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ABSTRACT
Anomaly detection in computer networks is a complex task that requires the
distinction of normality and anomaly. Network attack detection in information
systems is a constant challenge in computer security research, as information systems
provide essential services for enterprises and individuals. The consequences of these
attacks could be the access, disclosure, or modification of information, as well as
denial of computer services and resources. Intrusion Detection Systems (IDS) are
developed as solutions to detect anomalous behavior, such as denial of service, and
backdoors. The proposed model was inspired by the behavior of dendritic cells and
their interactions with the human immune system, known as Dendritic Cell
Algorithm (DCA), and combines the use of Multiresolution Analysis (MRA)
Maximal Overlap Discrete Wavelet Transform (MODWT), as well as the segmented
deterministic DCA approach (S-dDCA). The proposed approach is a binary classifier
that aims to analyze a time-frequency representation of time-series data obtained
from high-level network features, in order to classify data as normal or anomalous.
The MODWT was used to extract the approximations of two input signal categories
at different levels of decomposition, and are used as processing elements for the multi
resolution DCA. The model was evaluated using the NSL-KDD, UNSW-NB15,
CIC-IDS2017 and CSE-CIC-IDS2018 datasets, containing contemporary network
traffic and attacks. The proposed MRA S-dDCA model achieved an accuracy of
97.37%, 99.97%, 99.56%, and 99.75% for the tested datasets, respectively.
Comparisons with the DCA and state-of-the-art approaches for network anomaly
detection are presented. The proposed approach was able to surpass state-of-the-art
approaches with UNSW-NB15 and CSECIC-IDS2018 datasets, whereas the results
obtained with the NSL-KDD and CIC-IDS2017 datasets are competitive with
machine learning approaches.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Networks and
Communications, Data Mining and Machine Learning, Security and Privacy
Keywords Network anomaly detection, Intruder detection systems, Artificial immune systems,
Machine learning, Wavelet transforms, Wavelets, Dendritic cell algorithm

INTRODUCTION
Security threat detection in information systems is an ever-evolving challenge for
computer security. Research in this field has increased in relevance as information systems
provide essential services for enterprises and individuals. Computer security threats are
adverse or harmful events targeted to a computer system resource through passive (to learn
or use information without affecting system resources) or active (to alter a system
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resources or affect a system’s normal operation) attacks, often exploiting vulnerabilities
found in the target system. Anomaly detection refers to the problem of finding unexpected
behavior, these are often known as anomalies, outliers or discordant observations
(Chandola, Banerjee & Kumar, 2009), and are usually patterns not conforming with a
notion of normal behavior. The detection of anomalous patterns consists on defining a
region represented as normal behavior, and any element distant from such region is
determined as anomalous. This distinction is achieved through several methods including
searching, signature-based, anomaly-based, feature learning, and feature reduction.
Environments changing over time can make the normal behavior not relevant and increase
incorrect classifications, whereas certain observations tend to be similar to others, causing
confusion in detecting anomalies.

Intrusion Detection Systems (IDS) aim to solve anomaly detection by analyzing
computer networks and systems through monitoring and analysis. This is performed with
tools such as machine learning algorithms and signature based detection, to generate
alerts based on the status of the observed resources. IDS can be classified into two broad
groups, namely Network Intrusion Detection Systems (NIDS) and Host Based Intrusion
Detection Systems (HIDS). NIDS are IDS whose main purpose is to analyze network
communications, find anomalies or predict incoming attacks. HIDS are, on the other hand,
specific purpose IDS whose objective is to protect a specific computer system. This is
commonly done through resource usage analysis of different elements available in an
operating system environment, such as file access, process execution, and outgoing and
incoming communications.

The human body protects itself against anomalies with a complex system, known as
immune system. Some of the observed characteristics of this system are noise tolerance,
distribution, self-organization, non-centralized control and enhanced memory (Murphy
et al., 2008). The study and understanding of these features are prime candidates for
creating computer models capable of anomaly detection. Since the 1990s, there have been
an increasing interest in the research and development of computational bio-inspired
immune models in several areas, such as optimization, computer security, and pattern
recognition. The ongoing battle between security researchers and security threats calls for
the development of models able to overcome contemporary attacks. The Human Immune
System (HIS) is a multi-layered and highly distributed system made up of different cell
types and organs, and has evolved to provide effective protection and regulation to viruses
and infections. The HIS is one of the most important systems in the human body. It is
plausible to achieve similar results in computer systems by mimicking the characteristics of
the HIS (Pamukov, 2017; Rauf, 2018). The HIS is a set of biological elements aimed to
protect an organism against disease, and is mainly composed of three layers, namely
physical, innate and adaptive.

The physical layer is the first defense against harmful or unknown molecular structures,
known as antigens, and protects human body cells and tissues as a response mechanism
against disease. The physical layer is comprised of skin, gastrointestinal tract and
blood barriers and provides the most immediate defense mechanism. The first layer of
protection may be compromised, for example, by a cut or skin burning. The second HIS
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layer are the innate and adaptive immune systems, and provide further protection and
response against invading organisms. The second immune system layer is comprised of
specialized cells. Innate immune system cells include macrophage, natural killer,
neutrophil, basophil, eosinophil, mast and dendritic. The adaptive immune system
develops the ability to recognize specific pathogens, and includes lymphocytes.

Macrophages detect and kill foreign and unhealthy cells by engulfing them, also alerting
the rest of the immune system. Additionally, they clean the system of dead or necrotic cells.
Natural killer cells also have the task of killing. However, they are specially focused on
several types of tumors and microbial infections. They also interact with other immune
cells. Neutrophills have multiple functions, and aim to neutralize threats; similar to
natural killer cells, with additional control mechanisms such as blocking and disabling
antigens. Basophils, eosinophils and mast cells provide similar protection to allergic and
inflammatory reactions, as well as to combat infections, and are present in many tissues
throughout the body. Dendritic Cells (DC) are Antigen Presenting Cells (APC).
Their main role is to collect signals emitted by other cells and ingest residuals caused by
normal (programmed cell death) and anomalous behavior (cell damage), to provide the
adaptive immune system cells (such as lymphocytes) with antigen definitions. The results
favor the proliferation of defense cells able to react to specific threats and kick-start
the adaptive immune response. Lymphocytes are white blood cells able to recognize
antigens and generate neutralizing antibodies (proteins that bind to foreign antigens).
They are divided in T-cells (cell-mediated immunity matured in the thymus), and B-cells
(humoral immunity cells matured in the bone marrow).

The Danger Theory model (Matzinger, 1994) is mainly centered in specific interactions
of certain immune cells and alert signals as a response mechanism to defend the host
system. Alert signals denote when a cell or a tissue is experiencing regular or abnormal
behavior, such as expected or unexpected cell death, stress or inflammation caused by
antigens. The danger theory proposes that part of the immune system is able to suppress
an immune response, as it has been observed, the HIS does not always respond and
eliminate all non-self sources, mainly allergic reactions, bacteria colonies inside human
intestines and autoimmune diseases, among others (Garrett, 2005; Murphy et al., 2008).
We can associate the HIS with IDS through anomaly detection.

Dendritic cells can be seen as detectors, as well as mediators in the human immune
system. The Dendritic Cell Algorithm (DCA) is a population-based binary classifier
designed for anomaly detection. The algorithm is inspired by the function of DCs, which
are a part of the innate immune system. It incorporates danger theory principles by
proposing an abstract model of DCs and its interactions with molecular information, as to
induce an appropiate immune response towards possible threats.

The main contribution of this research is a biologically inspired NIDS based on the
DCA (Gu, Greensmith & Aickelin, 2013). The proposed approach (MRA S-dDCA)
incorporates the use of multiresolution analysis (MRA), as well as a segmentation
approach to the deterministic DCA (S-dDCA). This model aims to tackle three
contemporary issues, namely feature selection, classification performance, and proposing
solutions to DCA related issues. Conversely from machine learning approaches for
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anomaly detection, the DCA does not have a training phase, shortening the algorithm
process. The inclusion of decision trees in the classification process aims to improve the
model performance, in comparison to the commonly used classification threshold method.
The implementation of the deterministic DCA performs linear calculations, having a
low weight in computation and providing an alternative to solve the intrusion detection
problem. A comparison with the deterministic DCA, as well as different machine
learning techniques is performed by using publicly available datasets, namely NSL-KDD,
UNSW-NB15, CIC-IDS2017 and CSE-CIC-IDS2018.

Related work
For the purposes of IDS research, network attacks are considered anomalous behavior. IDS
models can be classified depending on the way they learn to discriminate between
anomalies, namely supervised and unsupervised. The former refers to learning by using
manually labeled observations to improve correct detection. The latter refers to
determining if the observed data is normal, without prior knowledge. Network
communications are observed by collecting and processing data generated as part of
communication interfaces and devices. Network features are commonly categorized as
low-level and high-level. Low level features include raw packet data, payload, session,
and traffic data collected by network devices, such as routers. High-level features can
provide further information about network communications and status, such as flow data,
logs, and statistics. More elaborated features can be generated by using specialized tools
such as Argus and Zeek. These tools process low-level and high-level data to generate
additional features. Three contemporary approach categories are presented, namely
machine learning, metaheuristic, and artificial immune systems.

Machine learning algorithms can be divided in two broad groups, namely deep and
shallow (Liu & Lang, 2019). The main discerning factor between the two groups are the
way features from observations are represented. Deep learning techniques (Potluri,
Ahmed & Diedrich, 2018; Hou et al., 2020; Huang & Lei, 2020; Zhang, Yu & Li, 2018)
can learn feature representations beyond the provided features and create hyper-
parameters, or internal representations of the processed data by using abstraction layers,
thus the depth. Shallow learning techniques (Kuttranont et al., 2017; Jing & Chen, 2019),
are characterized for their lack of depth in feature processing.

Metaheuristic methods for anomaly detection have been developed around several
natural, as well as non-natural phenomena. Nature has developed efficient methods to
achieve several tasks with a limited set of resources. These methods are commonly divided
in trajectory, population, natural and non-natural (Abdel-Basset, Abdel-Fatah & Sangaiah,
2018). Contemporary methods have focused on the improvement of feature selection as
part of anomaly detection models, such as Deep Neural Networks (DNN), Long-Short
Term Memroy (LSTM), Deep Belief Networks (DBN) and Multi-Layer Perceptron(MLP)
(Ghanem et al., 2021; Elmasry, Akbulut & Zaim, 2020). Natural (or bio-inspired
methods) include Evolutionary Algorithms (EA), such as Genetic Algorithms (GA) and
have been used to improve the problem search space, and used in tandem with Whale
Optimization Algorithm (Tao, Sun & Sun, 2018), as well as a method for feature selection
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and parameter optimization to improve Support Vector Machine (SVM) efficiency
(Vijayanand & Devaraj, 2020). Swarm inspired methods, such as Particule Swarm
Optimization (PSO), have been used to optimize the weights of a Fast Learning Network
(FLN) (Ali et al., 2018). Artificial Bee Colony (ABC) algorithm (Mazini, Shirazi &
Mahdavi, 2019) has been used to perform classification in imbalanced datasets without
relying on deep learning nor class balancing techniques. Non-natural phenomena, such as
the Metaheuristic Association Scale (MAS) method has been implemented to perform
feature optimization in the detection of Distributed Denial of Service (DDoS) attacks
(Dasari et al., 2020).

Artificial Immune Systems are models inspired by the behavior of the HIS. Their aim is
to imitate its biological counterpart favorable qualities, such as anomaly detection, noise
resistance, distributed learning and non-central control (Tan, 2016). In comparison to
other bioinspired models, such as GA, the immune system is sorely focused on the
protection of its host system, and thus is an ideal inspiration for anomaly detection models.
AIS have seen two generations of algorithms developed (Greensmith, Whitbrook &
Aickelin, 2010). First generation models were designed around general abstractions of
traditional immune models, such as negative selection (Belhadj Aissa, Guerroumi &
Derhab, 2020), clonal selection (Lysenko, Bobrovnikova & Savenko, 2018), and immune
networks (Shi et al., 2017).

In contrast, second generation models are designed using emerging immunology
models, such as danger theory (Matzinger, 1994). The DCA is one of such second
generation models. The algorithm is able to assess whether a group of observations,
commonly network communications, is anomalous or normal through a detection and
classification mechanism. The DCA algorithm evolution has been marked by three
different contributions, starting with the prototype DCA (Greensmith, Aickelin & Cayzer,
2005), followed by a more elaborated version using stochastic elements, known as
stochastic DCA (Greensmith, Aickelin & Twycross, 2006a). This proposal has been further
developed as the deterministic DCA (Greensmith & Gale, 2017). Stochastic based methods
(Farzadnia, Shirazi & Nowroozi, 2020) simulate the behavior of DC by using random
data sampling and processing derived from network features. Deterministic approaches
reduce the use of random elements and focus on predictability of artificial DC behavior
and data processing. These approaches have incorporated additional mechanisms to
improve detection capabilities, such as fuzzy logic (Elisa et al., 2019), and biological to
artificial feature mapping (Elisa, Chao & Yang, 2020).

The approach in Sharma & Tiwari (2018) performs anomaly detection using high-level
network features, by implementing a modified probabilistic DCA. The danger theory
inspired model in Alaparthy & Morgera (2018) employs several immune inspired
mechanisms to perform network attack detection in a wireless sensor network using low-
level features. The approach in Almasalmeh, Saidi & Trabelsi (2019) compares the
performance of the deterministic and stochastic DCA and is aimed to detect malicious port
scanning in the transmission control protocol by using a combination of both low-level
and high-level features. The work in Elisa, Chao & Yang (2020) performs classification
using high-level network features, and proposes a modification of the DCA in order to
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improve classification in large datasets, while also reducing model overfitting.
The approach employs GA as an optimization mechanism.

The rest of this paper is organized as follows. “Background” presents a biological to
computational concept mapping for the proposed model, as well as the background for the
proposed model. “Proposed Model” describes the proposed anomaly detection model.
“Results” deals with dataset descriptions used for testing, model parameters, and numeric
results. A comparison with state-of-the-art approaches is also presented. “Discussion”
presents a discussion of the obtained results. “Conclusions” concludes this paper and
presents future work.

BACKGROUND
In order to provide context for the development of a DCA inspired IDS, an analogy
between biological and computational context is presented in Fig. 1. In the HIS, cells
are contained in tissues, which are themselves a set of cells, these are part of the
communication environment in the body, and can be related to communication networks
in computer systems, such as network switches and network servers. Antigens can relate to
malicious hosts, where a host is a network capable computer that aims to perform
malicious activity to non-harmful or normal hosts. Normal behavior can be characterized
as a set of activities and patterns in a communication network, where their presence is a
signal of expected behavior in the network, and are originated from normal hosts.
However, there can be moments in time where normal activities can behave unexpectedly.
These kinds of anomalous behavior are not harmful. As the active defense mechanism
in the human body, the HIS is comprised by a set of cells capable of detecting, disabling
and destroying harmful or malfunctioning cells and antigens.

The dendritic cell algorithm
Artificial immune systems were developed by observing the human immune system
behavior, and are modeled after one or more interactions of immune cells and organs. The
HIS aims to provide protection and defense mechanisms against invading agents, such as
bacteria, parasites and virus. The development of IDS have drawn inspiration from
immune mechanisms, such as negative selection, clonal selection, immune networks, and

Figure 1 HIS and dDCA analogy. Full-size DOI: 10.7717/peerj-cs.749/fig-1
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danger theory. The danger theory is one of the prominent HIS models and have
provided inspiration to develop an algorithm based on the behavior of dendritic cells,
known as the DCA. The DCA algorithm evolution has been marked by three different
contributions, starting with the prototype DCA (Greensmith, Aickelin & Cayzer, 2005),
followed by a more elaborated version using stochastic elements (Greensmith, Twycross &
Aickelin, 2006b) and further developed as the deterministic DCA (dDCA) (Greensmith &
Aickelin, 2008, Greensmith & Gale, 2017). The different specifications of the algorithm
provide a similar framework; however, they differ in key aspects that determine its
behavior. As the focus of this research is to develop a model based on the dDCA, any
subsequent mentions of the DCA are related to its deterministic version. The DCA has
three phases, namely feature selection, detection and context assessment, and
classification.

Feature selection
The danger theory model (Matzinger, 1994) is mainly centered in the interactions of
signals emitted by cells and antigens. These signals denote when a cell or a tissue is
experiencing regular or abnormal behavior, such as expected or unexpected cell death,
stresss, inflammation, or anomalous processes caused by malfunctioning cells. The signals
are categorized in three groups, namely Pathogen Associated Molecular Pattern (PAMP),
Safe Signals (SS), and Danger Signals (DS). The deterministic adaptation of the DCA
(Greensmith, Twycross & Aickelin, 2006b) requires input data to be represented as two
signal categories, namely DS and SS, a categorical value that identifies each data instance,
and a unique identifier for each data instance. The preprocessing and initialization
phase assigns a feature, or a set of features, from the original dataset to each of the required
signal categories. The proposed approach relies on feature-class multual information
for signal categorization, followed by an average feature transformation for each category,
to determine the features with the most influence (Elisa et al., 2019; Witten et al., 2017).
Given two dataset features, represented as discrete random variables F and C, mutual
information I(F;C) is the amount of information that a random variable C gives about F, as
shown in Eq. (1),

IðF;CÞ ¼
X
f2F

X
c2C

pðf ; cÞlog pðf ; cÞ
pðf ÞpðcÞ

� �
(1)

where p(f) and p(c) are the marginal probabilities, and p(f,c) represents the joint probability
mass function of discrete random variables F, C, as shown in Eq. (2),

pðf ; cÞ ¼ PðC ¼ cjF ¼ f Þ � PðF ¼ f Þ ¼ PðF ¼ f jC ¼ cÞ � PðC ¼ cÞ (2)

where P(C = c|F = f) represents the probability of a sample of random variable C, given a
different sample of random variable F. In order to categorize the selected features, Eq. (3)
shows feature-class mutual information between each attribute and class. Mutual
information of the feature Fi whose behavior is considered normal Fs

i, as well as anomalous
Fd
i, and dataset classes C is obtained. The difference of absolute value between both

results is calculated. A difference greater than zero indicates mutual information between
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normal behavior present in feature Fi and dataset classes is greater than that of anomalous
behavior, thus the feature is categorized as SS. Conversely, if the attribute is lower or
equal to zero, the feature is categorized as DS. Each of the available features Fi in the dataset
is compared using this approach.

FCðFiÞ ¼ jIðFs
i ;CÞj � jIðFd

i ;CÞj (3)

After feature selection and categorization, DS and SS signal categories are generated,
where ~Fd2D and ~Fs2S represent the feature vectors that have been selected for each signal
category using Eq. (3). This process is detailed in Eqs. (4) and (5), where count([D,S])
represents the number of features selected for each signal category.

DS ¼
P

d2D~Fd

countðDÞ (4)

SS ¼
P

s2S~Fs

countðSÞ (5)

Wavelet transform
The wavelet transform is a mathematical tool used to measure variations of a signal in the
time-frequecy domain at different time-frequency resolutions. In comparison to Fourier
analysis, wavelet analysis consists on decomposing a signal into shifted and scaled
variations of rapidly decaying wave-like oscillating functions known as wavelets. The
decomposition process can be achieved through an orthogonal set of components
known as scaling (approximation) ϕ and wavelet (detail) functions ψ. These functions
need to constitute orthonormal bases for Lebesque space L2ðRÞ (Mallat, 1989).
This transformation allows to isolate high-frequency low-duration, as well as low-
frequency large-duration phenomena. Several Wavelet families have been developed,
such as Daubechies, nearly symmetrical Symlets and Coiflet (Daubechies, 1992).

Multiresolution analysis (MRA) is the process of expressing a signal in terms of
lower-resolution approximations and details to succesively create higher resolution
versions, until the original signal is recreated. In wavelet analysis, the maximum amount
of MRA levels that can be decomposed are 2J, where J = log2(N) and N is the finite signal
(or function) length. A decomposed signal in each level j is a decimated version of
length 2J. A finite time signal, such as DS or SS signal categories [DS,SS](t), where
t represents an arbitrary point in time, is expressed as a recursive relationship for each
level of decomposition (Alarcon-Aquino & Barria, 2009), where each level j ∈ J, j ≤ J
contains lower approximation and detail coefficients; the sub-spaces comprising the
decomposed signal have to meet certain criteria (Mallat, 1989). The Discrete Wavelet
Transform (DWT) is given in Eq. (6),

½DS; SS�ðtÞ ¼
X
n2Z

cJ;nfJ;nðtÞ þ
X1
j¼J

X
n2Z

dj;nwj;nðtÞ (6)
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where n represents a translation of signal [DS,SS](t) in the integer domain Z, for detail,
or approximation coefficients (ψj,n and ϕj,n(t) respectively), J denotes the maximum
decomposition level, n is the filter length for approximation and detail coefficients, j
represents a decomposition level, such that j < J, and wavelet ψ(t) and scaling functions
ϕ(t), are a family of orthonormal bases (Burrus et al., 1998). The signal [DS,SS(t)] is
decomposed in details dj,n and approximations cj,n to form a multiresolution analysis.
There exists a recursive relationship between the coefficients at successive levels of
decomposition. Eqs. (7) and (8), Daubechies (1992) show the details dj,n and
approximations cj,n for the DWT as recursive functions of filter coefficients, where gl
represents scaling filters and hl are the wavelet filter coefficients, and l is a displacement
factor related to the length of the wavelet or scaling filter.

cj;n ¼
X
l2Z

glcj�1;2n�l (7)

dj;n ¼
X
l2Z

hlcj�1;2n�l (8)

The DWT requires the signal sample size to be a multiple of 2J, due to the decimation
process at each level of decomposition. This limitation can introduce time ambiguities
in the decomposed signals. The coefficients of the DWT can introduce a blurring effect
in the signal due to its compactly supported Conjugate Quadrature Filters (CQF)
(Daubechies, 1988). The Maximal Overlap Discrete Wavelet Transform (MODWT), also
known as non-decimated, stationary, translation or time invariant DWT (Nason &
Silverman, 1995; Liang & Parks, 1996; Pesquet, Krim & Carfantan, 1996) is a higly
redundant and non-orthonormal transform that performs a decomposition process
similar to MRA DWT, while having several favorable properties. Among the most
notable is the amount of computations per decomposition level j < J, where the MODWT
requires a computational complexity of O(Nlog2N), as opposed to O(N) for the DWT, thus
having a greater computational cost. Another important property is the fact that the
MODWT prevents signal down-sampling, a property that is necessary to perform analysis
using the DCA, as well as allowing a signal of arbitrary length to be decomposed (Percival
& Walden, 2006).

The MODWT wavelet and scaling filters are related to the DWT filters, such that ~hl; ~gl
are re-scaled versions that conserve signal energy (Percival & Walden, 2000) given by

~hl � hl=
ffiffiffi
2

p
; ~gl � gl=

ffiffiffi
2

p
. This implies

PL�1
l¼0 ~g2l ¼ PL�1

l¼0
~h2l ¼

1
2
, where L denotes the filter

length, and the filters must satisfy specific conditions (Percival & Walden, 2000).
The MODWT MRA decomposition details dðOÞj;n and approximations cðOÞj;n in Eqs. (9) and
(10) can be generated by a pyramid algorithm and are obtained as circular filter operations
of a time series. As time localization in time series analysis for anomaly detection is
necessary to precisely identify the presence of anomalies, MODWT allows to analyze the
different decomposition levels of a finite time series, without the decimation effect of
DWT, while conserving important characteristics of MRA as to provide an accurate
representation of a signal at different time-frequencies.
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cðOÞj;n ¼
XL�1

l¼0

~glc
ðOÞ
j�1;ðn�2j�1lÞmod N (9)

dðOÞj;n ¼
XL�1

l¼0

~hlc
ðOÞ
j�1;ðn�2j�1lÞmod N (10)

The MODWT is used to decompose signals [DS,SS](t) while preserving energy, and
preventing the signal downsampling present in the DWT, in order to perform analysis in
the time domain, while also providing approximation cðOÞj;n and details dðOÞj;n at different
decomposition levels. Eq. (11) shows the MODWT MRA process for [DS,SS] signal
categories.

½DS; SS�ðtÞ ¼
X
n2Z

cðOÞJ;n fJ;nðtÞ þ
X1
j¼J

X
n2Z

dðOÞj;n wj;nðtÞ (11)

Detection and context assessment
The DCA incorporates the use of two intermediate signals, known as Co-stimulatory
Molecule Signal (CSM) (Greensmith, Aickelin & Cayzer, 2005), and k̂ (Greensmith &
Aickelin, 2008). These are defined in Eqs. (12) and (13) respectively.

CSMpðt þ 1Þ ¼ CSMpðtÞ þ ðSSðt þ 1Þ þ DSðt þ 1ÞÞ; if CSMpðtÞ � mtp
0; otherwise

�
(12)

In Eq. (12), CSMp(t + 1) represents the signal concentration at time t + 1, akin to the
costimulatory signal value in the DCA approach (Greensmith & Aickelin, 2008), where
CSMp(0) = 0, and p represents a DC in the population. [SS,DS](t + 1) are the signal
values at time t = {1, 2,…, N}. The role of CSMp(t) is to limit the time a DC at any time t in
the population p spends on antigen sampling by imitating a cell’s lifespan. When a DC
has exceeded maturation threshold, defined as mtp, it migrates to a separate DC pool,
namely the migrated pool, and no longer samples antigens. The DC that migrates is
replaced with a newborn cell whose CSM and k̂ values are 0. The deterministic DCA
employs k̂p (Greensmith & Aickelin, 2008) to reflect the magnitude of signal concentration
in a cell. This is shown in Eq. (13), where k̂pð0Þ ¼ 0, p represents a DC in the population,
[SS,DS](t + 1) are signal values at time t = {1, 2, …, N}, and mtp is the migration
threshold for the cell p in the population (Gu, Greensmith & Aickelin, 2013).

k̂pðt þ 1Þ ¼ k̂pðtÞ þ ðDSðt þ 1Þ � 2 SSðt þ 1ÞÞ; if CSMpðtÞ � mtp
0; otherwise

�
(13)

The context assessment phase consists on adding the signal concentration k̂r of each
migrated cell r to the antigen repository k(α), where α is the antigen category. This
repository contains the sum of k̂r that have sampled antigen α, divided by the times the
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antigen was sampled by a DC in the population (Greensmith & Aickelin, 2008), as shown in
Eq. (14), where r represents a migrated cell in the migrated cell population R, and r ∈ R.

kðaÞ ¼
P

r2Rðk̂rðaÞÞ
countðaÞ (14)

Segmentation approach
The segmented dDCA, or S-dDCA (Gu, Greensmith & Aickelin, 2009a; Gu, Greensmith &
Aickelin, 2013) was introduced as an alternative approach to the dDCA. Segmentation
was introduced as a granular signal analysis approach, conversely from the coarse
approach of the deterministic DCA, where given a dataset of size N, all samples are
processed before performing classification. The segmented DCA shares all phases of the
deterministic DCA. The main premise of this approach is to perform detection and context
assessment using a reduced amount of data instances, thus the dataset needs to be
partitioned into m ¼ N

M segments, where M is the desired segment size, N is the dataset
size, and m is the segment count. Antigen categories α are also modified to represent
individual observations. The finer-grained approach allows the algorithm to perform
the detection and context assessment in a non-sequential manner, at the expense of
performing context assessment m times. Computational complexity of the model can be
linear (Gu, Greensmith & Aickelin, 2013), as DC population p and segment size M are
usually significantly lower than N. Segmentation approach has not seen widespread
adoption in the DCA research field, as contemporary proposals tend to solve other DCA
challenges, such as pre-processing (Chelly & Elouedi, 2013a, Chelly & Elouedi, 2013b,
Chelly & Elouedi, 2016) and feature tuning (Chelly & Elouedi, 2011).

Classification
The classification phase consists on evaluating the antigen repository k(α). The
deterministic DCA employs the use of the Tk classification threshold (Greensmith &
Aickelin, 2008), where any k(α) greater than a given threshold is classified as anomalous.
This threshold is commonly set as a user-defined parameter, or derived from observations
obtained in the detection phase. Using a linear classification threshold is known to
have issues (Gu et al., 2011), as it may not properly separate normal data instances
using k(α). The use of a decision tree classifier removes the use of such classification
threshold.

A Decision Tree (DT) is a supervised learning model commonly used for classification
and regression tasks. The main objective of a DT is to build a model based on (simple)
decision rules that are derived from data predictors. A decision tree is built in a sequential
manner, where a set of simple tests are combined logically. For example, comparing a
numeric value against a threshold or a specific range, or comparing a categorical value
against a set of possible categorical values. As an observation is compared against the set of
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rules generated by a DT, the observation is determined as belonging to the most frequent
class present in that region (Hastie, Tibshirani & Friedman, 2009).

The objective of a decision tree is to partition the space given by a set of features or
predictors by using a set of rules. A partition is generated in order to split the feature space
into several regions, known as branches or nodes. This process is performed until a
stopping criteria is met. When such criteria occurs, the final splits are used to
determine the class of the observations, these final nodes are known as leafs. The process of
generating a decision tree is to find a feasible strategy to determine a split criteria, by
using a set of predictors or features, belonging to a set of observations. The general strategy
used by most decision tree algorithms, such as Classification and Regression Tree (CART),
is known as the Hunt’s algorithm. This algorithm consists on a recursive process that
generates partitions by measuring the amount of elements that belong to the same class,
also known as impurity. The objective is to generate subsets that reduce the impurity
measure. Some favorable characteristic of decision trees are low computational complexity
for prediction, not requiring large amounts of observation to generate a model, and
transparency (as generated rules can be visualized). Decision trees are also known to
overfit. In order to solve this, several constraints and optimization features have been
developed, such as pruning, sample number minimum for each leaf node, and maximum
tree depth (Kotsiantis, 2013).

PROPOSED MODEL
The proposed model aims to incorporate a the segmented dDCA as a granular
classification approach, as well as using MODWT decomposed versions of SS and DS
signal categories as part of the detection and context assessment. The proposed model
flow diagram is presented in Fig. 2. After loading a dataset, features are selected using
feature-class mutual information (Gu, Greensmith & Aickelin, 2013), as proposed in
Eqs. (1)–(3). The most relevant features related to the normal and attack classes are
obtained, and can be user limited. A generalized approach is used for feature aggregation,
where the selected features are averaged (all features have the same weight), to generate the
signal categories used as inputs for the S-dDCA algorithm (Elisa et al., 2019), as shown
in Eqs. (4) and (5). Additionally, the processed dataset is comprised of a label for each data
instance, where labels such as origin port, destination port and protocol are concatenated.
The dataset is divided into m sequential segments; each segment is used to perform
MODWT using wavelet w, and performs up to J transform levels, where J > 0, J <= log2M,
and M is the segment size. The multiresolution approach aims to incorporate the
decomposed signal at J levels to the context assessment of the DCA, where each DC in
the population uses a decomposition level as input for each signal category. Eqs. (15)
and (16) show the modified detection and context assessment phase, where SS(t + 1),
DS(t + 1) is replaced with the corresponding decomposition details obtained using
MDOWT. The DC population corresponds to MRA decomposition levels, such that p = j,
and j ≤ J. Wavelet details of SS and DS signals decomposed up to jth level are given as ssðOÞj;tþ1

and dsðOÞj;tþ1, respectively.
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CSMjðt þ 1Þ ¼ CSMjðtÞ þ ðssðOÞj;tþ1 þ dsðOÞj;tþ1Þ; if CSMjðtÞ � mtj
0; otherwise

�
(15)

k̂jðt þ 1Þ ¼ k̂jðtÞ þ ðdsðOÞj;tþ1 � 2 � ssðOÞj;tþ1Þ; if CSMjðtÞ � mtj
0; otherwise

�
(16)

Once all data segments have been processed, a DT model is built using the antigen
repository k(α), the signal energy for each decomposition level, and a categorical value
for each data instance containing information from the communication source, or
destination, such as port number. Each processed segment contributes to the antigen
repository in an additive manner, and works independent from each other. Signal energy
(Burrus et al., 1998) may contain variations when anomalies occur at different
decomposition levels (Du et al., 2018), and is obtained for each signal category and
segment at decomposition level j ≤ J.

Additionally, Fig. 3 describes the multiresolution dDCA flow diagram. This process is
executed for each segmentm. The main loop is initialized as the cells in the population are
assigned a migration threshold. The migration threshold mtj is described as a uniform
distribution with the range [0, 1]. As a new data item is requested, the decomposed signal

Figure 2 Proposed multiresolution segmented dDCA model.
Full-size DOI: 10.7717/peerj-cs.749/fig-2
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for DS and SS at j ≤ J decomposition level is provided. Each cell in the DC receives its
corresponding decomposition level, as proposed in Eqs. (15) and (16). This implies the DC
population can have up to J <= log2M DCs, and M is the segment size. Detection and
context assessment is performed for each DC in the population. When any DC has met
the migration threshold, it transfers to the migrated DC population, and a new DC is
created to take its place. Finally, the antigen repository is updated. This process is repeated
until no more data items are left to process for the segment.

RESULTS
The proposed model was developed using the MATLAB R2021a environment in a
computer running the Linux operating system with an Intel Core i7 8,700 CPU and
64.0 GB of RAM. The testing was performed using the NSL-KDD, UNSW-NB15,
CIC-IDS2017, and CSE-CIC-IDS2018 datasets. The proposed model performs binary
classification. All attack categories present in the datasets are considered anomalies and are
labeled as one, normal behavior is labeled as 0. A confusion matrix is used to describe
performance of the tested datasets. For a binary classifier, the confusion matrix consists of
positive P and negative N classes. The positive class refers to any attack present in the
dataset (i.e., anomalies). The negative class refers to normal behavior. In order to

Figure 3 Dendritic cell algorithm flow diagram. Full-size DOI: 10.7717/peerj-cs.749/fig-3
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generate a confusion matrix, the classified records are compared against the dataset true
classes (i.e., ground truth), the elements of a confusion matrix are detailed as follows,

� Correctly classified attacks are considered True Positives TP.

� When TP records are incorrectly classified, they are considered False Negatives FN.

� In the case of normal behavior, correctly classified records are known as True Negatives
TN.

� Incorrectly classified normal records are known as False Positives FP.

Performance metrics are generated for further analysis and comparison. Accuracy refers
to the ratio of correctly classified instances to the total tested instances, either attacks or
normal behavior, and is given in Eq. (17).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(17)

Precision represents the proportion of correctly classified attacks and is given in
Eq. (18).

Precision ¼ TP
TP þ FP

(18)

Similarly, recall (or true positive rate) represents the probability of attack detection, and
is given in Eq. (19).

Recall ¼ TP
TP þ FN

(19)

The F1-Score given in Eq. (20) represents the balance between precision and recall,
while omitting true normal behavior. Conversely from the balanced accuracy metric, the F1
score does not include negative classification metric TP. The use of this score allows
to analyze the positive detection capabilities of a model, and is adequate to analyze
anomaly or outlier detection models.

F1� Score ¼ 2 � TP
2 � TP þ FP þ FN

(20)

The False Positive Rate FPR in Eq. (21) is given by the ratio between false positives and
the total amount of actual normal behavior observations.

FPR ¼ FP
FP þ TN

(21)

Conversely, the False Negative Rate FNR measures the true positive miss-classification
rate, and is given in Eq. (22).
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FNR ¼ FN
FN þ TP

(22)

The False Discovery Rate FDR in Eq. (23) represents the ratio of false positives, to the
total amount of elements classified as anomalies.

FDR ¼ FP
FP þ TP

(23)

Dataset description
The UNSW-NB15 dataset is a publicly available dataset that contains over 100 GB of traffic
(Moustafa, Creech & Slay, 2017). The raw network packets were created using the IXIA
PerfectStorm tool and are a hybrid of modern real activities and synthetic contemporary
anomalous behavior, with nine different attack types, namely Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms, as well as
normal traffic. The dataset is divided into train and test sets (Moustafa & Slay, 2016).
The training set contains 175,341 records (119,341 anomalous and 56,000 normal).
The testing set, conversely, contains 82,332 records (45,332 anomalous and 37,000
normal). Two tools (Argus and Bro-IDS) along with 12 algorithms were used to generate
49 features divided in flow features, content features, time features, basic features and
additionally generated features.

The NSL-KDD (Tavallaee et al., 2009) is a publicly available dataset developed by the
Canadian Institute for Cybersecurity. This dataset contains four attack types, namely
Denial of Service (DoS), Probe, User to Root Attack (U2R) and Remote to Local Attack
(R2L), and normal traffic; in total, 41 features for each connection were generated.
The improved dataset version was created to solve two main problems of the KDD-99
dataset, namely the distribution of the attacks in the train and test sets, and the over-
inclusion of Denial of Service (DoS) attack types, neptune and smurf, in the test
dataset. This dataset omits redundant or duplicate records in the train and test sets,
incorporates balancing of records for the train and tests sets, in order to avoid dataset
sub-sampling, as well as to reduce computational time in model testing. The NSL-KDD
dataset has the same features and attack types as KDD-99. The complete training dataset
contains 125,973 records (58,630 anomalous and 67,343 normal). There is a reduced
version of the train set (KDD + Train_20Percent) that contains a 20% subset of the
training set. The full testing dataset contains 22,544 records (12,833 anomalous and 9,711
normal). Additionally, there exists a testing dataset that does not include records that were
not validated by all 21 classifiers used to match the KDD-99 ground truth labels in the
dataset creation (Tavallaee et al., 2009).

The CIC-IDS2017 and CSE-CIC-IDS2018 datasets (Sharafaldin, Lashkari & Ghorbani,
2018) were developed by the Canadian Institute of Cybersecurity (CIC). Additionally,
the CSE-CIC-IDS2018 dataset (Sharafaldin, Lashkari & Ghorbani, 2018) was developed
in collaboration with the national cryptologic agency of Canada, known as the
Communications Security Establishment (CSE). The datasets were developed to provide
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IDS models with large volume publicly available datasets to test diverse contemporary
network attacks. Specific criteria was used to create the datasets (Gharib et al., 2016), as it
was identified to be necessary to build a reliable dataset.

The CIC-IDS2017 data was captured over the course of 5 days. The dataset topology
consists of two different local networks connected through the internet, where there is
an attack and a victim network. The captured packets were used to extract 80 network flow
features by using the CICFlowMeter tool. The attacks present in the dataset include Brute
Force, Denial of Service (DoS), Distributed Denial of Service (DDoS), Heartbleed, Web
Attack, Infiltration, and Botnet. The dataset contains a total of 2,830,743 records (557,646
anomalous and 2,273,097 normal). A dataset for testing was created by sampling the
original dataset while preserving attack order and attack type proportions. The resulting
test dataset contains 13,963 anomalous records and 56,806 normal records.

The CSE-CIC-IDS2018 topology contains 420 machines and 30 servers, and consists
of an attack subnet, as well as five subnets of victims. The attack network is connected to
the victims through the Internet. Similar to the CIC-IDS2017 dataset, 80 flow features
were extracted from the captured packets using the CICFlowMeter tool. The resulting
dataset consists of 16,233,002 records (2,748,294 anomalous and 13,484,708 normal).
In comparison to CIC-IDS2017, the executed attacks in the dataset are a comprehensive
set of contemporary attacks over a larger network. Attacks include Brute Force, DoS,
Web, Infiltration, Botnet, DDoS and PortScan. Similar to the CIC-IDS2017 dataset, a
dataset for testing was created by sampling the original records, preserving attack order
and attack proportions. The resulting dataset contains 13,683 anomalous records and
67,482 normal records.

The attack types found in the four proposed datasets, namely NSL-KDD, UNSW-NB15,
CIC-IDS2017 and CSE-CIC-IDS2018, are commonly used methods to compromise a
network security. Attacks such as DoS and Port Scan are present in all datasets, whereas
DDoS, Heartbleed and Botnet attacks are present in the more recent CIC-IDS2017
and CSE-CIC-IDS2018. Although the NSL-KDD dataset was widely used as a benchmark,
it does not contain contemporary network flows. In comparison, the UNSW-NB15
incorporated additional attacks. The CIC-IDS2017 and CSE-CIC-IDS2018 contain similar
attack types at different network scales and complexity. The attack types for the presented
datasets and a brief explanation are detailed in Table 1.

Model parameters
The proposed model has four configurable parameters, namely the number of features to
be selected for each signal category T based on feature-class mutual information (Elisa
et al., 2019), the segment size used by the S-dDCAm, the population size p and the wavelet
used for the MODWT process w. The number of features was set to T = 5. As a result,
five features were selected for each of the signal categories, namely DS and SS, for
each tested dataset. The selected features are summarized in Tables 2 and 3. Each signal
category is equal to the normalized average of its corresponding features, in the range
from zero to one. A combination of categorical attributes (if present in each dataset) were
used as part of the antigen repository, namely protocol, service, state, source port and
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destination port. Signal energy from each segment is also used as a feature for the antigen
repository.

The tested wavelets, segment sizes and population sizes are presented in Table 4.
Segment sizes tested were 128, 256, 512, 1,024, 2,048, 4,096, 8,192, and 16,384. The DC
population sizes p were 1, 2, …, log2m, where m refers to each segment size tested. The
wavelet families used for testing the w parameter were Daubechies, Symlet, and Coiflet.
For the daubechies wavelet family, the wavelet vanishing moments tested were 1 to 20.
The amount of vanishing moments used to test the symlet wavelet family was 2 to 20,
whereas the coiflet family vanishing moments tested was 1 to 5. Each wavelet was tested
with all segment sizes and population sizes. The DT model parameters are resumed in
Table 5, and was designed using the fitctree MATLAB model builder. The DT model
parameters are presented as follows. Two predictor categories are assigned, namelyNormal
and Anomalous. Predictors used for the model are k(α), a categorical value that contains

Table 1 Attack types and descriptions for NSL-KDD, UNSW-NB15, CIC-IDS2017 andCSE-CIC-IDS2018 datasets.

Type Description Dataset

Normal Normal transaction data. NSL-KDD, UNSW-NB15

Fuzzers Attempting to cause a program or network to suspend by feeding it with randomly
generated data.

UNSW-NB15

Analysis/Port scan A series of port scan, spam and HTML file attacks. UNSW-NB15, CIC-IDS2017, CSE-CIC-
IDS2018

Backdoors Technique to bypass security mechanisms stealthily. UNSW-NB15

DoS Malicious attempt to make a network resource unavailable by overwhelming its
capacity to serve requests.

NSL-KDD, UNSW-NB15, CIC-IDS2017,
CSE-CIC-IDS2018

DDoS Multiple compromised systems flood the target system by generating network traffic,
with the intent of depleting the bandwidth or resources of the targeted system.

CIC-IDS2017, CSE-CIC-IDS2018

Exploits/Infiltration
attack

Leverage the knowledge of a system or software vulnerability by exploiting it to
achieve unauthorized access to a system.

UNSW-NB15, CIC-IDS2017, CSE-CIC-
IDS2018

Generic A technique that works against all block ciphers (encryption method) without
consideration of its structure.

UNSW-NB15

Reconnaissance Attacks that aim to gather information about the network. NSL-KDD, UNSW-NB15

Shellcode Small piece of code used to exploit a software vulnerability. UNSW-NB15

Worms A piece of code that replicates itself in order to spread over the network, relaying on
exploits to gain access.

UNSW-NB15

User to root attack
(U2R)

The gains access to a regular account on the system, and exploits vulnerabilities to
gain root access.

NSL-KDD

Remote to local
attack (R2L)

An attacker without an account sends packets to a system to gain access as a user by
exploiting vulnerabilities.

NSL-KDD

Brute force An attack that attempts to gain access to restricted content by trial and error,
commonly used to guess passwords, discover hidden content in web applications,
among others.

CIC-IDS2017, CSE-CIC-IDS2018

Heartbleed An attack that sends a malformed heartbeat request through the Open Secure Socket
Layer (SSL) implementation of the Transport Layer Security (TLS) protocol.

CIC-IDS2017

Web attack Attacks pertaining to web-based protocols, such as SQL Injection, Cross-Site
Scripting (XSS), and brute force login attempts over HTTP.

CIC-IDS2017, CSE-CIC-IDS2018

Botnet A large number of internet enabled devices used to perform various attacks. CIC-IDS2017, CSE-CIC-IDS2018
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port and protocol information, as well as the energy of each segment and signal category,
namely DS and SS. The penalty for miss-classification is set to 1, whereas exact values
were used as feature split for the node generation in the classification tree. The tree does
not contain a maximum depth for the training process. The maximum amount of
categories for each split node is set to 10. All leaves that come from the same parent
are merged, as long as the risk (or impurity) is greater or equal to the parent node.

Table 2 Selected features for signal categorization, NSL-KDD and UNSW-NB15 datasets.

NSL-KDD UNSW-NB15

Feature Signal category FC (Fi) Feature Signal category FC (Fi)

dst_host_count SS 0.0913 spkts SS 0.6454

dst_bytes SS 0.0617 sttl SS 0.5080

dst_host_same_src_port_rate SS 0.0224 dmean SS 0.4493

srv_diff_host_rate SS 0.0146 dttl SS 0.4148

src_bytes SS 0.0142 dload SS 0.4112

count DS −0.1056 smean DS −1.4737

dst_host_srv_rerror_rate DS −0.0423 ct_dst_src_ltm DS −0.4939

duration DS −0.0401 rate DS −0.4822

srv_count DS −0.0399 ct_srv_src DS −0.4775

dst_host_srv_serror_rate DS −0.0392 ct_srv_dst DS −0.4401

Table 3 Selected features for signal categorization, CIC-IDS2017 and CSE-CIC-IDS2018 datasets.

CIC-IDS2017 CSE-CIC-IDS2018

Feature Signal category FC (Fi) Feature Signal category FC (Fi)

FwdPacketLengthMin SS 0.6787 PktLenMax SS 0.6618

FlowBytess SS 0.3624 PktLenStd SS 0.0547

FwdPacketLengthMax SS 0.3296 FwdActDataPkts SS 0.0118

FwdURGFlags SS 0.1520 BwdPSHFlags SS 0

CWEFlagCount SS 0.1520 BwdURGFlags SS 0

TotalBackwardPackets DS −1.6132 InitBwdWinByts DS −2.0298

SubflowBwdPackets DS −1.6132 InitFwdWinByts DS −1.6018

BwdHeaderLength DS −1.1659 FwdPktLenMax DS −1.4341

TotalFwdPackets DS −0.8473 BwdHeaderLen DS −1.1041

SubflowFwdPackets DS −0.8473 PktSizeAvg DS −0.9627

Table 4 Assessed wavelets for the proposed model.

Wavelet w Vanishing moments Segment size m Population size

Daubechies (db) 1, 2, …, 20 128, 256, 512, 1,024, 2,048, 4,096, 8,192, 16,384 1, 2, …, log2m

Symlet (sym) 2, 3, …, 20

Coiflet (coif) 1, 2, 3, 4, 5
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Minimum branch nodes is set to 10, whereas prior probability calculation is obtained
from the analyzed dataset (empirical). As the last step, the DT model is tested with the
processed segment data. The generated DT model is tested to classify normal and
anomalous data, akin to the dDCA model. Test results are used to generate the confusion
matrix as well as classification metrics.

Numeric results
The resulting performance metrics were obtained by testing the proposed model ten
times for each proposed wavelet, vanishing moments, and population sizes using four
datasets, namely NSL-KDD, UNSW-NB15, CIC-IDS2017, and CSE-CIC-IDS2018.
The proposed model used a random uniform distribution for each DCmigration threshold
in each run. Testing datasets for the NSL-KDD and UNSW-NB15 were used to obtain the
performance metrics. The datasets created for testing the CIC-IDS2017 and CSE-CIC-
IDS2018 datasets were used to obtain the performance metrics. A comparison was
performed with the three-signal dDCA approach without MRA (Gu, Greensmith &
Aickelin, 2013), using mutual information maximization (Elisa et al., 2019), with the
incorporation of DT to substitute the classification threshold tk (Greensmith & Aickelin,
2008). This was done order to demonstrate the improvements provided by the
segmentation approach, along with the use of MRA MODWT, as well as the two-signal
approach in (Greensmith & Aickelin, 2008). The confusion matrix of the proposed
approach for each tested dataset are presented in Tables 6–9.

The proposed model performance metrics are presented in Table 10. The best
classification results obtained are highlighted in bold and were using db1 and sym2 for the
NSL-KDD and the UNSW-NB15 datasets, respectively. The wavelets sym5 and db4

Table 5 DT model parameters.

Parameter Value

Predictor categories Normal, Anomalous

Predictors k(α)

Predictor split Exact search

Miss-classification cost 1

Max. categories 10

Leaf merging Yes

Min. branch nodes 10

Prior probabilities Empirical

Table 6 NSL-KDD confusion matrix.

Actual class Predicted class

Positive Negative

Positive 12,540 293

Negative 300 9,411
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obtained the best results for the CIC-IDS2017 and CSE-CIC-IDS2018 datasets. The DC
population size for the CIC-IDS2017 dataset was three, indicating that three
decomposition levels were used as part of the detection and context assessment phase of
the proposed model. For the remaining datasets, namely NSL-KDD, UNSW-NB15, and
CSE-CIC-IDS2018, the DC population size was one. All the tested datasets achieved the
best results with a segment size of 128. The proposed model was able to achieve an
accuracy (Acc.) of 97.37%, 97.66% precision (Prec.), and 97.72% recall (Rec.), when tested
with the NSL-KDD dataset. The UNSW-NB15 dataset achieved an accuracy of 99.97%,

Table 7 UNSW-NB15 confusion matrix.

Actual class Predicted class

Positive Negative

Positive 45,326 6

Negative 12 36,988

Table 8 CIC-IDS2017 confusion matrix.

Actual class Predicted class

Positive Negative

Positive 13,772 159

Negative 149 56,612

Table 9 CSE-CIC-IDS2018 confusion matrix.

Actual class Predicted class

Positive Negative

Positive 13,541 137

Negative 64 66,931

Table 10 Proposed model performance metrics.

Dataset Model Performance metrics (%) Model parameters

Acc. Prec. Rec. F1-S. FPR FDR FNR

NSL-KDD MRA S-dDCA 97.37 97.66 97.72 97.69 3.09 2.34 2.28 m = 128, p = 1, w = db1, T = 5

dDCA + DT 93.29 88.93 99.20 93.79 12.86 11.07 0.80 p = 10, mtp = [0, 0.001]

UNSW-NB15 MRA S-dDCA 99.97 99.98 99.99 99.98 0.03 0.03 0.01 m = 128, p = 1, w = sym2, T = 5

dDCA + DT 97.25 95.01 100 97.44 5.76 4.99 0 p = 10, mtp = [0, 0.001]

CIC-IDS2017 MRA S-dDCA 99.56 98.86 98.93 98.89 0.28 1.14 1.07 m = 128, p = 3, w = sym5, T = 5

dDCA + DT 98.17 92.60 98 95.22 1.79 7.40 2 p = 10, mtp = [0, 0.001]

CSE-CIC-IDS2018 MRA S-dDCA 99.75 99.00 99.53 99.26 0.20 1.00 0.47 m = 128, p = 1, w = db4, T = 5

dDCA + DT 92.30 56.05 97.46 71.17 8.26 43.95 2.54 p = 10, mtp = [0, 0.001]

Note:
The best classification results obtained are highlighted in bold and were using db1 and sym2 for the NSL-KDD and the UNSW-NB15 datasets respectively.
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99.98% precision, and 99.99% recall. The CIC-IDS2017 dataset achieved an accuracy of
99.56%, 98.86% precision, and 98.93% recall. The CSE-CIC-IDS2017 obtained an accuracy
of 99.75%, 99% precision, and 99.53% recall. For the NSL-KDD, UNSW-NB15, CIC-
IDS2017 and CSE-CIC-IDS2018 datasets respectively, the F1-Score (F1-S) obtained was
97.69%, 99.98%, 98.89%, and 99.26%. FPR achieved 3.09%, 0.03%, 0.28%, and 0.2%,
whereas FDR achieved 2.34%, 0.03%, 1.14%, and 1%. FNR was 2.28%, 0.01%, 1.07%, and
0.47%. The dDCA + DT approach obtained a lower accuracy for all datasets tested, while
showing an improvement in recall (99.20% and 100%) and FNR (0.8% and 0%) for the
NSL-KDD and UNSW-NB15 datasets respectively. In comparison, the proposed MRA
S-dDCA approach provided a considerable improvement in precision, F1-Score, FPR,
FDR, and FNR for all datasets tested.

The main difference between the compared models, namely MRA S-dDCA and DCA +
DT relates to the use of multiresolution analysis to analyze the algorithm signal
categories, namely SS and DS. While the approaches such as (Zhou & Liang, 2021; Elisa
et al., 2019) and dDCA + DT, process time series signals without additional signal
processing after feature selection and signal categorization, the proposed approach
performs time-frequency decomposition using multiresolution analysis. This approach
allows the MRA S-dDCA to analyze the signal categories at different time-scale
resolutions, while reducing the redundancy caused by performing antigen duplication
when DC population p > 1. The segmentation approach allows the MRA decomposition
process to be performed using a segment size M, while also allowing the S-dDCA
approach to perform signal processing using a reduced number of samples, thus allowing
the antigen repository to accumulate values that reduce dependability on larger dataset (or
signal) sizes (Elisa, Yang & Naik, 2018).

Figures 4 and 5 show the Receiver Operating Characteristic (ROC) and Precision-Recall
(PR) curves for the tested datasets, namely NSL-KDD, UNSW-NB15, CIC-IDS2017, and
CSE-CIC-IDS2018. The ROC curve shows the scores for the positive class (anomaly)
resulting from the decision tree scores, based on the degree of certainty at the tree leafs.
The resulting AUC curve for each datasets was 1.0 for the UNSW-NB15, 0.9970 for the
NSL-KDD, and 0.9999 for the CIC-IDS2017 and CSE-CIC-IDS2018.

Contemporary state-of-the-art methods for binary classification are presented in
Table 11. Accuracy (Acc.), precision (Prec.), recall (Rec.), F1-Score (F1-S.), False Positive
Rate (FPR), False Discovery Rate (FDR), and False Negative Rate (FNR) are compared
with the proposed model. The proposed model results are highlighted in bold and were
obtained by evaluating the test datasets used in NSL-KDD and UNSW-NB15. The
proposed testing datasets for the CIC-IDS2017 and CSE-CIC-IDS2018 were also used.
The best accuracy result of 99.19% for the NSL-KDD dataset was obtained by the Adaboost
Random Forest (Iwendi et al., 2020). The method using the eXtreme Gradient Boost
Deep Neural Network (XGBoost-DNN) (Devan & Khare, 2020) provided the second best
result, achieving a 97.60%, followed by 97.37% obtained by the proposed multiresolution
DCA model (MRA S-dDCA). Other models compared include Convolutional Neural
Network (CNN) (Belgrana et al., 2021) (95.54% accuracy), and Bidirectional Long
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Short-Term Memory Attention Mechanism with multiple Convolutional Layers (BAT-
MC) (Su et al., 2020) (90.13% accuracy). When testing the UNSW-NB15 dataset, the MRA
S-dDCA model obtained the best result, achieving 99.97% accuracy, followed by the

Figure 4 ROC curve for tested datasets. Full-size DOI: 10.7717/peerj-cs.749/fig-4

Figure 5 PR curve for tested datasets. Full-size DOI: 10.7717/peerj-cs.749/fig-5
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Grasshopper Optimization Simulated Annealing algorithm (GOSA) (Dwivedi, Vardhan &
Tripathi, 2020) achieving 98.96%, Bidirectional Gated Recurrent Unit with Hierarchical
Attention Mechanism (GRU-HAM) (Liu et al., 2020) achieving 98.76%, Classifier
Ensemble (Tama et al., 2020) achieving 92.45%, and Few Shot Learning (FSL) (Yu &
Bian, 2020) achieving 92.0%. The best accuracy results for the CIC-IDS-2017 were
obtained by Classifier Ensemble (Tama et al., 2020) with a 99.99%. The MRA S-dDCA
obtained the second best result with a 99.56% accuracy, whereas the Spatial-Temporal
Deep Learning on Communication Graphs (STDeepGraph) (Yao et al., 2019) obtained
99.40%. The Grasshopper Optimization Algorithm (GOA) obtained a 99.35%. The
Heterogeneous Ensemble Learning Anomaly Detection (HELAD) obtained a F1-Score of
99.58%. For the CSE-CIC-IDS2018 dataset, the best accuracy result was obtained by the
MRA S-dDCA with an accuracy of 99.75%. The Ensemble Learning and Feature
Selection IDS (ELFS), as well as the Random Forest classifier (Fitni & Ramli, 2020)
obtained an accuracy of 99.80%. The Decision Tree method (Fitni & Ramli, 2020) obtained
98.60%, whereas the Hybrid Convolutional Recurrent Neural Network-Based Network
Intrusion Detection System (HCRNNIDS) achieved 97.75%. The precision, recall, and
F1-Score reported in the XGBoost-DNN approach were surpassed by the MRA
S-dDCA with 97.66%, 97.72%, and 97.69% respectively. The STDeepGraph approach in

Table 11 Results comparisons with state-of-the-art approaches.

Dataset Method Acc. (%) Prec. (%) Rec. (%) F1-S. (%) FPR (%) FDR (%) FNR (%)

NSLKDD Adaboost Random Forest (Iwendi et al., 2020) 99.19 99.45 98.86 99.16 0.50 0.55 1.14

XGBoost-DNN (Devan & Khare, 2020) 97.60 97.00 97.00 97.00 – – –

MRA S-dDCA 97.37 97.66 97.72 97.69 3.09 2.34 2.28

CNN (Belgrana et al., 2021) 95.54 – 95.73 – 4.64 – 4.27

BAT-MC (Su et al., 2020) 90.13 98.45 82.65 89.86 1.46 1.55 17.35

UNSWNB15 MRA S-dDCA 99.97 99.98 99.99 99.98 0.03 0.03 0.01

GOSA (Dwivedi, Vardhan & Tripathi, 2020) 98.96% – – – 0.084 – 1.15

GRU-HAM (Liu et al., 2020) 98.76 99.35 98.94 – – – –

Classifier Ensemble (Tama et al., 2020) 92.45 88.70 87.79 88.25 5.33 11.30 12.21

FSL (Yu & Bian, 2020) 92.00 – – – 8.01 – 7.89

CIC-IDS 2017 Classifier Ensemble (Tama et al., 2020) 99.99 99.54 100 99.77 0.01 0.46 0

MRA S-dDCA 99.56 98.86 98.93 98.89 0.28 1.14 1.07

STDeepGraph (Yao et al., 2019) 99.40 99.30 98.60 – 1.30 – –

GOA (Shukla, 2021) 99.35 – – – 0.05 – –

HELAD (Zhong et al., 2020) – 99.58 99.58 99.58 2.15 – –

CSE-CICIDS 2018 MRA S-dDCA 99.75 99.00 99.53 99.26 0.20 1.00 0.47

ELFS (Fitni & Ramli, 2020) 98.80 98.80 97.10 97.90 – – –

Random Forest (Fitni & Ramli, 2020) 98.80 98.70 97.00 97.80 – – –

Decision Tree (Fitni & Ramli, 2020) 98.60 97.90 96.90 97.40 – – –

HCRNNIDS (Khan, 2021) 97.75 96.33 97.12 97.60 2.5 – 3.00

Note:
The proposed model results are highlighted in bold.
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(Yao et al., 2019) surpassed the MRA S-dDCA in precision with a score of 99.30%, whereas
the proposed model achieved better results in recall and FPR, with scores of 98.93% and
0.28% respectively. For the CSE-CIC-IDS2018, the MRA S-dDCA was able to surpass
compared approaches in all tested metrics.

DISCUSSION
The MRA S-dDCA performs context assessment by using a population of artificial DCs.
Each element in the segment is sequentially processed. The segmented DCA performs
this process at each segment with the aim of performing the dDCA process using a smaller
data subset. A decomposition process is performed by using MODWT MRA. Detail
coefficients at different decomposition levels are used as inputs for the proposed approach.
This is performed to use high frequency components at different decomposition levels
(or band-pass filters) as inputs for each DC in the population, and may provide insight
related to network anomalies in the monitored traffic. This allows the algorithm to
perform analysis using high frequency variations in the two signal categories used, while
also avoiding data duplication such as the approach of antigen multiplication (Gu,
Greensmith & Aickelin, 2008). The wavelets used to test the proposed approach were
Daubechies, Symlet, and Coiflet. The use of energy for each signal category in any given
segment is performed in order to provide the classification process with localized
information about signal energy in each segment, as anomalies may cause a difference in
signal energy at different decomposition levels. Once all segments have been processed, the
anomaly metric coefficient k(α) is obtained. Finally, a decision tree model is generated
based on the collected data in the antigen repository. The incorporation of MRA technique
aims to further increase the model capabilities of performing analysis in the time-
frequency space at different resolution levels, by using the MODWT, as well as to reduce
the use of redundant observations that prior proposals have implemented as antigen
multiplication (Gu, Greensmith & Aickelin, 2008; Oates et al., 2007; Gu et al., 2009b,
Gu, Greensmith & Aickelin, 2013). The main drawback of this model resides on the
dependence of segment size and DCmigration threshold, where it is necessary to provide a
segment where at least one cell migrates to the migrated cell population. If this does not
occur, classification of any observation with no migrated cells may affect classification
performance. As the proposed model is designed to process time series data, the
presence of continuous attacks may induce more DCs in the population to migrate.
Conversely, if there are not sufficient continuous attacks present, the DC migration rate
may decrease. The effects of this can be the reduction of classification performance, such as
the case with the NSL-KDD dataset, where the proposed model achieved third best
result when comparing accuracy, and second best result when comparing precision, recall,
and F1-Score. As the context detection phase performs linear operations, the model
performance may also be affected when dealing with complex data from attacks that do
not leave a significant footprint in the network traffic; this may be the case with the
CIC-IDS2017 dataset, where an ensemble of classifiers was able to outperform the
proposed model.
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CONCLUSIONS
Anomaly detection in computer networks analyze communications and aims to find
unexpected or anomalous behavior that can be associated with attacks. These attacks
aim to obtain protected data, exploit vulnerabilities found in computer systems, as well as
to disable important systems, among other undesired behavior. The dendritic cell
algorithm is an artificial immune system based on the behavior of dendritic cells, and is
a population-based binary classifier designed for network anomaly detection. The
proposed model was based on the danger theory. This paper proposed a feature selection
approach, as well as a multiresolution based signal analysis mechanism and the segmented
deterministic dendritic cell algorithm. Classification was performed using decision trees,
and was evaluated using four publicly available datasets, namely UNSW-NB15, NSL-KDD,
CIC-IDS2017 and CSE-CIC-IDS2018. The proposed model achieved an accuracy of
99.97%, 97.37%, 99.56%, and 99.75%, and a F1-Score of 99.98%, 97.69%, 98.89%, and
99.26% for the tested datasets. A comparison is presented in order to assess the
performance of dDCA and the proposed model, along with state-of-the-art approaches for
network anomaly detection. The proposed approach was able to surpass state-of-the-art
approaches with the UNSW-NB15, and CSE-CIC-IDS2018 datasets, whereas the results
obtained with NSL-KDD dataset are able to surpass a deep neural network based approach
when measuring precision, recall, and F1-Score. The proposed approach aims to improve
classification performance, as well as to propose a machine learning approach to the
field of anomaly detection using bio-inspired models. The main challenges of the proposed
model are, model dependence on certain parameters, such as the migration threshold
for the DC population, the selection of segment size, as well as wavelet selection. The lack
of multi-class classification, diminished performance when dealing with sparce or low
footprint attacks, along with a further analysis of computational complexity are challenges
presented as future work. Multiresolution analysis may provide insight to solve some
of the mentioned challenges, such as multi-class classification. The segmented dDCA
approach poses a lower computational complexity in comparison with the dDCA.
However, the computational complexity added with the use of decision trees needs to be
further analyzed. The proposed model may be adapted to the use of any MRA approach
without decimation, such as the Empirical Mode Decomposition (EMD). Performance
testing and comparison with MODWT is needed in order to demonstrate its effectiveness.
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