement
	In Situ Processing

	Combining both Tools

	Evaluation
	Settings
	Benchmarks
	Industrial CFD Code

	Results
	Benchmarks
	Industrial CFD Code


	Overhead
	Settings
	Results

	References

