
Blockchain support for execution,
monitoring and discovery of inter-
organizational business processes
Miguel Morales-Sandoval1, José A. Molina1, Heidy M. Marin-Castro2

and Jose Luis Gonzalez-Compean1

1 Unidad Tamaulipas, Centro de Investigacion y de Estudios Avanzados, Victoria, Tamaulipas,
Mexico

2 Facultad de Ingeniería y Ciencias, Cátedras-CONACYT, Universidad Autónoma de Tamaulipas,
Victoria, Tamaulipas, México

ABSTRACT
In an Inter-Organizational Business Process (IOBP), independent organizations
(collaborators) exchange messages to perform business transactions. With
process mining, the collaborators could know what they are actually doing from
process execution data and take actions for improving the underlying business
process. However, process mining assumes that the knowledge of the entire process is
available, something that is difficult to achieve in IOBPs since process execution data
generally is not shared among the collaborating entities due to regulations and
confidentiality policies (exposure of customers’ data or business secrets).
Additionally, there is an inherently lack-of-trust problem in IOBP as the
collaborators are mutually untrusted and executed IOBP can be subject to dispute
on counterfeiting actions. Recently, Blockchain has been suggested for IOBP
execution management to mitigate the lack-of-trust problem. Independently, some
works have suggested the use of Blockchain to support process mining tasks. In this
paper, we study and address the problem of IOBP mining whose management
and execution is supported by Blockchain. As contribution, we present an approach
that takes advantage of Blockchain capabilities to tackle, at the same time, the lack-of-
trust problem (management and execution) and confident execution data collection
for process mining (discovery and conformance) of IOBPs. We present a method
that (i) ensures the business rules for the correct execution and monitoring of the
IOBP by collaborators, (ii) creates the event log, with data cleaning integrated, at the
time the IOBP executes, and (iii) produces useful event log in XES and CSV format
for the discovery and conformance checking tasks in process mining. By a set of
experiments on real IOBPs, we validate our method and evaluate its impact in the
resulting discovered models (fitness and precision metrics). Results revealed the
effectiveness of our method to cope with both the lack-of-trust problem in IOBPs at
the time that contributes to collect the data for process mining. Our method was
implemented as a software tool available to the community as open-source code.

Subjects Data Science, Distributed and Parallel Computing, Emerging Technologies
Keywords Blockchain, IOBP, Process mining, Execution, Monitoring, Discovery

How to cite this article Morales-Sandoval M, Molina JA, Marin-Castro HM, Gonzalez-Compean JL. 2021. Blockchain support for
execution, monitoring and discovery of inter-organizational business processes. PeerJ Comput. Sci. 7:e731 DOI 10.7717/peerj-cs.731

Submitted 9 June 2021
Accepted 8 September 2021
Published 29 September 2021

Corresponding author
Heidy M. Marin-Castro,
hmarisol@docentes.uat.edu.mx

Academic editor
Wenbing Zhao

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.731

Copyright
2021 Morales-Sandoval et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.731
mailto:hmarisol@�docentes.�uat.�edu.�mx
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.731
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
An Inter-Organizational Business Process (IOBP) is an organized group of joined activities
carried out by two or more organizations to achieve a common business objective
(Bouchbout & Alimazighi, 2011). In recent years, digital revolution has promoted the
digitalization of IOBPs for competitive and for satisfactory customer experience. In this
context, organizations are, for example, creating IOBP models represented digitally under
BPMN (Business Process Model and Notation) or using Business Process Management
(BPM) workflow engines to perform a complete orchestration of all process flows.
Information systems supporting process digitalization contribute to make processes more
efficient while serve as a medium to obtain and record detailed process execution data.

Process improvement is a need for organizations to ensure quality of service and to
obtain greater customer satisfaction. First, organizations need to gain a profound
understanding of the process, that is, to uncover the real behavior of their executed process
to then identify process improvement opportunities. This can be achieved from data
already collected by process’ information systems.

By extracting knowledge from events produced by the process execution, process
mining (PM) (van der Aalst & Weijters, 2004; van der Aalst, 2012) is a powerful tool to
gather insights in how a given process actually executes. The behavior observed in the
business process is revealed from models automatically constructed from the event logs.
Although most of the process mining techniques were firstly conceived and applied for
intra-organizational process, that is, a process under the control of a single organization,
those techniques have also been extended for IOBPs (van der Aalst, 2011; Engel et al., 2012;
Engel et al., 2016).

Different to intra-organizational business processes, where all the involved parties in the
process are trusted, in an IOBP the control is handled collaboratively by the participants,
generally from different untrusted organizations. This results in an inconsistent and
untrusted process management (Nakamura, Miyamoto & Kudo, 2018) as in regular
IOBP there is lack of full knowledge by the participants on the status of the IOBP’s
tasks being conducted. Furthermore, the IOBP participants may blame each other (Sturm
et al., 2019) when disputes arise in such a collaborative process. For that reason
collaborators need relying on authorized third parties to mediate and control the execution
of IOBPs. However, using a trusted third party implies a centralized control which imposes
other restrictions for the participants, increases exchange of messages, and the executed
processes can still be subject to dispute on counterfeiting actions from participants,
inclusive by third parties (Claudio Di Ciccio et al., 2019).

The problem posed by the lack of mutual trust in IOBP execution has been proposed to
be managed by using Blockchain technology (Weber et al., 2016; Mendling et al., 2018;
Carminati, Ferrari & Rondanini, 2018). Blockchain (Casino, Dasaklis & Patsakis, 2019)
can be viewed as an abstract data structure, that is, with well-defined operations. This data
structure is a list of linked blocks comprising transactions in a certain domain, for example,
payments. Operations on this data structure are executed by a peer-to-peer (P2P)
network of participants (full nodes); each node holds the entire Blockchain locally.

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 2/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

Every new transaction is broadcasted within the P2P network, where each node adds it
to its pool of unconfirmed transactions. At some moment, a full node will try to create
a new block (set of transactions) for the Blockchain. Only the node that solves a
cryptographic puzzle can add the block to the Blockchain, and all the unconfirmed
transactions in that new block will be removed from the pool of all other nodes. The node
adding the new block to the Blockchain receives the fees associated to the transactions
in the block. A new propagated block in the P2P network can be double checked against a
set of specific rules before being added permanently to the Blockchain.

A smart contract is a user-defined program executed on the Blockchain network
(Macrinici, Cartofeanu & Gao, 2018). Smart contracts are distributed to all full nodes of
the network, so their use must be carefully on the side of security and privacy of shared
data managed by the program. Transactions in the Blockchain are the result of calling
smart contract functions.

Blockchain and smart contracts are disruptive technologies impacting in several fields
such as in agriculture (Pranto et al., 2021), health (Sookhak et al., 2021), automotive
(Narbayeva et al., 2020), energy (Andoni et al., 2019) and business process management
(Mendling et al., 2018), to mention a few.

Thus, in the context of IOBPs and process mining, instead of agreeing on one
trusted party, collaborators in the IOBP share transactional data related to the IOBP
execution in a Blockchain, which ensures the interactions conform to the IOBP
choreography model. A smart contract is used as a direct implementation of the mediator
process control logic and trust is achieved due to Blockchain’s consensus mechanisms.

Few works have studied process mining aspects of business process supported by
Blockchain, but as a separate problem. For example, some works assume that process
execution data is already on the Blockchain (Mühlberger et al., 2019; Klinkmüller et al.,
2019; Duchmann & Koschmider, 2019). Under that assumption, meaningful process data is
extracted from blocks, mapped to an event log model, and finally transformed into an
event log for later processing of process mining algorithms. Other works, as in Ekici,
Tarhan & Ozsoy (2019), focused on data cleaning of events retrieved from Blockchain
transactions to form a useful event log. To the best of our knowledge, no one of the
previous works consider, at the same time, issues regarding management, monitoring and
process mining of IOBP. We hypothesize that these issues can be jointly addressed as the
event log required for process mining can be obtained at the time the IOPB is being
trustingly executed. Thus, this work aims at answering the following research question: Is it
possible to construct a method that ensures the correct execution and monitoring of inter-
organizational business processes at the time that it includes an strategy for collecting and
preparing the associated event data, useful for process mining tasks?

Our goal is to provide a practical solution to integrate Blockchain and smart contracts
technologies not only for supporting IOBP execution management but also for IOBPs
process mining. To achieve this goal, we present as contribution a method that takes
advantage of Blockchain capabilities to tackle, at the same time, the lack-of-trust problem
in IOBPs (monitoring and execution) and the IOPB mining (event log collection). We take
advantage of the logic required for process management to collect, with dynamic data

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 3/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

cleaning on-chain, the event log that can be later used for process mining. Our proposed
method, comprised of four main algorithms, is realized as a software tool. The first
algorithm takes an IOBP choreography model as input, in the BPMN notation, and
configures a smart contract that ensures the control flow and business logic implied by the
IOBP. Once configured, the smart contract orchestrates each IOBP instance execution
according to the documented model. Collaborators are modeled as triggers that interact
with the smart contract through web services. While the IOBP executes, the second
algorithm collects the process events to dynamically create the event log (on-chain).
On the fly, a third algorithm performs data cleaning over the events from triggers to ensure
a more accurate event log. A fourth algorithm creates the event log in standard format
(XES or CSV) to be used as the input model in process mining tools for IOBP discovery
and then evaluate conformance. In this work, process mining tasks are performed using
Prom (van Dongen et al., 2005) and P-Miner (Marin-Castro & Tello-Leal, 2021) tools.

We implemented our method as a software tool and use it to evaluate our approach by
executing a series of experiments for three IOBPs. Experiments comprised (i) the setup of
the smart contract for monitoring the IOBP execution, (ii) the execution of several IOBP
instances to create an event log, (iii) formatting the event log (XES and CSV) for PM, and
(iv) obtaining the IOBP models from PM tools (Prom and P-Miner). For evaluation
purposes, we simulate noise generation to model typical errors in the events generated
from the collaborators and present in the event log. We consider the most common
cases of noise in the event log (Suriadi et al., 2017; Song et al., 2021). We report details on
the experiments and results from the obtained models, on the metrics of fitness, precision,
and F-measure. The software tool is open-source and available at https://github.com/
amolina-97/IOBPBC. Results from the experimentation revealed that our method is
effective and suitable for practical use.

The rest of this paper is organized as follows. “Background” presents the preliminaries
and background of this research. “Methods” describes the methodology to deploy IOBPs
in Blockchain and to perform IOBP mining. “Experimental Evaluation and Results”
presents the experimental evaluation and results obtained from the process mining tasks.
Finally, “Conclusion” concludes this work and provides insights of future work.

BACKGROUND
This section summarizes the essential aspects of the two main fields in this research:
Blockchain technology and process mining.

Blockchain and smart contracts
Blockchain can be seen as a distributed data storage structure. However, it is a very
interesting data structure different to other widely known such as linked lists. Blockchain
includes mechanisms that provide security services on the data being stored, for example,
integrity, authenticity and tamper-resistance. Smart contracts are basically programs
executed on top of Blockchain. Thus, they inherit security properties of the Blockchain,
such as integrity, authenticity and immutability. The Ethereum Blockchain is one of the

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 4/27

https://github.com/amolina-97/IOBPBC
https://github.com/amolina-97/IOBPBC
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

blockchains most used in practice (Oliva, Hassan & Jiang, 2020). Ethereum includes an
Ethereum Virtual Machine (EVM) which is in charge of executing smart contracts.

To execute a smart contract in an Ethereum Blockchain, it must be first deployed in
the blockchain by means of a transaction. Any transaction in the Blockchain requires a
digital wallet (Dwyer, 2015), an artifact that allows users to make electronic transactions.
Digital wallets are constructed from public key cryptographic material to authenticate
the user and the user’s transactions. The user signs its transactions with a private key and
any other entity can verify the authenticity of such transaction using the user’s public key,
which is mathematically associated to the private one.

Thus, the responsible node for deploying the smart contract sends a transaction to the
Blockchain. The transaction is verified and validated in accordance to the Ethereum
protocol. The execution of this transaction deploys the smart contract in the EVM, in each
node in the P2P network. The code of the smart contract is stored permanently in the
Blockchain for future invocations. Once deployed, the smart contract is assigned with an
address that any user can invoke to interact with the code associated to the smart
contract. When a new transaction comes to the Blockchain containing the smart contract
address, all the miner nodes in the P2P network execute the smart contract with the
current state of the Blockchain and with the same input parameters in the transaction.
Figure 1 graphically shows the interaction between a Blockchain and the smart contracts
previously described.

Process mining
Process mining (van der Aalst, 2012) is a research area where converges machine learning,
data mining and analysis and modeling of processes. A business process model can be
represented as a directed connected graphM = {N, Em}. N is the tuple {i, o, T, G + , Gx, Go},
with i the initial event, o the end event, and T the set of tasks executed in the process.
The flow of tasks is controlled by gates. G+ is the set of AND gates, Gx is the set of XOR
gates and Go is the set of OR gates. Em is the set or arcs in the graph of the form (a; b),
with {a, b} ∈ N. An XOR gate creates alternative execution paths, but only one path
can be followed. An AND gate divides an execution path in parallel paths. An OR gate
indicates that one or more execution paths can be followed. Processes are supported by
information systems. Each event during the execution of an instance process can be
registered and the set of all these events is a trace.

The set of all traces conform the event log, which is the main data for process mining.
Three types of tasks can be executed in process mining (van der Aalst, 2012): process
models discovery, conformance checking and enhancement. Discovery consists in using
the event log to create a model M′ that explains the real behavior of the process, which
generally is not the same as the expected documented model M. Conformance consists
in comparing the discovered model with its event log and measuring alignment.
That comparison is done using quality dimensions such as fitness and precision.
Conformance can be used check whether the reality registered in the event log adjusts to
the process model and vice verse. Finally, enhancement uses the model to identify
improvement opportunities in the process when executed.

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 5/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

RELATED WORK
This section discusses representative works related to this research. For the sake of clarity,
we first discuss approaches for management and monitoring of business process using
Blockchain. Then, we discuss on works for process mining using data from Blockchain.
This review frame the originality and contributions of our approach.

Blockchain for business process execution and management
Weber et al. (2016) were pioneers in suggesting the usage of Blockchain for business
process management (BPM), particularly for execution and monitoring of IOBPs.
Blockchains were proposed to execute processes in a trustworthy manner even without a
mutual trust between collaborators. They proposed transforming large parts of the
control flow and business logic of an IOBP into smart contracts ensuring that the
IOBP is correctly executed. Trigger components were proposed to connect the IOBP
implementation in the smart contract to internal process implementations, that is, triggers

Figure 1 Interaction between Blockchain and smart contracts. Full-size DOI: 10.7717/peerj-cs.731/fig-1

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 6/27

http://dx.doi.org/10.7717/peerj-cs.731/fig-1
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

served as a bridge between the Blockchain and collaborators’ applications. A trigger runs in
a full node of the Blockchain network.

A smart contract is used as a direct implementation of process control logic mediator.
The smart contract, one per process model, checks if collaborators’ interactions are
conforming to the IOBP choreography model. A translator takes a business process
specification as input and creates artifacts (at design time) for the triggers and the smart
contract to collaborate each other over the Blockchain network. Those artifacts (factory
contract) are later configured when the IOBP is instantiated and executed. Artifacts
include an interface specification per collaborator in the IOBP to be distributed to the
respective triggers and a process instance contract deployed on the Blockchain when
the process is instantiated. The process instance contract contains the implementation of
the IOBP business logic.

For each new process instance, the participants register their roles and public keys
(wallet address of a collaborator in the IOBP). These roles and keys are available to all
triggers associated with the process instance. When the process instance is executed, each
trigger receives both API calls from its owner and logical messages from the process
instance contract. The trigger translates each of its API calls (messages) into a Blockchain
transaction. In case receiving a logical message from the instance contract, the trigger
updates its local state and invokes the execution of logic for the collaborator’s private
process. The seminal work byWeber et al. (2016) has served as the basis for implementing
systems for Blockchain-based process execution and monitoring, such as the Caterpillar
and Lorikeet systems (Claudio Di Ciccio et al., 2019).

Later, Sturm et al. (2019) presented an architecture that contrary to the approach by
Weber et al. (2016), uses a single generic Smart Contract to deploy in the Blockchain the
execution and management of any IOBP. In their proposal, authors do not generate a
Smart Contract (no programming code is generated) from an IOBP model but a
generic Smart Contract is filled with logic by transactions at deployment time. The generic
Smart Contract is first configured by means of specific functions calls (transactions) that
allow the setup of collaborators, IOBP tasks and the IOBP logic.

Each IOBP collaborator has a unique identifier (wallet) that allows it to join the
Blockchain network for executing an IOBP task. First, a supervisor responsible for the
initial setup deploys the Smart Contract and adds collaborators by registering their wallets.
Then, the supervisor implements the IOBP logic by using a data structure that models an
IOBP task. If viewed as a directed graph, a task in the IOBP can only be executed if its
incident tasks (requirements) have been completed (conformance system). In case of
gateways, the logic is implemented based on the gateway type. In case of the parallel
gateway, all the incident task must be set on completed. The Smart Contract ensures
that each task in the IOBP is executed only by the collaborator in charge of such task
(permission system). Thus, the IOBP logic is built based on the conformance and
permissions systems. Contrary to the approach in Weber et al. (2016), where the process
logic is defined off-chain, in Sturm et al. (2019) the IOBP logic is also on-chain so every
collaborator can comprehend the IOBP rules.

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 7/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

In this paper, we retake the idea of Sturm et al. (2019) to have a generic Smart Contract
applied to any IOBP (1:M relation). However, we extend that approach to consider the
following:

-Support is not only for OR and AND gateways but also for XOR (exclusive) gateways.

-Support for executing multiple IOBP instances in a single Smart Contract instance.

-Inclusion of Trigger component (as inWeber et al. (2016)) to enable external resources to
interact directly with the Blockchain.

-Support to use event information from collaborators to conform the event log required for
process mining tasks.

The last property is very important because neitherWeber et al. (2016) nor Sturm et al.
(2019) approaches the process mining (PM) problem in IOBPs. Both works do not take
into consideration the logic for collecting the event log as part of the execution and
monitoring tasks. Particular differences of the settings in this paper for IOBP execution
and monitoring (E & M) is summarized in Table 1 (SC stands for Smart Contract).

Related works as by Weber et al. (2016) generates specific smart contract code for
each IOBP. This is not recommended because a translation process is required, from
BPMN specification to code of the smart contract (Solidity for example). However, that
translation could not be applicable in all cases. Instead, this work uses a single smart
contract, as in Sturm et al. (2019) that only requires configuration at execution time.
That is, the code (smart contract) is generated in advance and already running in
the Blockchain. Any IOBP can be configured in that unique smart contract, so the smart
contract can support any IOPB and only requires configuration by a supervisor node.

Other works in the literature use different approaches to execute and monitoring
Blockchain-based business processes. For example, Nakamura, Miyamoto & Kudo (2018)
propose transforming business process models into statecharts. The size of these
statecharts is optimized to reduce the communication between the Blockchain and
collaborators. The statecharts are used as the basis for generating the Smart Contracts to
run in the Blockchain and web applications for the collaborators. We consider that this
approach is more elaborated and hard to generalize and apply to any IOBP.

Event log collection from Blockchain data
Process mining of inter-organizational processes (IOBPs) was suggested since the last
decade (van der Aalst, 2011). The event log, which is the main input for process
mining algorithms, has been proposed to be obtained from Blockchain. That is, in most of
related works, it is necessary an extraction task on the Blockchain data to build the event

Table 1 Approaches to execute and monitoring Blockchain-based IOBPs.

Ref. BPMN model input SC code generation SC per Process model SC per Process instance E & M PM

Weber et al. (2016) ✓ ✓ 1:1 1:1 ✓ ✗

Sturm et al. (2019) ✓ ✗ 1: M 1:1 ✓ ✗

This work ✓ ✗ 1: M 1:M ✓ ✓

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 8/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

log on the basis that the business process execution data was registered in the Blockchain.
Klinkmüller et al. (2019) stated that extracting data from Blockchains for analyzing the
process view is hard and that is the reason why Blockchain data are rarely used for
process mining. They proposed a framework that includes an extractor for retrieving
data from Blockchain that is then transformed into event data and formatted according
to the XES standard. In that format, the extracted data can be imported into process
mining tools such as ProM. The extraction rules are adapted via a manifest which specifies
how to filter events, which timestamps to include and where to find the activity name.

Mühlberger et al. (2019) also presented an approach to retrieve process data from an
Ethereum Blockchain and to convert those data into an event log in XES format that can be
used by a process mining tool. They pointed out that manual effort is required to convert
data from individual blocks in the Blockchain into an appropriate format for process
mining. That task is hard because the information retrieved from the Blockchain is
in hexadecimal and numeric formats, timestamps are approximates as the time in
Blockchains is at the level of blocks, and the structure of data payloads in the Blockchain
transactions is generally arbitrary. Thus, to identify and convert Blockchain data into a
format used by process mining tools, it is necessary a profound understanding of the data
model represented on the Blockchain.

As previously stated, in this paper we do not implement an extraction task but
exploit the fact that a smart contract already exists to monitor the IOBP execution and to
ensure that the IOBP rules are meet by collaborators. Thus, we take advantage of that
contract and propose additional logic that collects the traces and then creates on-chain
the event log from the events received from collaborators during the IOBP execution. In
this way, no identification, no extraction and no conversions of data types are required to
conform the event log that can be later used for process mining.

Data cleaning for process mining with smart contracts has been previously suggested by
Ekici, Tarhan & Ozsoy (2019). In our proposal, the event log is created on-chain, which
implies the data is reliable for all those mutual untrusted collaborators that wanted to
apply process mining tasks. When generating the traces, a data cleaning task is also done
on-chain to repair the events containing common errors (Suriadi et al., 2017), such as
duplicate events, errors in timestamps, or events with incomplete data. If the data cleaning
were not done on-chain, the event log could be manipulated locally, the resulting data
could not be reliable and the discovered models could not reflect the real behavior.

Table 2 summarizes the main aspects in our proposal compared to previous works on
process mining of business process supported by Blockchain data and data cleaning using

Table 2 Approaches to create a IOBP event log on-chain for process mining.

Ref. SC for exec & monitoring Extraction algorithm & types conversion Data cleaning PM test

Klinkmüller et al. (2019) ✗ ✓ ✗ ✓

Mühlberger et al. (2019) ✗ ✓ ✗ ✓

Ekici, Tarhan & Ozsoy (2019) ✗ ✗ ✓ ✗

This work ✓ ✗ ✓ ✓

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 9/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

Smart Contracts. As indicated, in our proposal the algorithm (here on referred as the
SC_ELC smart contract) for collecting the event log works close related to the algorithm
(here on referred as the SC_EM smart contract) for execution and monitoring, both
on-chain. This way data extraction and conversion types from transactions registered in
the Blockchain are avoided at the time that an algorithm (here on referred as the SC_PDC
smart contract) applies data cleaning on the fly. Later in the experiments, we show the
impact of the data cleaning strategy in the resulting IOBP discovered models, under the
metrics for precision, fitness and F-measure. Note that this desirable evaluation has not
been reported in previous works.

METHODS
This section presents the details of our proposed methodology for monitoring the
execution of IOBPs with Blockchain and for collecting the data, on-chain, required for
IOBPs mining. Such methodology consists in the following chained tasks: (1) Deploy the
IOBP in a Blockchain for execution and monitoring, (2) IOBP execution orchestration at
the time the event log is collected (on-chain); (3) event log formatting and (4) process
mining. This methodology is graphically shown in Fig. 2.

IOBP deployment in Blockchain
In the initialization stage, a parser takes as input the IOBP model specified in BPMN
notation, in XML format. The parser extracts the collaborators, tasks and their

Parser
Trigger

Supervisor

1. Initialization

IOBP in BPMN
2.0

Organizations’
public keys

Trigger C1 Trigger C2 Trigger CN

on-chain

off-chain

SC_EM

e = {caseId, taskId, taskName, timestamp, token}

-collaborators
-tasks

2. Execution and monitoring

Org1 Org2 OrgN

...

Trigger
Extractor

SC_PDC SC_ELC
e1 e2

Event log
Formatter

3. Trace extractor & formatter

XES/CSV

off-chain

Process
discovery

Conformance
checking

4. Process
Mining

off-chain

IOBP real
model

Pr
disc

event log

-collaborators

itialization
off-chain

new instancenew instance

Figure 2 Methodology for monitoring IOBPs execution with Blockchain and for collecting the data,
on-chain, required for IOBPs mining. Full-size DOI: 10.7717/peerj-cs.731/fig-2

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 10/27

http://dx.doi.org/10.7717/peerj-cs.731/fig-2
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

requirements, gates and their conditions, and the IOBP logic (e.g., communication
paths among collaborators). Pools and lanes are considered as collaborators in the
input BPMN model. Tasks (activities or gates) and their requirements are identified from
each pool or lane in the IOBP model and assigned to the corresponding collaborator.
Figure 3 shows an IOBP for a review process. That IOBP has two pools, one for Customer
and another for Company. The last pool has two lanes, one for Expert and the other for
User. Thus, the parser identifies four collaborators in the IOBP.

Task’s requirements are a critical part for ensuring the correct execution of an IOBP.
A task ti owned by collaborator c can only be executed if all its incoming adjacent tasks Ti
(requirements) have been already successfully executed. Furthermore, if ti has as
requirement an exclusive gate (XOR), the condition associated to that gate must be met. As
an example, in Fig. 3, ti = ‘receive review’ has Ti = {‘send request’, ‘send review’} as
requirements. For ti = ‘complete review’, the requirement is the condition type = 0.
Conditions are identified by the parser, updated during the IOBP execution, and used as
control values in the requirements of outgoing adjacent tasks to the gate. These conditions
are available to all collaborators and any of them can modify the condition variable
following the rules of the IOBP. The management of XOR gates and associated conditions
were not considered in the previous work of Sturm et al. (2019), where only considered
{AND, OR} gates that do not require a control of the execution paths.

Figure 3 IOBP for a review process. Full-size DOI: 10.7717/peerj-cs.731/fig-3

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 11/27

http://dx.doi.org/10.7717/peerj-cs.731/fig-3
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

All the previous data identified by the parser (c’s, ti’s, Ti’s and condition values) are
delivered to a supervisor that directly interacts with SC_EM to configure it by calling
specific functions. This smart contract follows the approach by Sturm et al. (2019), and
includes configuration functions such as addCollaborator(…) which registers the
wallet address (public key) of each collaborator in the IOBP. Another function is
createTask(…) that registers the activities and gates in the IOBP based on the requirements
established by the IOBP logic. Contrary to the solution given by Sturm et al. (2019), the
initialization phase is executed automatically after receiving the BPMN model and the
digital wallets of collaborators. Wallets allow SC_EM to receive transactions from
collaborators (e.g., by calling a SC_EM’s function).

Both, the parser and supervisor implement the deployment of an IOBP in the
Blockchain. Algorithm 1 shows the pseudocode that implements the Initialization phase
shown in Fig. 2.

In Algorithm 1, a trigger is created for the supervisor (line 1) to interact with the
Blockchain, and in this case, to configure the smart contract based on the IOBP
specification in BPMN. The supervisor parses the BPMN specification of the business
process and proceeds to deploy and configure the smart contract (lines 2 to 8). Tasks
are configured as well as the collaborators responsible to perform each of them. Wallets for
the collaborators are registered because each collaborator have to interact with the
Blockchain. For a given task, several parameters are specified such as the responsible of
that task (executor), the type of task (activity or gate), requirements for that task
(preconditions to such task be executed) and condition associated in case the task is a XOR
gate.

IOBPs execution and monitoring
Once SC_EM is configured, it is ready to be executed by interacting with the triggers
associated to each collaborator. In the following, we describe the execution and monitoring
stage in Fig. 2.

Algorithm 1 Deployment of an IOBP in Blockchain.

Require: iobp: Inter-organizational business process model in BPMN, cwallets: wallets (public key) of
organizations in the IOBP, swallet: supervisor’s wallet

1: supervisor←createTrigger(swallet)

2: config←Parser.run(iobp)

3: SC_EM ←supervisor.deployContract()

4: for c in config.collaborators do

5: SC_EM.addCollaborator(c.name, cwallets.getAddress(c.name))

6: end for

7: for t in config.tasks do

8: SC_EM.createTask(t.activity, t.executor, t.type, t.requirements, t.condition)

9: end for

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 12/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

A trigger is a model for an entity to interact with (send transactions to) SC_EM. It
requires a private key associated to entity’s wallet. In our proposal, a trigger is of three
forms: a supervisor trigger, already discussed in the previous section, that configures
SC_EM; a collaborator trigger, executed is in the side of the IOBP’s collaborator logic to
interact with SC_EM during the execution and monitoring of the IOBP; a process mining
trigger, that retrieve the event log on-chain for executing process mining tasks. In this
work, a trigger connects to an Ethereum Blockchain through a wrapper in Java
language created with the Web3j library. By providing a wrapper in a portable language as
Java, it is more easy for the collaborators (organizations) to adequate their information
systems and interact with Blockchain.

Any collaborator, through its trigger, can monitor the IOBP execution by monitoring
the status of each task registered in SC_EM. This is done by calling the SC_EM’s function
named getTaskById(…). When called, that function returns:

-status: a boolean value (completed/not completed)

-task name

-task owner (public key of collaborator in charge of the task)

-task type (activity, gate)

-requirements (list of adjacent incoming tasks)

-condition (if the task has a XOR gate requirement)

When an organization/collaborator completes a task, it informs this event to SC_EM by
calling the function setTaskOnCompleted(…). In this call, the organization (the trigger)
sends to SC_EM all the information of the event which is later registered, on-chain, in the
event log only if the event passes the conformance test. Such test consists in two
verifications: (1) the collaborator is the owner of the task being executed and (2) all the
tasks being the requirements of the task have been already registered as completed.

Event log collection
The main input data for process mining algorithms is the event log. In this work, we
take advantage of deployed SC_EM to collect the events for each IOBP instance execution.
This has not been considered in previous works. All the events sent by collaborators
during the execution of one IOBP instance form a trace, which is registered on-chain. The
set of all traces is the event log. By having the event log on-chain, that information is
reliable for any collaborator to run process mining algorithms.

In our approach, the same SC_EM is used to monitor the execution of each IOBP
instance. Other works as Sturm et al. (2019) use one smart contract instance per IOBP
instance. That approach is costlier because a new smart contract instance must be deployed
in Blockchain for each new IOBP instance. Furthermore, collecting the traces from
each instance implies a more elaborated control. In our approach, we create the SC_ELC
smart contract only to process all the logic to create the event log. Both, SC_EM and
SC_ELC are linked. All the IOBP instances are registered in a mapping structure in
SC_EM called executionInstances. An instance in execution has an associated trace, which

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 13/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

keeps information regarding the execution status of all the tasks in the IOBP. Note that this
trace in SC_EM is associated to a trace in SC_ELC, which keeps information related to the
events for each task already executed.

SC_EM contains a structure to model a trace with the attributes: caseId (instance
number), gcondition (variable to manage conditions in XOR gates), and states (task
completed or not completed-required for the conformance test). Once SC_EM is
configured, a new IOBP instance starts every time the first task in the IOBP is executed,
which at the time initiates a new trace in SC_EM and in SC_ELC. Each next executed task
will produce a new entry in the corresponding trace in SC_EM, but not necessary
registered in SC_ELC because the events coming from the triggers are cleaned before
registered in the event log, and it is possible that some of these events will be discarded
(see more details in next section).

When a collaborator completes a task, it informs this fact to SC_EM by invoking the
function setTaskOnCompleted(…). The event information includes: (1) caseId, (2) taskId,
(3) taskName, (4) timestamp and (5) token. SC_EM uses (2) and (5) to execute the
conformance test and updates the condition variable if needed. Together with this
information from the collaborator, SC_EM and SC_ELC add information to the event
that is later inserted in the trace associated to the process instance. Table 3 shows a
summary of data registered in a trace and its source. As it can be observed, Case ID,
Activity name and Event timestamp are taken from data sent by the triggers; Event ID is
provided by SC_ELC, and Event cost and Event resource are provided by SC_EM. All
these data is recorded in the event log by calling the function recordEvent(…) of SC_ELC.

Event log data cleaning
Events coming from collaborator triggers usually contain errors (duplicate, incomplete
or inconsistent data). This implies data quality problems that affect the quality and
reliability of process models discovered with process mining algorithms. These problems
are due to the fact that data sent by triggers may not be automated and errors could be
injected by humans operating the information systems of collaborators in the IOBP.
Another cause is that triggers run in different platforms and data could have different
formats. Thus, pre-processing and data cleaning are necessary. In this work, data
quality in the event log is approached by pre-processing the event data originated in

Table 3 Event data from Triggers and SC_EM for event log collection.

Event log attribute Data field Source

Case ID caseId Trigger

Event ID EventId SC_ELC

Activity name taskName Trigger

Event timestamp timestamp Trigger

Event cost tx.gasprice SC_EM

Event resource msg.sender SC_EM

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 14/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

SC_EM by a specific smart contract called SC_PDC prior to be registered by SC_ELC in a
trace and hence in the event log.

SC_PDC analyzes the data described in Table 3 and sent by SC_EM to verify if any of
the next problems is present:

1. Missing data: each event must contain Case ID, Activity and Timestamp. If any of these
fields is missing, the event is considered as incomplete. The solution is removing the
event.

2. Duplicated events, e.g., two events has the same name and the same timestamp. If a
given event already exists in a trace in the event log, that incoming duplicated event is
discarded.

3. Unanchored event: it occurs when the format for the timestamp field provided by
triggers is different. The expected format for the timestamp field is MM/dd/yyyy
HH:mm:ss. Any data for this field in another format is manipulated to met the
specification.

4. Form-based event capture: this situation occurs when data from a form (web) are
send by the trigger and considered as several events. That will lead to interpret all those
events as parallel tasks in the process model. To approach this problem, the trace is
explored to verify the presence of events with the same resource and timestamp. The
resource field is also verified as an organization can be using a (web) form to register the
IOBP events.

Algorithm 2 describes the pseudocode of setTaskOnCompleted(…), which is the main
function in SC_EM where IOBP execution is orchestrated, events from collaborator
triggers are formed and sent to SC_PDC for pre-processing and cleaning, and finally
cleaned/repaired events are registered by SC_ELC in the event log.

In Algorithm 2, an event is received containing useful information related to the
task that is intended to be registered as executed. First, a test of conformance is done to
ensure the task has its prerequisites completed and the event’s source is the executor of that
task (line 1). If the test fails, the Blockchain negates the registration (line 3). If the test
succeeds, then the event is processed to be registered in the event log (lines 5 to 22).
In this case, the event could generate a new trace in the event log (line 7) if it is the start task
in the business process. The event is removed if it is a duplicated event (line 14). If not, data
is first cleaned and then registered in the event log (lines 17 to 20).

As a summary, Fig. 4 shown a collaboration diagram among a collaborator trigger and
the three smart contracts proposed in this work to manage the execution, monitoring, and
IOBPs mining (stages 1 and 2 in Fig. 2).

Event log formatting
Stage 3 in Fig. 2 comprises event log formatting and its retrieval for process mining.
An entity with the proper permissions in the application domain (process mining trigger)
can request the event log to SC_ELC and use it to obtain the model of real execution of the
documented IOBP by means of a process mining tool. Event log formatting is required

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 15/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

because most of process mining tools require the event log to be in a specific format.
The most common are the XES (eXtensible Event Stream) and the CSV (Comma
Separated Values) formats. For that reason, SC_ELC includes functions to retrieve events
and traces from the event log. These data is then transformed (off-chain) to the proper
format. First, events and traces are converted to CSV and then, event and traces are
transformed from CSV to XES.

CSV format is obtained by accessing each event in the event log through the SC_ELC’s
functions getNumberOfTraces(), getEventsCount(caseId), and getEvent(caseId, eventId),
which return the number of traces, number of events in a trace and event in a trace,
respectively. XES format is obtained from a translator based on the OpenXES library.
A XTrace object is created for each trace in the CSV-formatted event log, and each event in
that trace is converted to a XEvent, by adding the attributes needed as XAttributeMap
objects. XTrace objects are added to an XLog object that collects the event log in XES

Algorithm 2 SetTaskOnCompleted (SC EM).

Require: event = {caseId, taskId, taskName, timestamp, token}

Ensure: bool: ‘true’ if the task is correctly registered. Otherwise, ‘false’.

1: checked ←conformanceTest(msg.sender, event)

2: if !checked then

3: return false

4: end if

5: executionInstances[caseId].states[taskId] ←true . task marked as completed in the SC since it
passes the conformance test

6: if event.taskId.type == START_EVENT then

7: createNewExecutionInstance(caseId)

8: SC_ELC.newTrace(caseId)

9: end if

10: if event.taskId.type == TASK then

11: scEvent← new SCEvent()

12: scEvent.add(event.caseId, event.taskName, event.timestamp)

13: SC_ELC.testRemove(scEvent)

14: if scEvent was removed then . Event is duplicated

15: return false

16: end if

17: scEventCleaned← SC_PDC.preProcessAndClean(scEvent)

18: scEventCleaned.add(eventId, event.taskName, event.timestamp)

19: scEventCleaned.add(msg.sender, tx.gasprice)

20: SC_ELC.recordEvent(caseId, scEventCleaned) . new execution data added to the event log

21: end if

22: return true

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 16/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

format. Finally, the XLog object is serialized by using the Spex library to generate the XES
file.

Finally, stage 4 in Fig. 2 deals with using a process mining tool to obtain the IOBPmodel
from the event log collected on-chain. This part is flexible in the sense that once the event
log is available in the proper format, any available process mining tool can be used.

EXPERIMENTAL EVALUATION AND RESULTS
The method presented in this paper allows trust among the collaborators in an IOBP at the
time it collects and prepares the event log required in process mining tasks. For both
purposes, the method relies on Blockchain and smart contract technologies. We assessed
the feasibility of this method, depicted in Fig. 2, by deploying it as a software tool written in
Java and available in https://github.com/amolina-97/IOBPBC/tree/master/Simulator%
20project.

Figure 4 Collaboration among the three smart contracts for IOBP execution monitoring, pre-processing and data cleaning of events and event
log collection. Full-size DOI: 10.7717/peerj-cs.731/fig-4

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 17/27

https://github.com/amolina-97/IOBPBC/tree/master/Simulator%20project
https://github.com/amolina-97/IOBPBC/tree/master/Simulator%20project
http://dx.doi.org/10.7717/peerj-cs.731/fig-4
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

Tools and setup
Parser being part of our method uses the Camunda library to process IOBP models in
XML BPMN 2. The three smart contracts proposed in this work and discussed in the
previous section were implemented in Solidity and executed in the Ganache framework for
a private Ethereum Blockchain. Triggers were implemented in Java using the Web3j
library. Collaborators in an IOBP are clients that connect to Ganache, which manages
the internals of the Blockchain that runs the three smart contracts proposed in this work
(see Fig. 5).

Equipment for experimentation consisted of two computers Intel Core 2 Duo 3.06 GHz,
16 GB RAM DDR3, 500 GB HDD; and in one computer Intel Core i5 2.66 GHz,
16 GB RAM DDR3, 1 TB HDD. Since the Ganache framework is for a private Blockchain,
the entire method was deployed in each computer.

Data
We use representative IOBPs in the literature for experimental evaluation: Supply chain
(Weber et al., 2016), Incident management (Mühlberger et al., 2019), and Rehabilitation
(Köpke, Franceschetti & Eder, 2019). Table 4 shows main characteristics of these IOBPs.

Validation
For each IOBP, we executed our method that covers: (i) deploying the IOBP specified
in BPMN in the Blockchain; (ii) simulating the IOBP execution by modeling collaborators
as execution threads that interact with the smart contracts in the Blockchain;

Figure 5 Solution deployed. IOBP execution by threaded triggers. Event log collection with data-
cleaning, on-chain. Full-size DOI: 10.7717/peerj-cs.731/fig-5

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 18/27

http://dx.doi.org/10.7717/peerj-cs.731/fig-5
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

(iii) collecting the event log during IOBP’s execution, including data cleaning in that
process; (iv) preparing data in the event log for process discovery; and (v) executing the
process discovery task. Collaborators are orchestrated by SC_EM and events generated by
triggers during an IOBP instance execution are processed by SC_EM, SC_PDC, and
SC_ELC.

Simulation is required to validate the complete method which deploys the
interorganizational business process (IOBP) in the Blockchain, orchestrates its
execution, collects the data at the time the process is executed and prepared the event data
for process mining tasks. Without simulation, such validation would be difficult, as
the IOBP should be implemented in real scenarios (organizations supported by
information systems), and many real executions should be required to generate an event
log with the amount of traces usually used in process mining tasks (above 1,000).
Obtaining this amount of traces for the three IOBPs considered for validation, without
simulation, would be unfeasible. The simulator and each of the components for deploying
our proposed method is shown in Fig. 5.

The simulator receives as input the IOBP in BPMN notation, the wallets of collaborators
and supervisor, the number of traces to simulate, and two parameters to induce noise
in the events. For a real implementation, only the three first parameters are needed
for the software tool. The traces collected in the Blockchain (on-chain) and available as an
event log can be requested at any moment. Since the event log is in the Blockchain, the
access to it is also through a trigger.

Metrics
Models discovered from the event log created, on-chain, are evaluated using the fitness
metric defined by Naderifar, Sahran & Shukur (2019). This metric quantifies the capacity
of discovered model (as-is) to express the behavior registered in the event log (to-be).
We also use the metric precision (Adriansyah et al., 2013), which quantifies the allowed
behavior by the discovered model that is not present in the event log. A model with
low precision is the one that allows behavior never ‘seen’ in the event log. Fitness and
precision are in the range [0, 1], being one the optimum. With these two metrics, we also
evaluate the discovered models using the F-measure metric (Marin-Castro & Tello-Leal,
2021) computed as in Eq. (1).

Fmeasure ¼ 2 � Precision� Fitness
Precisionþ Fitness

(1)

Table 4 IOBPs and their characteristics for experimental data.

IOBP Tasks Gateways

Supply chain (Weber et al., 2016) 10 2

Rehabilitation (Köpke, Franceschetti & Eder, 2019) 9 4

Incident management (Mühlberger et al., 2019) 9 6

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 19/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

In the experimentation, we also evaluated the impact of using data cleaning as part of
the event log collection mechanism. It has been suggested from the literature that data
cleaning impacts positively in the results obtained when executing process mining tasks, in
our case, the process discovery task under metrics of fitness, precision and F-measure.
To this last end, we used two tools available in the literature: ProM and P-miner.

Noise in event data
In each test that includes all the stages described in Section Validation, we included a
mechanism to also simulate the presence of noise in events created and sent by
collaborator triggers to SC_EM. This is done to simulate a more realistic execution of the
IOBP. For a given event, the introduced noise is one of four different types (the most
common reported in (Suriadi et al., 2017)):

1. Missing values: one or more empty values are in the event.

2. Unanchored event: timestamp granularity is modified (data or time or both can be
altered. The format can also be modified (the expected format is ‘MM/dd/yyyy
HH:mm:s’).

3. Duplicated events: the event is replicated.

4. Form-based event capture: the timestamp of the event is the same as other already
registered.

Noise is randomly inserted, affecting a number or events no greater that 50% the
average size of a trace.

Results
We ran three experiments to evaluate the proposed solution depicted in Fig. 1. For each
experiment, we used the three IOPBs described in previous sections. The experiment
considered the running of the entire method, from IOBP deployment in the Blockchain
until the execution of process discovery over the collected data obtained from the
Blockchain. In the first experiment, no noise is injected, which corresponds to the ideal
case where each organization in the IOBP performs as expected and executes the
business process as documented. This is unrealistic because the real executed process
generally is far similar to the documented one: tasks can be interchanged, cycles can be
present, or tasks cloud be omitted. In the second experiment, noise was injected to simulate
the real operations of IOBPs and the pre-proccessing and data cleaning algorithm was
enabled to correct errors in the execution data. Thus, the data in the event log was
improved at a degree later evaluated in the process discovery task. In the third experiment,
noise was simulated but the pre-proccessing and data cleaning algorithm was disabled.

Experiments two and three allowed to study the impact of pre-processing and data
cleaning in the event log, in the context of process discovery. The simulator was
programmed to inject noise (missing values, unanchored event, duplicate events and form-
based event capture) in the collaborator triggers in 10%, 20% and 30% of traces generated
during IOBP execution.

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 20/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

Table 5 shows the details of event logs collected during the execution of the three
IOBPs orchestrated by SC_EM. In all cases, a total of 1,200 traces were registered by
SC_ELC, each containing repaired data by the SC_PDC (indicated in the row labeled
as ‘LD on’). As a reference, and in order to show the impact of data cleaning, Table 5
also includes statistics of the event logs for the case when no data cleaning is done
(indicated in the row labeled as ‘LD off’) and in the ideal, unfeasible, perfect case of no
noise present (indicated in the row labeled as ‘No noise’).

The ideal case of no errors in event data is unfeasible as data from triggers are
generally sent by humans operating the information systems, different platforms can be
used and situation out of control are present (hardware fails, connection delays, system
halts, for example). In the ideal case (no noise) the number of events and the size of a
trace are the reference values. Contrary, when errors are present and not repaired, the
number of different traces increases considerably, leading possibly to inconsistent
models difficult to analyze (spaghetti-like models). These problems are mitigated and
reduced by the cleaning strategy, which maintains the number of different traces and
average size trace closer to the reference values.

Figures 6–8 show results for the metrics of fitness, precision and F-measure respectively,
computed with ProM and P-Miner. In the case of ProM, we used the plug-ins Mine Petri

Table 5 Event log statistics for the three IOBPs used in experimentation.Data includes the case when no noise is inserted. If noise is inserted, data
can be cleaned, on-chain, or not cleaned.

Case Experiment Noise % Traces Events Different events Different traces Trace size average

No noise Incident management 0 1,200 6,446 6,446 3 5.36

Rehabilitation 0 1,200 9,600 9,600 5 7.99

Supply chain 0 1,200 12,000 12,000 2 9.99

LD on Incident management 10 1,200 6,204 6,204 24 5.16

20 1,200 6,024 6,024 38 5.01

30 1,200 6,032 6,032 46 5.02

Rehabilitation 10 1,200 9,054 9,054 39 7.53

20 1,200 9,016 9,016 56 7.50

30 1,200 8,888 8,888 70 7.40

Supply chain 10 1,200 10,104 10,104 68 8.41

20 1,200 10,173 10,173 89 8.47

30 1,200 10,125 10,125 105 8.43

LD off Incident management 10 1,200 6,694 6,607 93 5.57

20 1,200 6,971 6,782 184 5.80

30 1,200 6,829 6,572 265 5.68

Rehabilitation 10 1,200 9,744 9,616 125 8.11

20 1,200 9,962 9,678 244 8.29

30 1,200 10,132 9,697 354 8.43

Supply chain 10 1,200 12,254 12,064 122 10.20

20 1,200 12,469 12,102 241 10.38

30 1,200 12,677 12,163 359 10.55

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 21/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

Net with Inductive Miner for the model discovery, and Replay a Log on Petri Net for
Conformance Analysis for fitness and Check Precision based on Align-ETConformance
for precision. In the case of P-Miner, the tool computes fitness, precision and F-measure
automatically when the model is discovered.

Figure 6 reveals that fitness is not affected in general by errors in event data, that is, data
cleaning does not significantly improve the fitness in the discovered models. That is, fitness
values are high without repairing data in the event log, and the differences in fitness
between the models discovered from the cleaned logs are minor, and close to the fitness of
the uncleaned logs. Thus, the discovered models have a good fit with the documented
models.

However, Fig. 7 reveals that precision is greatly affected when no data cleaning is
activated, and it deteriorates when the percentage of induced noise is greater. On the
contrary, if data cleaning is used, the models keep a precision near to one (the best) even
at the presence of noise. One of the factors that possibly influences in this fact is that
filtering and repairing data from the event log lead to contain less behavior than the
original event log. Therefore, precision is affected if a process model supports too much
behavior, that is, precision is lower for the event log whose data has not been repaired.

A special case is for the precision of Incident Management computed by ProM.
In this case, the precision improves when no data cleaning is used and when the percentage
of noise increases. This can be possible due to the fact that erroneous data produce

Figure 6 (A–F) Models evaluation (Fitness) using 1,200 traces. Full-size DOI: 10.7717/peerj-cs.731/fig-6

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 22/27

http://dx.doi.org/10.7717/peerj-cs.731/fig-6
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

Figure 7 (A–F) Models evaluation (Precision) using 1,200 traces. Full-size DOI: 10.7717/peerj-cs.731/fig-7

Figure 8 (A–F) Models evaluation (F-measure) using 1,200 traces. Full-size DOI: 10.7717/peerj-cs.731/fig-8

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 23/27

http://dx.doi.org/10.7717/peerj-cs.731/fig-7
http://dx.doi.org/10.7717/peerj-cs.731/fig-8
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

alternative running paths that are still acceptable for the model. In general, precision
improves due to the data cleaning. Figure 8 shows the mean performance between fitness
and precision (F-measure) obtained by the models, in which it can be observed that the low
precision percentage obtained in the cases when no data cleaning is activated has a
significant impact.

However, it is possible to identify that when data cleaning is used, the process model
maintains F-measure between 0.9 and 1. Therefore, it can be established that the
F-measure presented by the process models is acceptable and reflects what is observed in
the event log without being so general.

CONCLUSION
This paper presented, for the first time, a practical approach that uses Blockchain and
smart contracts technologies for supporting inter-organizational business process
(IOBP) execution management at the time that collects the event log required for IOPB
mining. The approach included dynamic data cleaning on-chain to remove errors in
data events from collaborators that could affect the discovered models by process mining
tools. Blockchain ensures trust during the IOBP execution while the event log collection
on-chain provides confident data for process mining. Our method was completely
implemented and validated over three IOBPs, which demonstrates its practicality for real
scenarios.

By using three smart contracts, our proposal can deploy any IOBP in BPM notation
in a Blockchain, ensuring the business logic when executed even in the presence of
untrusted collaborators and later providing the event log in the proper format for
process mining tasks. We provide to the community a software tool that implements the
proposed approach, including the three smart contracts for execution, data cleaning
and event log collection. Both, the method and the software tool, are the main
contributions of this work.

Future work consists in improving the smart contract for pre-processing and data
cleaning. Currently, only the most common problems in event data are considered and
data cleaning uses information only from the trace itself. A second data cleaning pass on
the entire event log can be applied prior to process discovery, for example, to correct order
of events in traces or to filter infrequent or chaotic activities. Furthermore, future
directions consider analyzing the complexity of algorithms to bound the performance of
proposed method and evaluate the viability of implementing run-time acceleration
strategies.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research is funded by the National Council for Science and Technology in Mexico
(CONACyT) under the program `Fondo Sectorial de Investigacion para la Educacion’
(project No 281565). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 24/27

http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

Grant Disclosures
The following grant information was disclosed by the authors:
National Council for Science and Technology in Mexico (CONACyT): 281565.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Miguel Morales-Sandoval conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� José A. Molina performed the experiments, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

� Heidy M. Marin-Castro analyzed the data, performed the computation work, authored
or reviewed drafts of the paper, and approved the final draft.

� Jose Luis Gonzalez-Compean conceived and designed the experiments, analyzed the
data, prepared figures and/or tables, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at GitHub: https://github.com/amolina-97/IOBPBC. The simulator
is available at GitHub: https://github.com/amolina-97/IOBPBC/tree/master/Simulator%
20project.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.731#supplemental-information.

REFERENCES
Adriansyah A, Munoz-Gama J, Carmona J, van Dongen BF, van der Aalst WMP. 2013.

Alignment based precision checking. In: La Rosa M, Soffer P, eds. Business Process Management
Workshops. Berlin, Heidelberg: Springer, 137–149.

Andoni M, Robu V, Flynn D, Abram S, Geach D, Jenkins D, McCallum P, Peacock A. 2019.
Blockchain technology in the energy sector: a systematic review of challenges and opportunities.
Renewable and Sustainable Energy Reviews 100(1):143–174 DOI 10.1016/j.rser.2018.10.014.

Bouchbout K, Alimazighi Z. 2011. Inter-organizational business processes modelling framework.
In: Eder J, Bieliková M, Tjoa AM, eds. ADBIS 2011, Research Communications, Proceedings II of
the 15th East-European Conference on Advances in Databases and Information Systems, CEUR
Workshop Proceedings. Vol. 789. Vienna, Austria: CEUR, 45–54.

Carminati B, Ferrari E, Rondanini C. 2018. Blockchain as a platform for secure inter-
organizational business processes. In: 2018 IEEE 4th International Conference on Collaboration
and Internet Computing (CIC). Piscataway: IEEE, 122–129.

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 25/27

https://github.com/amolina-97/IOBPBC
https://github.com/amolina-97/IOBPBC/tree/master/Simulator%20project
https://github.com/amolina-97/IOBPBC/tree/master/Simulator%20project
http://dx.doi.org/10.7717/peerj-cs.731#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.731#supplemental-information
http://dx.doi.org/10.1016/j.rser.2018.10.014
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

Casino F, Dasaklis TK, Patsakis C. 2019. A systematic literature review of blockchain-based
applications: current status, classification and open issues. Telematics and Informatics
36(7674):55–81 DOI 10.1016/j.tele.2018.11.006.

Claudio Di Ciccio C, Cecconi A, Dumas M, Garca-Bañuelos L, López-Pintado O, Lu Q,
Mendling J, Ponomarev A, Tran AB, Weber I. 2019. Blockchain support for collaborative
business processes. Informatik Spektrum 42(3):182–190 DOI 10.1007/s00287-019-01178-x.

Duchmann F, Koschmider A. 2019. Validation of smart contracts using process mining. In: ZEUS
2019, Workshop on Services and their Composition Proceedings of the 11th Central European
Workshop on Services and their Composition. Vol. 2339. Bayreuth, Germany: RWTH Aachen,
13–16.

Dwyer GP. 2015. The economics of bitcoin and similar private digital currencies. Journal of
Financial Stability 17:81–91 DOI 10.1016/j.jfs.2014.11.006.

Ekici B, Tarhan A, Ozsoy A. 2019. Data cleaning for process mining with smart contract. In: 2019
4th International Conference on Computer Science and Engineering (UBMK). 1–6.

Engel R, Krathu W, Zapletal M, Pichler C, Bose RPJC, van der Aalst WMP, Werthner H,
Huemer C. 2016. Analyzing inter-organizational business processes-process mining and
business performance analysis using electronic data interchange messages. Information Systems
and e-Business Management 14(3):577–612 DOI 10.1007/s10257-015-0295-2.

Engel R, van der Aalst WMP, Zapletal M, Pichler C, Werthner H. 2012. Mining inter-
organizational business process models from EDI messages: a case study from the automotive
sector. In: Ralyté J, Franch X, Brinkkemper S, Wrycza S, eds. Advanced Information Systems
Engineering-24th International Conference, CAiSE 2012, Gdansk, Poland, June 25–29, 2012.
Proceedings, Lecture Notes in Computer Science. Vol. 7328. Gdansk, Poland: Springer, 222–237.

Klinkmüller C, Ponomarev A, Tran AB, Weber I, van der Aalst W. 2019. Mining blockchain
processes: extracting process mining data from blockchain applications. In: Di Ciccio C,
Gabryelczyk R, García-Bañuelos L, Hernaus T, Hull R, Indihar Štemberger M, Kö A, Staples M,
eds. Business Process Management: Blockchain and Central and Eastern Europe Forum. Cham:
Springer International Publishing, 71–86.

Köpke J, Franceschetti M, Eder J. 2019. Optimizing data-flow implementations for inter-
organizational processes. Distributed Parallel Databases 37(4):651–695
DOI 10.1007/s10619-018-7251-3.

Macrinici D, Cartofeanu C, Gao S. 2018. Smart contract applications within blockchain
technology: a systematic mapping study. Telematics and Informatics 35(8):2337–2354
DOI 10.1016/j.tele.2018.10.004.

Marin-Castro HM, Tello-Leal E. 2021. An end-to-end approach and tool for bpmn process
discovery. Expert Systems with Applications 174:114662 DOI 10.1016/j.eswa.2021.114662.

Mendling J, Weber I, Aalst WVD, Brocke JV, Cabanillas C, Daniel F, Debois S, Ciccio CD,
DumasM, Dustdar S, Gal A, Garca-Bañuelos L, Governatori G, Hull R, Rosa ML, Leopold H,
Leymann F, Recker J, Reichert M, Reijers HA, Rinderle-Ma S, Solti A, Rosemann M,
Schulte S, Singh MP, Slaats T, Staples M, Weber B, Weidlich M, Weske M, Xu X, Zhu L.
2018. Blockchains for business process management-challenges and opportunities. ACM
Transactions on Management Information Systems 9(1):1–16 DOI 10.1145/3183367.

Mühlberger R, Bachhofner S, Di Ciccio C, García-Bañuelos L, López-Pintado O. 2019.
Extracting event logs for process mining from data stored on the blockchain. In: Di
Francescomarino C, Dijkman R, Zdun U, eds. Business Process Management Workshops. Cham:
Springer International Publishing, 690–703.

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 26/27

http://dx.doi.org/10.1016/j.tele.2018.11.006
http://dx.doi.org/10.1007/s00287-019-01178-x
http://dx.doi.org/10.1016/j.jfs.2014.11.006
http://dx.doi.org/10.1007/s10257-015-0295-2
http://dx.doi.org/10.1007/s10619-018-7251-3
http://dx.doi.org/10.1016/j.tele.2018.10.004
http://dx.doi.org/10.1016/j.eswa.2021.114662
http://dx.doi.org/10.1145/3183367
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

Naderifar V, Sahran S, Shukur Z. 2019. A review on conformance checking technique for the
evaluation of process mining algorithms. TEM Journal 8(4):1232–1241.

Nakamura H, Miyamoto K, Kudo M. 2018. Inter-organizational business processes managed by
blockchain. In: WISE. 3–17.

Narbayeva S, Bakibayev T, Abeshev K, Makarova I, Shubenkova K, Pashkevich A. 2020.
Blockchain technology on the way of autonomous vehicles development. Transportation
Research Procedia 44:168–175 LOGI 2019-Horizons of Autonomous Mobility in Europe.

Oliva GA, Hassan AE, Jiang ZM. 2020. An exploratory study of smart contracts in the ethereum
blockchain platform. Empirical Software Engineering 25(3):1864–1904
DOI 10.1007/s10664-019-09796-5.

Pranto T, Noman A, Mahmud A, Haque A, Taylor I. 2021. Blockchain and smart contract for iot
enabled smart agriculture. PeerJ. Computer Science 7:e407 DOI 10.7717/peerj-cs.407.

Song S, Huang R, Cao Y, Wang J. 2021. Cleaning timestamps with temporal constraints. The
VLDB Journal 30(3):425–446 DOI 10.1007/s00778-020-00641-6.

Sookhak M, Jabbarpour MR, Safa NS, Yu FR. 2021. Blockchain and smart contract for access
control in healthcare: a survey, issues and challenges, and open issues. Journal of Network and
Computer Applications 178(1):102950 DOI 10.1016/j.jnca.2020.102950.

Sturm C, Szalanczi J, Schönig S, Jablonski S. 2019. A lean architecture for blockchain based
decentralized process execution. In: Daniel F, Sheng QZ, Motahari H, eds. Business Process
Management Workshops. Cham: Springer International Publishing, 361–373.

Suriadi S, Andrews R, ter Hofstede A, WynnM. 2017. Event log imperfection patterns for process
mining: towards a systematic approach to cleaning event logs. Information Systems
64(1):132–150 DOI 10.1016/j.is.2016.07.011.

van der Aalst WMP. 2011. Intra-and inter-organizational process mining: discovering processes
within and between organizations. In: Johannesson P, Krogstie J, Opdahl AL, eds. The Practice of
Enterprise Modeling. Berlin, Heidelberg, Berlin Heidelberg: Springer, 1–11.

van der Aalst WMP. 2012. Process mining. Communications of the ACM 55(8):76–83
DOI 10.1145/2240236.2240257.

van der Aalst WMP, Weijters AJMM. 2004. Process mining: a research agenda. Computers in
Industry 53(3):231–244 DOI 10.1016/j.compind.2003.10.001.

van Dongen BF, de Medeiros AKA, Verbeek HMW,Weijters AJMM, van der Aalst WMP. 2005.
The ProM framework: a new era in process mining tool support. In: Ciardo G, Darondeau P, eds.
Applications and Theory of Petri Nets 2005. Berlin, Heidelberg: Springer, 444–454.

Weber I, Xu X, Riveret R, Governatori G, Ponomarev A, Mendling J. 2016. Untrusted business
process monitoring and execution using blockchain. In: La Rosa M, Loos P, Pastor O, eds.
Business Process Management. BPM 2016. Lecture Notes in Computer Science. Vol. 9850. Cham:
Springer.

Morales-Sandoval et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.731 27/27

http://dx.doi.org/10.1007/s10664-019-09796-5
http://dx.doi.org/10.7717/peerj-cs.407
http://dx.doi.org/10.1007/s00778-020-00641-6
http://dx.doi.org/10.1016/j.jnca.2020.102950
http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1145/2240236.2240257
http://dx.doi.org/10.1016/j.compind.2003.10.001
http://dx.doi.org/10.7717/peerj-cs.731
https://peerj.com/computer-science/

	Blockchain support for execution, monitoring and discovery of inter-organizational business processes
	Introduction
	Background
	Related work
	Methods
	Experimental evaluation and results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

