
Clone-advisor: recommending code tokens
and clone methods with deep learning and
information retrieval
Muhammad Hammad1, Önder Babur1,2, Hamid Abdul Basit3 and
Mark van den Brand1

1 Eindhoven University of Technology, Eindhoven, Netherlands
2 Wageningen University and Research, Wageningen, Netherlands
3 Prince Sultan University, Riyadh, Saudi Arabia

ABSTRACT
Software developers frequently reuse source code from repositories as it saves
development time and effort. Code clones (similar code fragments) accumulated in
these repositories represent often repeated functionalities and are candidates for
reuse in an exploratory or rapid development. To facilitate code clone reuse, we
previously presented DeepClone, a novel deep learning approach for modeling code
clones along with non-cloned code to predict the next set of tokens (possibly a
complete clone method body) based on the code written so far. The probabilistic
nature of language modeling, however, can lead to code output with minor syntax or
logic errors. To resolve this, we propose a novel approach called Clone-Advisor.
We apply an information retrieval technique on top of DeepClone output to
recommend real clone methods closely matching the predicted clone method, thus
improving the original output by DeepClone. In this paper we have discussed and
refined our previous work on DeepClone in much more detail. Moreover, we
have quantitatively evaluated the performance and effectiveness of Clone-Advisor in
clone method recommendation.

Subjects Data Mining and Machine Learning, Software Engineering
Keywords Language modeling, Deep learning, Code clone, Code prediction, Information retrieval,
Code search

INTRODUCTION
Software developers need effective code search and reuse capability for rapid or
exploratory development (Sadowski, Stolee & Elbaum, 2015), as writing source code
from scratch is an expensive activity. Often, programming of well-defined features
amounts to a simple look-up in one’s own or others’ code in repositories. With the
increasing volume of available source code repositories and online resources, it gets more
probable to find useful code snippets. Nevertheless, for identifying the relevant parts of
the code for reuse, developers turn to ad-hoc code reuse with manual searching and
selective reading of the source code (Gharehyazie, Ray & Filkov, 2017). It is an expensive
and error-prone activity, if not effectively supported by automated mechanisms like code
snippet search, code prediction, code auto-completion and code generation. Language
modeling is amongst the most popular methods to realize these features (Radford et al.,
2019b; Karampatsis et al., 2020; Zhong, Yang & Sun, 2019).

How to cite this article Hammad M, Babur Ö, Abdul Basit H, Brand Mvd. 2021. Clone-advisor: recommending code tokens and clone
methods with deep learning and information retrieval. PeerJ Comput. Sci. 7:e737 DOI 10.7717/peerj-cs.737

Submitted 27 April 2021
Accepted 14 September 2021
Published 9 November 2021

Corresponding author
Muhammad Hammad,
m.hammad@tue.nl

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 33

DOI 10.7717/peerj-cs.737

Copyright
2021 Hammad et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.737
mailto:m.�hammad@�tue.�nl
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.737
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Shannon first introduced language modeling (Shannon, 1948; Shannon, 1951) to predict
the next element following some given text, and bound the entropy of the English
language. Several language modeling techniques (Allamanis & Sutton, 2013, Boldt, 2017;
Hellendoorn & Devanbu, 2017; White et al., 2016) have since been developed to perform
different tasks. A language model (LM) estimates the likelihood of sequences of tokens
based on a training dataset, by assigning probabilities to tokens (words, subwords, or
punctuation marks) or character sequences (sentences or words occurring after a given
sequence (Jurafsky & James, 2009)). Different statistical and deep neural networks (DNN)
based techniques have been applied for LMs (Allamanis & Sutton, 2013; Boldt, 2017;
Hellendoorn & Devanbu, 2017; White et al., 2016). Both types of techniques have led to
great results in natural language processing (NLP) tasks, as natural language is often
repetitive and predictable (Hindle et al., 2016), thus can be modeled using either of the
techniques. However, statistical modeling techniques do not handle large vocabularies very
well. Source code is an example of a language with large vocabulary as developers
frequently declare new identifier names, which degrades the performance of statistical
language models on source code tasks (Karampatsis et al., 2020).

DNNs are extremely powerful machine learning models that achieve excellent
performance on various difficult problems such as speech recognition (Dahl et al., 2011)
and visual object recognition (Liu et al., 2020). A recent study (Karampatsis et al.,
2020) shows that DNNs indeed outperform statistical modeling techniques in language
modeling for source code. Their power arises from the fact that they can perform arbitrary
parallel computation for a modest number of steps. LMs built using DNNs are referred
as Neural Language Models (NLM). NLMs have been used to perform various tasks
such as machine translation (Luong, Kayser & Manning, 2015), comment generation (Hu
et al., 2018), code completion (Mou et al., 2015), code clone detection (White et al., 2016),
code search (Gu, Zhang & Kim, 2018) and code summarization (Iyer et al., 2016).

A popular application of language modelling is code prediction (Karampatsis et al.,
2020; White et al., 2015; Boldt, 2017). It involves automating software development and
maintenance by proposing next likely tokens based on user input. A prediction model is
capable of automatically learning features for representing source code, and using them for
next token prediction in a sequence. As a notable example, Pythia (Svyatkovskiy et al.,
2019) is a code completion system trained on source code snippets by using Long Short
Term Memory (LSTM), which predicts ranked lists of method and API recommendations
at edit time. Similarly, Deep TabNine (https://www.tabnine.com/) is a recently
launched auto-complete tool fine-tuned by using GPT-2 on approximately two million
GitHub files and aims to enhance software developers’ workflows. GPT-2 (Radford et al.,
2019a; Radford et al., 2018; Radford et al., 2019b) is a large transformer-based language
model with 1.5 billion parameters, trained on a dataset of eight million web pages. GPT-2
is trained with a simple objective: predict the next word, given all of the previous words
within some text.

In previous work, we introduced DeepClone (Hammad et al., 2020a), a DNN model
trained by fine-tuning GPT-2 over the BigCloneBench code clone dataset, for predicting
code tokens and clone methods. The proposed approach has already led to promising

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 2/39

https://www.tabnine.com/
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

results. The performance metrics in the training (learning rate approaching 0, minimized
loss) and validation (perplexity of 2.145) phases indicate a fine-tuned model. The series of
perplexity scores calculated allow us to conclude that DeepClone model can predict
regularities successfully in terms of clone markers, including the code in general and
the individual clone method predictions in particular. The extrinsic evaluation reveals that
we achieve high accuracy, notably 95% in the top ten suggestions, as well as larger number
of tokens than a threshold-based strategy even with a generous threshold of 100.
DeepClone model can assist developers in predicting the next token (as typically done by
many language models) or the complete clone method body.

DeepClone, despite the promising results, has a shortcoming. It predicts clone methods
that differ from the real clone methods because of the limitation of language models, and
the specific neural language generation technique applied (nucleus sampling (Holtzman
et al., 2019)). This can lead to various syntax or logic errors. For instance, in Table S1,
“destDir” identifier has been declared in the DeepClone output, but it has not been used
anywhere. This problem is not specific to DeepClone but is a well-known challenge in
natural language models to predict well-formed outputs (Li et al., 2017a; Shao et al., 2017).
Language models (in our context) are fundamentally probabilistic models, which can
predict multiple possible sequences of output (in our case predicted clone methods)
based on user context. The space of possible methods that could be predicted grows
exponentially with the length of these methods. By having V tokens in the vocabulary,
there can be VN possible methods of length N that could be predicted. A fully trained
language model can learn patterns in the code such as opening and closing brackets, but it
cannot completely learn the logical flow of the code.

While recently there are significant advancements in neural language generation
techniques, they still cannot match the quality of human authored content (e.g., programs
or texts) (Fan, Lewis & Dauphin, 2018). They further possess certain problems at their
core. For instance, standard likelihood training and decoding leading to dull and repetitive
outputs (Holtzman et al., 2019). Moreover, more training data and advanced sampling
techniques do not seem to solve this issue entirely (Radford et al., 2019b). Token-level
probabilities predicted by the language models also remain relatively poor (Welleck
et al., 2019). However, the desired output might be a variation of another, previously
observed sample (Song et al., 2016; Hashimoto et al., 2018), which is elaborated next.
This motivates our work here, where we seek to build a system that can recommend real
clone methods based on predicted clone method. Here, a real clone method is taken from a
real project. It contains the code of some particular functionality “as is”, and has been
manually validated by the curators of BigCloneBench. Our approach combines the
DeepClone model and information retrieval (IR) techniques to recommend real clone
methods.

Recommending (real) code clones has various benefits. Code clones are useful for
exploratory development, where the rapid development of a feature is required and the
remedial unification of newly generated clones is not clearly justified (Kapser & Godfrey,
2008). Also, cloned code is expected to be more stable and poses less risk than new
development. Hence, we believe that clone methods can be considered a useful component

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 3/39

http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

for neural code generation, as they can be used to capture the common coding practices of
developers, which can be offered as code prediction and completion to the developer.

In this paper, we first elaborate our work on the DeepClone model with more details
and perform extended evaluation. Then, we propose Clone-Advisor, which improves the
re-usability of predicted clone method by recommending closely matching real clone
methods for code completion tasks. We achieve this by using IR techniques to remove
errors and noise in the predicted clone method. We believe that our approach can help in
improving the quality of code prediction based on user input. In this work, we have made
the following contributions:

1. We elaborate our previous work on DeepClone (Hammad et al., 2020a) model with
more related work and details, and provide an evaluation of DeepClone output in terms
of perplexity scores.

2. We refine the raw output of DeepClone model with a novel approach called Clone-
Advisor, for recommending real clone methods, using an IR technique (TF-IDF) for
retrieving the most relevant clone methods from a search corpus.

3. We quantitatively evaluate our refined approach in terms of accuracy and effectiveness
by calculating various metrics. The overall results show that the refined approach, Clone-
Advisor significantly improves the quality of the recommendations over the original
ones from DeepClone.

RELATED WORK
In this section, we present related work covering neural language modeling for code
prediction, neural language generation techniques for code, machine learning approaches
and recommendation systems in the field of code clones. Finally, we also discuss related
literature in the field of syntax error detection and correction.

Language modeling for code prediction
There exists no other technique in the literature, to the best of our knowledge, which
models code clones for code prediction up to the complete method granularity. Language
modeling has been explored for related tasks of token prediction, code suggestion, and
code completion. Major examples include the work by White et al. (2015), where they
applied Recurrent Neural Network (RNN) for Java source code modeling and prediction,
and the approach by Boldt (2017) for modeling Java language method statements and
English language datasets using LSTM. The latter compared the performance of the next
token prediction task for code and English text, and found that method statements highly
resemble and are comparable to English language sentences. While comparing natural
language and source code, Hindle et al. (2016) discovered that software is much more
repetitive and well structured than natural language. Hence, it is much simpler to model
Java code by using n-grams rather than the English language. They compared the
performance of language models on next element prediction task and demonstrated that
n-gram models trained on Java dataset performed much better than n-gram models
trained on English language dataset. Hussain et al. (2019) proposed a GRU-based model,

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 4/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

which is used to perform code completion task till the whole line and generate source
code suggestions. In our methodology, we develop a language model, which can predict
the next set of tokens or complete clone method body (in contrast to the whole line) based
on the code written so far.Hellendoorn & Devanbu (2017) noticed the poor performance of
source code NLMs because of the large vocabulary size due to the high rate of new
identifiers being defined, but argued that limiting vocabulary size is not a good strategy for
source code NLMs. Instead, they proposed a nested scope, dynamically updatable,
unlimited vocabulary count-based n-gram model, which outperforms the LSTMmodel on
token prediction. In contrast, Karampatsis et al. (2020) solved the vocabulary size issue
by applying byte-pair encoding (BPE) technique for modeling the code. They compared
the performance of n-gram and Gated Recurrent Unit (GRU) language models on
source code, and showed that GRU with BPE can outperform n-gram statistical models
on code completion and bug detection tasks. Zhong, Yang & Sun (2019) applied LSTM
with sparse point network for JavaScript code modeling and code prediction. Finally, Deep
TabNine is a recently developed programming productivity tool, successfully fine-tuned by
using GPT-2 on approximately two million GitHub files capturing numerous
programming languages, to predict the next chunk of code.

Neural language generation
Many techniques have been introduced to improve the quality of predicted text and code,
though not specifically for clone method prediction. Hashimoto et al. (2018) proposed an
approach to improve the predicted python code tokens, first by retrieving a training
example based on the input (e.g., natural language description) and then editing it to the
desired output (e.g., code). Code2vec (Alon et al., 2019) is a neural model representing
snippets of code as code embeddings that helps in predicting method names based on
method bodies. However, the purpose of our fine-tuned GPT-2 model is to predict next
tokens/clone methods based on user input. Lancer (Zhou, Shen & Zhong, 2019) is a
context-aware code-to-code recommendation tool leveraging a Library-Sensitive Language
Model and a BERT model to recommend relevant code samples in real-time, by
automatically analyzing the intention of the incomplete code. Lancer uses the BERT model
to complete an incomplete code sample. It retrieves the relevant real code samples on
the basis of Elastic search and rank them according to the deep semantic ranking
scheme. The major difference with our methodology is that Lancer uses the BERT model,
whose intention is to complete the missing tokens in incomplete code, while we are using
the fine-tuned GPT2 model, which is used to predict next tokens based on the input.
DeepClone is fine-tuned on both cloned and non-cloned code, while Lancer only uses
clone methods for training. Moreover, we can predict a clone method from DeepClone
model, whose functionality matches with the ground truth, even the context does not
contain a method name, a scenario that is apparently not covered by Lancer.

Machine learning approaches for clone detection and clone searching
Even though applying machine/deep learning-based approaches for clone prediction is a
new idea, but these techniques have been extensively used previously for clone detection.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 5/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

However, the two techniques are not directly comparable. White et al. (2016) used a
recursive neural network for clone detection. Wei & Li (2017) used the LSTM model
for the functional clone detection problem by learning supervised deep features.
CCLearner (Li et al., 2017b) extracts tokens from known method-level code clones and
non-clones in a given codebase to train a classifier, which is then used to detect clones.
Tufano et al. (2018) used a deep learning-based approach to automatically learn code
similarities from different representations. Arammongkolvichai et al. (2019) proposed a
method to increase the precision of code clone detection using machine learning
techniques. They applied 19 clone class metrics to capture different characteristics of code
clones and used them to train a decision tree model. DeepSim (Zhao & Huang, 2018) is a
deep-learning approach, which measures similarity patterns between semantic matrices
generated from functionally similar methods. Zhang et al. (2019) propose novel neural
source code representation, which can capture the lexical, and syntactic knowledge of
statements. This representation helps performing source code classification and clone
detection. SourcererCC (Sajnani et al., 2016) is a token-based clone detector, and NiCAD
(Cordy & Roy, 2011) is a text based hybrid clone detector. These clone detection tools
can detect different types of clones of various granularity levels such as statements, method
or file, in a given code corpus. However, in our case, we first generate and suggest clone
methods by using the DeepClone model on the basis of user context. That method is a
buggy snippet, which we feed to search for similar clone fragments. Therefore, we cannot
empirically compare our methodology with clone detection approaches.

Kim et al. (2018) and Ragkhitwetsagul & Krinke (2019) propose effective code-to-code
search approaches, which feed an original clone snippet and search for syntactically
and semantically similar clone fragments in large code bases. In both approaches,
BigCloneBench dataset is used to measure the accuracy. However, in our case, we feed a
buggy snippet generated by DeepClone model, to search for similar clone fragments;
therefore our results cannot be empirically compared with Kim et al. (2018) and
Ragkhitwetsagul & Krinke (2019).

Recommendation systems for code clones
Abid (2019) have previously used clone methods for code recommendation, however, the
approach used a different similarity measure based on API calls for recommending
relevant clone methods. Clones are generally considered to be harmful for a software
system, and mainly researchers work on techniques for avoiding and eliminating
clones (Yoshida et al., 2019; Wang & Godfrey, 2014; Basit et al., 2015; Basit, Hammad &
Koschke, 2015; Hammad et al., 2020b). Clone refactoring recommendation systems
have been developed for this purpose. For instance, Yoshida et al. (2019) proposed a
proactive clone recommendation system for “Extract Method” refactoring, while Wang &
Godfrey (2014) introduced an approach for automatically recommending clones for
refactoring using a decision tree-based classifier.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 6/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Syntax error detection and correction
Santos et al. (2018) present Sensibility, which leverages n-gram and LSTM language
models to locate single token syntax errors and to suggest fixes for them. In our case, we
propose a methodology to recommend correct fixes for the entire clone method. However,
a perplexity metric is used here which is also common in our approach to measure the
naturalness of the code. Wang et al. (2016) learn n-gram language models to detect
uncommon usages of code. They do not provide a fix for those bugs. SEQUENCER (Chen
et al., 2019) is a sequence-to-sequence deep learning model that aims at automatically
fixing bugs by generating one line patches. Tufano et al. (2018) propose a deep learning
model that aims at automatically fixing bugs by translating the entire buggy method into
the corresponding fixed method. The maximum method length they considered is only
100 tokens. Lutellier et al. (2020) propose context aware neural machine translation
(NMT) architecture to translate buggy code methods to correct code methods, which
are partial code segments instead of full methods. In these approaches, models are trained
to map an input sequence to an output sequence. So, the model is learned on a dataset,
where every buggy snippet has its corresponding correct fix. In our case, language model is
trained on IJaDataset, which contains millions of correct (i.e., not buggy) source files.
However, the model itself produces bugs while generating code because of its probabilistic
nature. We measure TF-IDF scores by comparing the generated buggy clone method
with real clone methods and recommend the most similar top-k methods. Because of all
these differences, we cannot empirically compare our approach with any of the above
approaches.

METHODOLOGY
Language modeling
In this section, we describe how we perform language modeling and how we construct the
DeepClone model (Hammad et al., 2020a) by conducting a detailed empirical evaluation
on the model quality and accuracy for the token prediction task.

Dataset preparation

For this work, we use a reduced version of IJaDataset containing only the source files
whose clone method references exist in BigCloneBench (Svajlenko et al., 2014; Svajlenko &
Roy, 2015; Svajlenko & Roy, 2016). BigCloneBench is the largest clone benchmark dataset,
consisting of over 8 million manually validated clone method pairs in IJaDataset 2.0
(https://sites.google.com/site/asegsecold/projects/seclone)-a large Java repository of 2.3
million source files (365 MLOC) from 25,000 open-source projects. BigCloneBench
contains references to clones with both syntactic and semantic similarities. It contains
the references of starting and ending lines of method clones existing in the code repository.
In forming this benchmark, methods that potentially implement a given common
functionality were identified using pattern based heuristics. These methods were
manually tagged as true or false positives of the target functionality by judges. All true
positives of a functionality were grouped as a clone class, where a clone class of size n
contains nðn�1Þ

2 clone pairs. The clone types and similarity of these clone pairs were later

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 7/39

https://sites.google.com/site/asegsecold/projects/seclone
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

identified in a post-processing step. Currently, BigCloneBench contains clones
corresponding to 43 distinct functionalities.

IJaDataset is a very large code base, and outside the scalability limits of most clone
detection tools. However, the clone detection tools do not need to be executed for the
entire IJaDataset, but only for the files containing reference clones in BigCloneBench.
Svajlenko et al. (2014) (Svajlenko & Roy, 2015; Svajlenko & Roy, 2016) provide a reduced
version of IJaDataset, only containing the relevant source files, and is distributed into a
number of smaller subsets for clone detection. There is one subset per functionality in
BigCloneBench. Each functionality’s subset includes all the files containing methods
tagged as true or false positive of that functionality in the creation of BigCloneBench.
Therefore each subset is a realistic subject system, containing both true and false positive
clones.

We performed pre-processing steps to build our mutually exclusive training, testing,
and validation datasets. These steps took around 2 h on the whole dataset, which is quite
negligible compared to other training processes. It has no overhead at run-time (when the
recommendations are being generated). The training set is used to train DeepClone
language model. After each training epoch, the trained model is evaluated on the
validation set and its performance helps in assessing the convergence against hyper-
parameters (e.g., learning rate in gradient searches). The validation set is not used to learn
any of the model’s parameters. The testing set is used for empirical evaluation of
DeepClone model. Table S2 demonstrates the pre-processing steps on an example of
binary search clone method. Similarly, Fig. 1 displays a pictorial representation of the data
preparation steps.

Filtering We applied the following query to retrieve the list of source files containing
true positive clone method references in IJaDataset, The functions table contains
information about true and false positive clone methods, including filename, starting
and ending line position of the clone method, the type id of the method. Whereas the
clones table contains the list of true positive clone method pair information including
syntactic similarity and validity measures.

select distinct a.functionality_id, b.type, b.name,

b.startline, b.endline from clones a

join functions b on a.function_id_one=b.id

union

Figure 1 Data preparation steps of DeepClone methodology.
Full-size DOI: 10.7717/peerj-cs.737/fig-1

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 8/39

http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/fig-1
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

select distinct a.functionality_id, b.type, b.name,

b.startline, b.endline from clones a

join functions b on a.function_id_two=b.id

Distribution We distribute the set of files into training, validation, and testing datasets
using stratified sampling (Trost, 1986) to ensure that all types of clone methods appear in
each dataset. We distribute the set of files existing in each functionality folder into
three portions such that 80% goes to training, 10% to validation, and 10% to testing.
Then, we copy those files into three separate folders of training, validation, and testing.
If any of the file already exists in one of these folders, we keep only one copy to avoid file
duplication in training and testing datasets.

Allamanis (2019) reported the negative impact of having the same file for both training
and testing on model performance. Tables 1 and 2 depict the detailed statistics of our
training, validation and testing datasets. We have only mentioned the titles of the
functionalities in Table 1, and excluded further details such as functionality description,
regular expressions used to obtain these methods, which can be obtained from the original
sources (Svajlenko et al., 2014; Svajlenko & Roy, 2015; Svajlenko & Roy, 2016).

Marking Researchers in the past have used meta-tokens to mark special sections of data.
Pichotta & Mooney (2016) placed hSi and h/Si meta-tokens in modeling sentences for
prediction. Chen et al. (2019) inserted hSTART_BUGi and hEND_BUGi meta-tokens in
the buggy lines of the source code to help in automatic program repair. We have also
marked the regions of the true positive clone methods by placing the meta-token hsoci at
the start, and heoci at the end of a clone method in the IJaDataset files, by tracing the clone
method references from the BigCloneBench dataset.

Normalization We have adapted the Javalang (https://github.com/c2nes/javalang)
Python library, which contains a lexer and parser for the Java 8 programming language, to
normalize the input source code by removing whitespaces, extra lines, comments, as well
as to tokenize the code.

Replacement For each set of files, we have replaced integer, float, binary, and
hexadecimal constant values with the hnum_vali meta-tokens. Similarly, we replace string
and character values with hstr_vali. This reduces our vocabulary size, leading to faster
training of the model. This is a common technique for data preparation (White et al., 2015;
Dam, Tran & Pham, 2016; Karampatsis et al., 2020).

MergingWemerge all the tokenized data existing in the training, validation and testing
folders, and place them into three text files: train.txt, valid.txt and test.txt. These files
are called as Experimental Datasets. These tokens are separated by the space character.
Table 2 provides the relevant statistics of the experimental dataset.

Neural language models for code clones
A number of techniques are available for developing a LM for BigCloneBench dataset such
as n-gram statistical model (Hellendoorn & Devanbu, 2017), LSTM (Hochreiter &
Schmidhuber, 1997), GRU (Cho et al., 2014), GPT-2 (Radford et al., 2019b); as well as
parameter settings for training those models. We could not evaluate all the possible
combinations (hundreds) and especially very large scale models/training due to the

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 9/39

https://github.com/c2nes/javalang
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Table 1 Detailed statistics of datasets along with experimental results.

Id Name Files Clone methods Similarity

Training Validation Testing Training Validation Testing PPL μ σ2

2 Download from web 655 82 82 715 97 94 2.209 0.446 0.024

3 Secure hash 983 123 124 1,072 132 132 2.176 0.444 0.031

4 Copy file 2,088 260 261 2,454 306 295 2.267 0.372 0.031

5 Decompress zip archive. 4 1 0 8 1 0 – 0.392 0.043

6 Connect to FTP server 137 18 18 173 24 25 2.652 0.383 0.029

7 Bubble sort array 106 13 14 133 19 15 2.096 0.498 0.046

8 Setup SGV 19 2 3 19 2 3 4.362 0.458 0.045

9 Setup SGV event handler 6 1 2 7 2 2 3.085 0.310 0.040

10 Execute update and rollback. 349 44 44 567 56 71 2.278 0.415 0.030

11 Initialize Java eclipse project. 16 2 3 17 2 4 2.672 0.400 0.042

12 Get prime factors 16 2 2 17 2 2 3.923 0.586 0.044

13 Shuffle array in place 48 6 7 65 7 7 4.144 0.496 0.07

14 Binary search 251 31 32 315 54 34 2.814 0.537 0.017

15 Load custom font 19 2 3 21 2 3 2.982 0.414 0.029

17 Create encryption key files 14 2 2 17 2 2 2.931 0.378 0.04

18 Play sound 25 3 4 31 3 5 3.746 0.483 0.024

19 Take screenshot to File 69 9 8 82 12 9 3.049 0.421 0.030

20 Fibonacci 168 21 22 169 21 22 2.168 0.872 0.022

21 XMPP send message 18 2 3 20 2 3 3.147 0.484 0.024

22 Encrypt To file 49 7 8 59 8 8 2.406 0.420 0.028

23 Resize Array 224 27 29 317 44 36 2.484 0.487 0.031

24 Open URL in system browser 219 28 29 295 37 36 2.516 0.400 0.039

25 Open file in desktop application 54 9 7 82 12 8 2.517 0.376 0.037

26 GCD 16 2 3 18 2 3 6.686 0.597 0.030

27 Call method using reflection 294 37 37 329 39 41 2.183 0.402 0.041

28 Parse XML to DOM 122 15 16 157 21 19 2 0.435 0.031

29 Convert date string format 35 4 5 43 10 6 3.28 0.295 0.052

30 Zip files 783 97 99 1,119 136 135 2.272 0.411 0.027

31 File dialog 194 26 24 364 50 43 2.361 0.376 0.043

32 Send E-Mail 178 23 23 190 25 25 1.781 0.450 0.036

33 CRC32 File checksum 142 21 19 217 29 28 2.761 0.341 0.031

34 Execute external process 306 38 39 375 40 47 2.086 0.373 0.037

35 Instantiate using reflection 582 73 73 656 83 99 3.115 0.350 0.026

36 Connect to database 126 16 17 167 20 19 2.137 0.368 0.036

37 Load file into byte array 104 13 14 124 14 16 2.274 0.421 0.035

38 Get MAC address string 15 2 3 18 2 3 2.745 0.470 0.017

39 Delete folder and contents 175 23 24 218 27 30 3.022 0.497 0.032

40 Parse CSV file 125 14 18 161 16 25 2.004 0.433 0.038

41 Transpose a Matrix. 333 42 41 395 45 50 2.527 0.388 0.051

42 Extract matches using Regex 337 43 44 405 47 48 2.921 0.420 0.028

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 10/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

resource limitations. We selected GRU (Cho et al., 2014) and GPT-2 (Radford et al., 2019b)
as they have been reported to outperform other comparable models with recommended
configurations. In the following sections we describe the two models.

Gated Recurrent Units (GRU) Gated recurrent units (GRUs) are a gating mechanism
in RNNs (Cho et al., 2014), which is similar to LSTM (Hochreiter & Schmidhuber,
1997) but has a forget gate and fewer parameters as it lacks an output gate. However, it is
known to perform better than LSTM on certain tasks. To prepare our dataset (“Dataset
preparation”), we applied the recently proposed configuration settings for GRU deep
learning model by Karampatsis et al. (2020), which outperforms n-gram models on code
completion and bug detection tasks.

Byte-pair encoding (BPE) technique is generally used to solve the unlimited vocabulary
problem (Allamanis & Sutton, 2013). This problem makes it infeasible to train LMs on
large corpora. Researchers (Hindle et al., 2016; White et al., 2015) have applied several
other techniques such as replacing low frequency tokens, and replacing all code tokens not
appearing in training data set to reduce the vocabulary size and to build an open
vocabulary at the time of testing, with unknown tokens. This approach is not practical
for source code where software developers continuously introduce new variables, objects
and function names. These traditional language models in NLP mostly operate at the
token level (Dam, Tran & Pham, 2016; Sundermeyer, Ney & Schlüter, 2015), predicting one
token at a time. But for code, this strategy leads to large vocabulary sizes, because
identifiers in programming languages often correspond to entire phrases in natural
language. Because the number of unique identifiers increases with the size of the corpus
(Allamanis & Sutton, 2013), this problem makes it infeasible to train code LMs on large
corpora.

In order to solve these issues, many NLP models have used linguistically-motivated
subwords (Bazzi, 2002, Creutz et al., 2007; Luong, Socher & Manning, 2013;Mikolov et al.,

Table 1 (continued)

Id Name Files Clone methods Similarity

Training Validation Testing Training Validation Testing PPL μ σ2

43 Copy directory 65 8 10 118 15 15 2.289 0.480 0.024

44 Test palindrome 15 1 3 133 16 19 1.668 0.903 0.04

45 Write PDF file 122 15 15 129 15 15 2.304 0.431 0.034

Table 2 Final distribution of BigCloneBench dataset.

Files Clone methods Tokens

Training 9,606 11,991 16,933,894

Validation 1,208 1,499 2,130,360

Testing 1,234 1,502 2,235,982

Total 12,048 14,992 21,300,236

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 11/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

2012). Sennrich, Haddow & Birch (2015) first adapted the algorithm for word
segmentation, so that instead of merging pairs of bytes, it merges pairs of characters or
character sequences. The learnt segmentation was used in their neural translation system
and resulted in improved translation of rare words. Mikolov et al. (2012) found that
subword models improved upon character models. Sennrich, Haddow & Birch (2015)
adapted BPE to decompose words into subwords, improving rare word translation.
The vocabulary of subword units is learnt before training the NLM by segmenting a
corpus of code. This is done in such a way that more frequent character n-grams are more
likely to be included in the vocabulary of subword units. This strategy results in a
core vocabulary of subword units that occurs frequently in the corpus and captures
statistical patterns of characters within identifiers. Subword segmentation via BPE
(Babii, Janes & Robbes, 2019; Karampatsis et al., 2020) outperforms traditional approaches
(Dam, Tran & Pham, 2016; Sundermeyer, Ney & Schlüter, 2015) operating at token level,
n-gram, cache model and so on, for both small and large datasets.

BPE algorithm was originally designed for data compression, in which bytes that are not
used in the data replace the most frequently occurring byte pairs or sequences (Gage,
1994). BPE starts by splitting all the words in characters. The initial vocabulary contains
all the characters in the data set and a special end-of word symbol @@, and the corpus is
split into characters plus @@. Then, it finds the most common pair of successive items
in the corpus (initially characters, then tokens). This pair is merged in a new token which is
added to the vocabulary; all occurrences of the pair are replaced with the new token.
The process is repeated n times, which is called a merge operation (MO).

We applied static settings with a large training set (50 epochs, 64 mini-batch size) and
chose 10,000 BPE MOs as it performs better than other BPE MOs such as 2,000 and 5,000.
Static settings have been used to train a model on a fixed training corpus, and later
evaluated on a separate test dataset. To train the LM, we first learn encoding by using the
training set with the help of subword library (https://github.com/rsennrich/subword-nmt).
Then, we segment the training, validation, and test sets using the learnt encoding, and
apply the MOs from BPE to merge the characters into subword units in the vocabulary.

Generative Pretrained Transformer 2 (GPT-2) OpenAI developed a large-scale
unsupervised LM called GPT-2 (Generative Pretrained Transformer 2) (Radford et al.,
2019a; Radford et al., 2018; Radford et al., 2019b) to predict several sound sentences of
realistic text by extending any given seed. It is a direct scale-up of GPT, with more than ten
times the parameters and training data. We focus on fine-tuning a GPT-2 transformer
(Radford et al., 2019b) pre-trained model for predicting code tokens, even though it
has been trained on English language. Fine-tuning works well, if a pretrained model
has been trained over a large corpus, and there is an overlap of vocabulary between
languages (see, for instance, Wu & Dredze, 2019; Lample & Conneau, 2019; Ruder, Vulic′
& Søgaard, 2019). GPT-2 is effective to fine-tune on Java programming language, as it
employs byte pair encoding (BPE) to construct its vocabulary. So, all tokens in Java
language can be mapped to the vocabulary set. We applied fine-tuning of a pre-trained
model on IJaDataset as there exists a large amount of overlapping vocabulary with the
English language.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 12/39

https://github.com/rsennrich/subword-nmt
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

GPT-2 has demonstrated impressive effectiveness of pre-trained LMs on various tasks
including high quality text generation, question answering, reading comprehension,
summarization, and translation (Radford et al., 2019b). It was also noticed that, in general,
better pre-trained models lead to better performance on fine-tuned or transfer tasks
(Peters, Ruder & Smith, 2019). Fine-tuning is one approach to transfer learning, which is to
adjust feature weights according to the new dataset on some already trained model.
Previously, GPT-2 has been successfully fine-tuned on different types of datasets. Shrestha
& Csallner (2021) have fine-tuned the pretrained GPT-2 model on Simulink model files to
generate Simulink models. Kim et al. (2020) have used GPT-2 for code prediction by
revealing the syntactic structure of code to the network. Ziegler et al. (2019) have applied
a reinforcement learning method on the 774M GPT-2 model to support human-preferred
text more often. Lee & Hsiang (2019) fine tuned 345 M, a GPT-2 based pre-trained
model of medium version, to patent claim generation by providing various experimental
results for qualitative analysis and future research. Deep TabNine, a software
programming productivity tool to predict the next chunk of code, has been successfully
fine-tuned by using GPT-2 on approximately two million GitHub files capturing
numerous programming languages. DeepClone is initially inspired by Deep TabNine, and
we have fine-tuned for only those files of IJaDataset, which contains true positive clone
methods from BigCloneBench dataset.

GPT-2 also has built in BPE tokenizer. We selected a small version of GPT2 (GPT2-117)
as our base model, as it does not take too much time and resources to fine-tune, and is
enough to evaluate our approach. The GPT2-117(Radford et al., 2019b) pre-trained
model has vocabulary size of 50,257, 117 M parameters, 12-hidden layers, 768-hidden
states, and 12-attention heads. We have fine-tuned our GPT-2 based model on the
partition of a GPU-1080Ti cluster (276 CPU cores, 329,728 CUDA cores, 5.9 TB memory)
(https://userinfo.surfsara.nl/) for approximately 9 h by using HuggingFace Transformer
Library. In our experiment, we have performed training and evaluation with batch size per
GPU of one for five epochs. We have used a learning rate of 5e − 5 and the gradient
accumulation steps (number of update steps to accumulate before performing a
backward/update pass) as 5. Default values have been used for other hyper-parameters, as
mentioned in the language modeling code (https://github.com/huggingface/transformers/
tree/master/examples/pytorch/language-modeling).

Comparative evaluation: GRU vs GPT-2 based models
We have performed both intrinsic and extrinsic evaluations of GRU and GPT-2 based
models to compare their performance. In order to measure the quality of the models
(i.e., intrinsic evaluation), we have calculated the perplexity scores (as done in related work
(Zaremba, Sutskever & Vinyals, 2014; White et al., 2015)), which is an inverse of
cross-entropy (as used in (Hellendoorn & Devanbu, 2017; Karampatsis et al., 2020)).
Perplexity is a measurement of how well a given LM predicts sample data. It estimates the
average number of code tokens to select from at each point in a sequence (Allamanis &

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 13/39

https://userinfo.surfsara.nl/
https://github.com/huggingface/transformers/tree/master/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/tree/master/examples/pytorch/language-modeling
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Sutton, 2013). It is a natural evaluation metric for LMs, which represent a probability
distribution over a subsequence or an entire dataset (Eq. (1)):

PðLÞ ¼ exp � 1
M

XM
i

logPðtijt0 : ti�1Þ
 !

(1)

P(ti | t0:ti − 1) is the conditional probability assigned by the model to the token t at index
i. By applying log of conditional probability, cross-entropy loss is calculated. M refers to
the length of tokens. Hence, perplexity is an exponentiation of the average cross
entropy loss from each token [0,M]. We calculate the perplexity on the validation set (P1)
and the testing set (P2) for GRU and GPT-2 based models, which clearly displays that the
GPT-2 based model outperforms the other by a large margin (Table 3).

We have further measured the performance of both models on specific tasks such as
token prediction (i.e., extrinsic evaluation). Given a number of code sequences as input, we
have collected the top ten predictions from GRU and GPT-2 based models, and computed
the top-k accuracy (the fraction of times the correct prediction appears in the top k
predictions) for k ∈ [1, 10]. Moreover, we have measured the Mean Reciprocal Rank
(MRR) scores of both language models (LM), which has been used by many
researchers (Karampatsis et al., 2020, Hellendoorn & Devanbu, 2017) for evaluating code
prediction. For each prediction done by the LM, we have collected a ranked list of ten
predictions. For each of those lists, the reciprocal rank corresponds to the multiplicative
inverse of the rank of the first correct answer. MRR in turn is the average of reciprocal
ranks for all the input sequences used in the evaluation.

Table 3 shows the top-k accuracies as well as the MRR scores. Clearly, the results
suggest that the GPT-2 based model performs more accurately compared to the GRU
based model on pre-processed Java source code containing clone methods. The table also
indicates that there is almost 78% chance to get a correct token in the first option, and
95% chance to have a correct output in the top-ten predicted outcomes for GPT-2
based model. To further quantify the accuracy of our models for token prediction task, we
report an MRR score of 83%, which indicates an excellent performance in evaluating a
ranked list of predictions for GPT-2 based model. As GPT-2 based model gives us highest
performance in terms of perplexity on the validation set (P1) and test set (P2), MRR,
and top-k accuracy, we selected this model for our approach and named it DeepClone
model.

DeepClone based on GPT-2 produces more accurate results on the token prediction task
than GRU.

Table 3 Comparative evaluation results for GPT-2 and GRU models.

Perplexities Accuracies

Model Validation (P1) Test (P2) MRR (%) Top 1 (%) Top 3 (%) Top 5 (%) Top 10 (%)

GPT-2 2.145 2.146 84.329 77.808 90.040 92.766 94.999

GRU 13.92 13.86 73.507 66.948 79.0715 82.02 84.787

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 14/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Recommending real clone methods
In this section, we describe how we predict clone methods (i.e., the DeepClone output)
based on user input and how we recommend real clone methods based on the resulting
DeepClone output.

Clone prediction
For predicting a clone method based on user input, there exist several text generation
methods such as beam search (Vijayakumar et al., 2018), sampling with temperature
(Ackley, Hinton & Sejnowski, 1985; Ficler & Goldberg, 2017), top-k sampling (Fan, Lewis &
Dauphin, 2018) and nucleus sampling (Holtzman et al., 2019). All these methods have a
specific decoding strategy to shape the probability distribution of LM with higher
probabilities assigned to higher quality texts. We select nucleus sampling as it is claimed
to be best the strategy for predicting large amount of high quality text, comparable to
human written text (Holtzman et al., 2019). By using a fine-tuned model and nucleus
sampling, we can expect a coherent set of code tokens for clone method prediction.
Holtzman et al. (2019) have also achieved coherent text generation results with similar
settings. We have mentioned sample DeepClone output from our results in Tables S1,
S3, S4.

Clone recommendation
DeepClone is the first step for code prediction that raises the granularity level to
complete clone methods. However, with the probabilistic model alone, we cannot expect
exactly the same clone method being predicted or completed as the one used in training. In
prediction tasks, generating well-formed outputs is challenging, which is a well-known
problem in natural language generation (Hashimoto et al., 2018). However, the desired
output might be a variation of another, previously observed sample (Hashimoto et al.,
2018).

We propose a methodology called Clone-Advisor, for recommending real clone
methods based on given code context by applying an IR technique over the previously
described DeepClone output. The IR technique retrieves real clone methods from the
search corpus, which are most similar to the initially predicted clone method from
DeepClone model. Figure 2 displays a pictorial representation of our methodology to
predict real clone methods. In their raw form, we obtain DeepClone output, ground truth,
and top-ten samples from the current methodology in an unformatted style, where
code tokens of the clone method are separated only by space characters. To make this
output readable, we have formatted the code by using an online tool (https://www.
tutorialspoint.com/online_java_formatter.htm) along with little manual editing (which we
plan to automate in future). We have mentioned sample examples from our results in
Tables S1, S3, S4. We describe the details of our methodology in the following subsections.

Building the Search Corpus We build our search corpus from BigCloneBench and
IJaDataset (Svajlenko et al., 2014; Svajlenko & Roy, 2016), which we also previously used to
train DeepClone. We perform several pre-processing steps to build our search corpus,
which is similar to what we have followed in “Language modeling”. First, we extract the

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 15/39

http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
https://www.tutorialspoint.com/online_java_formatter.htm
https://www.tutorialspoint.com/online_java_formatter.htm
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

details of a total of 14,922 true positive clone methods (Extraction). Next, we trace them in
IJaDataset files, by following their references from the BigCloneBench dataset, and put
them in our search corpus list by placing meta tokens hsoci at the start, and heoci at
the end of each clone method (Marking). These meta tokens are also part of the DeepClone
output, so inserting them in the search corpus clone method list helps in making a fair
comparison. Afterwards, we normalize each clone method code by removing whitespaces,
extra lines, comments, as well as tokenizing (Normalization) by adapting the Javalang
(https://github.com/c2nes/javalang) Python library, which contains a lexer and parser
for the Java 8 programming language. Finally, for each clone method, we replace integer,
float, binary, and hexadecimal constant values with the hnum_vali meta-token
(Replacement). Similarly, we replace string and character values with hstr_vali. Again, this
is just to ensure to have fair comparison, as DeepClone output is also in this normalized
format. Figure 3 displays a pictorial representation of building a search corpus.

Retrieving Clones from the Search Corpus The output from “Experimental design”
contains the set of tokens from the user input, along with the predicted tokens up to the
heoci token. In this step, we extract only those tokens, which are between hsoci and heoci

Figure 3 Data preparation steps of Clone-Advisor methodology.
Full-size DOI: 10.7717/peerj-cs.737/fig-3

Figure 2 DeepClone training process and methodology of Clone-Advisor for recommending real clone methods.
Full-size DOI: 10.7717/peerj-cs.737/fig-2

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 16/39

https://github.com/c2nes/javalang
http://dx.doi.org/10.7717/peerj-cs.737/fig-3
http://dx.doi.org/10.7717/peerj-cs.737/fig-2
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

tokens (inclusive) from the DeepClone output (see the DeepClone output steps in
Tables S1, S3 and S4). We apply an IR technique to retrieve top-ten results from the search
corpus matching the clone method predicted from DeepClone model. IR techniques, in
general, are used to discover the significant documents in a large collection of documents,
which match a user’s query. Their main goal is to identify the significant information
that satisfies the user information needs. An IR-based code retrieval method in particular
usually extracts from a query a set of keywords and then search for the keywords in code
repositories (Nie et al., 2016).

The selected IR technique is based on TF-IDF word embeddings for retrieving the
real clone methods most similar to the DeepClone output. TF-IDF (Term Frequency-
Inverse Document Frequency (Dillon, 1983)) is a technique often used in IR and text
mining. A survey conducted in 2015 showed that 70% of text-based recommendation
systems in digital libraries use TF-IDF (Beel et al., 2016). Similarly, in the past many
researchers have applied TF-IDF to retrieve code elements (Kim et al., 2018; Luan et al.,
2019). TF-IDF is a weighting scheme that assigns each term in a document a weight
based on its term frequency and inverse document frequency. In our context, TF-IDF is
looking at the term overlap, i.e., the number of shared tokens between the two clone
methods in question (and also how important/significant those tokens are in the clone
methods). We use TF-IDF with unigrams as terms to transform clone methods into
numeric vectors, that can easily be compared by quickly calculating cosine similarities. If a
term appears frequently in a clone method, that term is probably important in that
method: term frequency is simply the number of times that a term appears in a method.
However, if a term appears frequently in many clone methods, that term is probably
less important generally. Inverse-document frequency is the logarithmically-scaled
fraction of clone methods in the corpus in which the term appears. The terms with higher
weight scores (high TF and IDF) are considered to be more important. We first transform
clone methods existing in the search corpus and the DeepClone output into TF-IDF
vectors using Eq. (2).

TF � IDFði; jÞ ¼ ð1þ logðTFði; jÞÞ: log J
DFðiÞ
� �

(2)

where TF (i, j) is the count of occurrences of feature i in clone method j, and DF (i) is the
number of clone methods in which feature i exists. J is the total number of clone methods.
During retrieval, we create a normalized TF-IDF sparse vector from the DeepClone
output as query, and then take its dot product with the feature matrix. Since all vectors
are normalized, the result yields the cosine similarity between the feature vectors of the
query and of every clone method. We then return the list of clone methods ranked by their
cosine similarities.

EMPIRICAL EVALUATION
In this section we describe the evaluation of DeepClone on additional aspects of the model.
Furthermore, we empirically evaluate our approach of recommending real clone methods
by presenting experimental design, various research questions and experimental results.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 17/39

http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

DeepClone model
Training EvaluationWe have evaluated the training phase as a indication of how well the
optimization performed in our case. We have measured the performance of DeepClone
model at each checkpoint, i.e., per 500 logging steps, in terms of perplexity on the
validation set. The decreasing and stabilizing trend on perplexity can be seen in Fig. 4A,
with the lowest perplexity P1 (2.145) at step 24,500. Supporting this, there is a clear
convergence to zero in the learning rate after each checkpoint, as depicted in Fig. 4B.
Learning rate is a useful indicator for determining how quickly a neural network model
learns a problem by adjusting the weights of the network according to the value loss
function. Loss function, in turn, calculates the model error. This measure identifies how
well a model predicts the expected outcome for any data point in the training set. GPT-2
particularly uses the cross-entropy loss function as a probability value between 0 and 1.
Figure 4C displays a convergence of training losses after each checkpoint, which
indicates how well the model behaves after each checkpoint of optimization. At step
24,500, the loss value is finally minimized to 0.75, implying a well trained model.
The training steps for the fine-tuning of our GPT-2 based model are shown in Fig. 2. In
summary, all the measurements indicate a successful training process and an accurate
model. We have published our training results online (https://tensorboard.dev/
experiment/tk1XqDi8RMqtrMjmVyQ9Sg).

The DeepClone model has been successfully fine-tuned on the BigCloneBench dataset by
using a powerful GPT-2 based pre-trained model.

The Effect of Using Clone Markers In this section we discuss the perplexity of our
model on the testing dataset. However, in contrast to the our perplexity measurement
in the previous sections, this time we have excluded the clone method markers (i.e., hsoci
and heoci) from our data. Our motivation for this additional measurement is as
follows. Hindle et al. (2016) observed predictable statistical properties in the source
code due to its repetitive nature, and proposed n-gram language models to capture and
leverage these for software engineering tasks. A good model should be able capture the
patterns in the dataset very well, which is particularly important for the task of clone
method prediction. In Table 3, we observe a 3.6% increase in perplexity when comparing
the original measurement of 2.146 (P2 and the one without clone markers of 2.182 (P3) see

Figure 4 (A–C) Training graphs. Full-size DOI: 10.7717/peerj-cs.737/fig-4

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 18/39

https://tensorboard.dev/experiment/tk1XqDi8RMqtrMjmVyQ9Sg
https://tensorboard.dev/experiment/tk1XqDi8RMqtrMjmVyQ9Sg
http://dx.doi.org/10.7717/peerj-cs.737/fig-4
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Table 4). This means that our model performs better with explicitly marked clone
methods.

The prediction capability of DeepClone is better on code which has marked clone
methods.

Evaluation per Clone Method We have calculated the average perplexity (PPL) for
each functionality type (see Table 1) to assess which clone method snippets are more
predictable than others. We have first extracted the code snippet for each type of clone
method in the testing dataset, and averaged the perplexity score per funcionality type as an
indicator of prediction likelihood (Table 1). We have also analyzed several factors
which can potentially affect the perplexity scores. BigCloneBench contains a syntactic
similarity score for each clone method pair, which is calculated using a line-based metric
after normalization. We have calculated the mean (μ) and variance (σ2) values to
determine the overall syntactic similarity of all the clone methods per functionality type in
Table 1.

We observe that the perplexity scores vary according to the syntactic similarity between
clone methods, as well as the number of clone method snippets in the training set.
From the results, we can see, for instance, the “Test palindrome” (i.e., checking whether a
string is a palindrome) methods (number 44) have the lowest perplexity score. They
can therefore be well predicted by DeepClone. We attribute this to the high mean syntactic
similarity (0.903 ± 0.040) among those types of clone methods, and the relatively small
number of snippets (133) used in training. Too few snippets in the training may lead
to (a) high perplexities and low predictability e.g., for “GCD” (greatest common
denominator, number 26) and (b) no evaluation performed for “Decompress zip archive”
(number 5). We however believe other factors can also can also affect the perplexity
score. In BigCloneBench, there are many false positive clone methods and other non-clone
code snippets, which may be syntactically similar to true positive clone methods. Other
factors such as clone types and hyper-parameters for GPT-2 are left to be explored in
future work.

For the majority of the clone methods, DeepClone achieves a successful prediction.

Non-Clone Methods vs Clone Methods Allamanis (2019) noticed the negative
correlation between perplexity and code duplication in the data for language modeling.
In order to quantify this in our case, we have calculated the perplexity scores for all the
clone method snippets and non-clone method snippets in the testing dataset. We have
extracted clone method snippets by tracing the tokens between the clone markers.
The remaining part of the dataset was considered to be a part of non-cloned code. We have
then calculated the perplexity for each snippet. Finally, we have averaged the perplexities

Table 4 Perplexities measured while evaluating the DeepClone model.

P3 P4 P5 P6

2.182 2.410 2.767 2.996

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 19/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

for both types of code snippets. In Table 4, P4 represents the average perplexity score for
the clone method snippets, and P5 for the non-cloned method snippets. We have
performed one-tailed Wilcoxon rank sum test to statistically compare P4 with P5, which
indicates that P4 is indeed less than P5 (p¡ 0.001). We conclude that DeepClone correctly
predicts clone method snippets much better than non-cloned snippets in general.

DeepClone predicts clone code method snippets more accurately than non-clone ones.

Performance on Other Datasets We have evaluated the performance of DeepClone
on another Java dataset to assess its applicability and generalizability. We have used
Allamanis & Sutton (2013) corpus that contains over 14 thousand popular Java projects
from GitHub. As a baseline, we have focused only on 38 test projects that have been used in
previous studies (Hellendoorn & Devanbu, 2017; Karampatsis et al., 2020). We have
followed the same steps for dataset preparation as mentioned in “Dataset preparation”,
i.e., normalization, replacement, and merging. Note that this dataset does not contain
clone markers as no corresponding clone reference benchmark is available. As the main
purpose of clone markers is to help in predicting clone methods, they will not severely
affect the results of predicting next tokens, also remarked in “DeepClone model”. On this
dataset, we have achieved a perplexity of 2.996 (P6), equivalent to a cross-entropy of 1.097.
We have further calculated additional accuracy measures: MRR (81.523%), top-1
(74.416%), top-3 (87.613%), top-5 (90.704%), and top-ten (93.152%). These results
(see Table 5) outperform the static settings of previous studies (Hellendoorn & Devanbu,
2017, Karampatsis et al., 2020). This indicates that DeepClone model is very successfully
fine-tuned with GPT-2 over Java corpus in general, and it contains an excessive
amount of overlapping vocabulary with the selected corpus. We consider this as a good
indicator for the generalizability of our approach on any Java code.

DeepClone is fine-tuned well with GPT-2 over potentially any general Java corpus.

Recommending real clone methods
We have performed an extensive quantitative evaluation of DeepClone output and Clone-
Advisor recommendations with respect to various aspects: naturalness of the output,
accuracy for finding exact matches, accuracy for finding the first correct functionality
match, and accuracy for finding multiple correct functionality matches. We measure
perplexity to identify the naturalness of the code. There are several metrics which are used
to evaluate the performance of information retrieval systems such as precision, MRR, top-k

Table 5 Performance of Allamanis & Sutton (2013) dataset on different models.

Model Settings Cross-Entropy MRR (%)

LSTM/300 (Hellendoorn & Devanbu, 2017) Static 3.22 66.1

LSTM/650 (Hellendoorn & Devanbu, 2017) Static 3.03 67.9

BPE NLM (512) (Karampatsis et al., 2020) BPE 10,000, Static, Small train 4.77 63.75

DeepClone “Language modeling” 1.097 81.523

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 20/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

accuracy, NDCG and recall. In this paper, we focus on the problem of how many
relevant results are retrieved in the top-k retrieved clone methods. We emphasize on the
quality of the retrieved answers in the top-k results. An ideal information retrieval system
should hit more of the relevant records and place them at the top of the results. If a
developer finds a relevant implementation of some functionality in the top-k retrieved
results, it will be enough for him to move forward. Therefore, performance measures such
as recall are not of major concern, as they are used to identify whether information
retrieval systems miss in reporting some relevant result or not. Previously, there were
also many researchers, who did not report recall because of the similar nature of the
problem (Keivanloo, Rilling & Zou, 2014; Lv et al., 2015;Gu, Zhang & Kim, 2018; Yan et al.,
2020). Based on these reasons, we choose MRR, top-k accuracy and precision metrics to
determine the performance of our information retrieval system.

Experimental design
We have performed a small scale (100 context queries) experiment to predict next token
subsequences by choosing different subsequence sizes such as 10, 20, 30, 50, and 100
tokens. Among these, subsequences with size 20 gave us best results in terms of top-k
accuracy and MRR. We have extracted subsequences of 20 tokens from the testing dataset,
and moved the sliding window one step ahead to obtain further subsequences. From these
we have selected 735 subsequences containing a total of 14,700 tokens, in which soc
token is a part of each subsequence, which indicates a start of clone method. We have
passed these subsequences one by one to DeepClone model, and kept on predicting
new tokens with nucleus sampling (threshold value 0.95) until the meta-token eoc
(i.e., end of clone) appeared. We have used the text generation script (https://github.
com/huggingface/transformers/blob/master/examples/pytorch/text-generation/run_
generation.py) of HuggingFace Transformer Library in this case. Note that certain
parameters, such as the number of subsequences and size of tokens in each subsequence
are chosen to perform a preliminary evaluation, which can be fine-tuned and optimized in
a follow-up study. The main aim is to demonstrate the feasibility of our methodology
for predicting and recommending clone methods.

Research questions
The objective of the empirical evaluation is to investigate the overall effectiveness of
our approach in terms of DeepClone output and Clone-Advisor recommendations.
We also want to investigate the benefit of distinctive features of our approach. We have
identified the following research questions:

RQ1: Which of the output, DeepClone output or Clone-Advisor recommendations,
are considered to be more “natural”? The objective of this RQ is to measure and analyze
perplexity scores for the DeepClone output versus the Clone-Advisor recommendations
around these angles of naturalness and potential bug density. In previous work, it has
been observed that n-gram language models can detect defects as they are less “natural”
than correct code (Ray et al., 2016). Similarly, Karampatsis et al. (2020) have noted that
defective lines of code have a higher cross-entropy (~perplexity, to be explained later in

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 21/39

https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-generation/run_generation.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-generation/run_generation.py
https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-generation/run_generation.py
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

this section) than their correct (ed) counterparts. By considering it, we expect the
DeepClone output to have a relatively higher perplexity, because it is considered to be a
buggy snippet as generated from probabilistic language models.

RQ2: To what extent do Clone-Advisor recommendations exactly match with the
ground truth? The main purpose of this RQ is to inspect top-ten Clone-Advisor
recommendations from Clone-Advisor and identify howmuch of them exactly match with
the ground truth. For this purpose, we collect the top ten Clone-Advisor recommendations
retrieved by Clone-Advisor, and compute the top-k accuracy (the fraction of times the
ground truth clone method appears in the top k Clone-Advisor recommendations) for k ∈
[1, 10]. Moreover, we measure the Mean Reciprocal Rank (MRR) scores for the
recommendations. A simplified description of MRR is that it averages top-k accuracy
across various k. In this specific scenario k ∈ [1, 10] since the methodology output a list of
top-ten Clone-Advisor recommendations. The MRR is a rank-based evaluation metric,
which produces a value between 0 and 1, where a value closer to 1 indicates a better
clone method recommendation system. The reciprocal rank of a query response is the
multiplicative inverse of the rank of the first correct answer, while MRR is the average of
reciprocal ranks. We have further calculated top-k accuracy and MRR involving an exact
match of the Clone-Advisor recommendations with the ground truth.

RQ3: Do the Clone-Advisor recommendations’ functionalities match those of the
ground truth?

Another distinctive feature of our approach is that the Clone-Advisor
recommendations’ functionality is matched with the ground truth. In order words, they
are the clones of the ground truth. BigCloneBench contains references of multiple
implementations (i.e., clones) of specific functionalities. It contains validated clone
methods belonging to 43 different functionalities, for instance, “copy file” functionality
contains 3,055 different implementations. Further details can be found from our previous
paper (Hammad et al., 2020a), and BigCloneBench dataset. Hence, it is possible to
have Clone-Advisor recommendations that do not exactly match the ground truth but
match its functionality. For instance, Table S1 displays top-1 and top-2 clone methods
belonging to the same functionality as the ground truth (GT). So, both implementations
can potentially satisfy the user’s need. For this purpose, we extract the functionality id of
the ground truth and recommended list of top-k clone methods against each context.
We calculate top-k accuracy and MRR accordingly.

RQ4: What percentage of the Clone-Advisor recommendations’ functionalities
match with the ground truth? The main aim of this RQ is to identify more than one
correct result in the top-k Clone-Advisor recommendations. Oftentimes developers need
to analyze multiple correct results from the search list. For this purpose, we compute the
precision, which is the percentage of relevant results in the top-k Clone-Advisor
recommendations for each query:

Precision@k ¼ 1
jQj
Xi¼1

jQj

jrelevanti;kj
k

(3)

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 22/39

http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

where relevanti,k represents the relevant search results for query i in the top k returned
results, and Q is a set of queries. Precision shows the relevance of the Clone-Advisor
recommendations to the queries with respect to the ground-truth functionalities; the
higher the value, the more relevant the results are.

RQ5:What is the performance of Clone-Advisor on code samples, which do not exist
in BigCloneBench dataset? The objective of this RQ is to investigate the overall
effectiveness of our approach on other code samples, with the prerequisite that they belong
to the same functionality group present in the BigCloneBench dataset (i.e., the dataset we
train our system on). For this purpose, we compute precision, and top-k accuracy to
further validate the performance of Clone-Advisor on unseen dataset.

Experimental results
RQ1: Naturalness To assess how the original output of DeepClone model differs from the
real clone code methods, we find the perplexity scores of the clone method predicted by
DeepClone and top-k most similar retrieved clone methods. Table 6 depicts the mean
perplexities of top-ten Clone-Advisor recommendations, DeepClone output, and
ground truth (GT). We observe quite high mean perplexity scores and standard deviation
for the DeepClone output (11.624 ± 5.892). This indicates high noise and less natural
code, which is a known problem of neural language generation (Li et al., 2017a; Shao et al.,
2017). However, we notice quite low mean perplexity scores and standard deviation for the
ground truth (2.047 ± 0.848) and top-ten Clone-Advisor recommendations (range
from 1.79 ± 0.716 till 1.907 ± 0.612) against the set of 735 input queries. This depicts
that the top-ten retrieved snippets have relatively low perplexities, which indicates that
they are highly natural and less noisy as compared to DeepClone output. There are
slight variations in the perplexity values of Top-ten samples, which can be attributed to
various factors such as the type of functionality, the number of clone method snippet
trained in the DeepClone model, and inner similarity among the clone methods’ type.
These factors have been discussed in detail in our previous work (Hammad et al., 2020a).

Table 6 Mean perplexities related to different clone method outputs.

Perplexity

DCO 11.624 ± 5.892

GT 2.046 ± 0.848

1 1.785 ± 0.712

2 1.841 ± 0.712

3 1.796 ± 0.602

4 1.819 ± 0.536

5 1.875 ± 0.546

6 1.9 ± 0.579

7 1.883 ± 0.563

8 1.869 ± 0.528

9 1.828 ± 0.486

10 1.867 ± 0.581

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 23/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

These numbers show that the IR technique can improve the predicted clone method
generated by DeepClone, resulting in more natural snippets.

Clone-Advisor produces more natural output compared to DeepClone.

RQ2: Exact Match EvaluationWe collect the top ten Clone-Advisor recommendations
retrieved by our approach, and compute the top-k accuracy (the fraction of times the
ground truth clone method appears in the top-k Clone-Advisor recommendations) for k ∈
[1, 10]. Moreover, we measure the Mean Reciprocal Rank (MRR) scores for the
recommendations. A simplified description of MRR is that it averages top-k accuracy
across various k. In this specific scenario k ∈ [1, 10] since the methodology output a list of
top-ten Clone-Advisor recommendations. The MRR is a rank-based evaluation metric,
which produces a value between 0 and 1, where a value closer to one indicates a better
clone method recommendation system. The reciprocal rank of a query response is the
multiplicative inverse of the rank of the first correct answer, while MRR is the average of
reciprocal ranks. We have further calculated top-k accuracy and MRR involving an exact
match of the Clone-Advisor recommendations with the ground truth. We achieve an
accuracy of 39.3% in the top-ten Clone-Advisor recommendations and MRR as 28.3% (see
Table 7). In a fair share of the cases, we can find exactly the same clone method as in the
ground truth.

Clone-Advisor can generate recommendations which exactly match with the ground truth
up to 40.5% top-ten accuracy.

RQ3: Functionality Match Evaluation As BigCloneBench contains references to
various implementations for each of the 43 functionalities, it is quite possible that the user
is recommended a different snippet than the ground truth, yet implementing the same
functionality. This alternative can also help the developer achieve their goal. To assess
such cases, we have calculated the top-k accuracy and MRR taking alternative
implementations into account. In this case, we achieve quite a high accuracy, notably
84.1% in the top-ten Clone-Advisor recommendations, as well as 73.8% MRR in terms of

Table 7 Evaluation results between ground truth and top 10 recommended clones in terms of MRR
and Top-k accuracies (‘*’ = Overall score, ‘°’ = method name exists in the context, ‘!’ = method name
does not exist in the context).

MRR Top-1 Top-3 Top-5 Top-10

Exact match

* 0.290 0.238 0.325 0.362 0.405

∘ 0.301 0.245 0.340 0.380 0.429

! 0.167 0.157 0.186 0.186 0.186

Functionality match

* 0.740 0.694 0.770 0.801 0.845

∘ 0.764 0.719 0.791 0.821 0.865

! 0.516 0.457 0.571 0.614 0.657

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 24/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

functionality match with the ground truth (see Table 5). The results display that our
methodology has the capability of identifying a good match between ground truth and top-
k Clone-Advisor recommendations. Table S3 displays that top-one recommended clone
method exactly matches the ground truth (see Table 5). This is a major improvement over
the exact match scores and further reinforces the claims we make for our approach.

Clone-Advisor can produce recommendations, whose functionalities match with the
ground truth up to 84.5% top-ten accuracy.

RQ4: Multiple Functionality Match Evaluation We collect the top ten Clone-Advisor
recommendations retrieved by our approach, and compute Precision@k (Table 8) with
various values for k. The columns P@1, P@3, P@5 and P@10 show the results of the
average Precision@k over all queries when k is 1, 5 and 10, respectively. In this case, we
observe quite a high precision score, notably 69.4% in the top-one Clone-Advisor
recommendations. The results display that our methodology has the capability of
identifying multiple matches between ground truth and top-k Clone-Advisor
recommendations.

Clone-Advisor can produce more than one correct recommendation, whose functionality
matches with the ground truth up-to 69.4% P@1 and 57.8% P@10 precision.

RQ5: Validation on Other Datasets Many researchers build several benchmarks to
evaluate their code search techniques based on natural language queries such as Lv et al.
(2015), Kim et al. (2018),Gu, Zhang & Kim (2018) and Cambronero et al. (2019). We follow
a similar idea and create our own benchmark by collecting code samples belonging to
each functionality type existing in BigCloneBench from various websites such as Stack
Overflow (https://stackoverflow.com/), and ProgramCreek (https://www.programcreek.
com/). We search for the description mentioned against each functionality type in the
BigCloneBench corpus using Google search engine. Once web-page lists are retrieved, we
manually analyze code samples available in those pages by considering the following
criteria:

1. Sample should be a clone of the searched functionality type.

2. Sample should belong to the Java programming language.

3. Sample should have a method signature along with a complete method body.

Table 8 Evaluation results between ground truth and top 10 recommended clones in terms of
precision (P@k) (‘*’ = Overall score, ‘°’ = method name exists in the context, ‘!’ = method name
does not exist in the context).

P@1 P@3 P@5 P@10

* 0.694 0.656 0.636 0.578

∘ 0.719 0.676 0.655 0.595

! 0.457 0.471 0.46 0.417

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 25/39

http://dx.doi.org/10.7717/peerj-cs.737/supp-2
https://stackoverflow.com/
https://www.programcreek.com/
https://www.programcreek.com/
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

4. If sample is found from Stack Overflow website, we ensure that either the answer
containing that sample has positive votes or has an acceptance status.

We apply preprocessing steps such as marking, normalization, and replacement as
mentioned in “Dataset preparation”. Our task is to complete the clone method body based
on the input context, and recommend real clone methods. We take first 20 tokens as
the input and pass it to our DeepClone model to generate clone method. We pass the
generated clone method to Clone-Advisor to get the recommended clone methods.
We calculate MRR, top-k accuracy and precision by inspecting functionality types of top-k
recommended clone methods and ground truth (Tables 9 and 10). Our benchmark is
publicly accessible from our website (https://www.win.tue.nl/~mhammad/Clone-Advisor/
cloneadvisor.html). We can see from the results that we can find the required clone
method among top@5 recommended methods for all the code samples. We further
note down that for functionality types 5 and 9, most of the recommended clone
methods do not belong to the functionality type of the ground truth. This is because clone
methods of these functionality types exist few in numbers in BigCloneBench corpus, which
effects the performance of DeepClone model to not perfectly learn their patterns. As a
result, DeepClone model generates buggy a method body and Clone-Advisor is also not
perfectly be able to find similar clone methods of these functionality types. Though, these
code samples do not represent the clones of all functionality types which exist in the
BigCloneBench dataset, but at least it gives an impression that our methodology can work
on unseen code samples.

Clone-Advisor can produce more than one correct recommendation, whose functionality
type matches with the ground truth on other datasets.

DISCUSSION
Usefulness of Clone-Advisor recommendations
In our qualitative investigation, we experienced two different scenarios based on the
recommended output. The first one is the ideal scenario when one of the top-k Clone-
Advisor recommendations exactly match the ground truth. In the example given in
Table S3, “transpose” at top-1 exactly matches the ground truth. This scenario gives the
best results. The second scenario is when none of the top-k recommended methods exactly
match the ground truth but at least one of the top-k recommended clone method
functionality matches with functionality of the ground truth. In Table S3, although top-1
and top-2 Clone-Advisor recommendations do not exactly match with the ground
truth, they belong to the same functionality “copy file”. The main advantage of our
methodology is that even if the Clone-Advisor recommendations do not exactly match the
ground truth, still they would be usually implementing the same functionality as the
ground truth method, and might satisfy the user’s need.

Similarly, the performance of Clone-Advisor is highly dependent on input context.
There are two scenarios based on the input context. The first scenario is when the context
contains the name of the method. It is straightforward for the neural language technique to

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 26/39

https://www.win.tue.nl/~mhammad/Clone-Advisor/cloneadvisor.html
https://www.win.tue.nl/~mhammad/Clone-Advisor/cloneadvisor.html
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Table 9 Evaluation results between ground truth and top 10 recommended clones in terms of MRR
and top-k accuracies for code samples available in our own benchmark.

ID MRR Top-1 Top-3 Top-5 Top-10

2 1 1 1 1 1

3 1 1 1 1 1

4 1 1 1 1 1

5 0.333 0 1 1 1

6 1 1 1 1 1

7 1 1 1 1 1

8 1 1 1 1 1

9 0.25 0 0 1 1

10 1 1 1 1 1

11 1 1 1 1 1

12 1 1 1 1 1

13 1 1 1 1 1

14 1 1 1 1 1

15 1 1 1 1 1

17 1 1 1 1 1

18 1 1 1 1 1

19 0.333 0 1 1 1

20 1 1 1 1 1

21 1 1 1 1 1

22 0.5 0 1 1 1

23 1 1 1 1 1

24 1 1 1 1 1

25 1 1 1 1 1

26 1 1 1 1 1

27 1 1 1 1 1

28 1 1 1 1 1

29 1 1 1 1 1

30 0.333 0 1 1 1

31 0.5 0 1 1 1

32 0.25 0 0 1 1

33 1 1 1 1 1

34 1 1 1 1 1

35 1 1 1 1 1

36 1 1 1 1 1

37 1 1 1 1 1

38 1 1 1 1 1

39 1 1 1 1 1

40 1 1 1 1 1

41 1 1 1 1 1

42 1 1 1 1 1

43 1 1 1 1 1

(Continued)

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 27/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

generate the predicted clone method following the given method name and current
context. Table S3 gives an example of this scenario, where “transpose” method name is
mentioned in the context and our approach recommends clone methods as top-one and
top-two, whose functionality matches with the functionality of the ground truth. The
second scenario is based on the context that does not contain a method name. This can
have two different output sub-scenarios. The first one is when the functionality of the
recommended clone method and the ground truth do not match. As we see in Table S4, the
context does not have the full signature of the clone method. This makes the predicted
output by DeepClone using nucleus sampling deviate from the functionality of the ground
truth. Ground truth belongs to “copy file” functionality, while the DeepClone output
belongs to “delete directory” functionality, which eventually leads to TF-IDF
recommending clone methods as top-one and top-two around the functionality “delete
directory”. The other output sub-scenario is when we manage to successfully generate the
predicted clone method from DeepClone whose functionality matches with the ground
truth. In Table S1, “copy file” method name is not mentioned in the context, but the
functionality of the DeepClone output matches with the ground truth, which eventually
helps TF-IDF to retrieve real clone methods on the basis of DeepClone output. We notice
that the total number of ’’copy file’’ clone methods used in DeepClone training are
2,454, which allows nucleus sampling to predict the clone method from DeepClone closer
to ground truth in example 1.

Such scenarios eventually affect evaluation measures involving exact matches,
functionality matches and precision (see Tables 7 and 8). We manually annotated 735
contexts and identified 665 contexts, in which method name exists and 70 contexts in
which method name does not exist. These are symbolically represented as ‘∘’ and ‘!’ in
Tables 7 and 8. The results clearly depict that Clone-Advisor produces better
recommendations, when the clone method name is included in the context.

Overall we believe our approach yields very promising results and can assist the
developers by recommending real and accurate clone methods. We cannot empirically
compare our methodology with Lancer on the clone completion task. This is because the
dataset of 2,892 programming tasks used in Lancer is not publicly available and our
requests to the authors did not receive any response.

Limitations and threats to validity
Clone-Advisor is a major improvement over the DeepClone, and leads to promising results
for recommending meaningful clone snippets. However, it has certain limitations as
well. In our study, we relied on the HuggingFace transformer implementation of GPT-2 to

Table 9 (continued)

ID MRR Top-1 Top-3 Top-5 Top-10

44 1 1 1 1 1

45 1 1 1 1 1

Average 0.895 0.837 0.953 1 1

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 28/39

http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737/supp-2
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Table 10 Evaluation results between ground truth and top 10 recommended clones in terms of
precision (P@k) for code samples available in our own benchmark.

ID P@1 P@3 P@5 P@10

2 1 1 1 0.9

3 1 1 1 1

4 1 1 1 1

5 0 0.333 0.2 0.1

6 1 1 1 1

7 1 0.333 0.4 0.5

8 1 0.667 0.4 0.4

9 0 0 0.2 0.1

10 1 1 0.8 0.4

11 1 1 0.8 0.4

12 1 1 1 0.7

13 1 1 1 0.9

14 1 1 1 1

15 1 1 1 0.8

17 1 0.667 0.6 0.6

18 1 0.667 0.6 0.5

19 0 0.333 0.4 0.7

20 1 1 0.6 0.3

21 1 1 1 0.6

22 0 0.333 0.4 0.6

23 1 1 1 1

24 1 1 1 1

25 1 0.667 0.4 0.3

26 1 1 0.8 0.5

27 1 1 1 1

28 1 1 1 1

29 1 0.667 0.4 0.4

30 0 0.333 0.4 0.5

31 0 0.333 0.2 0.4

32 0 0 0.4 0.6

33 1 0.667 0.8 0.9

34 1 0.667 0.6 0.4

35 1 1 0.8 0.9

36 1 0.667 0.4 0.4

37 1 0.333 0.2 0.3

38 1 1 0.8 0.5

39 1 0.333 0.4 0.3

40 1 0.667 0.4 0.2

41 1 1 1 1

42 1 0.667 0.6 0.5

43 1 0.333 0.2 0.2

(Continued)

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 29/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

train and evaluate DeepClone model. While GPT-2 is a reliable architecture that has
been used in a number of NLP experiments (Radford et al., 2019b), HuggingFace
transformer implementation is still an emerging project. However, our results and trends
are aligned with those that have been obtained in the field of NLP. Hence, we are positive
that the results are reliable. Another point is that we have selected and used various
parameter/threshold values and techniques with the goal of showcasing the feasibility of
our approach. As an example, for predicting clone methods, we only used nucleus
sampling with threshold value of 0.95 (Holtzman et al., 2019). There are various other text
generation methods such as beam search (Vijayakumar et al., 2018), sampling with
temperature (Ackley, Hinton & Sejnowski, 1985), and top-k sampling (Fan, Lewis &
Dauphin, 2018), which can be explored for predicting clone methods on the basis of user
context. Similarly, threshold values can be tuned to get the best results.

As can be expected from a DNN-based study, we could not evaluate all the possible
combinations (hundreds) of hyper-parameter due to the resources needed. There is a risk
in the choice of hyper-parameters for deep learning methods. The change in training,
validation or testing set or the variation in hyper-parameters may impact the performance
of the anticipated method. For this reason, we also did not evaluate other NLM
architectures such as additional neural cache variants (Merity et al., 2016, Vinyals,
Fortunato & Jaitly, 2015) or QRNNs (Bradbury et al., 2016).

Based on experimentation, we determined certain parameters (e.g., 735 as the
number of subsequences, 20 as the number of tokens per subsequence) aiming to
demonstrate a preliminary evaluation of our methodology. However, by having different
parameters, e.g., having subsequences of different sized tokens, and using the complete set
of queries, we could have different results.

Another limitation involves the normalization step we have performed. We have
replaced integer, float, binary, and hexadecimal constant values with the hnum_vali meta-
token. Similarly, we have replaced string and character values with hstr_vali. This reduces
our vocabulary size, which leads to faster training of the model, but also reduces the
vocabulary of the predictions. We nevertheless note that technique has been used by
several researchers in the same manner for data preparation (White et al., 2015;
Karampatsis et al., 2020). Similarly, in order to have fair comparison between the
DeepClone output and the real clone methods available in search corpus, we have built a
search corpus in the same format as we have used for DeepClone. This helps the TF-IDF
technique to recommend clone methods accordingly. In the future, we plan to replace
these meta tokens with original constant values of real clone methods, so that these
clone methods can work in Java based IDE tools such as Eclipse, without leading to syntax

Table 10 (continued)

ID P@1 P@3 P@5 P@10

44 1 0.667 0.6 0.4

45 1 1 0.6 0.3

Average 0.840 0.730 0.600 0.590

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 30/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

errors. Moreover, soc and eoc tokens help nucleus sampling to predict clone method from
DeepClone model. Same meta tokens have been used in search corpus to help TF-IDF to
have fair enough Clone-Advisor recommendations. In the future, we aim to remove
these meta-tokens, so that these Clone-Advisor recommendations can work directly in
IDEs. In this study, we only apply TF-IDF for retrieving the most similar real clone
methods, based on the DeepClone prediction. However, there are other IR techniques
such as GLOVE (Pennington, Socher & Manning, 2014), and word2vec (Mikolov et al.,
2013), which can be additionally explored. We leave it for future work to comparatively
assess and optimize the parameters and techniques for our approach.

Validation on Other Datasets In this paper, we have introduced the fundamental
techniques and evaluated them with respect to multiple aspects by focusing on
BigCloneBench dataset. This gives a strong foundation on the feasibility of using our
approach. However, there is a limitation, which originates from the selected dataset.
Despite the fact that the dataset used in this study is collected from a well-known clone
code dataset (BigCloneBench), it does not necessarily mean the codebase represents the
Java language source code entirely. Similarly, BigCloneBench contains only references
of 43 functionalities, which does not represent all types of functionalities existing in
different publicly available datasets.

It is not appropriate, if we evaluate Clone-Advisor and DeepClone on other
functionalities, which do not exist in BigCloneBench. This is because the DeepClone model
has been currently trained and learned the patterns of only 43 different types of
functionalities, which exist in BigCloneBench. To evaluate our proposed study on a
completely new dataset, there are two options. One option is to obtain new datasets of
source code by first detecting method-level code clones in the literature and thus
getting explicit clone references. For this purpose, there are various clone detection tools
available such as SourcererCC (Sajnani et al., 2016), NiCAD (Cordy & Roy, 2011) and
Clone Miner (Basit & Jarzabek, 2009) that can detect various types of clones with high
precision.

The second option is to conduct our study on available clone related datasets, which can
be used for clone completion. Some of the popular datasets of a similar kind include
Project CodeNet (PCN) (Puri et al., 2021), Pedagogical programming Open Judge (POJ-
104) (Mou et al., 2016) and Google Code Jam(GCJ) (Ullah et al., 2019). PCN, POJ-104
and GCJ are mined through online judge websites. They contain various problems, and
each problem contains submitted solutions of students in terms of whole file. So all
those files belonging to some problem are syntactically or semantically equivalent to each
other. These datasets do not contain non-clone parts, because the whole file is considered
to be clone of other files. However, in IJaDataset, which is being referenced by
BigCloneBench, files can be marked at clone method level and remaining code is
considered to be a non-clone part. So, in order to perform experimentation on these kind
of datasets, clones needs to be marked at the start and end of each solution file with meta
tokens such as soc at the start, and eoc. Then, after performing preprocessing steps

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 31/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

mentioned in “Dataset preparation”, there will be a need to first fine-tune GPT-2 model on
them. This will make a model to first learn the patterns of new clones. Afterwards, there is a
need to replace a search corpus with new dataset in Clone-Advisor. This will make
Clone-Advisor to recommend clones similar to the buggy clone snippet generated by the
model. We plan to comparatively evaluate our proposed approach on new datasets in the
future.

CONCLUSION AND FUTURE WORK
In this work, we presented and elaborated DeepClone, a deep learning based cloned
code language model. We have developed the fundamental techniques and evaluated them
with respect to multiple aspects. We performed intrinsic and extrinsic evaluations to
determine the performance of the DeepClone model in predicting clone methods. The
extensive evaluation suggests that the proposed approach significantly improves code
prediction by exploiting the concept of deep learning and code clones. Due to the
probabilistic nature of DeepClone, however, the original prediction deviates from real
clones and contains errors. In order to alleviate this, we presented a novel approach,
Clone-Advisor, which is based on IR to recommend real clone methods. This approach
significantly improves the original output of DeepClone. We performed quantitative
evaluation using a wide range of metrics, and qualitatively discussed additional scenarios,
to support our claim. Our approach overall yields promising results and can substantially
help programmers to rapidly write code.

The proposed LM can be potentially improved by hyper-parameter optimization, as
well as by better training (e.g., on a larger dataset or larger pre-trained GPT-2 models). We
also plan to investigate how to tackle different types and granularity levels of code
clones such as simple clones, structural clones, file clones, and clones of other artifact
types such as models (Babur, Cleophas & van den Brand, 2019; Hammad et al., 2020b;
Hammad et al., 2021). Moreover, we plan to perform a comparative study by evaluating
different IR techniques such as BERT; pretrained word embedding techniques such as
word2vec (Mikolov et al., 2013) and GLOVE (Pennington, Socher & Manning, 2014);
and code query formulation techniques (Lu et al., 2015, Nie et al., 2016). Moreover,
we aim to develop and evaluate a visualization tool on top of our system to provide a user-
friendly environment for assisting the developers. This also includes fully automatic
formatting of the code rather than the semi-automatic approach we have taken in this
paper. In future work, we also plan to build tool support and evaluate the effectiveness and
usefulness of our approach in a real world setting with real developers.

ACKNOWLEDGEMENTS
We acknowledge the contribution of Dr. Sohaib Khan (CEO at Hazen.ai) for providing
us valuable feedback on methodology and empirical evaluation parts. We further
acknowledge SURFsara and TU/e HPC Cluster for providing us computational credits for
the experiments.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 32/39

http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Prince Sultan University who paid the Article Processing
Charges (APC) of this publication. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Prince Sultan University.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Muhammad Hammad conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Önder Babur conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

� Hamid Abdul Basit analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

� Mark van den Brand analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at: https://www.win.tue.nl/~mhammad/Clone-Advisor/
cloneadvisor.html.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.737#supplemental-information.

REFERENCES
Abid S. 2019. Recommending related functions from API usage-based function clone structures.

In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. New York: ACM,
1193–1195.

Ackley DH, Hinton GE, Sejnowski TJ. 1985. A learning algorithm for boltzmann machines.
Cognitive Science 9(1):147–169 DOI 10.1207/s15516709cog0901_7.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 33/39

https://www.win.tue.nl/~mhammad/Clone-Advisor/cloneadvisor.html
https://www.win.tue.nl/~mhammad/Clone-Advisor/cloneadvisor.html
http://dx.doi.org/10.7717/peerj-cs.737#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.737#supplemental-information
http://dx.doi.org/10.1207/s15516709cog0901_7
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Allamanis M. 2019. The adverse effects of code duplication in machine learning models of code. In:
Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. New York: ACM, 143–153.

Allamanis M, Sutton C. 2013. Mining source code repositories at massive scale using language
modeling. In: Proceedings of the 10th Working Conference on Mining Software Repositories.
Piscataway: IEEE, 207–216.

Alon U, Zilberstein M, Levy O, Yahav E. 2019. code2vec: learning distributed representations of
code. Proceedings of the ACM on Programming Languages 3(POPL):1–29 DOI 10.1145/3290353.

Arammongkolvichai V, Koschke R, Ragkhitwetsagul C, Choetkiertikul M, Sunetnanta T. 2019.
Improving clone detection precision using machine learning techniques. In: 2019 10th
International Workshop on Empirical Software Engineering in Practice (IWESEP). Piscataway:
IEEE, 31–315.

Babii H, Janes A, Robbes R. 2019. Modeling vocabulary for big code machine learning.
Available at https://arxiv.org/abs/1904.01873.

Babur Ö, Cleophas L, van den Brand M. 2019. Metamodel clone detection with SAMOS. Journal
of Computer Languages 51(2):57–74 DOI 10.1016/j.cola.2018.12.002.

Basit HA, Hammad M, Jarzabek S, Koschke R. 2015. What do we need to know about clones?
deriving information needs from user goals. In: 2015 IEEE 9th International Workshop on
Software Clones. Piscataway: IEEE, 51–57.

Basit HA, HammadM, Koschke R. 2015.A survey on goal-oriented visualization of clone data. In:
2015 IEEE 3rd Working Conference on Software Visualization (VISSOFT). Piscataway: IEEE,
46–55.

Basit HA, Jarzabek S. 2009. A data mining approach for detecting higher-level clones in software.
IEEE Transactions on Software engineering 35(4):497–514 DOI 10.1109/TSE.2009.16.

Bazzi I. 2002. Modelling out-of-vocabulary words for robust speech recognition. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA.

Beel J, Gipp B, Langer S, Breitinger C. 2016. paper recommender systems: a literature survey.
International Journal on Digital Libraries 17(4):305–338 DOI 10.1007/s00799-015-0156-0.

Boldt B. 2017. Using LSTMS to model the java programming language. In: International
Conference on Artificial Neural Networks. Springer, 268–275.

Bradbury J, Merity S, Xiong C, Socher R. 2016. Quasi-recurrent neural networks. ArXiv preprint.
Available at https://arxiv.org/abs/1611.01576.

Cambronero J, Li H, Kim S, Sen K, Chandra S. 2019. When deep learning met code search. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. New York: ACM, 964–974.

Chen Z, Kommrusch SJ, Tufano M, Pouchet L-N, Poshyvanyk D, Monperrus M. 2019.
Sequencer: sequence-to-sequence learning for end-to-end program repair. IEEE Transactions on
Software Engineering 47(9):1943–1959 DOI 10.1109/TSE.2019.2940179.

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. 2014.
Learning phrase representations using RNN encoder-decoder for statistical machine translation.
ArXiv. Available at https://arxiv.org/abs/1406.1078.

Cordy JR, Roy CK. 2011. The nicad clone detector. In: 2011 IEEE 19th International Conference on
Program Comprehension. Piscataway: IEEE, 219–220.

Creutz M, Hirsimäki T, KurimoM, Puurula A, Pylkkönen J, Siivola V, Varjokallio M, Arisoy E,
Saraçlar M, Stolcke A. 2007. Morph-based speech recognition and modeling of out-of-

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 34/39

http://dx.doi.org/10.1145/3290353
https://arxiv.org/abs/1904.01873
http://dx.doi.org/10.1016/j.cola.2018.12.002
http://dx.doi.org/10.1109/TSE.2009.16
http://dx.doi.org/10.1007/s00799-015-0156-0
https://arxiv.org/abs/1611.01576
http://dx.doi.org/10.1109/TSE.2019.2940179
https://arxiv.org/abs/1406.1078
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

vocabulary words across languages. ACM Transactions on Speech and Language Processing
(TSLP) 5(1):1–29 DOI 10.1145/1322391.1322394.

Dahl GE, Yu D, Deng L, Acero A. 2011. Context-dependent pre-trained deep neural networks for
large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language
Processing 20(1):30–42 DOI 10.1109/TASL.2011.2134090.

Dam HK, Tran T, Pham T. 2016. A deep language model for software code. ArXiv. Available at
https://arxiv.org/abs/1608.02715.

Dillon M. 1983. Introduction to modern information retrieval: G. salton and m. mcgill. Vol. 19.
New York: McGraw-Hill.

Fan A, Lewis M, Dauphin Y. 2018. Hierarchical neural story generation. Available at https://arxiv.
org/abs/1805.04833.

Ficler J, Goldberg Y. 2017. Controlling linguistic style aspects in neural language generation.
Available at https://arxiv.org/abs/1707.02633.

Gage P. 1994. A new algorithm for data compression. C Users Journal 12(2):23–38.

Gharehyazie M, Ray B, Filkov V. 2017. Some from here, some from there: cross-project code reuse
in github. In: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). Piscataway: IEEE, 291–301.

Gu X, Zhang H, Kim S. 2018.Deep code search. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE). Piscataway: IEEE, 933–944.

Hammad M, Babur O, Basit HA, Brand MVD. 2020a. Deepclone: modeling clones to generate
code predictions. ArXiv. Available at https://arxiv.org/abs/2007.11671.

Hammad M, Basit HA, Jarzabek S, Koschke R. 2020b. A systematic mapping study of clone
visualization. Computer Science Review 37(6):100266 DOI 10.1016/j.cosrev.2020.100266.

HammadM, Basit HA, Jarzabek S, Koschke R. 2021.Visualization of clones. In: Inoue K, Roy CK,
eds. Code Clone Analysis. Singapore: Springer.

Hashimoto TB, Guu K, Oren Y, Liang PS. 2018. A retrieve-and-edit framework for predicting
structured outputs. In: Advances in Neural Information Processing Systems. 10052–10062.

Hellendoorn VJ, Devanbu P. 2017. Are deep neural networks the best choice for modeling source
code? In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering.
New York: ACM, 763–773.

Hindle A, Barr ET, Gabel M, Su Z, Devanbu P. 2016. On the naturalness of software.
Communications of the ACM 59(5):122–131 DOI 10.1145/2902362.

Hochreiter S, Schmidhuber J. 1997. Long short-term memory. Neural Computation
9(8):1735–1780 DOI 10.1162/neco.1997.9.8.1735.

Holtzman A, Buys J, Forbes M, Choi Y. 2019. The curious case of neural text degeneration. ArXiv.
Available at https://arxiv.org/abs/1904.09751.

Hu X, Li G, Xia X, Lo D, Jin Z. 2018. Deep code comment generation. In: Proceedings of the 26th
Conference on Program Comprehension. New York: ACM, 200–210.

Hussain Y, Huang Z, Wang S, Zhou Y. 2019. Codegru: context-aware deep learning with gated
recurrent unit for source code modeling. ArXiv. Available at https://arxiv.org/abs/1903.00884.

Iyer S, Konstas I, Cheung A, Zettlemoyer L. 2016. Summarizing source code using a neural
attention model. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics, Long Papers. Vol. 1. 2073–2083.

Jurafsky D, James HM. 2009. Speech and language processing: an introduction to natural
language processing, computational linguistics, and speech recognition. Prentice Hall.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 35/39

http://dx.doi.org/10.1145/1322391.1322394
http://dx.doi.org/10.1109/TASL.2011.2134090
https://arxiv.org/abs/1608.02715
https://arxiv.org/abs/1805.04833
https://arxiv.org/abs/1805.04833
https://arxiv.org/abs/1707.02633
https://arxiv.org/abs/2007.11671
http://dx.doi.org/10.1016/j.cosrev.2020.100266
http://dx.doi.org/10.1145/2902362
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1903.00884
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Available at https://books.google.com.sa/books/about/Speech_and_Language_Processing.html?
id=fZmj5UNK8AQC&source=kp_book_description&redir_esc=y.

Kapser CJ, Godfrey MW. 2008. “Cloning considered harmful’’ considered harmful: patterns of
cloning in software. Empirical Software Engineering 13(6):645–692
DOI 10.1007/s10664-008-9076-6.

Karampatsis R-M, Babii H, Robbes R, Sutton C, Janes A. 2020. Big code!= big vocabulary: open-
vocabulary models for source code. In: 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). Piscataway: IEEE, 1073–1085.

Keivanloo I, Rilling J, Zou Y. 2014. Spotting working code examples. In: Proceedings of the 36th
International Conference on Software Engineering. 664–675.

Kim K, Kim D, Bissyandé TF, Choi E, Li L, Klein J, Traon YL. 2018. Facoy: a code-to-code search
engine. In: Proceedings of the 40th International Conference on Software Engineering. 946–957.

Kim S, Zhao J, Tian Y, Chandra S. 2020. Code prediction by feeding trees to transformers.
Available at https://arxiv.org/abs/2003.13848.

Lample G, Conneau A. 2019. Cross-lingual language model pretraining. Available at https://arxiv.
org/abs/1901.07291.

Lee J-S, Hsiang J. 2019. Patent claim generation by fine-tuning openai gpt-2. Available at https://
arxiv.org/abs/1907.02052.

Li J, Monroe W, Shi T, Jean S, Ritter A, Jurafsky D. 2017a. Adversarial learning for neural
dialogue generation. Available at https://arxiv.org/abs/1701.06547.

Li L, Feng H, Zhuang W, Meng N, Ryder B. 2017b. Cclearner: a deep learning-based clone
detection approach. In: 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). Piscataway: IEEE, 249–260.

Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M. 2020. Deep learning for
generic object detection: a survey. International Journal of Computer Vision 128(2):261–318
DOI 10.1007/s11263-019-01247-4.

Lu M, Sun X, Wang S, Lo D, Duan Y. 2015. Query expansion via wordnet for effective code
search. In: 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). Piscataway: IEEE, 545–549.

Luan S, Yang D, Barnaby C, Sen K, Chandra S. 2019. Aroma: code recommendation via
structural code search. Proceedings of the ACM on Programming Languages 3(OOPSLA):1–28
DOI 10.1145/3360578.

LuongM-T, Kayser M, Manning CD. 2015.Deep neural language models for machine translation.
In: Proceedings of the Nineteenth Conference on Computational Natural Language Learning.
305–309.

Luong M-T, Socher R, Manning CD. 2013. Better word representations with recursive neural
networks for morphology. In: Proceedings of the Seventeenth Conference on Computational
Natural Language Learning. 104–113.

Lutellier T, Pham HV, Pang L, Li Y, Wei M, Tan L. 2020. Coconut: combining context-aware
neural translation models using ensemble for program repair. In: Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and Analysis. New York: ACM,
101–114.

Lv F, Zhang H, Lou J-g, Wang S, Zhang D, Zhao J. 2015. Codehow: effective code search based on
api understanding and extended boolean model (e). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). Piscataway: IEEE, 260–270.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 36/39

https://books.google.com.sa/books/about/Speech_and_Language_Processing.html?id=fZmj5UNK8AQC&source=kp_book_description&redir_esc=y
https://books.google.com.sa/books/about/Speech_and_Language_Processing.html?id=fZmj5UNK8AQC&source=kp_book_description&redir_esc=y
http://dx.doi.org/10.1007/s10664-008-9076-6
https://arxiv.org/abs/2003.13848
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1907.02052
https://arxiv.org/abs/1907.02052
https://arxiv.org/abs/1701.06547
http://dx.doi.org/10.1007/s11263-019-01247-4
http://dx.doi.org/10.1145/3360578
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Merity S, Xiong C, Bradbury J, Socher R. 2016. Pointer sentinel mixture models. ArXiv.
Available at https://arxiv.org/abs/1609.07843.

Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient estimation of word representations in
vector space. ArXiv. Available at https://arxiv.org/abs/1301.3781.

Mikolov T, Sutskever I, Deoras A, Le H-S, Kombrink S, Cernocky J. 2012. Subword language
modeling with neural networks. ArXiv. Available at http://www. fit. vutbr. cz/imikolov/rnnlm/
char. pdf.

Mou L, Li G, Zhang L, Wang T, Jin Z. 2016. Convolutional neural networks over tree structures
for programming language processing. In: Thirtieth AAAI Conference on Artificial Intelligence.

Mou L, Men R, Li G, Zhang L, Jin Z. 2015. On end-to-end program generation from user
intention by deep neural networks. ArXiv. Available at https://arxiv.org/abs/1510.07211.

Nie L, Jiang H, Ren Z, Sun Z, Li X. 2016. Query expansion based on crowd knowledge for code
search. IEEE Transactions on Services Computing 9(5):771–783
DOI 10.1109/TSC.2016.2560165.

Pennington J, Socher R, Manning CD. 2014. Glove: global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 1532–1543.

Peters M, Ruder S, Smith NA. 2019. To tune or not to tune? adapting pretrained representations
to diverse tasks. ArXiv. Available at https://arxiv.org/abs/1903.05987.

Pichotta K, Mooney RJ. 2016. Using sentence-level LSTM language models for script inference.
ArXiv. Available at https://arxiv.org/abs/1604.02993.

Puri R, Kung DS, Janssen G, Zhang W, Domeniconi G, Zolotov V, Dolby J, Chen J, Choudhury
M, Decker L, Thost V, Buratti L, Pujar S, Finkler U. 2021. Project codenet: a large-scale AI for
code dataset for learning a diversity of coding tasks. ArXiv. Available at https://arxiv.org/abs/
2105.12655.

Radford A, Narasimhan K, Salimans T, Sutskever I. 2018. Improving language understanding by
generative pre-training. Available at https://s3-us-west-2.amazonaws.com/openai-assets/
research-covers/language-unsupervised/language_understanding_paper.pdf.

Radford A, Wu J, Amodei D, Amodei D, Clark J, Brundage M, Sutskever I. 2019a. Better
language models and their implications. OpenAI Blog. Available at https://openai.com/blog/
better-language-models.

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. 2019b. Language models are
unsupervised multitask learners. OpenAI Blog 1(8):9.

Ragkhitwetsagul C, Krinke J. 2019. Siamese: scalable and incremental code clone search via
multiple code representations. Empirical Software Engineering 24(4):2236–2284.

Ray B, Hellendoorn V, Godhane S, Tu Z, Bacchelli A, Devanbu P. 2016. On the “naturalness” of
buggy code. In: 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
Piscataway: IEEE, 428–439.

Ruder S, Vulic′ I, Søgaard A. 2019. A survey of cross-lingual word embedding models. Journal of
Artificial Intelligence Research 65:569–631.

Sadowski C, Stolee KT, Elbaum S. 2015. How developers search for code: a case study. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. 191–201.

Sajnani H, Saini V, Svajlenko J, Roy CK, Lopes CV. 2016. Sourcerercc: scaling code clone
detection to big-code. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). Piscataway: IEEE, 1157–1168.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 37/39

https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1301.3781
http://www.fit.vutbr.cz/imikolov/rnnlm/char.pdf
http://www.fit.vutbr.cz/imikolov/rnnlm/char.pdf
https://arxiv.org/abs/1510.07211
http://dx.doi.org/10.1109/TSC.2016.2560165
https://arxiv.org/abs/1903.05987
https://arxiv.org/abs/1604.02993
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://openai.com/blog/better-language-models
https://openai.com/blog/better-language-models
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

Santos EA, Campbell JC, Patel D, Hindle A, Amaral JN. 2018. Syntax and sensibility: using
language models to detect and correct syntax errors. In: 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). Piscataway: IEEE, 311–322.

Sennrich R, Haddow B, Birch A. 2015. Neural machine translation of rare words with subword
units. ArXiv. Available at https://arxiv.org/abs/1508.07909.

Shannon CE. 1948. A mathematical theory of communication. Bell System Technical Journal
27(3):379–423.

Shannon CE. 1951. Prediction and entropy of printed English. Bell System Technical Journal
30(1):50–64.

Shao L, Gouws S, Britz D, Goldie A, Strope B, Kurzweil R. 2017. Generating high-quality and
informative conversation responses with sequence-to-sequence models. ArXiv. Available at
https://arxiv.org/abs/1701.03185.

Shrestha SL, Csallner C. 2021. Slgpt: using transfer learning to directly generate simulink model
files and find bugs in the simulink toolchain. ArXiv. Available at https://arxiv.org/abs/2105.
07465.

Song Y, Yan R, Li X, Zhao D, Zhang M. 2016. Two are better than one: an ensemble of retrieval-
and generation-based dialog systems. ArXiv. Available at https://arxiv.org/abs/1610.07149.

Sundermeyer M, Ney H, Schlüter R. 2015. From feed forward to recurrent LSTM neural networks
for language modeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing
23(3):517–529.

Svajlenko J, Islam JF, Keivanloo I, Roy CK, Mia MM. 2014. Towards a big data curated
benchmark of inter-project code clones. In: 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 476–480.

Svajlenko J, Roy CK. 2015. Evaluating clone detection tools with bigclonebench. In: 2015 IEEE
International Conference on Software Maintenance and Evolution (ICSME). Piscataway: IEEE,
131–140.

Svajlenko J, Roy CK. 2016. Bigcloneeval: a clone detection tool evaluation framework with
bigclonebench. In: 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME). Piscataway: IEEE, 596–600.

Svyatkovskiy A, Zhao Y, Fu S, Sundaresan N. 2019. Pythia: AI-assisted code completion system.
In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. New York: ACM, 2727–2735.

Trost JE. 1986. Statistically nonrepresentative stratified sampling: a sampling technique for
qualitative studies. Qualitative Sociology 9(1):54–57 DOI 10.1007/BF00988249.

Tufano M, Watson C, Bavota G, Di Penta M, White M, Poshyvanyk D. 2018. Deep learning
similarities from different representations of source code. In: 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR). Piscataway: IEEE, 542–553.

Ullah F, Naeem H, Jabbar S, Khalid S, Latif MA, Al-Turjman F, Mostarda L. 2019. Cyber
security threats detection in internet of things using deep learning approach. IEEE Access
7:124379–124389 DOI 10.1109/ACCESS.2019.2937347.

Vijayakumar AK, Cogswell M, Selvaraju RR, Sun Q, Lee S, Crandall D, Batra D. 2018. Diverse
beam search for improved description of complex scenes. In: Thirty-Second AAAI Conference on
Artificial Intelligence.

Vinyals O, Fortunato M, Jaitly N. 2015. Pointer networks. In: Advances in Neural Information
Processing Systems. 2692–2700.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 38/39

https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1701.03185
https://arxiv.org/abs/2105.07465
https://arxiv.org/abs/2105.07465
https://arxiv.org/abs/1610.07149
http://dx.doi.org/10.1007/BF00988249
http://dx.doi.org/10.1109/ACCESS.2019.2937347
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.737

Wang S, Chollak D, Movshovitz-Attias D, Tan L. 2016. Bugram: bug detection with n-gram
language models. In: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. Piscataway: IEEE, 708–719.

Wang W, Godfrey MW. 2014. Recommending clones for refactoring using design, context, and
history. In: 2014 IEEE International Conference on Software Maintenance and Evolution.
Piscataway: IEEE, 331–340.

Wei H, Li M. 2017. Supervised deep features for software functional clone detection by exploiting
lexical and syntactical information in source code. In: IJCAI. 3034–3040.

Welleck S, Kulikov I, Roller S, Dinan E, Cho K, Weston J. 2019. Neural text generation with
unlikelihood training. ArXiv. Available at https://arxiv.org/abs/1908.04319.

White M, Tufano M, Vendome C, Poshyvanyk D. 2016. Deep learning code fragments for code
clone detection. In: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. Piscataway: IEEE, 87–98.

White M, Vendome C, Linares-Vásquez M, Poshyvanyk D. 2015. Toward deep learning software
repositories. In: Proceedings of the 12th Working Conference on Mining Software Repositories.
Piscataway: IEEE, 334–345.

Wu S, Dredze M. 2019. Beto, bentz, becas: the surprising cross-lingual effectiveness of bert. ArXiv.
Available at https://arxiv.org/abs/1904.09077.

Yan S, Yu H, Chen Y, Shen B, Jiang L. 2020. Are the code snippets what we are searching for? A
benchmark and an empirical study on code search with natural-language queries. In: 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering (SANER).
Piscataway: IEEE, 344–354.

Yoshida N, Numata S, Choiz E, Inoue K. 2019. Proactive clone recommendation system for
extract method refactoring. In: 2019 IEEE/ACM 3rd International Workshop on Refactoring
(IWoR). Piscataway: IEEE, 67–70.

Zaremba W, Sutskever I, Vinyals O. 2014. Recurrent neural network regularization. ArXiv.
Available at https://arxiv.org/abs/1409.2329.

Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X. 2019. A novel neural source code
representation based on abstract syntax tree. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). Piscataway: IEEE, 783–794.

Zhao G, Huang J. 2018. Deepsim: deep learning code functional similarity. In: Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 141–151.

Zhong C, Yang M, Sun J. 2019. Javascript code suggestion based on deep learning. In: Proceedings
of the 2019 3rd International Conference on Innovation in Artificial Intelligence. 145–149.

Zhou S, Shen B, Zhong H. 2019. Lancer: your code tell me what you need. In: 2019 34th IEEE/
ACM International Conference on Automated Software Engineering (ASE). Piscataway: IEEE,
1202–1205.

Ziegler DM, Stiennon N, Wu J, Brown TB, Radford A, Amodei D, Christiano P, Irving G. 2019.
Fine-tuning language models from human preferences. ArXiv. Available at https://arxiv.org/abs/
1909.08593.

Hammad et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.737 39/39

https://arxiv.org/abs/1908.04319
https://arxiv.org/abs/1904.09077
https://arxiv.org/abs/1409.2329
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/1909.08593
http://dx.doi.org/10.7717/peerj-cs.737
https://peerj.com/computer-science/

	Clone-advisor: recommending code tokens and clone methods with deep learning and information retrieval
	Introduction
	Related work
	Methodology
	Empirical evaluation
	Discussion
	Conclusion and future work
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

