
Submitted 15 July 2021
Accepted 28 September 2021
Published 21 October 2021

Corresponding author
Noémi Gaskó,
gaskonomi@cs.ubbcluj.ro

Academic editor
Lisu Yu

Additional Information and
Declarations can be found on
page 11

DOI 10.7717/peerj-cs.750

Copyright
2021 Béczi and Gaskó

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Approaching the bi-objective critical
node detection problem with a smart
initialization-based evolutionary
algorithm
Eliézer Béczi Noémi Gaskó
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ABSTRACT
Determining the critical nodes in a complex network is an essential computation
problem. Several variants of this problem have emerged due to its wide applicability in
network analysis. In this articlewe study the bi-objective critical node detection problem
(BOCNDP), which is a new variant of the well-known critical node detection problem,
optimizing two objectives at the same time: maximizing the number of connected
components and minimizing the variance of their cardinalities. Evolutionary multi-
objective algorithms (EMOA) are a straightforward choice to solve this type of problem.
Wepropose three different smart initialization strategieswhich can be incorporated into
any EMOA. These initialization strategies take into account the basic properties of the
networks. They are based on the highest degree, random walk (RW) and depth-first
search. Numerical experiments were conducted on synthetic and real-world network
data. The three different initialization types significantly improve the performance of
the EMOA.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation
Keywords Complex networks, Critical nodes, Bi-objective critical node detection, Multi-objective
algorithms, Memetic algorithms

INTRODUCTION
In recent years, complex networks have received a lot of attention due to their applicability
in various domains. Several optimization problems were studied within complex networks
like community detection (Fortunato, 2010), maximal influence node detection (Kempe,
Kleinberg & Tardos, 2003) and link prediction (Liben-Nowell & Kleinberg, 2007). All of the
aforementioned problems reveal major insights into the networks studied.

Identifying critical nodes (the critical node detection problem, or CNDP) in a complex
network is a crucial task. The base problem consists of minimizing pairwise connectivity
by removing a subset of K nodes in a given graph. In Arulselvan et al. (2009) it was proven
to be an NP-hard problem.

The general formulation of the problem is Lalou, Tahraoui & Kheddouci (2018): given
a G= (V ,E) graph and a connectivity metric λ, find the set of nodes S⊆ V such that
G[V \S] satisfies the metric λ. This metric is usually defined as an objective function that
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needs to be optimized (for example, maximize the number of components, minimize the
component size, etc.).

CNDP has a wide field of applicability, for example in social network analysis (Fan
& Pardalos, 2010), epidemic control (Tao, Zhongqian & Binghong, 2006), network
immunization (Kuhlman et al., 2010) and biological networks (Liu et al., 2020). Several
algorithms were designed for the CNDP. The majority of the exact methods are based on
the integer linear programming formulation of the problem (Summa, Grosso & Locatelli,
2012). In Addis, Summa & Grosso (2013), a dynamic programming approach is proposed
for a special class of graphs. As approximation algorithms, we can mention, for example,
a simulated annealing algorithm (Ventresca, 2012). A thorough survey of existing methods
for the CNDP can be found in Lalou, Tahraoui & Kheddouci (2018).

The CNDP has several variants exploring the connectivity metric λ. Other variants with
constraints were introduced, such as the cardinality constrained critical node detection
problem (CC-CNDP) (Arulselvan et al., 2011) and the component-cardinality-constrained
critical node problem(3C-CNDP) (Lalou, Tahraoui & Kheddouci, 2016).One of the existing
bi-objective variants of the CNDP is proposed in Li et al. (2019). In this variant the cost of
removing the node counts. Another bi-objective variant proposed in Ventresca, Harrison
& Ombuki-Berman (2018) is the base of our study (described in ‘The Bi-objective Critical
Node Detection Problem’).

Evolutionary algorithms are powerful tools in optimization problems. Multi-objective
optimization problems involve multiple objective functions which need to be optimized
at the same time, so they can be used in real-world optimization problems. Because the
BOCNDP is an NP-hard problem (Ventresca, Harrison & Ombuki-Berman, 2018), the
use of the evolutionary algorithms is straightforward. To increase the performance of
evolutionary algorithms, several techniques were designed, for example, hybridization, a
special case of memetic algorithms which incorporates a local search in the initialization
phase.Kazimipour, Li & Qin (2014) emphasizes the importance of population initialization
techniques, introduces a new categorization, and mentions some concrete examples.

Due to thewide applicability of the critical node detection problem, this article introduces
new smart initialization strategies that can be incorporated into any multi-objective
optimization algorithm that treats the BOCNDP to increase its performance. These
strategies can be used in other variants of the CNDP, or even for other computationally
graphed theoretical problems because they take into account structural information about
the network.

To summarise, the main goal of this article is as follows:

• a smart initialization which is based on a depth-first search: nodes lying on a path are
chosen to be in the initial population;
• a random walk-based smart initialization strategy: a random walk is simulated on the
graph, and nodes that appear more times in the walk are considered more important;
• a degree-based smart initialization strategy: nodes with a higher degree are more likely
to be chosen in the initial population;
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• statistical analysis of the three smart initialization strategies introduced here and their
comparison with random initialization.

The rest of the article is organized as follows: In the second section, we describe the
bi-objective critical node detection problem and the existing solving algorithms. In the
third section, we present the proposed initialization algorithms. The next section describes
the numerical experiments. The article ends with conclusions and further work.

THE BI-OBJECTIVE CRITICAL NODE DETECTION PROBLEM
Let G= (V ,E) be an undirected graph, where V is the set of nodes, and E is the set of
edges.

Let G= (V ,E) be an undirected graph, where V is the set of nodes, and E is the set
of edges. The bi-objective critical node detection problem was proposed in Ventresca,
Harrison & Ombuki-Berman (2018) and consists of finding a fixed number of k nodes,
which, if deleted from graph G, will optimize the following two objectives:
1. maximize the number of connected components;
2. minimize the variance of the cardinality of the connected components.
Formally the objectives are the following:

max |H |, (1)

min var(H ), (2)

such that
∑
i∈S

wi≤W , (3)

where wi are the weights associated to the vertices of the graph and W > 0 is a constraint,
H denotes G[V \S] the set of the connected components and var(H ) denotes the variance
of the cardinality of the connected components and can be calculated in the following way:

1
|H |

∑
h∈H

(
|h|−

n∗

|H |

)2

, (4)

where n∗=
∑

h∈H |h| is the number of nodes in G[V \S]. The BOCNDP is different from
the CNDP (Ventresca, Harrison & Ombuki-Berman, 2018).

Example 1 Let us consider a simple example, the graph presented in Fig. 1. If we need to
identify k = 2 critical nodes, then S= {2,3} is the optimal solution. The G[V \S] will have
5 components, |H | = 5 and

var(H )=
1
5
·

[(
1−

13
5

)2

+4 ·
(
3−

13
5

)2
]
=

16
25
= 0.64.
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Figure 1 A small graph with 15 nodes. If we delete the second and the third nodes (left), the graph will
have 5 connected components (right).

Full-size DOI: 10.7717/peerjcs.750/fig-1

Because the BOCNDP is a relatively new problem formulation, the literature is not rich in
proposed algorithms. In Ventresca, Harrison & Ombuki-Berman (2018), six existing multi-
objective algorithms are used to solve the BOCNDP. In Li et al. (2019), a different variant
of the BOCNDP, called Bi-CNDP, is introduced and studied with decomposition-based
multi-objective evolutionary algorithms.

EVOLUTIONARY COMPUTATION METHOD
Evolutionary algorithms are powerful optimization tools, especially in multi-objective
optimization problems. To increase the performance of these algorithms, hybrid versions
are designed and analysed. Smart initialization of the population of an evolutionary
algorithm can increase the performance of the algorithm significantly (Maaranen, Miettinen
& Penttinen, 2007).

We present three strategies that can be used in the initialization phase of any multi-
objective algorithm. The first one is based on a depth search algorithm, outlined in the
algorithm 1. A depth-first search (DFS) algorithm is started with a random initial node,
and every xth element will be added to the chromosome, where x = |V |k , |V | is the number
of nodes and k is the number of critical nodes.

The second initialization method is based on the degree distribution of the nodes.
The first x nodes with the highest degree are set in the chromosome, and the rest of the
k−x nodes are selected randomly, to preserve the stochastic nature of the initialization
(Algorithm 2).

The third method is based on a random walk. We start the walk from a random node,
t is the length of the walk and pr is the probability to restart the walk. In each step, the
decision is to continue the walk or to restart. If we fail to walk through k different nodes,
the algorithm will restart from another initial point. In the walk, we keep counting how
many times a node appears. The more times it appears, the higher the probability it is a
gene in the chromosome. The main steps are presented in the algorithm 3.

These initialization strategies can be used in any kind of multi-objective evolutionary
algorithm. The outline of the smart initialization-based algorithm is depicted in the
algorithm 4.
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Algorithm 1 Depth-first search solution generator (DFS)
Require: G,k,x
1: start← Select(V )
2: S←Dfs(G,start )
3: return S[::x] F Take every xth element

Algorithm 2 Degree solution generator (Deg)
Require: G,k,x
1: V ′← Sorted(V ) F Sort nodes according to their degree in DESC order
2: S←V ′[:x] F Take first x nodes with the highest degree
3: while |S|< k do
4: node← Select(V ′)
5: if node /∈ S then
6: S← S∪{node}
7: end if
8: end while
9: Shuffle(S)
10: return S

NUMERICAL EXPERIMENTS
Benchmarks
Synthetic data
We use the synthetic graph set proposed in Ventresca (2012). The benchmark set contains
four different types of graphs: Barabási-Albert (BA), Erds-Rényi (ER), Forest-fire (FF) and
Watts–Strogatz (WS). Barabási-Albert graphs are scale-free networks, using a preferential
attachmentmechanism and some high degree nodes (hubs). Erds-Rényi graphs are random
networks in which each link between nodes is generated randomly based on a probability.
Forest-fire graphs are random graphs with a preferential attachment mechanism. Watts–
Strogatz graphs are random graphs with short average path lengths, so they have a dense
structure.

Table 1 presents some basic properties of the benchmarks used: number of nodes (|V |),
number of edges (|E|), the number of critical nodes (k), average degree (〈d〉), density of
the graph (ρ), and average path length (lG).

Real dataset Nine real datasets are used for the numeric experiments. The real datasets
come from different areas: transportation networks (USAir97, TrainsRome, EUFlights),
biological networks (Bovine, EColi, HumanDis), social networks (Oclinks, Facebook), and
an electric network (Circuit). The size of the graphs varies from 121 to 4039 nodes. The
density of the networks varies from 0.008 to 0.044 and the average path length is from
2.622 to 43.496. The basic properties of the networks are outlined in Table 2.

Statistical analysis of the smart initialization strategies
To analyse the behaviour of the initialization strategies introduced, we generated 100
independent solutions and calculated the values of |H | and var(H ). A statistical test was
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Algorithm 3 Random walk solution generator (RW)
Require: G,k,t ,pr
1: visited←∅
2: while True do
3: core← Select(V )
4: current← core
5: for i← 1,t+1 do
6: if current ∈ visited then
7: visited [current ]← visited [current ]+1
8: else
9: visited [current ]← 1
10: end if
11: restart←Rand Int(1,100)
12: if restart ≤ pr then
13: current← core
14: else
15: neighbors←Neighbors(G,current ) F Neighbors of the current node
16: current← Select(neighbors)
17: end if
18: end for
19: if |visited| ≥ k then
20: break
21: else
22: visited←∅
23: end if
24: end while
25: Sort(visited) F Sort nodes in visited according to visits paid in DESC order
26: return visited [:k] F Take the first k most visited nodes

Algorithm 4 Evolutionary algorithm with smart initialization
Require: G,k
1: initialize1 population P s;
2: run a multi-objective Pareto based optimization algorithm2, where P initial

= P s;
3: return Pareto front

1for the initialization we use: random initialization, depth-first search, degree, random
walk;
2e.g., NSGA-II, SPEA

conducted to mark the differences between the methods. Table 3 presents the results. In
almost all cases, the degree-based initialization outperformed the other strategies. Almost
in all cases the degree based initialization outperformed the other strategies, but all of them
outperformed the random initialization.
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Table 1 Benchmark test graphs and basic properties.

Graph |V | |E| k 〈d〉 ρ lG
BA500 500 499 50 1.996 0.004 5.663
BA1000 1000 999 75 1.998 0.002 6.045
BA2500 2500 2499 100 1.999 0.001 6.901
BA5000 5000 4999 150 2.000 0.000 8.380
ER250 235 350 50 2.979 0.013 5.338
ER500 466 700 80 3.004 0.006 5.973
ER1000 941 1400 140 2.976 0.003 6.558
ER2500 2344 3500 200 2.986 0.001 7.516
FF250 250 514 50 4.112 0.017 4.816
FF500 500 828 110 3.312 0.007 6.026
FF1000 1000 1817 150 3.634 0.004 6.173
FF2000 2000 3413 200 3.413 0.002 7.587
WS250 250 1246 70 9.968 0.040 3.327
WS500 500 1496 125 5.984 0.012 5.304
WS1000 1000 4996 200 9.992 0.010 4.444
WS1500 1500 4498 265 5.997 0.004 7.554

Table 2 Real graphs and basic properties.

Graph |V | |E| k 〈d〉 ρ lG Ref.

Bovine 121 190 12 3.140 0.026 2.861 Reimand et al. (2008)
Circuit 252 399 25 3.167 0.012 5.806 Milo et al. (2004)
EColi 328 456 15 2.780 0.008 4.834 Yang, Huang & Lai (2008)
USAir97 332 2126 33 12.807 0.038 2.738 Rossi & Ahmed (2015)
HumanDis 516 1188 52 4.605 0.008 6.509 Goh et al. (2007)
TrainsRome 255 272 26 2.133 0.008 43.496 Cacchiani, Caprara & Toth (2010)
EUFlights 1191 31610 119 53.081 0.044 2.622 Opsahl (2011)
Oclinks 1839 13838 190 14.574 0.008 3.055 Opsahl & Panzarasa (2009)
Facebook 4039 88234 404 43.691 0.010 3.693 Leskovec & Krevl (2014)

Algorithm
For the numerical experiments, we used the NSGA-II (Deb et al., 2002) algorithm within
the Platypus (https://github.com/quaquel/Platypus, last accessed 3/12/2019) framework.
NSGA-II is a multi-objective evolutionary algorithm in which every member of the
population is sorted according to the level of non-domination. To maintain diversity, a
crowding distance is applied.

Parameter setting
For the numerical experiments, parameters of the NSGA-II algorithm are the default values
of the Platypus framework, with a total evaluation number of 10000. All the weights of the
nodes are set to 1, andW equals the number of nodes. Parameters of the smart initialization
strategies are as follows: for the DFS, x is the number of nodes divided by the value of k;
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Table 3 Average value± standard deviation of the for all datasets over 100 independent runs.

Graph Random DFS Deg RW

|H | var(H ) |H | var(H ) |H | var(H ) |H | var(H )

BA500 49.36±21.74 3097.82±2112.76 41.15±11.15 3695.26±1462.78 244.28±18.65* 3.05±1.36* 103.81±32.89 441.45±2365.44

BA1000 73.31±36.73 10002.81±5993.79 60.37±24.97 12836.08±5227.38 474.91±29.23* 4.21±1.51* 176.79±61.87 1652.69±4710.80

BA2500 98.03±39.55 54123.97±24512.87 89.26±32.17 60285.58±24166.17 860.18±63.00* 18.64±6.30* 252.58±97.64 9704.90±18968.13

BA5000 139.40±34.40 148039.52±47033.66 142.23±42.43 152707.13±54715.66 1533.22±104.56* 26.19±6.59* 337.75±138.00 30651.02±37103.39

ER250 14.38±3.15 1827.15±497.41 19.33±3.90 1154.09±1274.76 26.00±4.17* 765.19±220.02* 12.81±2.55 2090.96±485.71

ER500 21.02±3.67 5936.26±1206.28 24.69±4.62 4796.56±3592.21 36.89±5.12* 3007.85±584.29* 18.31±3.49 6946.33±1509.55

ER1000 42.20±5.01 12845.73±1675.54 46.76±7.35 11765.73±7683.25 77.09±8.15* 5947.44±927.67* 38.99±4.92 13974.21±2125.06

ER2500 55.97±7.00 75946.14±10701.36 56.94±5.94 73241.04±7760.67 105.14±10.41* 38069.15±4333.11* 50.61±6.81 84401.80±12291.82

FF250 20.12±4.54 1360.18±518.16 21.27±3.95 1164.85±315.27 51.89±7.85* 36.68±41.49* 38.25±9.23 221.69±248.40

FF500 53.97±7.37 1449.86±401.19 66.10±7.41 895.44±214.06 130.62±12.81* 9.31±3.27* 77.74±12.84 164.61±180.47

FF1000 68.47±9.04 7344.12±1498.93 79.71±8.85 5491.09±966.88 173.03±15.29* 49.80±20.63* 110.50±19.33 1402.81±1121.88

FF2000 97.52±10.87 24888.22±3761.80 99.17±10.83 24149.41±3287.01 270.92±31.20* 121.23±67.59* 135.65±31.73 6694.04±8302.33

WS250 1.00±0.00 0.00±0.00* 1.00±0.00 0.00±0.00* 1.00±0.00 0.00±0.00* 1.09±0.29* 711.12±2272.67

WS500 1.21±0.50 5633.93±12549.71 1.01±0.10 318.62±3186.22* 2.08±1.00* 20254.58±14955.09 1.78±0.98 15701.24±16313.11

WS1000 1.00±0.00 0.00±0.00* 1.00±0.00 0.00±0.00* 1.01±0.10 1592.01±15920.10 1.35±0.61* 44980.28±70915.49

WS1500 1.18±0.41 63783.38±141708.20 1.11±0.31 38209.49±109239.42 2.47±1.12 263515.70±136371.28* 3.54±1.48* 276008.24±98915.66

Bovine 6.58±10.11 1218.83±1179.19 2.63±4.59 1171.03±1351.67 94.91±5.24* 1.02±0.94* 87.56±11.08 4.82±8.35

Circuit 4.03±1.66 9182.68±2622.23 3.69±1.56 9007.61±3059.59 7.72±2.50* 4853.82±2099.33* 4.50±1.82 8127.30±2820.42

EColi 9.24±8.12 12020.10±7415.24 11.01±8.97 8373.55±6239.28 103.58±16.47* 189.90±118.58* 45.93±22.61 2568.58±3649.19

USAir97 7.53±4.84 11035.84±5756.78 7.55±5.48 12066.09±6284.24 54.00±5.28 1038.70±160.83 62.99±7.90* 794.91±451.27*

HumanDis 18.53±5.79 9095.70±4116.18 20.01±5.46 7639.00±3162.30 76.58±8.19* 160.28±80.79* 30.62±10.36 4623.64±3005.66

TrainsRome 17.85±1.79 273.49±140.99 21.05±0.80* 64.73±37.06* 21.32±1.86* 184.62±55.62 1.87±0.82 5223.65±5085.48

EUFlights 18.89±9.15 66944.36±28610.83 16.98±7.30 73118.63±34156.37 25.84±5.72 42239.73±8314.82 44.30±15.39* 25945.04±8952.33*

Oclinks 41.93±12.59 70563.01±22486.35 45.30±10.31 61325.98±15792.50 294.12±23.86 6728.72±789.91 349.02±19.11* 5189.44±466.75*

Facebook 10.76±9.60 929504.70±865354.95 15.64±11.70 642310.12±473911.43 75.16±6.14* 164435.23±15504.56* 40.67±18.65 382094.53±230206.80

Notes.
*An asterisk (*) indicates the best results based on a Wilcoxon sign-rank test (separately for |H | and var(H )).
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for the random walk, the number of steps is 10000 and the probability of restart is 0.2; and
for the Deg algorithm, x = k

3 .

Performance evaluation
For the performance evaluation, we use the hypervolume indicator (Zitzler & Thiele, 1998;
Zitzler & Thiele, 1999), a popular measure for multi-objective optimization algorithms.
The hypervolume indicator measures the volume of the region of the dominated points in
the objective space bounded by a reference point.

RESULTS AND DISCUSSION
In the case of synthetic benchmarks, we conducted ten independent runs for each
initialization strategy (depth-first search, degree-based, random walk) and made
comparisons with random initialization. Table 4 presents the mean values and the standard
deviation of the hypervolume indicators. For a reference point, we set the nadir point of
all unified Pareto fronts. We conducted a Wilcoxon sign rank nonparametric test for the
hypervolume indicator reported by each method. The Wilcoxon sign rank assesses if there
is a significant difference between the two sample means. An (*) is used to indicate the
statistical significance of differences. All initialization strategies which are not statistically
different from the best one are marked. Figure 2 presents the Pareto front obtained within
a single run.

Table 5 describes the mean value and standard deviation obtained for the real datasets.
Best results are marked with an (*).

Based on the results, we can draw a general conclusion for the synthetic benchmarks
about the best initialization strategy. The structure of the graph determines which
initialization is worth using, but based on the numerical experiments, all of them give
better results than the random initialization. In the case of Barabási-Albert graphs, which
contain hubs, the degree-based initialization gets the best result. Erds-Rényi graphs are
random graphs, in which case the depth-first search algorithm seems to be best. For
Forest-fire graphs, which are random graphs, the three proposed initialization types gave
almost the same result. The Watts–Strogatz graphs have a dense structure, and the best
results were provided by the random walk-based algorithm.

In the case of the real networks, all three proposed initialization strategies outperformed
the random initialization. In most cases, the degree-based initialization seemed to give the
best results.

CONCLUSIONS AND FURTHER WORK
In this paper, we propose three smart population initialization methods for the BOCNDP
problem. Numerical experiments show the effectiveness of the proposed approaches. All
three methods outperformed the traditional random initialization.

As further work, other initialization strategies will be investigated and an adaptive
algorithm can be developed to find the best initialization, taking into account the basic
properties of the graph.
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Table 4 Average value± standard deviation of the hypervolume indicator for the synthetic benchmarks.

Graph Random DFS Deg RW

BA500 15.65±4.37 13.03±5.37 28.05±2.62* 20.72±4.37
BA1000 36.54±21.58 58.38±24.17 154.27±10.54* 68.21±26.51
BA2500 6138.01±1701.47 2924.91±2828.77 18607.82±364.64* 8643.83±1993.09
BA5000 1078479.10±319614.94 449069.24±396267.77 3409301.92±47950.42* 1706543.15±182869.56
ER250 738.68±217.41 2387.05±342.45* 1162.31±252.49 1204.39±319.17
ER500 1607.75±920.84 8045.09±1848.71* 2762.01±1572.09 2644.67±919.06
ER1000 1133.40±949.75 9407.93±4141.55* 6385.57±3487.82* 5176.12±1499.51
ER2000 39323.23±24560.07 65449.57±34152.98* 56123.63±12683.44* 72259.64±26198.93*

FF250 38.01±6.84 36.34±12.26* 41.88±5.39* 45.61±7.52*

FF500 24.51±8.19 51.42±9.68* 37.72±4.93 32.98±6.86
FF1000 1402.85±599.70 1718.09±647.33 3274.96±387.73* 3194.72±409.27*

FF2000 30560.10±20460.26 16206.67±13027.87 136548.86±12378.66* 107945.88±12371.82
WS250 8132.90±268.63 9577.11±1390.61 8495.50±636.66 16193.42±3306.69*

WS500 48526.56±14388.26 35879.19±8263.24 110772.29±31047.79 203301.59±30420.58*

WS1000 159361.50±503.68 159202.10±0.32 162811.19±11412.20 337726.99±90573.11*

WS1500 484347.05±140137.66 708776.63±223377.92 1923479.18±351573.85 5058526.43±1741808.94*

Notes.
*An asterisk (*) indicates the best results which are based on a Wilcoxon sign-rank test.

Figure 2 Pareto front obtained in a single run for the 16 synthetic benchmark problems.
Full-size DOI: 10.7717/peerjcs.750/fig-2
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Table 5 Average value± standard deviation of the hypervolume indicator for the real datasets.

Graph Random DFS Deg RW

Bovine 275259.54±57721.31 263669.06±62622.52 4524666.52±3.17* 3148983.90±3.24
Circuit 77,116.15±29,312.55 57695.87±31444.12 1419610.33±95327.38* 1086345.36±77486.85
EColi 498186.23±84010.17 368140.36±172105.46 9742206.66±165771.44* 6820902.13±71640.00
USAir 193223.67±115193.40 361106.95±137617.76 5895064.90±123050.07* 4010784.11±95995.05
HumanDis 667579.05±18327.70 762880.99±14569.84 7944126.85±156209.02* 5659398.93±72630.76
TrainsRome 138525.07±5559.37 154874.11±4437.33 1727489.76±41083.54* 1017365.41±59551.06
EUFlights 59657.61±34396.03 111198.59±28682.44 9274581.78±279065.65* 6373823.26±143830.93
OClinks 291207.54±92826.46 313517.98±163921.22 26002131.74±584868.91* 18601730.00±296910.80
Facebook 4920.00±0.00 5273.00±0.00 1031865.98±1185922.59 1409016.39±817382.53*

Notes.
*An asterisk (*) indicates the best results which are based on a Wilcoxon sign-rank test.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by a grant of the Romanian National Authority for Scientific
Research and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2019-
1633. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Romanian National Authority for Scientific Research and Innovation, CNCS -
UEFISCDI, project number PN-III-P1-1.1-TE-2019-1633.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Eliézer Béczi conceived and designed the experiments, performed the experiments,
performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.
• Noémi Gaskó conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The code and data are available at GitHub: https://github.com/Eliezer-Beczi/CNDP. The
source of networks used for analysis are described in the article.

Béczi and Gaskó (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.750 11/14

https://peerj.com
https://github.com/Eliezer-Beczi/CNDP
http://dx.doi.org/10.7717/peerj-cs.750


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.750#supplemental-information.

REFERENCES
Addis B, SummaMDi, Grosso A. 2013. Identifying critical nodes in undirected graphs:

complexity results and polynomial algorithms for the case of bounded treewidth.
Discrete Applied Mathematics 161(16–17):2349–2360 DOI 10.1016/j.dam.2013.03.021.

Arulselvan A, Commander CW, Elefteriadou L, Pardalos PM. 2009. Detecting critical
nodes in sparse graphs. Computers & Operations Research 36(7):2193–2200
DOI 10.1016/j.cor.2008.08.016.

Arulselvan A, Commander CW, Shylo O, Pardalos PM. 2011. Cardinality-constrained
critical node detection problem. In: Gülpınar N, Harrison P, Rüstem B, eds. Perfor-
mance models and risk management in communications systems. Springer Optimization
and Its Applications. vol. 46. New York, NY: Springer DOI 10.1007/978-1-4419-0534-5_4.

Cacchiani V, Caprara A, Toth P. 2010. Scheduling extra freight trains on rail-
way networks. Transportation Research Part B: Methodological 44(2):215–231
DOI 10.1016/j.trb.2009.07.007.

Deb KD, Pratap A, Agarwal S, Meyarivan T. 2002. A fast and elitist multiobjective
genetic algorithm: NSGA-ii. IEEE Transactions on Evolutionary Computation
6:182–197 DOI 10.1109/4235.996017.

Fan N, Pardalos PM. 2010. Robust optimization of graph partitioning and critical
node detection in analyzing networks. In: WuW, Daescu O, eds. Combinatorial
Optimization and Applications. COCOA 2010. Lecture Notes in Computer Science. vol.
6508. Berlin, Heidelberg: Springer DOI 10.1007/978-3-642-17458-2_15.

Fortunato S. 2010. Community detection in graphs. Physics Reports 486:75–174
DOI 10.1016/j.physrep.2009.11.002.

Goh K-I, CusickME, Valle D, Childs B, Vidal M, Barabási A-L. 2007. The human
disease network. Proceedings of the National Academy of Sciences of the United States
of America 104(21):8685–8690 DOI 10.1073/pnas.0701361104.

Kazimipour B, Li X, Qin AK. 2014. A review of population initialization techniques for
evolutionary algorithms. In: 2014 IEEE congress on evolutionary computation (CEC).
Piscataway: IEEE, 2585–2592.

Kempe D, Kleinberg J, Tardos É. 2003.Maximizing the spread of influence through a
social network. In: Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining. New York: ACM, 137–146.

Kuhlman CJ, Kumar VA, MaratheMV, Ravi S, Rosenkrantz DJ. 2010. Finding critical
nodes for inhibiting diffusion of complex contagions in social networks. In: Balcázar
JL, Bonchi F, Gionis A, Sebag M, eds.Machine Learning and Knowledge Discovery in
Databases. ECML PKDD 2010. Lecture Notes in Computer Science. vol. 6322. Berlin,
Heidelberg: Springer DOI 10.1007/978-3-642-15883-4_8.

Béczi and Gaskó (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.750 12/14

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.750#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.750#supplemental-information
http://dx.doi.org/10.1016/j.dam.2013.03.021
http://dx.doi.org/10.1016/j.cor.2008.08.016
http://dx.doi.org/10.1007/978-1-4419-0534-5_4
http://dx.doi.org/10.1016/j.trb.2009.07.007
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1007/978-3-642-17458-2_15
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.1073/pnas.0701361104
http://dx.doi.org/10.1007/978-3-642-15883-4_8
http://dx.doi.org/10.7717/peerj-cs.750


LalouM, Tahraoui MA, Kheddouci H. 2016. Component-cardinality-constrained
critical node problem in graphs. Discrete Applied Mathematics 210:150–163
DOI 10.1016/j.dam.2015.01.043.

LalouM, Tahraoui MA, Kheddouci H. 2018. The critical node detection problem in net-
works: a survey. Computer Science Review 28:92–117 DOI 10.1016/j.cosrev.2018.02.002.

Leskovec J, Krevl A. 2014. Snap datasets: Stanford large network dataset collection.
Available at https://snap.stanford.edu/data/.

Li J, Pardalos PM, Xin B, Chen J. 2019. The bi-objective critical node detection problem
with minimum pairwise connectivity and cost: theory and algorithms. Soft Comput-
ing 23(23):12729–12744 DOI 10.1007/s00500-019-03824-8.

Liben-Nowell D, Kleinberg J. 2007. The link-prediction problem for social net-
works. Journal of the American Society for Information Science and Technology
58(7):1019–1031 DOI 10.1002/asi.20591.

Liu X, Hong Z, Liu J, Lin Y, Rodríguez-Patón A, Zou Q, Zeng X. 2020. Computational
methods for identifying the critical nodes in biological networks. Briefings in
Bioinformatics 21(2):486–497 DOI 10.1093/bib/bbz011.

Maaranen H, Miettinen K, Penttinen A. 2007. On initial populations of a genetic
algorithm for continuous optimization problems. Journal of Global Optimization
37(3):405–436 DOI 10.1007/s10898-006-9056-6.

Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U.
2004. Superfamilies of evolved and designed networks. Science 303(5663):1538–1542
DOI 10.1126/science.1089167.

Opsahl T. 2011.Why anchorage is not (that) important: Binary ties and sample selection.
online]. Available at http://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-
important-binary-tiesand-sample-selection (accessed on September 2013).

Opsahl T, Panzarasa P. 2009. Clustering in weighted networks. Social Networks
31(2):155–163 DOI 10.1016/j.socnet.2009.02.002.

Reimand J, Tooming L, Peterson H, Adler P, Vilo J. 2008. Graphweb: mining hetero-
geneous biological networks for gene modules with functional significance. Nucleic
Acids Research 36:452–459 DOI 10.1093/nar/gkn230.

Rossi RA, Ahmed NK. 2015. The network data repository with interactive graph analyt-
ics and visualization. In: Twenty-Ninth AAAI Conference on Artificial Intelligence.

SummaMDi, Grosso A, Locatelli M. 2012. Branch and cut algorithms for detecting
critical nodes in undirected graphs. Computational Optimization and Applications
53(3):649–680 DOI 10.1007/s10589-012-9458-y.

Tao Z, Zhongqian F, BinghongW. 2006. Epidemic dynamics on complex networks.
Progress in Natural Science 16(5):452–457 DOI 10.1080/10020070612330019.

Ventresca M. 2012. Global search algorithms using a combinatorial unranking-based
problem representation for the critical node detection problem. Computers &
Operations Research 39(11):2763–2775 DOI 10.1016/j.cor.2012.02.008.

Ventresca M, Harrison KR, Ombuki-Berman BM. 2018. The bi-objective critical node
detection problem. European Journal of Operational Research 265(3):895–908
DOI 10.1016/j.ejor.2017.08.053.

Béczi and Gaskó (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.750 13/14

https://peerj.com
http://dx.doi.org/10.1016/j.dam.2015.01.043
http://dx.doi.org/10.1016/j.cosrev.2018.02.002
https://snap.stanford.edu/data/
http://dx.doi.org/10.1007/s00500-019-03824-8
http://dx.doi.org/10.1002/asi.20591
http://dx.doi.org/10.1093/bib/bbz011
http://dx.doi.org/10.1007/s10898-006-9056-6
http://dx.doi.org/10.1126/science.1089167
http://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-tiesand-sample-selection
http://toreopsahl.com/2011/08/12/why-anchorage-is-not-that-important-binary-tiesand-sample-selection
http://dx.doi.org/10.1016/j.socnet.2009.02.002
http://dx.doi.org/10.1093/nar/gkn230
http://dx.doi.org/10.1007/s10589-012-9458-y
http://dx.doi.org/10.1080/10020070612330019
http://dx.doi.org/10.1016/j.cor.2012.02.008
http://dx.doi.org/10.1016/j.ejor.2017.08.053
http://dx.doi.org/10.7717/peerj-cs.750


Yang R, Huang L, Lai Y-C. 2008. Selectivity-based spreading dynamics on complex
networks. Physical Review E 78(2):026111 DOI 10.1103/PhysRevE.78.026111.

Zitzler E, Thiele L. 1998. Multiobjective optimization using evolutionary algorithms—
a comparative case study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP,
eds. Parallel Problem Solving from Nature – PPSN V. PPSN 1998. Lecture Notes in
Computer Science. vol. 1498. Berlin, Heidelberg: Springer DOI 10.1007/BFb0056872.

Zitzler E, Thiele L. 1999.Multiobjective evolutionary algorithms: a comparative
case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation 3(4):257–271 DOI 10.1109/4235.797969.

Béczi and Gaskó (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.750 14/14

https://peerj.com
http://dx.doi.org/10.1103/PhysRevE.78.026111
http://dx.doi.org/10.1007/BFb0056872
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.7717/peerj-cs.750

