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ABSTRACT
In recent years, the software industry has invested substantial effort to improve software
quality in organizations. Applying proactive software defect prediction will help
developers and white box testers to find the defects earlier, and this will reduce the time
and effort. Traditional software defect prediction models concentrate on traditional
features of source code including code complexity, lines of code, etc. However, these
features fail to extract the semantics of source code. In this research, we propose a
hybrid model that is called CBIL. CBIL can predict the defective areas of source code. It
extracts Abstract Syntax Tree (AST) tokens as vectors from source code. Mapping and
word embedding turn integer vectors into dense vectors. Then, Convolutional Neural
Network (CNN) extracts the semantics of AST tokens. After that, Bidirectional Long
Short-TermMemory (Bi-LSTM) keeps key features and ignores other features in order
to enhance the accuracy of software defect prediction. The proposed model CBIL is
evaluated on a sample of seven open-source Java projects of the PROMISE dataset.
CBIL is evaluated by applying the following evaluation metrics: F-measure and area
under the curve (AUC). The results display that CBIL model improves the average
of F-measure by 25% compared to CNN, as CNN accomplishes the top performance
among the selected baseline models. In average of AUC, CBIL model improves AUC
by 18% compared to Recurrent Neural Network (RNN), as RNN accomplishes the top
performance among the selected baseline models used in the experiments.

Subjects Artificial Intelligence, Software Engineering
Keywords Defect, Software defect prediction, Abstract syntax tree, Machine learning, Deep
learning, Convolutional neural network, Bidirectional long short-term memory

INTRODUCTION
As software systems are evolving rapidly, software testing represents the most important
phase in the development life cycle. Proactive software testing plays a master role in finding
software defects early from the beginning of building the software system (Garousi et al.,
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2020). Software organizations employ code review and unit tests to improve code reliability
and quality. However, those activities are time and resources consuming (Iki et al., 2021).
Therefore, software defect prediction models are utilized to reveal the defective code
automatically. Software defect prediction models employ the historical data of software
then feed them to the model to predict code areas that contain defects (Wang, Zhuang &
Zhang, 2021).

Previous research studies (Hammouri et al., 2018;Wu et al., 2018;Wójcicki & Dabrowski,
2018; Agrawal & Menzies, 2018) that apply software defect prediction models categorize
them as two approaches: the first one is concentrating on the traditional features of
source code including lines of code, average method complexity, etc. However, traditional
features fail to extract semantic information of programs because two programs have
different semantics that may have the same values of the traditional features. For instance,
Fig. 1 represents two Java source code: File1 and File2. The two files contain a while loop,
and enqueue(i) function to insert items into the queue, and dequeue() function to delete
items from the queue. To use the traditional features to represent the two examples, the
two cases have identical traditional features because both have the same number of lines
of code and the same functions, etc. However, File2 has a defect in the case of calling the
dequeue function at the beginning of the code, and the queue is empty.

So, some recent research studies (Yang et al., 2015; Wang, Taiyue & Tan, 2016; Wang et
al., 2017; Fan et al., 2019) propose the second approach that focuses on identifying how to
extract semantic representation of programs.

Recently, deep learning has achieved a major progress to extract semantic features
automatically and to improve software defect prediction accuracy and performance.
Programs contain well-defined syntactic structure and semantic information hidden in
two program representations (Li et al., 2019b). The first one is Abstract Syntax Tree (AST),
and the second is Control Flow Graph (CFG). AST representation is chosen in the research
studies of software defect prediction rather than CFG as it keeps the detailed information
of source code.

We propose the model CBIL that combines both CNN and Bi-LSTM. The research is
organized as follows: ‘Background’ introduces the background of software defect prediction
and deep learning models. ‘Related Work’ reviews the related work about software defect
prediction based on traditional features and defect prediction based on deep learning
models. ‘The Proposed Approach’ describes the proposed model CBIL. The environment
and experiments are shown in Environment and Experiments. Results are discussed in
‘Results’. The conclusion is discussed in ‘Conclusion and Future Work’.

BACKGROUND
Software defect prediction
Software defects occur because human beings make mistakes. These mistakes will be
converted to defect (fault, bug) in the code. If the code is executed, the software will fail
to do the right behavior, causing failure to be appeared (Rahim et al., 2021). No software
is bug-free. Most applications have many defects; they are classified as Critical, High,
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Figure 1 Two examples of clean and defective code.
Full-size DOI: 10.7717/peerjcs.739/fig-1

Figure 2 Software defect prediction process.
Full-size DOI: 10.7717/peerjcs.739/fig-2

Medium, and Low. They can cause minor or major problems (Dhavakumar & Gopalan,
2021).
Software defect prediction is applied for predicting the areas that have defects in future

releases (Tong, Liu & Wang, 2017). Figure 2 presents the steps of software defect prediction
which are used in the research studies (Wang & Qiao, 2019; Zhou et al., 2019; Liang et al.,
2019). There are four steps: the first one is to choose the suitable repositories. Then label
the data as defective if it contains defects, otherwise, it is labeled as clean for each file. The
second step is to extract and collect the key features of each file. The third step is to build
and train the model by the labeled data and extracted features. At last, the classifier is used
to predict if the new instance is defective or clean. There are two datasets in the model:
training set is used to build and train the model, and test set is used to assess the trained
model.
There are two kinds of software defect prediction models. The first one is Within-Project

Defect Prediction (WPDP), and the second is Cross-Project Defect Prediction (CPDP) (Ni
et al., 2019). In WPDP, the data are selected from historical versions in the same project.
Both training and test sets are chosen from the same project. In CPDP, there are two
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different projects where the model is trained by the training set from one project, and the
test set is from another project.

In this research, the performance of CBIL is evaluated on both WPDP and CPDP.

Deep Learning (DL) (Ertel, 2017)
• Artificial Intelligence enables the machines to act as human behaviors.
• Machine Learning is a subset of Artificial Intelligence that enables the machines to learn
from their experience.
• Deep Learning is a subset of Machine Learning that enables neural networks to act like
the human brain, Deep means it uses a huge amount of data to train the model. Deep
Learning consists of main models: Deep Belief Network (DBN), Convolutional Neural
Network (CNN), and Recurrent Neural Network (RNN).

CNN
CNN (Li et al., 2019a) is a particular kind of neural network that is used in the areas
such as Natural Language Processing (NLP), speech recognition, and text classification.
CNN (Meilong et al., 2020) is categorized into one-dimensional (1D) CNN for NLP and
two-dimensional (2D) CNN for image recognition.

Simple CNN architecture (Dahou et al., 2019) is shown in Fig. 3. The number of
convolutional filters is defined in the convolutional layer. It is applied to input data for
producing feature maps. Then, CNN uses the pooling layer to minimize the dimensionality
of the output. Max pooling is mostly used as it accomplishes better effectiveness compared
to both Min pooling and Average pooling techniques (Goncalves dos Santos, 2020). Then,
flatten layer transforms a 2D matrix into a vector that can be used as input to a fully
connected (FC) layer. At last, FC layer and sigmoid represent the output layer, it generates
the results of the classification based on previous layers.

CNN has two key features (Sheng, Lu & Lin, 2020): sparse connectivity and shared
weights. These features minimize the capacity of the model and catch global manners
rather than local ones.

RNN
RNN (Sherstinsky, 2018), it is a sequential model, a generalization of feedforward neural
network with internal memory to save the states of every input in the network. In a
feedforward neural network, the information goes through only one direction, while
RNN can store information over time. The loops in RNN called recurrent because the
information is passed internally from a one-time step to the next time step. RNN (Deng,
Lu & Qiu, 2020) has been achieved a good progress in many fields, including sequence
recognition, sequence reproduction, and temporal association. RNN (Zhang, Chen &
Huang, 2018) takes input vector as Xt, Yt represents the output then the calculations are
executed to update an internal state ht. The following equation is executed:

ht = fw(ht−1,Xt ) (1)
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Figure 3 CNN architecture.
Full-size DOI: 10.7717/peerjcs.739/fig-3

Where f w is the activation function with a set of w weights, ht−1 represents the old state,
and Xt is the input vector at time step t. In RNN, the same procedures are used at every
step.

To update the internal state by applying activation function (tanh), the following
equation is executed:

ht = tanh(whhht−1+wxhXt ) (2)

Where whh and wxh weights of internal state and input.
The output will be calculated as the following equation:

Yt =whyht (3)

Where why the weight of the output layer.
A common problem in RNN is the ‘‘vanishing gradient’’ problem (Gao et al., 2020),

where the gradients become extremely small, and it might be impossible to make any
optimization. Long Short-Term Memory (LSTM) (Ralf & Rothstein Morris, 2019) is a type
of RNN that is used to solve the vanishing gradient. LSTM contains a ‘‘memory cell’’ that
can track and maintain information of long-term dependencies in memory for very long
periods of time. LSTM units (Wu et al., 2020) consist of three gates: input gate, forget gate,
and output gate. Figure 4 shows the framework of standard LSTM units, where σ is a
logistic sigmoid function, Tanh is the activation function, Xt represents new input, ht−1
represents output from previous timestep, ht is the output, old cell state Ct−1, new cell
state Ct. Also, Ft, It, Ot symbolize forget gate, input gate, and output gate respectively.

The gates enable the information to be added or removed at a cell state. The data will be
passed through a sigmoid function. The sigmoid function is forcing the input to be between
0 and 1. The information will be passed if the value equals 1 only. Forget gate performs
computations to store relevant history of new information to cell state and discards the
irrelevant history from the cell state. Then input gate controls if the cell state is updated or
not. Also, the output gate handles the value in the cell state. Then the activation of LSTM
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Figure 4 Framework of LSTM units.
Full-size DOI: 10.7717/peerjcs.739/fig-4

unit will be calculated. The following equations are used to compute ht:

Ft = σ (Wf Xt +Uf ht−1+bf ) (4)

It = σ (WiXt +Uiht−1+bi) (5)

Ot = σ (WoXt +Uoht−1+bo) (6)

C∧t = tanh(WcXt +Ucht−1+bc) (7)

Ct = ft2Ct−1+ It2C∧t (8)

ht =Ot2tanh(ct ) (9)

Where b is the bias,W andU are the weights of the three gates. C∧t is the candidate value.
2 is the multiplication operation; it determines if the information will pass through the
gates or not.

Bi-directional LSTM (Bi-LSTM), It combines two independent LSTM together. It is
useful for sentiment classification. It enables the information to be passed through forward
and backward directions.

RELATED WORK
Software defect prediction is a crucial point in software engineering. We have published a
Systematic Literature Review in software defect prediction using deep learning (Bahaa et
al., 2021). The goal of this SLR is to identify the research studies that apply the semantic
features of the source code. This SLR helps us to know the gaps in software defect prediction
studies. And, to propose a novel deep learning model which can improve the prediction of
software defects. We analyze Forty primary studies based on the selected quality criteria.
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The results show that most of the studies apply WPDP by 52.5%. However, some deep
learning models achieve good results with WPDP and very bad results with CPDP. Also,
few studies propose the hybrid deep learning models. Regarding to the evaluation metrics,
most of the studies apply one metric. However, more and more evaluation metrics should
be selected to evaluate the performance of the proposed models.

A considerable number of studies of this field concentrate on traditional features that
are included in static code metrics. Mousavi, Eftekhari & Rahdari (2018) introduced a
model that merges over bagging and ensemble learning approaches to fix the problem
of class imbalance in training and test data sets. Agrawal & Menzies (2018) defined how
to check the performance of classifiers under multiple criteria. And they proposed a data
preprocessing technique to repair the weakness in the training data. They concluded that
data preprocessing is more required than the type of classifiers. Wójcicki & Dabrowski
(2018) found most studies ensure that the models could be applied for C, C++, and Java
projects only. So, they tried to emphasize that the previous models also could be used
to python projects. Moreover, Hammouri et al. (2018) proposed a combined model that
includes multiple supervised machine learning classifiers. These classifiers are applied to
predict the defects based on the stored data.

The problem occurred in the insufficient information in the WPDP. So, some research
studies concentrated on CPDP. Wu et al. (2018) focused on the dictionary learning
technique. They covered two categories of defect data: limited labeled data and plenty
of unlimited data to be used in the kernel space. Qiu, Lu & Jiang (2018) introduced a
model to analyze various components of each source project to build an optimized
ensemble classifier for a target project. Traditional features of source code were used as
input to software defect prediction models in all the previous studies. However, these
features cannot extract the semantic information of programs.

Recently, deep learning models have been used to enhance the prediction of software
defects. Yang et al. (2015) introduced a deep learning model by using the DBN to produce
new features from current features. After that, the new features were used to foresee the
defective changes. They used fourteen basic change features such as code added, code
deleted, line of code before the change, line of code after the change, the modified files,
and the modified directories. Wang, Taiyue & Tan (2016) introduced the DBN model
to capture the semantics from AST tokens in each program. Then these semantics were
entered into the classifier to foresee the defective code for both WPDP and CPDP at the
file level. Wang et al. (2017) worked on their research (Wang, Taiyue & Tan, 2016) and
proposed an updated DBN model to pick up the semantic representation of the software
from both of source code and code changes. Source code was used for file-level, and code
changes for change-level.

As noticed from deep learning research studies in most fields, CNN is better than
DBN since it can capture context and semantics more effectively. Li et al. (2017) presented
a hybrid model that is called ‘‘Defect Prediction via Convolutional Neural Network’’
(DP-CNN), by merging extracted semantic features from CNN and traditional features
like lines of code, weighted methods per class, etc. Khanh et al. (2018) proposed a deep
learning model, which was built on LSTM, it takes a raw AST of a source file then predicts
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Figure 5 Overview of CBILmodel.
Full-size DOI: 10.7717/peerjcs.739/fig-5

if the file is defective or clean. Lin et al. (2018) proposed a Bi-LSTM model to extract code
semantics from serialized AST. Then applied it with continuous bag of words and fed the
serialized AST into Bi-LSTM to discover the most probable vulnerable functions. Liang et
al. (2019) proposed a frame that merges LSTM model and unsupervised word embedding,
by using AST tokens. Then mapping every token into a real-valued vector. Furthermore,
using the vectors and their labels to build the LSTM to pick up the semantic information of
the software. Fan et al. (2019) introduced a defect prediction framework that was built on
an Attention-based Recurrent Neural Network. They employed ASTs to be used as vectors,
then applied dictionary mapping and word embedding to allow the framework to learn
syntactic and semantic features automatically. At last, Attention Mechanism was selected
to generate the key features for enhancing the defect prediction.

Unlike these research studies, CBIL combines both of CNN and Bi-LSTM. The strength
of CBIL as follows:
1. CNN extracts as many semantic features as possible from AST tokens.
2. Bi-LSTM keeps the chronological order between AST tokens and detects information of
long-term dependencies, so it can keep key features and ignore unnecessary features.

THE PROPOSED APPROACH
In this section, the CBIL model is presented. The overall framework is shown in Fig. 5.
It extracts the AST tokens from the Abstract Syntax Tree for all java files in the training
and test sets. Then, the vector of text tokens is converted to an integer vector by building
a mapping dictionary among tokens and integers. Then, word embedding is employed to
turn each integer vector to a dense vector. At last, the generated dense vector is used as
input to build and train CBIL model. Then its performance is evaluated on the PROMISE
dataset.
CBIL consists of two phases:
1. Data Preprocessing.
2. Building CBIL Model.

Data preprocessing
In this phase, we prepare the data before building the model to improve its accuracy and
to resolve the class imbalance issue which may affect negatively on the results of the model.

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.739 8/22

https://peerj.com
https://doi.org/10.7717/peerjcs.739/fig-5
http://dx.doi.org/10.7717/peerj-cs.739


Parsing source code into AST
There are two main steps to use the source code of the files in the model:

First, Abstract Syntax Tree (AST) is built for the selected Java files included in PROMISE
dataset.

Second, the following kinds of AST nodes are selected to be generated as tokens: (1).
nodes of control flow such as if/while/do statements which are recorded as the types of the
nodes. (2). nodes of class instance creations and method invocations which are recorded
as the names of classes or methods without Parenthesis (3). nodes of declarations such
as method/class declarations which are recorded as their names. Other AST nodes are
removed as it may affect the importance of the selected AST nodes. The selected AST nodes
are shown in Fig. 6. We apply the Python package ‘‘javalang’’ to parse the source code into
AST.

Mapping tokens
When the source code is parsed, text tokens are extracted for every file. But it is difficult
to use them directly as input into DL model. So, it is needed to convert the text tokens
to an integer vector. The mapping between the tokens and the integers is built with the
range of one to the total number of tokens. So, a unique integer will represent each token.
‘‘Keras Text tokenization utility’’ class is applied to convert all text tokens to a sequence of
integers. All integer vectors should have fixed length. Identified length will be selected. So,
if the vector length is smaller than the identified length, it is completed by 0. And, If the
vector length is bigger than the identified length, the extra length will be removed.

Class imbalance
The data are imbalanced most of the time, as instances of defective files are less than
the number of instances of clean files. Therefore, the prediction results will be classified
as clean as the instances of clean files represents the majority class. To resolve the class
imbalance issue (Eivazpour & Keyvanpour, 2021), there are two common techniques to be
used: oversampling and undersampling. In oversampling, the instances are duplicated in
the minority class. In undersampling, the instances will be deleted from the majority class.
To ensure the completeness of data, oversampling technique is applied by using ‘‘imblearn
RandomOverSampler’’ method. It will duplicate the instances of minority class randomly
over time.

Building CBIL model
Figure 7 shows the layers of CBIL model. CBIL model combines the advantages of both
CNN and Bi-LSTM. CNN extracts semantic features of AST tokens. Bi-LSTM can preserve
the sequential order between the data. And it can deal with long sequences of tokens. The
model consists of four layers: an embedding layer, CNN layers, Bi-LSTM layer, and dense
layer.

Embedding layer
Integer vectors cannot carry the context information of AST tokens. Therefore, word
embedding (Yildiz & Tezgider, 2021)technique is used to turn each integer vector to a

Farid et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.739 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.739


Figure 6 Selected AST nodes.
Full-size DOI: 10.7717/peerjcs.739/fig-6

Figure 7 CBIL layers.
Full-size DOI: 10.7717/peerjcs.739/fig-7

dense vector. In traditional embeddings, large sparse vectors are used to represent each
word within a vector to represent an input sequence. However, this representation is
sparse because the input sequences are huge. For example, AST tokens will be preserved
while the relationship between them will be ignored. Instead, in word embedding, words
are represented using dense vectors with a fixed length where a vector represents the
word’s projection into a continuous vector space. For example, a ‘‘For Statement’’ node is
embedded to dense vector [0.25,0.1]. Word embedding has two main benefits. Firstly, the
embedded vector has lower dimensions than the sparse vector. Secondly, AST nodes that
share identical contexts are located near each other in the vector space.
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CNN layers
It includes two layers: convolutional layer and max pooling layer. In convolutional layer,
it is applied to automatically learn the features of software defects. It extracts the key
semantics based on number of filters and filter length. We analyze the values of filter length
and number of filters to choose the optimal values. The experiments have been conducted
on project Jedit, Lucene, Poi and Xalan as a sample of the selected projects. Filter length
is set to 10, and number of filters to 20. The details of the optimal values are discussed in
‘Results’. Then, max pooling is applied to reduce the dimensionality of the output. It is
used to gather the extracted information. The results of max pooling are entered as input
to Bi-LSTM layer to filer the useful information.

Bi-LSTM layer
It preserves the sequential order between the data. The implementation of Bi-LSTMhelps to
detect the information of long-term dependencies which can successfully capture necessary
features. It runs two LSTMs to detect both of forward and backward information. We
analyze the value of LSTM units to choose the optimal value. The experiments have been
conducted on project Jedit, Lucene, Poi and Xalan as a sample of the selected projects. The
number of LSTM units is set to 32. The detail of the optimal value is discussed in ‘Results’.

Dense layer
Finally, the Bi-LSTM layer is connected to the dense layer to obtain the results of the
prediction. CBIL model is trained by using a training set based on their labels (i.e.,
defective, or clean). Then, Logistic Regression classifier is applied on the test set to generate
the probability of the file being defective.

ENVIRONMENT AND EXPERIMENTS
Several experiments are applied to study the effectiveness of the proposed model CBIL.
Then the results are compared with other ML and DL models used in software defect
prediction. The experiments are implemented on Python3.8, Keras2.3.1, TensorFlow2.1.0,
scikit-learn0.22.1, numpy1.18.1, and imbalanced-learn0.3.2, with server running Ubuntu
18.04.4 LTS with processor Intel R© CoreTM i7-8550U CPU @ 1.80 GHz and RAM of 16 GB.
The following parameter settings are used for CBIL:

• Embedding dimension is set to 30 and the length of AST vector is set to 2000.
• In CNN layers, the value of filter length is 10 and the number of filters is 20. These
values are selected based on the optimal parameter settings discussed in ‘Results’, with
applying tanh activation function.
• In Bi-LSTM layer, the number of LSTM units is set to 32 as discussed in ‘Results’, with
applying tanh activation function.
• RMSprop is the optimizer that is used in the experiments, and binary_crossentropy is
used for loss function.
• Sigmoid activation function is used in the dense layer.
• All the above parameters are applied on a batch size of 32 and epoch of 40.
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Datasets
Seven open-source projects are chosen written in Java language extracted from PROMISE
dataset. It is a public repository used for the prediction of software defects. These projects
cover several applications such as XML parser, text search engine library, and data transport
adapters. The details of each project are shown in Table 1, including project name, two
releases of each project, their total files, and the defects rate for them. Each project has two
releases, first release is used for training the model and second release for evaluating it. In
PROMISE, the projects have traditional features for each Java file. All traditional features
are shown in Table 2.

Evaluation metrics
The performance of CBIL model is evaluated by F-measure and AUC (area under ROC
(receiver operating characteristic) curve). These evaluation metrics (Jayanthi & Florence,
2019; Saharudin, Wei & Na, 2020) are vastly used to assess the previous research studies of
software defect prediction models. F-measure is calculated as follows:

Precision=
TP

(TP+FP)
(10)

Recall =
TP

(TP+FN )
(11)

F−measure=
2∗Precision∗Recall
Precision+Recall

(12)

The beginning with confusion matrix; it is used to describe ML and DL models’
performance. It encapsulates the prediction results of the model. Also, it generates the
results of the following classes: True Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN).

Precision and Recall are calculated by three classes of the confusion matrix (TP, FP, FN)
where TP means number of predicted defective files that are already defective, FP means
number of predicted defective files but there are clean files, and FN means number of
predicted clean files that are defective. It is very complicated to compare two models with
high Recall and low Precision or vice versa. Therefore, it is needed to use more powerful
metric as F-measure. The range of F-measure is from 0 to 1 where the higher value means
the better effectiveness of the model.

AUC (Lin & Lu, 2021) is focused on the area under the ROC curve. ROC curve displays
the behavior of the model at all classification outsets. False Positive Rate (FPR) are
represented in X axis of the ROC curve. while True Positive Rate (TPR) is represented in
Y axis. Each classification outset generates a coordinate of (FPR, TPR), and all coordinates
form a Roc curve. Range of AUC from 0 to 1 where the higher value means the better
effectiveness of the model. AUC is calculated based on the following equations:

FPR=
FP

(FP+TN )
(13)

TPR=
TP

(TP+FN )
(14)
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Table 1 Description of the PROMISE dataset.

Project Releases Total files Defect’s
rate (%)

Camel 1.4, 1.6 1837 18.13
Jedit 4.0, 4.1 618 24.92
Lucene 2.0, 2.2 442 53.17
Poi 2.5, 3.0 827 63.97
Synapse 1.1, 1.2 479 30.48
Xalan 2.5, 2.6 1688 47.27
Xerces 1.2, 1.3 893 15.68

Table 2 Traditional features used in the PROMISE dataset.

Traditional features

Weighted methods per class Lines of code
Depth of inheritance tree Response for a class
Number of children Data access metric
Coupling between object classes Measure of aggregation
Measure of function abstraction Afferent coupling
Lack of cohesion in methods Efferent coupling
Cohesion among methods of a class Inheritance coupling
Lack of cohesion in methods3 Average method complexity
Number of public methods Coupling between methods
MaximumMcCabe Average McCabe

Research questions
We deploy the experiments to evaluate the effectiveness of CBIL model. The following
research questions (RQs) should be answered:
RQ1: Do deep learning models enhance the performance of WPDP rather than traditional
machine learning models which based on traditional features?
RQ2: Does CBIL achieve better performance for WPDP more than other deep learning
models?
RQ3: What is the optimal performance of CBIL for WPDP under different parameter
settings?
RQ4: What is the behavior of CBIL for both WPDP and CPDP?

Baseline models
The proposed model CBIL is compared with the following baseline models:
1. Traditional: the most common of traditional machine learning models is Random

Forest (RF Kumar et al., 2021).
2. DBN (Zhang & Liu, 2020): this is the first deep learning model which applied in

software defect prediction. It automatically extracts semantic features from source
code files.
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Table 3 F -measure of CBIL and baseline models.

Project RF DBN CNN RNN CBIL

Camel 0.396 0.335 0.505 0.515 0.935
Jedit 0.550 0.480 0.631 0.595 0.850
Lucene 0.604 0.758 0.761 0.672 0.744
Poi 0.669 0.780 0.778 0.722 0.852
Synapse 0.414 0.503 0.512 0.487 0.889
Xalan 0.638 0.681 0.676 0.606 0.716
Xerces 0.185 0.261 0.311 0.262 0.951
Average 0.494 0.543 0.596 0.551 0.848

3. CNN: this is the common deep learning model which based on convolutions to reduce
the dimensionality of the output.

4. RNN: it is the most vital deep learning model used in NLP. It focuses on capturing the
semantics to enhance the prediction of software defects.
The following parameter settings are used and the results for baseline models as in Fan

et al. (2019) and Li et al. (2017). DBN has 10 hidden layers, each layer has 100 nodes, and
the vector length is 2000. In CNN, 10 filters are chosen, and each filter has length of 5.
In RNN, the parameters of embedding dimensions are set to 30, first hidden layer has 16
nodes with second layer has 24 nodes, and the vector length is 2000.

RESULTS
The results of CBIL model are presented in this section. Also, the research questions are
answered. F-measure and AUC are shown in Tables 3 and 4. The tables summarize the
comparison between CBIL and other baseline models. The best values of F-measure and
AUC are highlighted in the two tables.

To answer RQ1, four deep learning models (DBN, CNN, RNN, CBIL) are compared
with the selected machine learning model (RF). The experiments have been conducted on
PROMISE dataset listed in Table 1. For each project, first release is used for training the
model and second release for evaluating it. In Table 3, F-measure values are shown for each
project generated by implementing CBIL and other baseline models. Project Poi is taken
as a sample of all projects, F-measure values of RF, DBN, CNN, RNN, and CBIL are 0.669,
0.780, 0.778, 0.722 and 0.852 respectively. As shown in Table 3, the average of F-measure in
deep learning models is better than the average of F-measure in traditional model. Table 4
shows the AUC values of each project. In most AUC values, deep learning models of DBN,
CNN, RNN, and CBIL have high values of AUC rather than the traditional model. And
also, the average of AUC in deep learning models is better than the average of AUC in the
traditional model. In conclusion, deep learning models accomplish top performance than
traditional machine learning models for software defect prediction.

To answer RQ2, CBIL model is compared with three deep learning models (DBN, CNN,
RNN). The experiments have been conducted on PROMISE dataset listed in Table 1. As
before, first release is used for training the model and second release for evaluating it. In
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Table 4 AUC of CBIL and baseline models.

Project RF DBN CNN RNN CBIL

Camel 0.677 0.654 0.732 0.766 0.963
Jedit 0.797 0.794 0.841 0.842 0.911
Lucene 0.641 0.682 0.688 0.693 0.833
Poi 0.636 0.668 0.745 0.764 0.951
Synapse 0.682 0.657 0.632 0.648 0.950
Xalan 0.674 0.676 0.674 0.654 0.769
Xerces 0.576 0.560 0.671 0.730 0.981
Average 0.669 0.670 0.712 0.728 0.908

Table 3, F-measure values are shown for each project generated by implementing CBIL
and other baseline models. CBIL accomplishes the best performance in six projects. The
only project with lower value is Lucene, where CBIL achieves a lower F-measure than both
of DBN and CNN. In average of F-measure, the best performance of deep learning models
is CBIL, CNN, RNN then DBN respectively. Table 4 shows the AUC values of each project.
The best value of AUC is achieved by CBIL in all the seven projects. In average of AUC,
the order of deep learning models from the highest to the lowest is CBIL, RNN, CNN and
DBN respectively. In conclusion, CBIL model accomplishes higher performance among all
deep learning models.

To answer RQ3, we set the key parameters in CBIL to obtain the best achievement and
effectiveness. The experiments have been conducted on project Jedit, Lucene, Poi and Xalan
as a sample of the seven projects. There are three key parameters in CBIL: the number
of LSTM units, the filter length, and the number of filters. The average of F-measure is
calculated for each project under different values of the three parameters to choose the
values that achieve the best performance for software defect prediction. Figures 8–10 show
the F-measure of CBIL under different number of LSTM units, filter length, and number
of filters respectively. As shown in the figures, the optimal number of LSTM units is 32,
filter length is 10, and number of filters is 20. So, these optimal values are used for CBIL.

To answer RQ4, to know the effectiveness of CBIL model on WPDP and CPDP, four
evaluation metrics are chosen to evaluate the model. These metrics are Precision, Recall,
F-measure, and AUC. The same parameter settings are used that discussed in ‘Environment
and Experiments’. For WPDP, these metrics are applied on PROMISE dataset as shown
before in Table 1. For each project, first release is used for training the model and second
release for evaluating it. For example: Camel 1.4 is chosen to train the model, and Camel
1.6 for evaluating it. The result of the four-evaluation metrics is shown in Fig. 11. CBIL
model achieves very good results for all metrics in WPDP. It achieves 0.825, 0.873, 0.848,
and 0.908 for Precision, Recall, F-measure, and AUC respectively. For CPDP, the same
metrics are chosen as in WPDP. A combination of projects is taken as samples for training
set and test set as shown in Table 5. Source projects are used for training set and target
projects are used for test set. The result is shown in Fig. 12. The proposed model again
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Figure 8 F -measure of CBIL under LSTM units.
Full-size DOI: 10.7717/peerjcs.739/fig-8

Figure 9 F -measure of CBIL under filter length.
Full-size DOI: 10.7717/peerjcs.739/fig-9

achieves good results for Precision, Recall, F-measure, and AUC as 0.813, 0.857, 0.833, and
0.899 respectively.

The results show that CBIL performs better than other baseline models for the following
reasons:
1. The traditionalmachine learningmodels concentrate on specific traditional features and

ignore the other features. The ignored featuresmay be defect prone. Also, the traditional
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Figure 10 F -measure of CBIL under filters.
Full-size DOI: 10.7717/peerjcs.739/fig-10

Figure 11 Performance of CBIL forWPDP.
Full-size DOI: 10.7717/peerjcs.739/fig-11

models fail to capture the semantics of source code. While CBIL automatically extracts
the key semantics of source code.

2. Compared with the used deep learning models (DBN, CNN, RNN). CBIL combines
CNN and Bi-LSTM. CNN can automatically learn the defect features. It extracts the key
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Table 5 Sample of PROMISE dataset for CPDP.

Source project Target project

Camel 1.4 Jedit 4.0
Jedit 4.0 Lucene 2.2
Lucene 2.0 Poi 3.0
Poi 2.5 Synapse 1.2
Synapse 1.1 Xalan 2.6
Xalan 2.5 Xerces 1.3
Xerces 1.2 Camel 1.6

Figure 12 Performance of CBIL for CPDP.
Full-size DOI: 10.7717/peerjcs.739/fig-12

semantics based on number of filters and filter length. Also, Bi-LSTM can detect the
information of long-term dependencies. It handles the sequential data in both forward
and backward directions.

3. CBIL achieves good results for both Within-Project Defect Prediction (WPDP) and
Cross-Project Defect Prediction (CPDP).

CONCLUSION AND FUTURE WORK
Recently, deep learning has mostly been used in the prediction of software defects. The
hybrid model CBIL is presented in this research. It combines both of CNN and Bi-LSTM.
Also, it helps in enhancing code review and software testing to predict the defective areas
in source code. CBIL utilizes CNN to extract semantic features from AST tokens. Then,
Bi-LSTM detects information of long-term dependencies to capture necessary features.
CBIL model is evaluated on seven open-source Java projects from PROMISE dataset. The
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results display that CBIL improves the baseline models by 30% and improves CNN by
25% in average of F-measure for WPDP, as CNN is the best performance of all baseline
models. In average of AUC, CBIL improves the baseline models by 21% and improves
RNN by 18%, as RNN is the best performance of all baseline models. The proposed model
CBIL achieves good results for both WPDP and CPDP. In the future, it is valuable to add
quality metrics like defect density, types of defects, and defect severity. Also, CBIL can
be applied on several open-source projects written in different programming languages.
Moreover, more data preprocessing techniques could be added to enhance the quality of
public datasets.
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