
A fault-intrusion-tolerant system and
deadline-aware algorithm for scheduling
scientific workflow in the cloud
Mazen Farid1,2, Rohaya Latip1,3, Masnida Hussin1 and Nor Asilah Wati
Abdul Hamid1

1Department of Communication Technology and Networks, Universiti Putra Malaysia, Selangor,
Serdang, Malaysia

2 Faculty of Education-Saber, University of Aden, Saber, Aden, Yemen
3 Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia (UPM), Selangor,
Serdang, Malaysia

ABSTRACT
Background: Recent technological developments have enabled the execution of more
scientific solutions on cloud platforms. Cloud-based scientific workflows are subject
to various risks, such as security breaches and unauthorized access to resources.
By attacking side channels or virtual machines, attackers may destroy servers, causing
interruption and delay or incorrect output. Although cloud-based scientific
workflows are often used for vital computational-intensive tasks, their failure can
come at a great cost.
Methodology: To increase workflow reliability, we propose the Fault and Intrusion-
tolerant Workflow Scheduling algorithm (FITSW). The proposed workflow system
uses task executors consisting of many virtual machines to carry out workflow
tasks. FITSW duplicates each sub-task three times, uses an intermediate data
decision-making mechanism, and then employs a deadline partitioning method to
determine sub-deadlines for each sub-task. This way, dynamism is achieved in task
scheduling using the resource flow. The proposed technique generates or recycles
task executors, keeps the workflow clean, and improves efficiency. Experiments were
conducted on WorkflowSim to evaluate the effectiveness of FITSW using metrics
such as task completion rate, success rate and completion time.
Results: The results show that FITSW not only raises the success rate by about 12%,
it also improves the task completion rate by 6.2% and minimizes the completion time
by about 15.6% in comparison with intrusion tolerant scientific workflow ITSW
system.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Distributed and Parallel Computing, Network Science and Online Social Networks, Security and
Privacy
Keywords Cloud computing, Fault tolerance, Intrusion tolerance, Reliability, Scheduling scientific
workflow

INTRODUCTION
Cloud computing technology has become one of the most popular systems for providing
end-users with computing services. An important feature of this paradigm is that the
resources given can be accessed as a utility where consumers can pay for the services they

How to cite this article Farid M, Latip R, Hussin M, Abdul Hamid NAW. 2021. A fault-intrusion-tolerant system and deadline-aware
algorithm for scheduling scientific workflow in the cloud. PeerJ Comput. Sci. 7:e747 DOI 10.7717/peerj-cs.747

Submitted 26 July 2021
Accepted 24 September 2021
Published 2 November 2021

Corresponding author
Mazen Farid,
mazenfareed7@yahoo.com

Academic editor
Kathiravan Srinivasan

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.747

Copyright
2021 Farid et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.747
mailto:mazenfareed7@�yahoo.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.747
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

use (Aslam et al., 2017; Chang & Wills, 2016; Farid et al., 2020; Ferdaus et al., 2017;
Sun et al., 2018). In order to operate cloud-based applications in an economically-efficient
and scalable way, it is highly favorable to deploy large virtual machines (VMs) (Ala’Anzy &
Othman, 2019; Ghazouani & Slimani, 2017; Rao et al., 2013).

Scientific computing involves several interdependent intermediate data and subtasks
which can be built up by different organizations (Yuan et al., 2010). To encourage the
automation of complex scientific computational processes, scientific workflows were
created (Rodriguez & Buyya, 2017). Scientific workflows are handled, controlled and
executed by scientific workflow systems (Lin et al., 2009) derived from grid computing.
With the advancement in cloud computing systems, several researchers are now
developing cloud-based scientific workflow systems (Zhao et al., 2014).

Although cloud-based scientific workflow systems have several merits, cloud platforms
are prone to malfunctions due to their increased functionality and complexity (Pezoa,
Dhakal & Hayat, 2010; Yao et al., 2016). Such defects may have a detrimental impact on
the performance of submitted tasks. This is because a system’s performance is not only
evaluated by the correctness of the measurement results, but also by the time of its
availability (Qin & Jiang, 2006).

Failure often occurs in the components of a system as the operation fails when a
machine bears many loads (Gupta & Gupta, 2020). A task failure is a situation where
the machine cannot complete the task within a deadline or when the machine ceases to
process tasks due to network, memory, or system bugs. As a result of a delay in the
completion of one of the tasks caused by a fault, several tasks on other resources may be
delayed. To cater to this, many strategies have been proposed. In this paper, we develop a
scientific workflow model for fault-intrusion tolerance. A deadline partitioning method
determines the completion time for each sub-task.

Cloud platforms follow a multi-tenant coexistence service paradigm. As such,
different tenants share the same physical facility using virtualization technologies.
The implementation of this model creates flexible control of resources; however, it is
associated with risks. There are several vulnerabilities in the virtualized world; an example
is VM escape vulnerability (Wu et al., 2017). An intruder splits the logical boundaries
into side channels and targets members in the same organization (Zhang et al., 2014). After
the intruder has controlled the entire virtual environment with certain vulnerabilities,
he controls the VMs of all tenants (Szefer et al., 2011).

Other threats in the cloud include co-residential attacks (Atya et al., 2017), side-channel
attacks (Wang et al., 2016; Zhang et al., 2014), and VM escape attacks (Wu et al., 2017).
A large number of subtasks and intermediate data contained in scientific workflows
can easily be targeted by attackers. In addition to researchers’ efforts to address threats in
the cloud, we propose a fault-intrusion tolerant system and deadline-aware resource
provisioning algorithm to protect workflows in clouds. The dynamic task scheduling
strategy, based on resource circulation, eliminates latent threats. By regularly deploying
and reclaiming VMs, the proposed approach cleans up task executors. The performance of
FITSW was tested using WorkflowSim.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 2/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

Realizing intrusion tolerance is much harder than fault tolerance because it should
consider both accidental and malicious faults. Our objective is to achieve the intrusion
tolerance of scientific workflows scheduling process.

Our contributions in this study are summarized as follows:

1. We propose a fault and intrusion-tolerant mechanism for scientific workflows (FITSW)
by considering the effects of accidental and malicious faults on cloud-based scientific
workflows.

2. We develop task executors with various heterogeneous VMs having multiple operating
systems.

3. We present a decision-making mechanism that tracks and evaluates the confidence of
the intermediate data between sub-tasks during execution.

4. To eliminate latent risks, we suggest a dynamic task scheduling strategy based on
recycling resource. FITSW keeps task executors clean by installing and reclaiming
virtual machines on a regular basis.

The remainder of this article is organized as follows: “Literature Review” reviews related
works. FITSW’s principle and threat model are introduced in “Principle of FITSW and
Threat Model”. “Proposed Scheme” outlines the new scheme. In “Experiments and
Results”, the experiments and results are discussed, followed by the “Conclusion” that
concludes this article.

LITERATURE REVIEW
Many fault-tolerant algorithms have been proposed in recent decades to reduce the
adverse effects of faults in distributed systems. Javadi et al. (2011) investigated how failures
due to faults can be handled in complex infrastructures. However, the model often involves
tracing data failures related to a particular objective, which can be very challenging.
Jhawar & Piuri (2012) suggested a new dimension in which required fault tolerance
properties can be obtained by a third party from applications deployed in cloud systems.
For ordinary users, however, it is difficult to choose the appropriate third party. Zheng
et al. (2012) and Qiu et al. (2014) suggested a ranking method in which all components of
the cloud were categorized according to invocation structures and invocation frequencies.
Using an optimal algorithm based on the ranking results, the fault-tolerant strategies for
the various components were computed. However, the exact ranking is difficult as it
requires a thorough understanding of the behavior of the target infrastructure as well as
long-term trace data of the specific system.

Related to our work which focuses primarily on the study of fault and intrusion
tolerance in scientific workflow scheduling, Yao et al. (2016) proposed a workflow
scheduling algorithm inspired by the immune system. This algorithm can prevent
cloud-based scientific workflow disruptions (due to the failure of resources) to protect
scientific workflow sub-tasks. To ensure that cloud services are continuously available to
defend against security threats, a cloud resource management self-protection solution

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 3/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

was introduced by Gill & Buyya (2018). Centered on the master-slave theorem, Ding,
Yao & Hao (2017) developed a fault-tolerant scheduling algorithm. For each sub-task, two
replicas (one master and one slave replica) are generated and allocated to individual
VMs using this algorithm. The ICFWS algorithm, proposed by Yao, Ding & Hao (2017)
divides the general workflow deadline into sub-task sub-deadlines. Then, based on the
assigned sub-deadlines, each scientific workflow task selects an acceptable fault-tolerant
strategy using task redundancy and rescheduling strategies.

Cloud services are priced dynamically and are referred to as spot instances of the
VMs. Spot cases are cheaper than the VMs offered by the static price scheme. Therefore,
Poola, Ramamohanarao & Buyya (2016) suggested the use of spot instances to execute
scientific workflows in order to minimize cost. Li et al. (2016) quantified security for cloud
services and thoroughly analyzed the risk rates of scientific workflows. The researchers
then created the Security and Cost Aware Scheduling (SCAS) scheme to reduce costs
when risk rates are small and deadlines are tight. The cloud-based scientific protective
problem in the workflow was formulated as a two-person zero-sum problem by Wang
et al. (2020), who suggested the CLOSURE algorithm to confuse adversaries. Nevertheless,
if an attacker manages to access a VM and tampers with the scientific workflow to
generate an incorrect output, this problem cannot be solved effectively by either of the
above works.

Some studies analyze failures to ensure that the workflow is performed successfully
even if resources fail. Secret data and sensitive computation also require scientific
workflows (Wang et al., 2019b). This motivates the need for secure execution of scientific
workflows. In this context (Chen et al., 2017) used the scientific workflow’s slack times to
encrypt intermediate data. The encryption algorithm was combined with the task
scheduling algorithm to ensure the scientific workflow’s confidentiality and reduce cost
and time. Liu et al. (2014) suggest a security aware intermediate data placement strategy to
ensure that intermediate data is secured in three ways: integrity, confidentiality, and
privileged access.

In order to increase the availability, confidentiality and integrity of the data of scientific
workflow (Wang et al., 2019b) used different hash functions, encryption algorithms,
and erasure codes while considering scientific workflow deadlines. Teylo et al. (2017)
studied the scheduling of scientific workflow and the intermediate data allocation. They
modeled them as part of an integrated planning challenge to reduce intermediate data
transmission in a cloud network. A hybrid evolutionary algorithm known as HEA-
TaSDAP was created to optimize task planning, intermediate data allocation strategies and
task scheduling. TryXy was created by Nepal et al. (2017) and it offers stable scientific
workflow storage facilities.

InWang et al. (2019a), the ITSW designer used a mission replication and voting system
to prevent attackers from modifying the results of scientific workflows. But ITSW ignores
the delay that can happen because of accidental (Yao, Ding & Hao, 2017) or malicious
attacks (Bhattarai et al., 2014, 2015) which could lead to an increase in the makespan of
the entire workflow. In order to determine sub-deadlines for each sub mission (Wang et al.,
2021) proposed the INHIBITOR to determine sub-deadlines for each submission by

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 4/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

using the deadline partitioning process. The system for the provision of elastic resources is
structured to maximize efficiency and reduce costs, based on these sub-deadlines. This
paper deploys the Task-VM mapping framework and elastic resource provisioning
mechanism to enhance ITSW intrusion tolerance. Our aim is to develop a FITSW
workflow scheduling algorithm that will improve the system’s fault and intrusion
tolerance, taking into account the delay due to accidental failures or intrusion attacks.

Scientific workflow security issues in the cloud
It is quite difficult to address the security issues of scientific workflows in clouds due to
their unique features. Many scientific workflows are computational intensive (Li et al.,
2016), thus, they need VMs. These VMs can be targeted easily by attackers (Narayana &
Pasupuleti, 2018). Executing scientific workflows is also time-consuming (Yuan et al.,
2010). This provides enough time for attackers to make an intrusion. A scientific workflow
is typically a form of Directed Acyclic Graph (DAG) that is extremely vulnerable to
attacks, as intermediate errors are inherited in the final result (Wang et al., 2018). In
addition, the intermediate scientific workflow data also contain sensitive data in some
scientific fields. If this data is hacked, users will suffer severe damage (Wang et al., 2019b).
Adversaries can compromise workflow execution in several ways.

1. The attackers can access and force the VMs that run workflows to go offline.

2. The intruder can gain access to intermediate data without tempering or altering it,
rather he delays the finish time of executing sub-tasks (Yu et al., 2017). Attacks such
as jamming attacks, sniffer attacks, worm propagation, and resource-depletion denial-
of-service (Bhattarai et al., 2014, 2015) could be launched to disable the links by
congesting the network or monitoring network data flow (Bhattarai et al., 2015; Yu
et al., 2017).

3. In some cases, the purpose of the adversaries is to alter the workflow result rather than
interrupt the workflow. This can be achieved through intermediate data workflow
manipulation and execution software.

4. The adversaries can also steal the workflow data after breaching the VMs or build a back
door for the next attack.

The fault tolerance system generally protects against the first and second types of
attacks. However, it cannot prevent the remaining two types. To develop a Fault-Intrusion-
tolerant system capable of effectively defending against these four types of threats. There
are four major challenges to overcome.

1. To check that each sub-task can be performed without any VM failures, the systems
must be able to check the average earliest finish time of the virtual cluster using the sub-
task sub-deadline.

2. Systems must be able to (i) assess if workflow’s sub-task results are right by checking the
confidence of the intermediate data of all replicas and (ii) correct altered outputs to
protect the system against the third form of attack by re-executing the current task.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 5/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

3. The system should be strong enough to withstand the fourth form of attack by removing
latent threats and cleaning up executors using resource recycling technique.

4. Instead of security, the efficiency of the system is also very important. Therefore, the
system’s fault-intrusion-tolerant mechanism should not negatively impact workflow
efficiency according to the proposed decision mechanism.

PRINCIPLE OF FITSW AND THREAT MODEL
Principle of FITSW
The DAG is an example of a scientific workflow. It is expressed by G = (T, D), where
T = {t1, t2,…, tn} represents a collection of subtasks for workflow and D is representing the
intermediate data between sub-tasks. di,j ∈ D refers to intermediate data generated from
subtask ti and used by subtask tj. every workflow sub-task ti is measured in Million
instructions (MIi) (Jhawar & Piuri, 2012). pred (ti) and succ (ti) represent the predecessors
and successors of subtask ti, respectively. Sub-task ti cannot begin in scientific workflows
until all its predecessors are completed.

The workflow executor is one VM in several cloud-based scientific workflow systems.
It ensures that every subtask workflow is completed with just one VM. This is highly risky
as the adversaries will only jeopardize a single VM to destroy workflow execution.
Therefore, a virtual cluster (Liu et al., 2018) is suggested for task execution. There are
several VMs in the virtual cluster and these VMs run the same workflow subtask in
parallel.

Three replicas of each workflow sub-task t are copied into FITSW: tfirst (the first replica),
tsecond (the second replica) and tthird (the third replica), which are executed by three
heterogeneous VMs. The heterogeneity of VMs is represented primarily by variations in
operating systems. Linux VM, Windows VM and Solaris VM operate for each sub-task
workflow. The decision mechanism in FITSW relies mainly on identical results and the
sub-deadline of the sub-task. If the confidence of any sub-task is less than 1, the sub-task is
re-executed.

Principle of ITSW-RV
In ITSW-RV, we deploy a random virtual task execution cluster with different VM
numbers (between 3–10). The number of replicas for each subtask must be the same for a
random number of VMs with different operating systems. The number of similar results is
increased in this situation and the ability to receive most of the results is also increased.
Our experiment indicates that an increase in the number of VMs contributes to a
reduction in the overall algorithm completion time.

Task-VM mapping
Aside from the resource provisioning strategy, task-VM mapping is an essential step in
workflow scheduling also (Rodriguez & Buyya, 2017). Various task-VM mapping
relationships can be used to achieve various scheduling objectives, such as decreasing the
cost of cloud scientific workflows (Zhou, He & Liu, 2016), maximizing the use of virtual
machines (VMs) during the execution of scientific workflows(Lee et al., 2015), and

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 6/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

reducing the makespan for a scientific workflow to complete (Jiang, Haihong & Song,
2017). In an actual production environment, the authors suggest in Sangaiah et al. (2019)
an algorithm for scheduling tasks to be mapped into machines. Similarly, a subtask
cannot begin execution before a VM has been allocated. As a result, before using the
proposed task-VMmapping algorithm, we will first allocate VMs. Additionally, the system
cannot use mapped VMs for the second and third replicas. Finally, for any sub-tasking
replica, the HEFT (Topcuoglu, Hariri &Wu, 2002) algorithm selects the required VM. The
steps taken are described below.

1. To perform tasks, the upward ranking approach is employed as shown in Eq. (1).

ranku tið Þ ¼ xi þmaxtj2succðtiÞ
di;j
BW

þ ranku tj
� �� �

(1)

The average time available for the VMs to perform ti is ωi. By crossing the task graph
upward, the rank is recurrently calculated, so it is called upward rank. The upward rank
value for the last subtask tlast is equivalent to Eq. (2).
ranku tlastð Þ ¼ xlast (2)

2. Every sub-task is sorted by a non-increasing ranku value in a scheduling list.

3. A subtask is chosen in the schedule list and copied into three replicas.

4. For all replicas, tfirsti , tsecondi and tthirdi , each Earliest Finish Time (EFT) value on VM vmj is
calculated using Eqs. (3) and (4).

Only direct predecessors of a subtask are needed to decide the earliest start time of the
three replicas.

ESTðtxi ;vmjÞ¼max

�
readyj;maxtm2predðtiÞ

�
maxy2ffirst;second;thirdg

�
EFTðtymÞþ

dm;i

BW

���
;

x2ffirst;second;thirdg
(3)

EFT txi ; vmj
� � ¼ MIi

vmpj
þ EST txi ; vmj

� �
; x 2 first; second; thirdf g (4)

readyj shows the earliest time at which vmj is ready to execute sub-tasks, EFT(txm) denotes
the earliest finish time of txm, The size of each sub-task ti is measured in MIi (Jhawar &
Piuri, 2012). vmpj represents the processing power of vmj and it is measured in Million
instructions per second MIPS.

As predicted, a delay with no malicious connections is less than a delay with malicious
connections (Bhattarai et al., 2014), the finish time of the sub-task must be less than the
sub-deadline. Otherwise, intruders would have completed their objectives before the
response party performs critical path analysis. In our model, we use a task executor
that contains three VMs with different operating systems to execute individual sub-task.
Hence, to determine the EFT of each sub-task and compare it with the sub-deadline,
we calculate the average EFT of all replicas for each subtask by the following equation.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 7/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

AEFT tið Þ ¼

Pthird
x¼first

EFT txi ; vmj
� �

no: of vms in virtual cluster
(5)

Proposed Scheme
The outline of the proposed FITSW system is illustrated in Fig. 1. We recommend that
multiple heterogeneous VMs should be used as task executors to improve the workflow
execution fault tolerance. The proposed decision mechanism verifies and evaluates the
confidentiality of intermediate data by the executors. It also checks the earliest finish time
of each subtask. According to the evaluation of the proposed decision mechanism, a
dynamic task scheduling strategy is applied based on resource circulation. It decides
whether to implement or recycle task executors. This approach removes inherent threats
and cleans the environment for executing scientific workflows.

Proposed decision mechanism
Attackers mainly aim at controlling the outcome of a workflow rather than terminating it.
This could lead to a false workflow output. If the task executer is compromised by this
type of attack, the sub-tasks will have multiple results. A decision mechanism to turn
multiple inputs into one output can be applied in order to avoid this threat, thereby

Figure 1 The proposed FITSW system. Full-size DOI: 10.7717/peerj-cs.747/fig-1

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 8/21

http://dx.doi.org/10.7717/peerj-cs.747/fig-1
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

protecting against inconsistent system states. The time to finish the sub-task is therefore
not the same for each virtual machine.

Using tf and tl to denote the states within the system (i.e., the time when the first
results and the last results are produced, respectively), if the decision mechanism only
generates the outcome after all VMs have obtained the results, the execution time of
each workflow sub-task is increased by tl − tf. In order to collect the results from all VMs,
the time of execution of each sub-task of the workflow will increase by tl − tf. The proposed
decision mechanism converts the intermediate data produced to an MD5 value for
verification. Fig. 2 shows its principle.

We presume that there are sub-tasks Ti and Tj, and the sub-task Tj relies on the sub-task
Ti to generate intermediate data. Confidence C for each intermediate data is determined by
Eq. (6) using the number of identical results.

C ¼ the number of identical results
no: of vms in virtual cluster

(6)

The decision model can assume five cases during the collection of outputs.
Case 1: C = 1 and AEFT < sub-deadline; the decision module will execute sub-task Tj.
Case 2: C = 1 and AEFT > sub-deadline. In this case, two actions will be taken by

the decision module. First, recycling all the VMs that executing sub-task Ti because the
AEFT is more than sub-deadline. This delay might result from some threats. Second,
executing sub-task Tj because the confidence is 1.

Figure 2 Decision mechanism. Full-size DOI: 10.7717/peerj-cs.747/fig-2

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 9/21

http://dx.doi.org/10.7717/peerj-cs.747/fig-2
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

Case 3: 0.5 < C < 1 and AEFT < sub-deadline. In this case Tj is executing because the
majority of results are identical.

Case 4: 0.5 < C < 1 and AEFT > sub-deadline. In this case, two actions will also be taken
by the decision module. First, recycling all the VMs executing sub-task Ti because the
AEFT exceeds the sub-deadline. Second, re-executing Ti because the confidence is less than
one.

Case 5: C ≤ 0.5; sub-task Ti will be re-executed instantly with the available resources.
In case 2, the confidence is 1 and AEFT exceeds the sub-deadline of sub-task. We

assume that the increase in AEFT could happen due to some accidental faults resulting in
this delay.

In case 3, the confidence is less than 1 and AEFT of the virtual cluster is less than the
sub-deadline. Here, we assume that this might occur as a—result of accidental faults
because there is no delay during the process.

In case 4, the confidence is less than 1 and the AEFT of the virtual cluster is more than
the sub-task sub-deadline. In this case, we assume this low confidence level is due to threat
and delay. So, the significance of the sub-task re-execution is significantly high.

In case 5, the confidence is less than or equal to 0.5; thus, the current sub-task must be
re-executed because of the low confidence level of the intermediate data.

Without reducing efficiency, the suggested decision mechanism will enhance the
credibility of effective workflow execution.

Fault and intrusion-tolerant workflow scheduling algorithm
To use the FITSW algorithm, first determine the sub-deadline for each sub-task using a
deadline partitioning method. An elastic resource provisioning scheme is built based
on these sub-deadlines, and a task-VM mapping technique is used to improve
performance.

Deadline partitioning
To ensure that FITSW meets the workflow deadline, we use the approach of dividing the
deadline (Cao et al., 2019; Wang et al., 2021). This divides the deadline given by the user
into sub-deadlines for individual scientific workflow sub-tasks. First, this approach uses
Eq. (7) to measure upward rank for each subtask,

ranku tið Þ ¼ maxtj2succ tið Þ cj:
size di;j

� �
BW

þ ranku tj
� �� �

þ x�
i (7)

x�
i shows the time ti of the fastest VM. In Eq. (8), cj is used to determine communication

costs size (di;j)/BW.

cj ¼ 0; 1� h�kj

1 otherwise

�
(8)

θ is a parameter that is predefined to be greater than 1. In our experiments, we set the value
of θ to 1.2. Kj denotes the ratio execution time tj to communication time, which can be
determined by Eq. (9).

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 10/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

kj ¼ x�
i :BW
di;j

(9)

Then, the sub-deadline of sub-task ti, i.e., subD(ti) can be calculated by Eq. (10).

subD tið Þ ¼ ranku tinitð Þ � ranku tið Þ þ x�
i

ranku tinitð Þ :D (10)

where tinit denotes the workflow initial sub-task and D represents the deadline provided by
the user.

Dynamic task scheduling strategy based on resource circulation
The workflow environment in a traditional cloud workflow system is static and
unchanged. As a result, attackers will launch backdoor attacks and leak information. If
attackers gain access to VMs, they can maintain control over them for a prolonged
period of time. A dynamic task scheduling approach based on resource circulation is
proposed as a solution to this problem. The method recycles VMs that perform sub-
tasks and creates new VMs without raising users’ sub-task resource requirements. The
dynamic task scheduling method is implemented using the decision process depicted in
Algorithm 1.

The proposed task scheduling model can be used for VM cleaning. If viruses infect any
VM during the workflow, the proposed job/task scheduling strategy would clear the
affected VM. In addition, the dynamic task scheduling technique will prevent attackers
from sniffing into workflow data on a regular basis. With the dynamic task scheduling
approach, the proposed framework would recycle VMs that had completed subtask
execution. It will also prevent attackers from taking control of a virtual machine for an
extended period of time.

EXPERIMENTS AND RESULTS
Experimental setting
Experiments were performed using WorkflowSim (Chen & Deelman, 2012), an open-
source cloud workflow simulation software, where the scientific workflow is represented in
XML. The Montage, Epigenomics, CyberShake, Inspiral, and Sipht scientific workflows
introduced by Pegasus (Deelman et al., 2015) were used for these experiments. The
scientific workflow structures are provided in Fig. 3 while the parameters are given in
Table 1. Three metrics were used to measure the performance of the algorithm:

1. Success Rate (SR) achieved after executing scientific workflows (when there are attacks):
SR denotes the algorithm’s intrusion tolerance.

2. Workflow Makespan: This represents the algorithm’s completion time.

3. Task Completion Rate (TCR) (Yao, Ding & Hao, 2017): Calculated as shown in Eq. (11).

TCR ¼ N baseline
N workflow

(11)

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 11/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

The HEFT workflow makespan is used as a baseline while Nbaseline denotes the
number of sub-tasks performed at baseline time. Nworkflow reflects the number of
workflow sub-tasks that were used in the test. The TCR demonstrates the algorithm’s
efficiency.

To evaluate FITSW, three experiments are conducted with the following aims: (1)
Evaluating FITSW’s SR with different numbers of VM’s attack (2) Evaluating FITSW’s
TCR. (3) Evaluating FITSW system’s efficacy by calculating completion time without
considering attacks. In this experiment, we compare FITSW with ITSW (Wang et al.,
2019a) and ITSW-RV with a random number of VMs. For the final results presentation,
average values are considered. Each test is carried out twenty-five times. The processing
power of each VM is produced randomly during each experiment from 1,300 MIPS to
2,000 MIPS.

Algorithm 1 FITSW.

BEGIN

1. Input KðThe number of VMs included in vrtual clusterÞ
2. ranku tið Þ ¼ xi þmaxtj2succðtiÞ

di;j
BW þ ranku tj

� �n o
;

//Calculate the upword ranking of sub task Ti according to (1)

3. subD tið Þ ¼ ranku tinitð Þ�ranku tið Þþx�
i

ranku tinitð Þ :D;

//Calculate the sub deadline of sub task Ti according to (10);

4. Recieving sub task Ti replicas execution results from virtual clusters;

5. confidence ¼ the number of identical results
no:of vms in virtual cluster ;

//Calulate the confidance of intermediate data of sub task Ti according to (6);

6. AEFT tið Þ ¼
Pthird
x¼first

EFT txi ;vmjð Þ
no:of vms in virtual cluster ;

//Calculate the AEFT of virtual cluster according to (5);

7. ifðconfidence ¼ 1 and AEFT, sub deadlineÞ
8. generating new VMs to executing sub task Tj;

9. ifðconfidence ¼ 1 and AEFT. sub deadlineÞ
10. Recycling all the VMs executing sub task Ti;

11. generating new VMs to executing sub taskTj;

12. ifðð0:5, confidence, 1Þ and ðAEFT, sub deadlineÞÞ
13. generating new VMs to executing sub task Tj;

14. ifðð0:5, confidence, 1Þ and ðAEFT. sub deadlineÞÞ
15. Recycling all the VMs executing sub task Ti;

16. Re execute sub task Ti;

17. ifðconfidence � 0:5Þ
18. Re execute sub task Ti;

END

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 12/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

Figure 3 Some scientific workflows structures. Full-size DOI: 10.7717/peerj-cs.747/fig-3

Table 1 The parameters of different workflows.

Scientific workflow Number of sub-task Number of edges Average data size (MB) Average sub-task runtime (s)

CyberShake_1000 1,000 3,988 102.29 22.71

Epigenomics_997 997 3,228 388.59 3,858.67

Montage_1000 1,000 4,485 3.21 11.36

Inspiral_1000 1,000 3,248 8.90 227.25

Sipht_1000 1,000 3,528 5.00 179.05

Table 2 SR of FITSW, ITSW and ITSW-RV under the condition of one compromised VM.

Algorithms The number of available VMs

30 50 100 150 200 250 300

ITSW 0.04 0.08 0.28 0.6 0.52 0.68 0.8

ITSW-RV 0.16 0.16 0.6 0.52 0.56 0.72 0.8

FITSW 0.16 0.24 0.76 0.64 0.72 0.92 1

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 13/21

http://dx.doi.org/10.7717/peerj-cs.747/fig-3
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

Evaluating SR
The intrusion tolerance is quantified by SR in this experiment. The higher the algorithm’s
SR, the greater the intrusion tolerance for the same number of compromised VMs.

SR ¼ number of simulation runs that successfully meet the deadline
total number of simulation runs

(12)

Table 3 SR of FITSW, ITSW and ITSW-RV under the condition of two compromised VMs.

Algorithms The number of available VMs

30 50 100 150 200 250 300

ITSW 0.04 0.08 0.4 0.48 0.40 0.64 0.76

ITSW-RV 0.08 0.08 0.56 0.56 0.52 0.64 0.8

FITSW 0.16 0.24 0.52 0.58 0.64 0.8 0.8

Figure 4 (A–E) The TCR of FITSW, ITSW and ITSW-RV.
Full-size DOI: 10.7717/peerj-cs.747/fig-4

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 14/21

http://dx.doi.org/10.7717/peerj-cs.747/fig-4
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

First, we presume that the adversaries capture one VM, which generates an incorrect
result for any sub-task assigned to this VM. The average SR of FITSW, ITSW, and
ITSW-RV for different numbers of available VMs is determined for these purposes using
five different scientific workflows. Tables 2 and 3 demonstrate the results.

Second, as the number of compromised VMs increases, the FITSW and ITSW SRs
decrease dramatically. However, ITSW exhibits a more obvious downward trend than
FITSW. Also, the number of available VMs influences FITSW and ITSW. This is because
the higher number of VMs available, the lower the chances that two compromised
VMs will be assigned to two of the three sub-task replicas. In general, FITSW is more
intrusion-tolerant than ITSW.

Figure 5 (A–E) The completion time of FITSW, ITSW and ITSW-RV.
Full-size DOI: 10.7717/peerj-cs.747/fig-5

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 15/21

http://dx.doi.org/10.7717/peerj-cs.747/fig-5
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

Evaluating TCR of FITSW
Here, we test TCR with a random number of VMs for FITSW, ITSW and ITSW-RV.
TCR is defined as the relationship between tasks completed and the total number of
workflow tasks checked during the soft-deadline. It reflects the effectiveness of the task
performed with respect to the compared algorithms. At first, there are 100 VMs
available and the HEFT makespan is the baseline. The deadline for FITSW, ITSW and
ITSW-RV is (1.2*Baseline). From the result shown in Fig. 4, the TCR of ITSW is lower
than that of FITSW and ITSW-RV. This results because FITSW is not based on a backup
mechanism and the number of VMs available is not enough to meet the execution
requirements. To support cloud-based scientific workflows, ITSW-RV can increase its
resource pool while FITSW and ITSW have a fixed number of VMs.

Efficiency assessment of FITSW system
First, without considering an attack, we checked the FITSW system’s efficiency. The
number of VMs that are available is used as variables. FITSW, ITSW and ITSW-RV
systems workflow completion time is shown in Fig. 5. From the figure, it is obvious that
the completion time of FITSW system is smaller than ITSW and ITWS-RV. This can be
traced to the fact that FITSW checks the confidence value and sub-deadline for each
sub-task to decide on whether to re-execute the current sub-task or execute the next.
ITSW and ITSW-RV will inevitably take more time waiting for results because of its
intermediate data backup mechanism for temporary workflow. The completion time of the
FITSW system decreased by around 15.6% on Montage, 19% on Inspiral, 18% on
CyberShake, 13% on Epigenomics, and 11% on Sipht.

CONCLUSION
To address the security challenges of scientific workflow systems in the cloud, we propose a
FITSW system. The workflow executors in this system are virtual clusters comprised of
many VMs, which can improve workflow execution reliability. To detect accidental or
malicious errors during the workflow scheduling process, FITSW divides the entire
workflow deadline into sub-deadlines for each sub-task. The reliability of the workflow
execution is further improved using a new decision mechanism to eliminate unreliable
results. Since the workflow environment in a conventional cloud workflow system is
static and unchanged, attackers may easily implant a backdoor attack and cause data
leakage. To solve this problem, a dynamic task scheduling approach based on resource
circulation is introduced. The approach disrupts the attack chain and guarantees that
the task executors remain in a clean state. Performance evaluation using the WorkflowSim
toolkit shows that the proposed solution achieves an improved scientific workflow
intrusion tolerance. The results reveal that FITSW algorithm not only increases the
success rate by about 12% but also improves task completion rate by 6.2% and reduces
completion time by 15.6%, in comparison to the intrusion tolerant scientific workflow
ITSW system.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 16/21

http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

ACKNOWLEDGEMENTS
Throughout the study, the authors gratefully appreciate all those who contributed
academically, technically, and administratively to this study.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by a Putra Grant, University Putra Malaysia, under Grant
95960000, and Ministry of Education (MOE) Malaysia. There was no additional external
funding received for this study. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Putra Grant, University Putra Malaysia: 95960000.
Ministry of Education (MOE) Malaysia.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Mazen Farid conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Rohaya Latip analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

� Masnida Hussin conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

� Nor Asilah Wati Abdul Hamid analyzed the data, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The different scientific workflows that we used in our experiments are available as
Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.747#supplemental-information.

REFERENCES
Ala’Anzy M, Othman M. 2019. Load balancing and server consolidation in cloud computing

environments: a meta-study. IEEE Access 7:141868–141887
DOI 10.1109/ACCESS.2019.2944420.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 17/21

http://dx.doi.org/10.7717/peerj-cs.747#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.747#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.747#supplemental-information
http://dx.doi.org/10.1109/ACCESS.2019.2944420
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

Aslam S, Islam S, Khan A, Ahmed M, Akhundzada A, Khan MK. 2017. Information collection
centric techniques for cloud resource management: taxonomy, analysis and challenges.
Journal of Network and Computer Applications 100(1):80–94 DOI 10.1016/j.jnca.2017.10.021.

Atya AOF, Qian Z, Krishnamurthy SV, La Porta T, McDaniel P, Marvel L. 2017. Malicious
co-residency on the cloud: attacks and defense. In: Proceedings of the IEEE INFOCOM.
Piscataway: IEEE.

Bhattarai S, Rook S, Ge L, Wei S, Yu W, Fu X. 2014. On simulation studies of cyber attacks
against LTE networks. In: Proceedings of the International Conference on Computer
Communications and Networks, ICCCN.

Bhattarai S, Wei S, Rook S, YuW, Erbacher RF, Cam H. 2015.On simulation studies of jamming
threats against LTE networks. In: 2015 International Conference on Computing, Networking and
Communications, ICNC 2015. 99–103.

Cao S, Deng K, Ren K, Li X, Nie T, Song J. 2019. A deadline-constrained scheduling algorithm for
scientific workflows in clouds. In: Proceedings of the 21st IEEE International Conference on High
Performance Computing and Communications, 17th IEEE International Conference on Smart
City and 5th IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS.
Piscataway: IEEE, 98–105.

Chang V, Wills G. 2016. A model to compare cloud and non-cloud storage of Big Data. Future
Generation Computer Systems 57(4):56–76 DOI 10.1016/j.future.2015.10.003.

Chen H, Zhu X, Qiu D, Liu L, Du Z. 2017. Scheduling for workflows with security-sensitive
intermediate data by selective tasks duplication in clouds. IEEE Transactions on Parallel and
Distributed Systems 28(9):2674–2688 DOI 10.1109/TPDS.2017.2678507.

Chen W, Deelman E. 2012. WorkflowSim: a toolkit for simulating scientific workflows in
distributed environments. In: 2012 IEEE 8th International Conference on E-Science, e-Science
2012. Piscataway: IEEE.

Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, Mayani R, Chen W, Ferreira
Da Silva R, Livny M, Wenger K. 2015. Pegasus, a workflow management system for science
automation. Future Generation Computer Systems 46(3):17–35
DOI 10.1016/j.future.2014.10.008.

Ding Y, Yao G, Hao K. 2017. Fault-tolerant elastic scheduling algorithm for workflow in Cloud
systems. Information Sciences 393(8):47–65 DOI 10.1016/j.ins.2017.01.035.

Farid M, Latip R, Hussin M, Abdul Hamid NAW. 2020. Scheduling scientific workflow using
multi-objective algorithm with fuzzy resource utilization in multi-cloud environment. IEEE
Access 8:24309–24322 DOI 10.1109/ACCESS.2020.2970475.

Ferdaus MH, Murshed M, Calheiros RN, Buyya R. 2017. An algorithm for network and data-
aware placement of multi-tier applications in cloud data centers. Journal of Network and
Computer Applications 98(13):65–83 DOI 10.1016/j.jnca.2017.09.009.

Ghazouani S, Slimani Y. 2017. A survey on cloud service description. Journal of Network and
Computer Applications 91(May):61–74 DOI 10.1016/j.jnca.2017.04.013.

Gill SS, Buyya R. 2018. SECURE: self-protection approach in cloud resource management. IEEE
Cloud Computing 5(1):60–72 DOI 10.1109/MCC.2018.011791715.

Gupta P, Gupta PK. 2020. Trust & fault in multi layered cloud computing architecture. In: Trust &
Fault in Multi Layered Cloud Computing Architecture.

Javadi B, Kondo D, Vincent JM, Anderson DP. 2011.Discovering statistical models of availability
in large distributed systems: an empirical study of SETI@home. IEEE Transactions on Parallel
and Distributed Systems 22(11):1896–1903 DOI 10.1109/TPDS.2011.50.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 18/21

http://dx.doi.org/10.1016/j.jnca.2017.10.021
http://dx.doi.org/10.1016/j.future.2015.10.003
http://dx.doi.org/10.1109/TPDS.2017.2678507
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1016/j.ins.2017.01.035
http://dx.doi.org/10.1109/ACCESS.2020.2970475
http://dx.doi.org/10.1016/j.jnca.2017.09.009
http://dx.doi.org/10.1016/j.jnca.2017.04.013
http://dx.doi.org/10.1109/MCC.2018.011791715
http://dx.doi.org/10.1109/TPDS.2011.50
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

Jhawar R, Piuri V. 2012. Fault tolerance management in cloud computing: a system-level
perspective. In: Proceedings of the 2012 IEEE 1st AESS European Conference on Satellite
Telecommunications, ESTEL. Piscataway: IEEE, 1–10.

Jiang H, Haihong E, Song M. 2017. Dynamic scheduling of workflow for makespan and
robustness improvement in the IaaS cloud. IEICE Transactions on Information and Systems
E100D(4):813–821 DOI 10.1587/transinf.2016EDP7346.

Lee YC, Han H, Zomaya AY, Yousif M. 2015. Resource-efficient workflow scheduling in clouds.
Knowledge-Based Systems 80(2):153–162 DOI 10.1016/j.knosys.2015.02.012.

Li Z, Ge J, Yang H, Huang L, Hu HHH, Hu HHH, Luo B. 2016. A security and cost aware
scheduling algorithm for heterogeneous tasks of scientific workflow in clouds. Future Generation
Computer Systems 65(3):140–152 DOI 10.1016/j.future.2015.12.014.

Lin C, Lu S, Fei X, Chebotko A, Pai D, Lai Z, Fotouhi F, Hua J. 2009. A reference architecture for
scientific workflow management systems and the VIEW SOA solution. IEEE Transactions on
Services Computing 2(1):79–92 DOI 10.1109/TSC.2009.4.

Liu J, Wang S, Zhou A, Kumar SAP, Yang F, Buyya R. 2018. Using proactive fault-tolerance
approach to enhance cloud service reliability. IEEE Transactions on Cloud Computing
6(4):1191–1202 DOI 10.1109/TCC.2016.2567392.

Liu W, Peng S, Du W, Wang W, Zeng GS. 2014. Security-aware intermediate data placement
strategy in scientific cloud workflows. Knowledge and Information Systems 41(2):423–447
DOI 10.1007/s10115-014-0755-x.

Narayana KS, Pasupuleti SK. 2018. Trusted model for virtual machine security in cloud computing.
Vol. 710. Singapore: Springer.

Nepal S, Sinnott RO, Friedrich C, Wise C, Chen S, Kanwal S, Yao J, Lonie A. 2017. TruXy:
trusted storage cloud for scientific workflows. IEEE Transactions on Cloud Computing 5(3):428–
442 DOI 10.1109/TCC.2015.2489638.

Pezoa JE, Dhakal S, Hayat MM. 2010. Maximizing service reliability in distributed computing
systems with random node failures: theory and implementation. IEEE Transactions on Parallel
and Distributed Systems 21(10):1531–1544 DOI 10.1109/TPDS.2010.34.

Poola D, Ramamohanarao K, Buyya R. 2016. Enhancing reliability of workflow execution using
task replication and spot instances. ACM Transactions on Autonomous and Adaptive Systems
10(4):1–21 DOI 10.1145/2815624.

Qin X, Jiang H. 2006. A novel fault-tolerant scheduling algorithm for precedence constrained tasks
in real-time heterogeneous systems. Parallel Computing 32(5–6):331–356
DOI 10.1016/j.parco.2006.06.006.

QiuW, Zheng Z, Wang X, Yang X, Lyu MR. 2014. Reliability-based design optimization for cloud
migration. IEEE Transactions on Services Computing 7(2):223–236 DOI 10.1109/TSC.2013.38.

Rao J, Wei Y, Gong J, Xu CZ. 2013. QoS guarantees and service differentiation for dynamic cloud
applications. IEEE Transactions on Network and Service Management 10(1):43–55
DOI 10.1109/TNSM.2012.091012.120238.

Rodriguez MA, Buyya R. 2017. A taxonomy and survey on scheduling algorithms for scientific
workflows in IaaS cloud computing environments. Concurrency Computation 29(8):1–23
DOI 10.1002/cpe.4041.

Sangaiah AK, Suraki MY, Sadeghilalimi M, Bozorgi SM, Hosseinabadi AAR, Wang J. 2019. A
new meta-heuristic algorithm for solving the flexible dynamic job-shop problem with parallel
machines. Symmetry 11(2):1–17 DOI 10.3390/sym11020165.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 19/21

http://dx.doi.org/10.1587/transinf.2016EDP7346
http://dx.doi.org/10.1016/j.knosys.2015.02.012
http://dx.doi.org/10.1016/j.future.2015.12.014
http://dx.doi.org/10.1109/TSC.2009.4
http://dx.doi.org/10.1109/TCC.2016.2567392
http://dx.doi.org/10.1007/s10115-014-0755-x
http://dx.doi.org/10.1109/TCC.2015.2489638
http://dx.doi.org/10.1109/TPDS.2010.34
http://dx.doi.org/10.1145/2815624
http://dx.doi.org/10.1016/j.parco.2006.06.006
http://dx.doi.org/10.1109/TSC.2013.38
http://dx.doi.org/10.1109/TNSM.2012.091012.120238
http://dx.doi.org/10.1002/cpe.4041
http://dx.doi.org/10.3390/sym11020165
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

Sun G, Liao D, Zhao D, Xu Z, Yu H. 2018. Live migration for multiple correlated virtual machines
in cloud-based data centers. IEEE Transactions on Services Computing 11(2):279–291
DOI 10.1109/TSC.2015.2477825.

Szefer J, Keller E, Lee RB, Rexford J. 2011. Eliminating the hypervisor attack surface for a more
secure cloud categories and subject descriptors. In: Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS’11). 401–412.

Teylo L, de Paula U, Frota Y, de Oliveira D, Drummond LMMA. 2017. A hybrid evolutionary
algorithm for task scheduling and data assignment of data-intensive scientific workflows on
clouds. Future Generation Computer Systems 76(1):1–17 DOI 10.1016/j.future.2017.05.017.

Topcuoglu H, Hariri S, WuMY. 2002. Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems 13(3):260–
274 DOI 10.1109/71.993206.

Wang Y-W, Wu J-X, Guo Y-F, Hu H-C, Liu W-Y, Cheng G-Z. 2018. Scientific workflow
execution system based on mimic defense in the cloud environment. Frontiers of Information
Technology and Electronic Engineering 19(12):1522–1536 DOI 10.1631/FITEE.1800621.

Wang Y, Guo Y, Guo Z, Baker T, Liu W. 2020. CLOSURE: a cloud scientific workflow scheduling
algorithm based on attack-defense game model. Future Generation Computer Systems
111(3):460–474 DOI 10.1016/j.future.2019.11.003.

Wang Y, Guo Y, Guo Z, Liu W, Yang C. 2019a. Protecting scientific workflows in clouds with an
intrusion tolerant system. IET Information Security 14(2):157–165
DOI 10.1049/iet-ifs.2018.5279.

Wang Y, Guo Y, Guo Z, Liu W, Yang C. 2019b. Securing the intermediate data of scientific
workflows in clouds with ACISO. IEEE Access 7:126603–126617
DOI 10.1109/ACCESS.2019.2938823.

Wang Y, Guo Y, Wang W, Liang H, Huo S. 2021. INHIBITOR: an intrusion tolerant scheduling
algorithm in cloud-based scientific workflow system. Future Generation Computer Systems
114(9):272–284 DOI 10.1016/j.future.2020.08.004.

Wang Z, Wu J, Guo Z, Cheng G, Hu H. 2016. Secure virtual network embedding to mitigate the
risk of covert channel attacks. In: Proceedings of the IEEE INFOCOM. Piscataway: IEEE,
144–145.

Wu J, Lei Z, Chen S, ShenW. 2017. An access control model for preventing virtual machine escape
attack. Future Internet 9(2):20 DOI 10.3390/fi9020020.

Yao G, Ding Y, Hao K. 2017. Using imbalance characteristic for fault-tolerant workflow
scheduling in cloud systems. IEEE Transactions on Parallel and Distributed Systems
28(12):3671–3683 DOI 10.1109/TPDS.2017.2687923.

Yao G, Ding Y, Ren L, Hao K, Chen L. 2016. An immune system-inspired rescheduling algorithm
for workflow in cloud systems. Knowledge-Based Systems 99(6):39–50
DOI 10.1016/j.knosys.2016.01.037.

Yu W, Liang F, He X, Hatcher WG, Lu C, Lin J, Yang X. 2017. A survey on the edge computing
for the internet of things. IEEE Access 6:6900–6919 DOI 10.1109/ACCESS.2017.2778504.

Yuan D, Yang Y, Liu X, And GZ, Chen J. 2010.A data dependency based strategy for intermediate
data storage in scientific cloud workflow systems. Concurrency Computation Practice and
Experience 22(6):685–701 DOI 10.1002/cpe.1636.

Zhang Y, Juels A, Reiter MK, Ristenpart T. 2014. Cross-tenant side-channel attacks in PaaS
clouds. In: Proceedings of the ACM Conference on Computer and Communications Security.
New York: ACM, 990–1003.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 20/21

http://dx.doi.org/10.1109/TSC.2015.2477825
http://dx.doi.org/10.1016/j.future.2017.05.017
http://dx.doi.org/10.1109/71.993206
http://dx.doi.org/10.1631/FITEE.1800621
http://dx.doi.org/10.1016/j.future.2019.11.003
http://dx.doi.org/10.1049/iet-ifs.2018.5279
http://dx.doi.org/10.1109/ACCESS.2019.2938823
http://dx.doi.org/10.1016/j.future.2020.08.004
http://dx.doi.org/10.3390/fi9020020
http://dx.doi.org/10.1109/TPDS.2017.2687923
http://dx.doi.org/10.1016/j.knosys.2016.01.037
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1002/cpe.1636
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

Zhao Y, Li Y, Raicu I, Lin C, Tian W, Xue R. 2014. Migrating scientific workflow management
systems from the grid to the cloud. Cloud Computing for Data-Intensive Applications 231–256
DOI 10.1007/978-1-4939-1905-5.

Zheng Z, Zhou TC, Lyu MR, King I. 2012. Component ranking for fault-tolerant cloud
applications. IEEE Transactions on Services Computing 5(4):540–550 DOI 10.1109/TSC.2011.42.

Zhou AC, He B, Liu C. 2016. Monetary cost optimizations for hosting workflow-as-a-service in
IaaS clouds. IEEE Transactions on Cloud Computing 4(1):34–48
DOI 10.1109/TCC.2015.2404807.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.747 21/21

http://dx.doi.org/10.1007/978-1-4939-1905-5
http://dx.doi.org/10.1109/TSC.2011.42
http://dx.doi.org/10.1109/TCC.2015.2404807
http://dx.doi.org/10.7717/peerj-cs.747
https://peerj.com/computer-science/

	A fault-intrusion-tolerant system and deadline-aware algorithm for scheduling scientific workflow in the cloud
	Introduction
	Literature review
	Principle of fitsw and threat model
	Experiments and results
	Conclusion
	flink6
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

