Peer.

Submitted 27 July 2021
Accepted 29 September 2021
Published 5 November 2021

Corresponding author
Omar Bin Samin,
omar.samin@imsciences.edu.pk

Academic editor
Khalid Raza

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.752

() Copyright
2021 Samin et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

CapPlant: a capsule network based
framework for plant disease classification

Omar Bin Samin’, Maryam Omar® and Musadaq Mansoor'*

! Center for Excellence in IT, Institute of Management Sciences (IMSciences), Peshawar,
Peshawar, Pakistan

2 Computer Science Department, National University of Computer and Emerging Sciences,
Islamabad, Peshawar, Pakistan

ABSTRACT

Accurate disease classification in plants is important for a profound understanding of
their growth and health. Recognizing diseases in plants from images is one of the
critical and challenging problem in agriculture. In this research, a deep learning
architecture model (CapPlant) is proposed that utilizes plant images to predict
whether it is healthy or contain some disease. The prediction process does not require
handcrafted features; rather, the representations are automatically extracted from
input data sequence by architecture. Several convolutional layers are applied to
extract and classify features accordingly. The last convolutional layer in CapPlant is
replaced by state-of-the-art capsule layer to incorporate orientational and relative
spatial relationship between different entities of a plant in an image to predict
diseases more precisely. The proposed architecture is tested on the PlantVillage
dataset, which contains more than 50,000 images of infected and healthy plants.
Significant improvements in terms of prediction accuracy has been observed using
the CapPlant model when compared with other plant disease classification models.
The experimental results on the developed model have achieved an overall test
accuracy of 93.01%, with F1 score of 93.07%.

Subjects Artificial Intelligence, Computer Vision
Keywords Convolutional neural network, Plant disease classification, Deep learning, Capsule
network.

INTRODUCTION

The existence, survival and development of human race revolve around agriculture, as the
major portion of food is derived from agriculture. The modern technological agriculture
sector strives to enhance the quality and production of farming products and coping
with cultivation diseases. These diseases are a major threat to agricultural development as
they adversely affect plants growth and quality, resulting in reduced crop yield (Yin ¢ Qiu,
2019). To minimize such threats, the complex and unpredictable agricultural ecosystem
requires continuous monitoring to analyze diverse physical and environmental aspects.
Deep Leaning (DL) can be utilized as it constitutes a modern and state-of-the-art
technique for image processing and data analysis with great potential and promising
results (Kamilaris & Prenafeta-Boldii, 2018). DL has been successfully applied in various
domains like healthcare (Miotto et al., 2018), automatic machine translation (Singh et al.,
2017), automatic text generation (Pawade et al., 2018), image recognition (Satapathy et al.,
2019) and agriculture (Giménez-Gallego et al., 2020; Zheng et al., 2019b), etc.

How to cite this article Samin OB, Omar M, Mansoor M. 2021. CapPlant: a capsule network based framework for plant disease
classification. Peer] Comput. Sci. 7:¢752 DOI 10.7717/peerj-cs.752

http://dx.doi.org/10.7717/peerj-cs.752
mailto:omar.�samin@�imsciences.�edu.�pk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.752
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Corn-Gray Leaf Spot Cherry-PowderyMildew

ApleApe Scab

Grape-Black Rot Peach-Bacterial Spot

Potato-Late Blight Tomato-Leaf Mold Pepper Bell-Bacterial Spot

Figure 1 Images of diseases found in various plants. Full-size K&l DOI: 10.7717/peerj-cs.752/fig-1

In the past few years, researchers have targeted many crops such as blueberry, wheat,
tomato and cherry for classification. Moreover, they have also targeted many plant diseases
like leaf mold, late bright, tomato mosaic virus disease, two-spotted spider mite attack,
target spot, tomato yellow leaf curl virus, rust, tan spot, septoria and others for detection.
Figure 1 shows images of different diseases found in various plants.

Previously, researchers utilized handcrafted features along with classifiers for solving
plant disease classification problems (Salazar-Reque et al., 2019; Shruthi, Nagaveni ¢
Raghavendra, 2019). Presently, due to success of DL techniques, many researchers are
using them for solving various classification problems (Picon et al., 2019a; Ferentinos,
2018; Picon et al., 2019b; Too et al., 2019; Kamal et al., 2019). Pre-trained models such as
AlexNet, GoogleNet, DenseNet, MobileNet and VGG16net, etc. are widely used for plant
disease classification. Although they have shown some promising results, however their
time complexity and computational cost still needs improvement (Picon et al., 2019b;
Too et al., 2019; Kamal et al., 2019). Researchers have also created their own custom

Samin et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.752 || 12119

http://dx.doi.org/10.7717/peerj-cs.752/fig-1
http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Convolution Neural Network (CNN) based models for classification and tested on various
datasets (Picon et al., 2019a; Ferentinos, 2018). These models have some major drawbacks,
for instance, one major issue with some of these models is in targeting less number of
crops and diseases, secondly they are presenting results using limited or non-standard
evaluation metrics like Accuracy (Testing, Training and Validation), Precision, Recall and
F1-Score that are generally used for evaluating a classification model. In this research, a
deep learning architecture (CapPlant) is developed using CNN along with capsule network
to classify and detect any disease found in plants accurately.

Capsules in a capsule network (Sabour, Frosst ¢ Hinton, 2017; Hinton, Krizhevsky ¢
Wang, 2011; Hinton, Sabour & Frosst, 2018) are the groups of neurons that encode spatial
information as well as the probability of an object being present. In contrast to CNN,
capsule encodes information in a vector form to store spatial information as well. In recent
years, capsule networks have been used for detection (Afshar, Mohammadi ¢ Plataniotis,
2018), text classification (Zhao et al., 2018; Kim et al., 2020; Zhao et al., 2019; Ren e
Lu, 2018), tumor classification (Afshar, Plataniotis ¢ Mohammadi, 2019a; Afshar,
Plataniotis & Mohammadi, 2019b), bioinformatics (de Jesus et al., 2018) and simple
classification problems (Lukic et al., 2019; Hilton et al., 2019; Zhao et al., 2018). Keeping in
view success of capsule network, (Bass et al., 2019; Jaiswal et al., 2018; Upadhyay ¢
Schrater, 2018) have also explored capsule with Generative Adversarial Networks(GANs)
and have presented some promising results.

Conceptual novelty of this work is the utilization of capsule network along with CNN.
As CNN stores information in scalar form, they are considered as translational and
rotational invariant, whereas in the capsule network, information is grouped together in
form of vector where the length of a capsule vector represents the probability of the
existence of a feature in an image and the direction of the vector would represent its pose
information.Therefore, exploiting capsule layer enables the model to capture relative
spatial and orientation relationship between different entities of an object in an image.

The rest of the paper is organized as follows: “Related Work” briefly explores different
studies related to plant disease detection; implementation details along with models on
which CapPlant is built upon are discussed in detail in “Methodology” followed by results in
“Result”. The paper is concluded in “Conclusion”, along with some future recommendations.

RELATED WORK

A considerable amount of literature has been published on plant disease classification
using conventional machine learning (Salazar-Reque et al., 2019; Shruthi, Nagaveni &
Raghavendra, 2019) and deep learning (Picon et al., 2019b, Too et al., 2019; Kamal et al.,
2019) techniques. Few of the existing research have also explored capsule network for
plant disease classification (Kurup et al., 2019; Li et al., 2019). This section explains a few
notable previous research work on plant disease classification.

Sullca et al. (2019) implemented diseases detection in blueberry leaves using computer
vision and machine learning techniques. Noise removal in images was handled with the
help of gaussian blur and median blur filters. Details in each image were enhanced with the
help of weighted filters. Blueberry leave pictures were then group into three categories:

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 3/19

http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

plagued, healthy and diseased. Local binary patterns and histogram of oriented gradients
were used for characteristics extraction. Due to unavailability of blueberry leaves
dataset, a custom dataset was created. Deep learning model gave an accuracy of 84%,
predicting the disease of blueberry leaves. The proposed system only considered blueberry
pest infections.

Ashqar & Abu-Naser (2018) implemented tomato leaves diseases detection using DL.
Among many diseases that can exist in tomato plant, only five were considered. CNN used
for classification was divided into two parts. The first part used for feature extraction
consisted of four convolution layers along with activation function ReLU followed by max
pooling, while the second part of the model comprised of two dense layers followed by
flattening layer. Softmax was used as an activation for the second part. Experiments were
conducted on two type of images; one with three color channels and other with one
color channel. Nine thousand healthy and infected tomato images were considered for
training. The dataset was created for six classes which included early blight, bacterial spot,
septorial leaf spot, leaf mold, bacterial spot, yellow leaf curl virus and healthy. Original
images were resized to a smaller size of 150 * 150 so that computation could be faster.
Quality of images were maintained so that disease detection could work well. The proposed
model gave an accuracy of 99.84% on three color channels, whereas achieved accuracy
was 95.54% on one color channel. The data collection process was manual and tedious,
which resulted into considering limited number of diseases.

Salazar-Reque et al. (2019) implemented an algorithm for detecting visual symptom in
plants disease. The images used were grouped into nine different categories by diseases and
plants.These nine groups consisted of seven plants i.e., apple, grape, mango, potato,
quinoa, peach and avocado. The target diseases for apple were scab, cedar apple rust and
black rot. Target disease for avocado was necrosis and infection, target disease for
grape was black rot, target disease for mango was necrosis, target disease of potato was
alternaria, target disease for peach was bacterial spot and target disease for quinoa was
mildew. Total 279 images were considered, out of which 90 belonged to apple diseases,
30 belonged to grape disease, 30 belonged to avocado, 30 belonged to mango disease,

30 belonged to potato disease, 30 belonged to peach disease and 30 belonged to quinoa. No
image of healthy plants were considered. The system developed used a clustering algorithm
for putting together same color pixels in regions known as super pixels. A total of 279 pictures
of leaves were used. The proposed system used no images of healthy plants and a small
dataset of infected plants images. The images groups were giving different True Positive Rate
(TPR) and False Positive Rate (FPR), indicating proper groups were not formed.

Reddy et al. (2019) presented an idea of combining bioinformatics with image
processing for detecting diseases in crops and plants. In the proposed methodology,

HSI (Hue, Saturation, Intensity) algorithm for image segmentation was used. A digital
camera was used for capturing image and unwanted areas of image were removed using
different techniques. The pixels in which the value of green intensity were more than the
desired threshold were, considered as unhealthy crops/plants. The authors did not
mention any detail about the dataset they used for the experiment. The authors also failed
to mention any results based on which they achieved the stated conclusions.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 4/19

http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Picon et al. (2019b) implemented CNN model for classification of plant diseases.
Three CNN models were proposed for combining different aspects together like crop
identification data, geographical locations and weather conditions etc. Around one
hundred thousand pictures of the actual field conditions were taken from the cell phone.
Dataset was created for seventeen diseases of five crops. The crops included winter wheat,
corn, rapeseed, winter barley and common rice. The diseases considered were Septoria
tritici, Puccinia striiformis, Puccinia recondite, Septoria nodorum, Drechslera triticirepentis,
Oculimacula yallundae, Gibberella zeae, Blumeria graminis, Helminthosporium turcicum,
Phoma lingam, Pyrenophora teres, Ramularia collo-cygni, Rhynchosporium secalis,
Puccinia hordei, various diseases, Thanatephorus cucumeris, Pyricularia oryzae. Total
1,20,950 images were considered, out of which 11,295 belonged to common rice, 32,229
belonged to winter barley, 13,774 belonged to rapeseed, 64,026 to winter wheat and 631
belonged to corn. Independent particular crop models reported a balance accuracy of 0.92,
whereas multi crop reported a balance accuracy of 0.93. The proposed system lacked in
sharing complete training and testing results. The system lacked in considering number of
result variants i.e., F1 score, recall and precision.

Picon et al. (2019a) implemented deep convolution networks for disease detection in crop.
The images used were divided into four groups of Rust, Tan Spot, Septoria and Healthy.
The images were taken from Wheat 2014; Wheat 2015 and Wheat 2016 databases. Total
8,178 images were considered, out of which 3,338 belonged to Rust, two thousand seven
hundred and 44 belonged to Septoria, 1,568 belonged to Tan spot, 1,116 belonged to Healthy
class. A total of 1,385 images were taken from Wheat 2014 database, 2,189 images were
taken from Wheat 2015 and 3,969 images were taken from Wheat 2016 database. The
proposed technique used residual neural networks with many improvements in tile cropping
and augmentation scheme. A mobile application was developed for providing input to
the system; pictures were taken manually from the app and then loaded on a server for
turther processing. More than 8,000 images were considered for training. The system was
able to process the image and find the disease in quick time. The implemented technique
considered only three diseases for wheat crop, which made the scope minor.

Kamal et al. (2019) implemented depth wise separable architectures (convolution) for
classification of plant diseases. The system developed used leaves images for detection of
plant diseases. Several models were trained using the proposed method and reduced
MobileNet stood out. More than 80,000 images dataset was considered for training and
testing, which covered 55 classes of healthy and diseased plants. The images were taken
from PlantVillage for training and for testing PlantLeafs dataset was used. A total of 82,161
images of PlantVillage were considered, 18,517 images of PlantLeafl were considered,
23,110 images of PlantLeaf2 were considered and 32,241 images of PlantLeaf3 were
considered. The number of classes included in PlantVillage are 55, whereas in PlantLeafl
these are 18, in PlantLeaf2 these are 11 and in PlantLeaf3 these are 16. It gave 36.03%
accuracy when tested on pictures taken under different parameters than those of training.
Even though the number of image dataset of healthy/diseased plants were more,
nonetheless the developed system only considered accuracy as an evaluation metric and
reported no precision, recall and F1 score.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 5/19

http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Sengar, Dutta & Travieso (2018) implemented identification and quantification of
powdery mildew disease in cherry using computer vision based technique. Adaptive
intensity focused thresholding method was proposed for powdery mildew disease
automatic segmentation. Two parameters were used in assessment of the level of disease
spread in plants: (1) the portion in plant that was effected by the disease and (2) the length
of the effected portion in plant. The proposed model achieved 99% accuracy. The proposed
technique may be used for predicting only one disease in cherry plant.

Rangarajan, Purushothaman ¢ Ramesh (2018) implemented tomato disease
classification with the help of pre-trained deep learning algorithm. Two pre-trained models i.
e., VGGl6net and AlexNet were used by the authors. A total of 13,262 tomato images from
PlantVillage (40) dataset containing six disease classes and one heathy class were used by
the proposed system. Accuracy reported for disease classification using VGG16net was
97.29% and using AlexNet was 97.49%. Comparing AlexNext and VGG16net, minimum
execution time and better accuracy were reported with AlexNet. The authors considered six
diseases for tomato plant, for which they used pre-trained networks.

Mohanty, Hughes & Salathé (2016) implemented plant disease detection using DL
techniques on plant images All images used were resized 256 x 256, both model prediction
and optimizations were performed on these images. A total of 26 diseases in fourteen crops
were detected using this model. Pre-trained models, AlexNet and GoogleNet were
considered for this experiment. Models were trained on three different variations of
PlantVillage datasets, first they were trained on color images, then on gray scale images and
finally on segmented leaves images. A dataset containing 54,306 images was used, containing
healthy and diseased plant leaves. The dataset targeted different 38 classes. Five different
training-test distributions were used i.e., first train 80%—test 20%, second train 60%-test
40%, third train 50%-test 50%, fourth train 40%-test 60%, last one train 20%-test 80%.
Color, grey scale and leaf-segmented images were considered. Two different training
mechanisms were considered, first transfer learning and second training from scratch. The
model achieved 99.35% accuracy, but on a held out test set. The system dropped accuracy to
31% when tested on different images other than training images. The developed technique
used pre-trained networks instead of developing their own neural network for classification.

Barbedo (2019) implemented plant disease identification using deep learning. The
diagnosis in the given algorithm considers image classification on two things, one spots
and second lesions. A total of 46,409 images were considered for disease identification. The
images were taking using many sensors. The resolution of captured images were upto 24
MPixels. The plants considered were common bean, cassava, citrus, cocunut tree, corn,
Kale, Cashew Tree, Coffee, Cotton, Grapevines, Passion fruit, Soybean, Sugarcane and
wheat. Overall, 14 plants and 79 diseases were considered, but many had very few images
associated with them. The model used was pretrained GoogLNet CNN. Accuracy was
reported for different plants. The developed technique used pre-trained networks instead
of developing their own neural network for classification. The developed system focused
more on creating a custom dataset for disease detection. The developed system used fewer
images for many classes. Many conditions had a few images associated with them in the
dataset captured.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 6/19

http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Durmus, Giines & Krc (2017) implemented tomato disease detection using deep
learning. Diseases that occurred in tomato fields or greenhouses both were considered.
AlexNet and SqueezeNet algorithms were used for training and testing of tomato disease
detectio. Images were taken from PlantVillage dataset. Only tomato images were
considered. The diseases considered were leat mold, spider mites, septoria leaf spot, early
blight, bacterial spot, mosaic virus, yellow curl virus and target spot. Accuracy reported for
tomato disease classification using AlexNet was 95.65% and using SqueezeNet was 94.3%.
The authors considered only tomato diseases and instead of creating their own neural
network use pre-built models. The authors failed to report other evaluation metrics like F1
score, precision or recall.

Ramcharan et al. (2017) implemented cassava disease detection using deep learning.
The dataset was custom build using Sony Cybershot 20.2 mp camera. The dataset was
captured over a period of 4 weeks and consisted of about 11,670 images. The dataset was
named “leafleft cassava dataset”. Five diseases were considered that are Cassava brown
streak disease, Red mite damage, Cassava mosaic disease, Green mite damage and Brown
leaf spot. A deep convolutional neural network Inception v3 was used for cassava disease
detection. The last layer of CNN was replaced with three different variations to test the
model on three different architectures. Three different architectures were support vector
machines, softmax layer and knn. Confusion matrix was reported for different cassava
diseases. The proposed technique is used only for cassava plant. The proposed technique
considered only five out of many diseases.

Zheng et al. (2019a) and Kurup et al. (2019) has explored capsule network and CNN for
plant disease classification. Network architecture in (Zheng et al., 2019a) utilized two
convolutional layers and one primary capsule layer for training and testing. However, the
proposed model only presented test and train precision of 88% and 90% respectively. For
reducing the drawbacks and also to get better performance, new architecture of CNN;
capsulenet is implemented in (Kurup et al., 2019). Capsulenet was analyzed for two
datasets: (1) first model was built for diagnosis of plant disease using plant leaves images.
The dataset used for training contained 54,306 images of 14 different plant species. The
proposed architecture reported an accuracy of around 94%. (2) second model was trained
for classification of plant leaves. The dataset used for training had 2,997 images of 11
plants. The prediction model with capsulenet gave an accuracy of around 85%.

Limitations of existing systems
All the above crop disease detection techniques work well for detecting the diseases in
crops, however they have few limitations such as:

1. Limited Scope: Less number of crops/diseases are targeted.
2. Limited Evaluation Metrics: Conclusion has been achieved based on few result parameters.

3. Limitation of CNN: Most of the techniques used pre-trained networks or created their
own CNN. The problem with CNN is that it only considers presence of entities in an
object, it does not take into account not relative spatial relationship between them.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 719

http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Conv 1

224x224x3

Max

Poolmg

Conv 2

Max

Max Max
Poolmg C onv 3 J Poolmg rﬂnv 4 Ql IPoo]ing _
L = r

14x14x 128

224x224x16 112x112x16 112x112x32 56x56x32 56 x 56 x 64 28 x 28 x 64 28 x28x 128
Flattening Reshaping
P Dense & %) <
38 - 50176 14 x 14 x 256 Caspsule
Layer

Figure 2 Network architecture for CapPlant: deep learning architecture for plant disease prediction through pictures. CapPlant is a real deep

learning architecture because it uses end-to-end learning.

Full-size K&l DOT: 10.7717/peerj-cs.752/fig-2

METHODOLOGY

To predict plant diseases from the given images, simple yet effective model CapPlant is
proposed in which the last convolutional layer is replaced by state-of-the-art capsule layer
to incorporate relative spatial and orientational relationship between different entities of a
plant in an image. The overall pipeline of the proposed model is illustrated in Fig. 2.
The following subsection explains capsule network and the deep learning architecture of
CapPlant that performs end-to-end learning for plant disease classification. End-to-end
learning replaces a pipeline of components with a single deep learning neural network and
goes directly from the input to the desired output. It eradicates the need of preprocessing
or complex feature extraction process by learning directly from the labeled data and
simplifies the decision making process. End-to-end models are of key importance for
building artificial intelligence systems because of their simplicity, performance and
data-driven nature (Rafique, Fu ¢ Mai, 2021).

Capsule network

In the field of DL, although CNN has been a huge success, however, they have some major
drawbacks in their basic architecture which causes them to fail in performing some major
tasks. CNN automatically extracts features from images, and from these features it
learns to detect and recognize different objects. Early layers extract simple features like
edges, and as layers proceed features become more and more complex. At the end, CNN
uses all extracted features to make a final prediction. Here lies the major drawback in
basic architecture of CNN that only presence of feature is captured and nowhere in this
approach spatial information is stored.

Capsule Network (Sabour, Frosst ¢» Hinton, 2017; Hinton, Krizhevsky ¢ Wang, 2011,
Hinton, Sabour & Frosst, 2018) have recently been proposed to address this limitation of
CNN. Capsules are the groups of neurons that encode spatial information as well as
the probability of an object being present. In capsule network, corresponding to each entity
in an image, there is a capsule which gives:

1. Probability that the entity exists.

2. Instantiation parameters of that entity.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 8/19

http://dx.doi.org/10.7717/peerj-cs.752/fig-2
http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

The main operations within capsules are performed as follows:

To encode the imperative spatial association between low and high level features within
the image, the multiplication of the matrix of the input vectors with the weight matrix is
calculated.

uj; = Wiu; + B; (1)

The sum of the weighted input vectors is calculated to determine that the current
capsule will forward its output to which higher level capsule.

suj = Z Cijlhjji (2)
i

Finally, non-linearity is applied using the squash function. While maintaining a
direction of a vector, the squashing function maps it to maximum length of one and
minimum length of 0.

vj = squash(su;) 3)

Network architecture

Model inputs

Inputs to the network are plant images of size 224 x 224 x 3. The size of inputs to CapPlant
network is represented as (y; 224 x 224 x 3), where y is the batch size. At the expense
of reduced accuracy, small batch sizes lead to faster training. Relatively large batch sizes are
used to increase accuracy at the expense of slower training. For training of CapPlant, batch
size is set to 32.

Feature representation layers

When the input is fed into CapPlant, features or representations is extracted from the
inputs by passing it through four layers of convolution, followed by ReLU activation and
max polling after each layer. The output of the 4th convolutional layer is reshaped and
passed through the capsule layer to capture relative spatial and orientational relationship
between different entities of an object in the image. The tensor obtained from the capsule
layer is flattened and then passed through a densely-connected Neural Network (NN)
layer. In the end, softmax is applied to squash a vector in the range (0, 1) such that all the
resulting elements add up to one. For a particular class ¢;, the softmax function can be
calculated as follows:

e

= ZJC "

f(o); (4)

where ¢; are the scores inferred by the model for each class in C. Softmax activation for a

class ¢; depends on all the scores in c.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 9/19

http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

X Input: (32,224,224, 3)
input_1: InputLayer
Output: (32,224,224, 3)
v
Input: (32,224,224, 3)

conv2d_1: Conv2D
Output: (32, 224, 224, 16)

Input: (32,224,224, 16)
Output: (32,112, 112, 16)

max_pooling2d_1: MaxPooling2D

Input: (32,112,112, 16)
Output: (32,112,112, 32)

conv2d_2: Conv2D

Input: 32,112,112,32
max_pooling2d_2: MaxPooling2D oy ¢)
Output: (32, 56, 56, 32)
v
1 : 2,56, 56, 32
conv2d_3: Conv2D nput (32, 56, 56, 32)
Output: (32, 56, 56, 64)
v
Input: 32, 56, 56, 64
max_pooling2d_3: MaxPooling2D Py ¢)
Output: (32,28, 28, 64)
v
Input: 32,28, 28, 64
conv2d_4: Conv2D fput (8. 28, 64)
Output: (32, 28, 28, 128)
v
1 : 32,28,28, 12
max_pooling2d_4: MaxPooling2D mput (32, 28, 28, 128)
Output: (32, 14, 14, 128)
v
Input: (32, 14, 14, 128)

reshape_1: Reshape
Output: (32,14, 14, 1, 128)

Input: (32,14, 14,1, 128)
Output: (32, 14, 14, 1, 256)

conv_cap: ConvCapsule Layer

Input: (32,14, 14, 1, 256)

reshape_2: Reshape

Output: (32, 14, 14, 256)
v
I :
flatten_1: Flatten nput (32, 14, 14, 256)
Output: (32,50176)
v
Input: (32, 50176)
dense_1: Dense
Output: (32, 38)

Figure 3 Visual illustration of data flow between each layer of the proposed CapPlant model.
Full-size Kal DOL: 10.7717/peerj-cs.752/fig-3

Normalization and output layers
The CapPlant model is compiled based on the features extracted from the previous layers.
To calculate the error, the Categorical Cross Entropy loss (CE) is used as follows:

CE = —log(—=z—) (5)

where c,, is the CNN score for the positive class.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 10/19

http://dx.doi.org/10.7717/peerj-cs.752/fig-3
http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Training and Validation Accuracy Training and Validation Loss
1.0 - —— Training Loss
—— Validation Loss
2.0~
0.9 1
0.8 15 -
>
(=}
s 2
3 8
- 0.7 1
1.0 4
0.6
0.5
0.5 1
0.4 - —— Training Accuracy
—— Validation Accuracy 0.0 1
0 50 100 150 200 (l) 5|0 160 15'0 2(')0
Epoch Epoch
Figure 4 Learning curves for CapPlant. To prevent overfitting of data, early stopping was employed at
epoch 100. Full-size k&l DOTL: 10.7717/peerj-cs.752/fig-4

This section presents the results of the CapPlant model. Extensive experimentation is

ca

rried out to evaluate the performance of our model.

Experiments
Experimental setup

GPU Tesla K40c workstation is used as baseline system for training, testing and validation
of the CapPlant model. Keras, OpenCV, Capsule Layers, Matplotlib and CuDNN libraries

ar

e used for software implementation of CapPlant.

Training
For training of our model CapPlant, Adam is applied as an optimizer, categorical cross

entropy is utilized for calculating loss and accuracy is used as evaluation metric. Overall

training and validation losses and accuracies are exploited to determine the performance of

Samin et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.752 1119

http://dx.doi.org/10.7717/peerj-cs.752/fig-4
http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Hyper parameters set for training of CapGAN.

Parameters Value

Batch size 32

Epochs 100

Image size 224 x 224 x 3

Learning rate 0.0002

Momentum for Adam update 0.5

Loss Categorical cross entropy

Table 2 Detail of each CapPlant layer along with output shape and number of obtained parameters.

Total training images: 5,000

Total validation images: 5,423

Total validation images: 5,470

Total classes: 38

43429 Images belonging to 38 classes
5417 Images belonging to 38 classes
5459 Images belonging to 38 classes

Layer Output shape Param #
Input layer (32, 224, 224, 3) 0
Conv2D (32, 224, 224, 16) 448
MaxPooling2 (32, 112, 112, 16) 0
Conv2D (32, 112, 112, 32) 4,640
MaxPooling2 (32, 56, 56, 32) 0
Conv2D (32, 56, 56, 64) 18,496
MaxPooling2 (32, 28, 28, 64) 0
Conv2D (32, 28, 28, 128) 73,856
MaxPooling2 (32, 14, 14, 128) 0
Reshape (32, 14, 14, 1, 128) 0
ConvCapsuleLayer (32, 14, 4, 1, 256) 295,168
Reshape (32, 14, 14, 256) 0
Flatten (32, 50176) 0

Dense (32,38) 1,906,726

Total params: 2, 299, 334
Trainable Params: 2, 299, 334

Non-trainable params: 0

our model. Table 1 lists parameters along with their values adjusted for training and testing
of CapPlant, whereas the, detail of each layer designed for testing, training and validation
of CapPlant model is listed in Table 2. Furthermore, Fig. 3 is a visual illustration of
data flow between each layer of proposed CapPlant model. Moreover, Fig. 4 shows the
learning curves obtained while calculating training and validation accuracy and losses. The
CapPlant model is trained for total 200 epochs, however, trained models at 50, 100, and
150 epochs were also obtained for the sake of comparison. Also, early stopping was
employed at epoch 100 to avoid over fitting.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 1219

http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Details of PlantVillage dataset used for testing and training of CapPlant.

Plant Class label Name # of Training samples # of Validation samples # of Testing samples
Apple 0 Apple scab 504 63 63
1 Black rot 496 62 63
2 Cedar Apple rust 220 27 28
3 Healthy 1,316 164 165
Blueberry 4 Healthy 1,201 150 151
Cherry 5 Healthy 683 85 86
6 powdery mildew 841 105 106
Corn 7 Gray leaf spot 410 51 52
8 Common rust 953 119 120
9 Healthy 929 116 117
10 Northern leaf blight 788 98 99
Grape 11 black rot 944 118 118
12 Esca black measles 1,106 138 139
13 Healthy 338 42 43
14 Leaf blight 860 107 109
Orange 15 Haunglonbing 4,405 550 552
Peach 16 Bacterial spot 1,837 229 231
17 Healthy 288 36 36
Pepper Bell 18 Bacterial spot 797 99 101
19 Healthy 1,182 147 149
Potato 20 Early blight 800 100 100
21 Healthy 121 15 16
22 Late blight 800 100 100
Raspberry 23 Healthy 296 37 38
Soybean 24 Healthy 4,072 509 509
Squash 25 Powdery Mildew 1,468 183 184
Starberry 26 Healthy 364 45 47
27 Leaf scorch 887 110 112
Tomato 28 Bacterial spot 1,701 212 214
29 Early blight 800 100 100
30 Healthy 1,272 159 160
31 Late blight 1,527 190 192
32 Leaf Mold 761 95 96
33 Septoria leaf spot 1,416 177 178
34 Spider Mites 1,340 167 169
35 Target spot 1,123 140 141
36 Mosaic virus 298 37 38
37 Yellow leaf curl virus 4,285 535 537

Results of experiments
Dataset. In this research, PlantVillage; An open access repository of images on plant health
to enable the development of mobile disease diagnostics Hughes ¢ Salath’e (2015) obtained

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 13/19

http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Comparison of different evaluation metrics measured for CapPlant with various state-of-the-art models.

Year Model Training accuracy Validation accuracy Test accuracy Precision Recall F1-Score Average
2018 VGG net 83.86% 81.92% 81.83% - - - 82.53%
2019 Capsule network - - - 88% - - 88%
2020 CapPlant 98.06% 92.31% 93.07% 93.07% 93.07% 93.07% 93.77%

from source (Mohanty, 2018) has been used for training and testing. PlantVillage dataset
have 54,306 images belonging to 14 different plants. There are total 38 classes, out of which
26 depicts diseases from various plants, whereas 12 are classes of different plant with
healthy leaves. The dataset is randomly split into train, validation and test sets containing
roughly 80%, 10% and 10% of images respectively to avoid overfitting. The details of
complete dataset is given in Table 3.

Quantitative evaluation
For calculating predicting performance of CapPlant model, several evaluation metrics are
calculated such as F1 score, accuracy, recall and precision.

T, + T,
+ T, +F, +F,

accuracy = T
p

TP
T, + F,
TP
. precission * recall

recall =

precision =

F=2

precission + recall

where Tp stands for true positive, Tn for true negative, Fp for false positive and Fn for
false negative. A Tp is a result where the model predicts the positive class correctly. Likwise,
a Tn is a result where the model predicts the negative class correctly. A Fp is a result where
the model predicts the positive class wrong, and Fn is an outcome where the model
predicts the negative class wrong. Table 4 shows the values of above evaluation metrics
calculated for CapPlant model. Figures 5 and 6 demonstrates bar chart representing recall,
precission and F1 score, calculated for each disease and healthy category of plants
respectively.

Comparison with previous Models

To further demonstrate the effectiveness of the proposed CapPlant model, it is
compared with previous state-of-the-art models for plant disease classification and
detection. Table 4 lists various evaluation metrics calculated using different models
for PlantVillage dataset and evidently shows that CapPlant outperforms previous
models.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 14/19

http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

| 1 1 1 1 1 1 1 1 1 1 |
00 Precisionll 1Recall [l 0 F1-score

1,
£ 08F 1
=)
=
= 0.6]
g
=
<
3

s 04 b
0
I
0.2]
O, —
T 1 r 1 1 17 17 1. 17 17 17 1. T 1T T T T T T T T T T T T
O 5 5 2 S BE SN E s S SEASSESTUSOS 2 2
o 2 o =« o ~ oS o ~ <] ~ o <]
S8 888838588888 8883c8s58EC¢E
3 z 2 S e 08 aesm S S emis g a8 g T
0 QLT S8 Y g0 WSS F =SS Sy p, e
228§ e § 8808280858588 F 8
235 5 L EIJS SIS EFELL S ESL FoT 055
S e 5w g S EeESESSESS 8
5858895 & o§§é’°9~é’~é’°98'§g’oms
ST 200 g £ &3S FE o3 gL LEFL g
< 35 < & fE<S=s=53S5S 09 3FEEf5SEE S
Csf§5E CoS3s<28555c8555¢
2SUE SEET s556F €85 8
o) g g 3 S 5 g = &
5 S © & & S L
@] a, L] = 5
§
=
Figure 5 Bar chart representing precision, recall and F1 score, calculated for each 26 plant diseases.
Full-size k] DOT: 10.7717/peerj-cs.752/fig-5

1 1 1 1 1 1
00 Precision | 1Recall [l 0 F1-score ‘

#Evaluation Metrics
o
Wi
T

0, aug agg aug aug agg gaut aug
T T T T T T T T T T T T
T S T T - S N
k=] k=) k=] k=] k=) k=) k=] k=) k=) k=] k=) k=)
¥ q < ¥ q < ¥ q < ¥ q <
Q Q Q Q Q Q Q 5] Q 5] Q Q
= ~ = = ~= = = ~= = = ~ =
BN e = = o ~ g B
2 £ B §F & % % § B § B 3
s & &£ O 5 @2 s & £ & E
< (5] &5 @) A & (=¥ > S
=] S 2 & o = =
5 s &5 g
& a &
Figure 6 Bar chart representing precision, recall and F1 score, calculated for healthy plants.
Full-size k&l DOTL: 10.7717/peerj-cs.752/fig-6

CONCLUSION

Advancement in DL and image processing provides a prospect to extend the research and
applications of detection and classification of various diseases in plants using images. In
this research, simple and effective model, CapPlant is developed for classifying various
categorizes of healthy and effected plants. In CapPlant, convolutional layer along with
capsule layer is used to capture more features. As capsules incorporate orientation and

relative spatial relationships between different entities in an object, they outperform
15/19

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752

http://dx.doi.org/10.7717/peerj-cs.752/fig-5
http://dx.doi.org/10.7717/peerj-cs.752/fig-6
http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

conventional CNN. Results obtained from experimentation clearly demonstrate the
effectiveness of the proposed CapPlant model. For now, the model has been tested and
validated for the publicly available PlantVillage dataset. The threats to the validity of
results obtained from CapPlant model may depend upon properties such as size,
unsharpness, bit depth, and noise in the underlying test images.

In the future, a recommender system with our proposed technique can be integrated to
suggest various actions that need to be taken against a given disease. Moreover, the idea of
using CNN with capsule networks can bring significant improvement in the performance
of many already existing DL models. It can point us towards a direction to explore various
applications using capsules network.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Omar Bin Samin conceived and designed the experiments, prepared figures and/or
tables, and approved the final draft.

e Maryam Omar performed the experiments, performed the computation work, authored
or reviewed drafts of the paper, and approved the final draft.

e Musadaq Mansoor analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

PlantVillage; An open access repository of images on plant health to enable the
development of mobile disease diagnostics, Hughes ¢ Salath’e (2015) obtained from
Mohanty (2018) was used for training and testing.

-Hughes, D. P. and Salath’e, M. (2015). An open access repository of images on plant
health to enable the development of mobile disease diagnostics through machine learning
and crowdsourcing. ArXiv arXiv:1511.08060.

-Mohanty, S. (2018). Plantvillage-dataset. https://github.com/spMohanty/PlantVillage-
Dataset

The Python file for training, all the outputs obtained during training of CapPlant, model
and accuracy and loss of CapPlant, respectively, and the model files to reproduce results
are available as Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.752#supplemental-information.

Samin et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.752 16/19

https://github.com/spMohanty/PlantVillage-Dataset
https://github.com/spMohanty/PlantVillage-Dataset
http://dx.doi.org/10.7717/peerj-cs.752#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.752#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.752#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

REFERENCES

Afshar P, Mohammadi A, Plataniotis KN. 2018. Brain tumor type classification via capsule
networks. In: 2018 25th IEEE International Conference on Image Processing (ICIP). Piscataway:
IEEE.

Afshar P, Plataniotis KN, Mohammadi A. 2019a. Capsule networks for brain tumor classification
based on mri images and coarse tumor boundaries. In: ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 1368-1372.

Afshar P, Plataniotis KN, Mohammadi A. 2019b. Capsule networks for brain tumor classification
based on mri images and coarse tumor boundaries. In: ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE, 1368-1372.

Ashqar BAM, Abu-Naser SS. 2018. Image-based tomato leaves diseases detection using deep
learning. International Journal of Academic Engineering Research (IJAER) 2:10-16.

Barbedo JGA. 2019. Plant disease identification from individual lesions and spots using deep
learning. Biosystems Engineering 180(1):96-107 DOI 10.1016/j.biosystemseng.2019.02.002.

Bass C, Dai T, Billot B, Arulkumaran K, Creswell A, Clopath C, De Paola V, Bharath AA. 2019.
Image synthesis with a convolutional capsule generative adversarial network. In: International
Conference on Medical Imaging with Deep Learning.

de Jesus DR, Cuevas J, Rivera W, Crivelli S. 2018. Capsule networks for protein structure
classification and prediction. Available at https://arxiv.org/abs/1808.07475.

Durmus H, Giines EO, Krc M. 2017. Disease detection on the leaves of the tomato plants by using
deep learning. In: 2017 6th International Conference on Agro-Geoinformatics. Piscataway: IEEE,
1-5.

Ferentinos KP. 2018. Deep learning models for plant disease detection and diagnosis. Computers
and Electronics in Agriculture 145(6):311-318 DOI 10.1016/j.compag.2018.01.009.

Giménez-Gallego J, Gonzalez-Teruel JD, Jiménez-Buenda M, Toledo-Moreo AB, Soto-Valles F,
Torres-Sanchez R. 2020. Segmentation of multiple tree leaves pictures with natural
backgrounds using deep learning for image-based agriculture applications. Applied Sciences
10(1):202 DOI 10.3390/app10010202.

Hilton C, Dotter M, Ward C, Harguess J. 2019. Classification of maritime vessels using capsule
networks (conference presentation). In: Geospatial Informatics IX. International Society for
Optics and Photonics.

Hinton GE, Krizhevsky A, Wang SD. 2011. Transforming auto-encoders. In: Honkela T, Duch W,
Girolami M, Kaski S, eds. Artificial Neural Networks and Machine Learning-ICANN 2011.
Lecture Notes in Computer Science. Vol. 6791. Berlin, Heidelberg: Springer
DOI 10.1007/978-3-642-21735-7_6.

Hinton GE, Sabour S, Frosst N. 2018. Matrix capsules with EM routing. In: International
conference on learning representations.

Hughes DP, Salath’e M. 2015. An open access repository of images on plant health to enable the
development of mobile disease diagnostics through machine learning and crowdsourcing. ArXiv.
Available at https://arxiv.org/abs/1511.08060.

Jaiswal A, AbdAlmageed W, Wu Y, Natarajan P. 2018. Capsulegan: generative adversarial capsule
network. In: Proceedings of the European Conference on Computer Vision (ECCV).

Kamal K, Yin Z, Wu M, Wu Z. 2019. Depthwise separable convolution architectures for plant
disease classification. Computers and Electronics in Agriculture 165:104948
DOI 10.1016/j.compag.2019.104948.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 17/19

http://dx.doi.org/10.1016/j.biosystemseng.2019.02.002
https://arxiv.org/abs/1808.07475
http://dx.doi.org/10.1016/j.compag.2018.01.009
http://dx.doi.org/10.3390/app10010202
http://dx.doi.org/10.1007/978-3-642-21735-7_6
https://arxiv.org/abs/1511.08060
http://dx.doi.org/10.1016/j.compag.2019.104948
http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Kamilaris A, Prenafeta-Boldu FX. 2018. Deep learning in agriculture: a survey. Computers and
electronics in agriculture 147(2):70-90 DOI 10.1016/j.compag.2018.02.016.

Kim J, Jang S, Park E, Choi S. 2020. Text classification using capsules. Neurocomputing
376(8):214-221 DOI 10.1016/j.neucom.2019.10.033.

Kurup RV, Anupama M, Vinayakumar R, Sowmya V, Soman K. 2019. Capsule network for plant
disease and plant species classification. In: Smys S, Tavares], Balas V, Iliyasu A, eds.
Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent
Systems and Computing. Vol. 1108. Cham: Springer DOI 10.1007/978-3-030-37218-7_47.

LiY, Qian M, Liu P, Cai Q, Li X, Guo J, Yan H, Yu F, Yuan K, Yu J, Qin L, Liu H, Wu W, Xiao P,
Zhou Z. 2019. The recognition of rice images by UAV based on capsule network. Cluster
Computing 22(4):9515-9524 DOI 10.1007/s10586-018-2482-7.

Lukic V, Briiggen M, Mingo B, Croston J, Kasieczka G, Best P. 2019. Morphological
classification of radio galaxies: capsule networks versus convolutional neural networks. Monthly
Notices of the Royal Astronomical Society 487(2):1729-1744 DOI 10.1093/mnras/stz1289.

Miotto R, Wang F, Wang S, Jiang X, Dudley JT. 2018. Deep learning for healthcare: review,
opportunities and challenges. Briefings in Bioinformatics 19(6):1236-1246
DOI 10.1093/bib/bbx044.

Mohanty S. 2018. Plantvillage-dataset. GitHub. Available at https://github.com/spMohanty/
PlantVillage-Dataset.

Mohanty SP, Hughes DP, Salathé M. 2016. Using deep learning for image-based plant disease
detection. Frontiers in Plant Science 7:1419 DOI 10.3389/fpls.2016.01419.

Pawade D, Sakhapara A, Jain M, Jain N, Gada K. 2018. Story scrambler-automatic text generation
using word level RNN-LSTM. International Journal of Information Technology and Computer
Science (IJITCS) 10(6):44-53 DOI 10.5815/ijitcs.2018.06.05.

Picon A, Alvarez-Gila A, Seitz M, Ortiz-Barredo A, Echazarra J, Johannes A. 2019a. Deep
convolutional neural networks for mobile capture device-based crop disease classification in the
wild. Computers and Electronics in Agriculture 161:280-290 DOI 10.1016/j.compag.2018.04.002.

Picon A, Seitz M, Alvarez-Gila A, Mohnke P, Ortiz-Barredo A, Echazarra J. 2019b. Crop
conditional convolutional neural networks for massive multi-crop plant disease classification
over cell phone acquired images taken on real field conditions. Computers and Electronics in
Agriculture 167:105093 DOI 10.1016/j.compag.2019.105093.

Rafique F, Fu L, Mai R. 2021. End to end machine learning for fault detection and classification in
power transmission lines. Electric Power Systems Research 199(10):107430
DOI 10.1016/j.epsr.2021.107430.

Ramcharan A, Baranowski K, McCloskey P, Ahmed B, Legg J, Hughes DP. 2017. Deep learning
for image-based cassava disease detection. Frontiers in Plant Science 8:1852
DOI 10.3389/fpls.2017.01852.

Rangarajan AK, Purushothaman R, Ramesh A. 2018. Tomato crop disease classification using
pre-trained deep learning algorithm. Procedia Computer Science 133:1040-1047
DOI 10.1016/j.procs.2018.07.070.

Reddy NH, Kumar ER, Reddy MV, Reddy KR, Valli GS. 2019. Bioinformatics and image
processing-detection of plant diseases. In: First International Conference on Artificial Intelligence
and Cognitive Computing. Springer, 149-154.

Ren H, Lu H. 2018. Compositional coding capsule network with k-means routing for text
classification. ArXiv. Available at https://arxiv.org/abs/1810.09177.

Sabour S, Frosst N, Hinton GE. 2017. Dynamic routing between capsules. In: Advances in Neural
Information Processing Systems.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 18/19

http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.1016/j.neucom.2019.10.033
http://dx.doi.org/10.1007/978-3-030-37218-7_47
http://dx.doi.org/10.1007/s10586-018-2482-7
http://dx.doi.org/10.1093/mnras/stz1289
http://dx.doi.org/10.1093/bib/bbx044
https://github.com/spMohanty/PlantVillage-Dataset
https://github.com/spMohanty/PlantVillage-Dataset
http://dx.doi.org/10.3389/fpls.2016.01419
http://dx.doi.org/10.5815/ijitcs.2018.06.05
http://dx.doi.org/10.1016/j.compag.2018.04.002
http://dx.doi.org/10.1016/j.compag.2019.105093
http://dx.doi.org/10.1016/j.epsr.2021.107430
http://dx.doi.org/10.3389/fpls.2017.01852
http://dx.doi.org/10.1016/j.procs.2018.07.070
https://arxiv.org/abs/1810.09177
http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

PeerJ Computer Science

Salazar-Reque IF, Huaman SG, Kemper G, Telles J, Diaz D. 2019. An algorithm for plant disease
visual symptom detection in digital images based on superpixels. International Journal on
Advanced Science, Engineering and Information Technology 9(1):194-203
DOI 10.18517/ijaseit.9.1.5322.

Satapathy SK, Mishra S, Sundeep RS, Teja USR, Mallick PK, Shruti M, Shravya K. 2019. Deep
learning based image recognition for vehicle number information. International Journal of
Innovative Technology and Exploring Engineering 8:52-55 DOI 10.1016/j.iatssr.2019.11.008.

Sengar N, Dutta MK, Travieso CM. 2018. Computer vision based technique for identification and
quantification of powdery mildew disease in cherry leaves. Computing 100(11):1189-1201
DOI 10.1007/s00607-018-0638-1.

Shruthi U, Nagaveni V, Raghavendra B. 2019. A review on machine learning classification
techniques for plant disease detection. In: 2019 5th International Conference on Advanced
Computing & Communication Systems (ICACCS). IEEE, 281-284.

Singh SP, Kumar A, Darbari H, Singh L, Rastogi A, Jain S. 2017. Machine translation using deep
learning: An overview. In: 2017 International Conference on Computer, Communications and
Electronics (Comptelix). Piscataway: IEEE, 162-167.

Sullca C, Molina C, Rodrguez C, Fernandez T. 2019. Diseases detection in blueberry leaves using
computer vision and machine learning techniques. International Journal of Machine Learning
and Computing 9(5):656-661 DOI 10.18178/ijmlc.2019.9.5.854.

Too EC, Yujian L, Njuki S, Yingchun L. 2019. A comparative study of fine-tuning deep learning
models for plant disease identification. Computers and Electronics in Agriculture 161(2005):272—
279 DOI 10.1016/j.compag.2018.03.032.

Upadhyay Y, Schrater P. 2018. Generative adversarial network architectures for image synthesis
using capsule networks. ArXiv. Available at https://arxiv.org/abs/1806.03796.

Yin K, Qiu J-L. 2019. Genome editing for plant disease resistance: applications and perspectives.
Philosophical Transactions of the Royal Society B 374(1767):20180322
DOI 10.1098/rstb.2018.0322.

Zhao W, Peng H, Eger S, Cambria E, Yang M. 2019. Towards scalable and reliable capsule
networks for challenging NLP applications. Available at https://arxiv.org/abs/1906.02829.

Zhao W, Ye], Yang M, Lei Z, Zhang S, Zhao Z. 2018. Investigating capsule networks with
dynamic routing for text classification. Available at https://arxiv.org/abs/1804.00538.

Zheng Y-Y, Kong J-L, Jin X-B, Wang X-Y, Su T-L, Zuo M. 2019b. Cropdeep: the crop vision
dataset for deep-learning-based classification and detection in precision agriculture. Sensors
19(5):1058 DOI 10.3390/519051058.

Zheng Y, Yuan C-A, Shang L, Huang Z-K. 2019a. Leaf recognition based on capsule network. In:
International Conference on Intelligent Computing. Cham: Springer, 320-325.

Samin et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.752 19/19

http://dx.doi.org/10.18517/ijaseit.9.1.5322
http://dx.doi.org/10.1016/j.iatssr.2019.11.008
http://dx.doi.org/10.1007/s00607-018-0638-1
http://dx.doi.org/10.18178/ijmlc.2019.9.5.854
http://dx.doi.org/10.1016/j.compag.2018.03.032
https://arxiv.org/abs/1806.03796
http://dx.doi.org/10.1098/rstb.2018.0322
https://arxiv.org/abs/1906.02829
https://arxiv.org/abs/1804.00538
http://dx.doi.org/10.3390/s19051058
http://dx.doi.org/10.7717/peerj-cs.752
https://peerj.com/computer-science/

	CapPlant: a capsule network based framework for plant disease classification
	Introduction
	Related work
	Methodology
	Result
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

