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ABSTRACT
Due to limited resources, wireless sensor network (WSN) nodes generally possess weak
defense capabilities and are often the target of malware attacks. Attackers can capture
or infect specific sensor nodes and propagate malware to other sensor nodes in WSNs
through node communication. This can eventually infect an entire network system
and even cause paralysis. Based on epidemiological theory, the present study proposes a
malware propagationmodel suitable for cluster-basedWSNs to analyze the propagation
dynamic of malware. The model focuses on the data-transmission characteristics
between different nodes in a cluster-based network and considers the actual application
parameters of WSNs, such as node communication radius, node distributed density,
and node death rate. In addition, an attack and defense game between malware
and defending systems is also established, and the infection and recovery rates of
malware propagation under the mixed strategy Nash equilibrium condition are given.
In particular, the basic reproductive number, equilibrium point, and stability of the
model are derived. These studies revealed that a basic reproductive number of less than
1 leads to eventual disappearance of malware, which provides significant insight into
the design of defense strategies against malware threats. Numerical experiments were
conducted to validate the theory proposed, and the influence of WSN parameters on
malware propagation was examined.

Subjects Computer Networks and Communications, Security and Privacy
Keywords Malware propagation, Cluster-based WSNs, Equilibrium point, Game theory, Basic
reproductive number

INTRODUCTION
Wireless sensor networks (WSNs) are multi-hop self-organizing network systems formed
by large-scale sensor nodes communicating with each other deployed in the monitoring
area. With the rapid development of the Internet of Things and sensor technology,
WSNs are widely used in various civilian and military fields, such as in smart cities,
environmental monitoring, and data collection (Ahmad et al., 2017; García et al., 2020;
Khalifeh et al., 2021; Cai & Mirrabbasi, 2021; Lazarescu & Poolad, 2021). However, due to
the limited energy and computing resources of sensor nodes, it is difficult to construct
a complex security protection system (Farjamnia, Gasimov & Kazimov, 2019). To reduce
costs, manufacturers of sensor-node devices could neglect security. At the same time,
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sensor nodes are usually deployed in an open environment, which provides convenience
for attackers (Liu et al., 2020). WSNs face many security threats, including denial-of-service
(DoS) attacks, node capture, malware infection, and others (Souissi, Ben Azzouna & Ben
Said, 2019). WSN security issues have attracted wide attention in academic circles and
industrial circles.

Malware is a computer program that threatens or harms a network or system. The
most common malware includes viruses, worms and Trojan horses, among others. In a
WSN application, data are transmitted between adjacent nodes through wireless links,
which creates favorable conditions for the propagation of malware. Malware may cause
node failure, data leakage, DoS, and other failures., and can infect surrounding nodes
through wireless transmission (Ojha et al., 2021). An attacker can target certain nodes,
inject malware, and use the propagation mechanism to propagate the malware to the entire
network, resulting in damage to the entire network system. However, the WSN system
generally deploys protectivemeasures againstmalware propagation that can detect data sent
by system nodes and repair the nodes infected with the malware. However, implementation
of these protective measures will predominately occupy limited communication channel
resources and consume node power, which will increase data-transmission delays and
shorten the lifecycle of network nodes. Therefore, it is necessary to choose an appropriate
defense strategy to suppress the propagation of malware and minimize the loss of the
entire system (Zhou, Shen & Liu, 2020). Therefore, it is vital to study the principles and
mechanisms of malware propagation under attack and defense scenarios in WSNs.

In traditional Internet scenarios, epidemiological models have been widely used to
study malware propagation, and a large number of computer malware propagation models
have been proposed (Chen & Ji, 2005; Wang et al., 2014). However, because WSNs have
the unique characteristics of limited node energy, node communication radius, and high
node density, the mechanism of WSN Internet malware propagation clearly differs from
traditional Internet scenarios. Therefore, the computer malware propagationmodel cannot
be directly applied to malware propagation in WSNs.

In this study, the malware propagation model for cluster-based WSN network topology
is evaluated based on game theory and epidemiology. Its primary contributions are as
follows:

(1) An attack-defense game is proposed between malware and a WSN defend system.
The mixed strategy Nash equilibrium of the model is obtained, and the infection rate of
malware and the recovery rate of the system is calculated based on the Nash equilibrium
solution of both parties in the game.

(2) A malware propagation mathematical model for cluster-based WSNs (based on the
classic SIR model) is proposed under the attack-defense game. The model considers the
data-transmission characteristics of cluster head nodes and common nodes, as well as the
actual application scenarios and characteristics of WSNs, including node communication
radius, node density, and node death.

(3) The basic reproductive number R0 and equilibrium point of the model are deduced,
and the stability of the equilibrium point proved. When R0< 1, WSN malware eventually
disappears; otherwise, WSN malware will exist consistently.
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(4) Numerical simulations are proposed for the proposed model; the experimental
results support the correctness and effectiveness of the proposed model and elucidate the
relationship between malware propagation and WSN parameters.

The remainder of the paper is organized as follows. In ‘Related Work’, related work
on malware propagation is discussed. In ‘Proposed Model’, a novel malware propagation
model for cluster-based WSNs under an attack-defense game is introduced. In ‘Existence
and Stability of Equilibrium’, the equilibrium points and stability of the model system
are deduced. The simulation and numerical analysis results for the malware propagation
model are presented in ‘Simulation and Numerical Analysis’. Conclusions are drawn in
‘Conclusion’.

RELATED WORK
Research toward exploring the malware propagation behavior of WSNs has resulted in
several achievements. A robust survey has summarized malware propagation models in
networks (Queiruga-Dios et al., 2017). In a study evaluating the propagation dynamics of
worms in time and space inWSNs,Khayam & Radha (2005) considered the physical, MAC,
and network layers of actual sensor networks according to the topology characteristics of
WSNs, and proposed the topologically aware worm propagation model (TWPM). Shen
et al. (2016) proposed a malware propagation model based on the epidemiology theory,
and solved the problem of how to evaluate the reliability of sensor nodes in the case of
malware propagation, so as to ensure efficient, continuous, and reliable transmission of
sensory data from the node to the sink. Mishra & Keshri (2013) proposed an infectious
disease model that includes a vaccination room. Their model not only reflects the temporal
and spatial dynamics of the worm propagation process, but also performs mathematical
analysis and numerical simulation on the worm propagation process. Nwokoye & Umeh
(2018) developed the analytic-agent cyber dynamical systems analysis and design method
(A2CDSADM ) by combining the prevalent analytical and agent methods. This method
can not only reflect the time dynamics of malware spreading, but can also observe the
spatial dynamic changes of sensor nodes of different groups. Qiao et al. (2014) found that
WSNs have the characteristics of small-world networks. They studied the epidemics in the
small world of tree-based networks and calculated the epidemic threshold for epidemic
outbreaks.

Many studies based on classic SIR epidemiology have also been undertaken.Wang & Li
(2009) considered the energy of the sensor node to be limited; thus, based on the SIRmodel,
the node death state was introduced to obtain a new model, i.e., iSIRS. The authors further
proposed the EiSIRS virus propagation model (Wang, Li & Li, 2010), which describes the
process of worm propagation in WSNs with sleep mechanisms. Their experimental results
demonstrate that the remaining energy of nodes and the sleep scheduling mechanism are
effective against worms. The propagation of viruses in WSNs has a certain impact. Liping
et al. (2015) proposed an improved SIRS worm propagation model that considers the
communication radius and distribution density of WSN nodes, determines the model’s
equilibrium and basic reproductive number, and obtains large-scale worm propagation
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conditions. Zhu, Zhao & Wang (2015) proposed a SIRS malware propagation model with
a state-feedback controller. Through the analysis of model stability and Hopf bifurcation,
the state-feedback method was successful for unstable stable states and periodic oscillation
control. Tang et al. proposed an SI model based on node dormancy maintenance that
provides a repair function when an infected node enters the dormant state (Tang & Mark,
2009; Tang, 2011). The improved SI model can effectively prevent virus propagation in the
network without adding any additional hardware workload or computational overhead.

The attack and defense parties of malware in WSNs can be regarded as having a game
relationship. Therefore, game theory is also widely used in the security of WSNs, especially
in malware-related fields. Abdalzaher et al. (2016) proposed a node protection model
based on a Stackelberg game, which can be adapted to two different malicious node
attack scenarios. In the first scenario, the attacker selects a group of nodes for which the
protection degree is lower than a certain threshold to attack. In the second scenario, the
attacker’s goal is to defend the weakest node in the previous round of attack. Wang, Li &
Dong (2018) proposed an improved two-dimensional (2D) cellular automata model and a
multi-role evolutionary gamemodel to describe the process of malware propagation. Based
on the existing 2D cellular automata malware model, the epidemiological propagation
mechanism is improved, and the dynamic equation of strategy evolution is given. Shen
et al. (2017) proposed a non-cooperative non-zero-sum game to describe the interaction
between heterogeneous WSNs (HWSNs) system and malware. The game model can
predict infection behavior of malware. Further, the author has established a node reliability
evaluation mechanism in the state of malware propagation, which can efficiently evaluate
system availability and reliability. Shen et al. (2014) proposed a differential game model
for maleware propagation in WSNs. In the process of the game between the system and
the malware, the defense strategy can be changed dynamically, so that the total cost can be
minimized. In addition, the author also considered the node sleep state in the process of
propagation.

The current WSN malware propagation model is based on a flat network structure;
in which all nodes in the network are equal and have completely consistent functional
characteristics. However, the actual application scenarios of WSNs typically adopt a
hierarchical network structure, and nodes are deployed in clusters. There are two types
of nodes in WSNs, cluster head nodes and common nodes. This cluster-based network
topology has many advantages over flat topology, such as easy expansion, convenient
centralized management, low system construction cost, high network coverage, and
reliability (Huang, Jie & Guizani, 2014). Because different network topologies adopt
different data-transmission rules, the propagation mechanisms of malicious network
software can vary substantially. Thus, previous studies cannot be applied to cluster-based
hierarchical networks. In addition, existing epidemiological studies do not consider the
strategies of infection rate and recovery rate, but only use a fixed parameter to express it,
thus ignoring the impact of the attack and defense game process on the dynamics ofmalware
propagation. In the actual propagation of WSN malware, both the cost and benefits of
malware infection and system defense will be considered. For malware, if the expected
benefit of launching an attack is greater than the cost, it will launch an infection attack.

Zhu and Huang (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.728 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.728


Otherwise, its malicious intentions will be hidden. For system defense, the data is received
by the node detected only when the system benefit of detection and repair is greater than the
cost of detection. In response to these problems, in this study the propagation processes of
malware inWSNs are analyzed, and a more effective formal model established to accurately
determine the propagation dynamics of malware with cluster-based hierarchical network
structure.

PROPOSED MODEL
The proposed identification method is presented in this section, but first the notations
and their definitions that will be used in this paper are listed in Table 1. A cluster-based
hierarchical WSN can be divided into cluster head nodes and common nodes according
to the function of sensor nodes as shown in Fig. 1. Each cluster head node contains the
same functional protocol, such as MAC address, routing, nodes management, or security
protocol, while common sensor nodes usually do not have functions such as routing,
management, and aggregation processing. The common nodes send collected data to the
cluster head node. After data-fusion processing, the cluster head node transfers the data
through a multi-hop routing and forwarding mechanism, and finally uploads it to the
network base station. Therefore, common nodes can only communicate with the cluster
head node of the cluster, but cluster head nodes can communicate with one another. It
is assumed that sensor nodes are evenly distributed and deployed in a certain area, the
communication radius of each sensor node is r , and the deployment density of the cluster
head nodes is σ .
According to the classic SIR epidemiological model, the network nodes can have the
following three states.

• Susceptible (S): The susceptible nodes are in a healthy state but can be easily infected by
malware. Before the system is attacked by malware, the susceptible state is the initial state
of all sensor nodes. In the proposed model, nodes in the susceptible state are divided
into susceptible cluster head nodes and susceptible common nodes.
• Infected (I ): The infected nodes are in a state of being contaminated by malware and
can send multiple copies of the malware to nearby nodes by data interaction, thereby
infecting the nodes in state S. Similar to the susceptible nodes in the proposed model,
the nodes in state I are divided into infected cluster head nodes and infected common
nodes.
• Recovered (R): The recovered nodes are infected nodes that have been restored to
a healthy state through security measures such as virus detection and vulnerability
patching and will acquire immunity.

Game between malware and defend system for WSNs
Before studying the propagation mechanism of WSNs malware, one must first consider
the attack and defense strategy between malware and a defend system. For sensor nodes
infected by malware, it can propagate to more surrounding nodes, which can make the
network invalid in a large area. However, if the malware propagates too frequently, it is
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Table 1 Table of notations and definitions.

Notation Definition

M/D Malware/defend system
CM/CD Malware/defend system’s strategy space
UM/UD Malware/defend system’s utility
S̃(t )/S(t ) Number of susceptible cluster head nodes/common nodes

at time t
Ĩ (t )/I (t ) Number of infected cluster head nodes/common nodes at

time t
R(t ) Number of recovered nodes at time t
S̃r/Sr Number of effective contacts of cluster head

nodes/common nodes
N1/N2 Number of cluster head nodes/common nodes in cluster-

based WSNs
β Infection rate of malware
γ Recovery rate of infected nodes
r Communication radius of sensor nodes
b Birth rate of sensor nodes
σ Density of cluster head nodes
ε Cost of attack by infected node
τ Cost of system repairing infected node
ν Cost of security detection by susceptible nodes on received

data packets
e After infected node is restored, cost to malware or gain to

system
R0 The basic reproductive number of malware propagation
E0 The malware-free equilibrium malware propagation
E1 The endemic equilibrium of malware propagation

easy to be detected by susceptible nodes and repaired. At the same time, the energy of
the infected node will be consumed every time the malware is propagated. Therefore, the
problem for infected nodes is maximizing the propagation of malware while minimizing
their own energy consumption. As for the defend system, the data received by the node
can be detected for security. If abnormal malware packets are found, the data will be
discarded, and the last hop node will be installed with patches and restored. However, these
methods will inevitably bring interference to the normal operation of WSNs. For example,
detecting data and installing security patches will consume energy and occupy bandwidth.
Therefore, the defend system will also detect the received data with a certain probability,
so as to maximize its own benefits. This shows that the attack and defense process between
malware and defend systems is actually a game. Therefore, in this paper game theory is
used to analyze the attack and defense strategies between them.

Definition: The strategic game between malware and a defend system in WSNs is
composed of a ternary G= (J ,{Ci} ,{Ui}), where

• J = {M,D} is the set of players in the game, where M and D represent the malware
and the defend system, respectively.
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Figure 1 Topological structure of cluster-basedWSNs.
Full-size DOI: 10.7717/peerjcs.728/fig-1

• Ci is the strategy set of player iwhen i is the defend system;CD=
{
detecting ,nodetecting

}
,

when i is malware; CM=
{
propagation,nopropagation

}
.

• Ui is the utility obtained by the player i during the game, and its value is determined by
the strategies adopted by both sides of the game.

According to the attack and defense game in Definition 1, the payoff matrix of the
game can be obtained, as shown in Table 2. If the susceptible node performs security
detection on the received data packet, it must consume energy and may block the channel,
and the resulting system cost is recorded as ν. The cost of malware caused by the energy
consumption of the infected node sending the data packet containing the malicious
software to the next hop node is recorded as ε. After the susceptible node is detected, if
malware is found, the system will repair the last hop node, which will consume energy and
bandwidth, and set the total cost as τ . After the repair is successful, the utility to the system
and the cost to the malware are both e. When the malware initiates an attack and the
system initiates detection, the overall utility of the system is −ν−τ + e, and the utility of
the infected node is −e−ε. When the system is not detected, the utility of the system and
that of the malware are −e and e−ε, respectively. In addition, when the system initiates
detection but no malware is found, the system’s utility will be−ν. In other cases, the utility
of both parties is zero.

The notion of mixed strategy Nash equilibrium (MNE) captures a steady state of a
strategic game in which each player holds the correct expectation about other players’
behavior and acts rationally. The main feature of MNE is that the opponent adopts any
pure strategy, and the player’s expected utility is the same. According to game theory, there
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Table 2 Game payoff for defend system andmalware.

Defend system Malware

Propagation Non-propagation

Detection −ν−τ+e,−e−ε −ν, 0
Non-detection −e, e−ε 0, 0

must be MNE in the game of limited players, so one can solve the MNE of the game G.
Assume that malware attacks and propagates with a probability of p, and does not attack
with a probability of 1−p. The system detects the received data with probability q, and
does not detect with probability 1−q. The utility maximization method to can be used to
solve the MNE. According to the utility matrix, the expected utility of the system E(UD) is

E(UD)= pq(−ν−τ+e)+q
(
1−p

)
(−ν)

+p
(
1−q

)
(−e)

(1)

Letting ∂E(UD)
∂q = 0, one has

p=
ν

2e−τ
(2)

Similarly, the expected utility of malware E(UM) is

E(UM)= pq(−e−ε)+p
(
1−q

)
(e−ε) (3)

Letting ∂E(UM)
∂p = 0, one has

q=
e−ε
2e

(4)

When malware initiates an attack with probability ν
2e−τ , the expected utility of the

malware is the same regardless of whether the system is detected or not. Similarly, when
the probability of system detection is e−ε

2e , the expected utility is the same regardless of
whether the malware initiates an attack. Therefore, (p∗= ν

2e−τ ,q
∗
=

e−ε
2e ) is the MNE of the

attack and defense game betweenmalware and system.When both parties are rational, they
will use this strategy to attack and defend. When the malware initiates an attack and the
system does not detect it, the malware will spread successfully; when the malware initiates
an attack and the system detects it, the system will find the malware and repair the data
source node. Therefore, the malware infection rate and system recovery rate under MNE
conditions can be obtained:

β = p∗
(
1−q∗

)
=

ν(e+ε)
2e (2e−τ)

(5)

γ = p∗q∗=
ν(e−ε)
2e (2e−τ)

(6)
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Malware propagation model
In this subsection, a malware propagation model is established under the condition of
MNE. Let S̃(t ), Ĩ (t ), S(t ), I (t ), and R(t ) denote the susceptible cluster head nodes, infected
cluster head nodes, susceptible common nodes, infected common nodes, and number of
recovered nodes at time t , respectively. According to the malware attack strategy under
MNE, the infected nodes infect surrounding susceptible nodes with infection rate β that
can communicate with each other. Moreover, according to the system defense strategy, the
infected nodes recover at a rate of γ .

In a cluster-based hierarchical network, it is assumed that the number of cluster head
nodes and common nodes are N1 and N2, respectively; that is, there are N1 clusters
in the network, and each cluster contains N2/N1 common nodes with the node status
conversions. Letting S̃r (t ) and Sr (t ) represent the effective contact number of the infected
cluster head node against the susceptible cluster head node and the susceptible common
node, respectively. The formula is expressed as follows:

S̃r (t )=
σπr2

N1
S̃(t ) (7)

Sr (t )=
S(t )
N1

(8)

Each infected node can infectβS̃r susceptible nodes per unit time. Therefore, the conversion
rate of susceptible cluster head nodes to infected cluster head nodes is βS̃r (t )̃I (t ) at time
t . Since common nodes cannot communicate with each other but can only be infected by
cluster head nodes, the infection rate of common nodes is also determined by Ĩ (t ). The
conversion rate from susceptible common node to infected common node is βSr (t )̃I (t ) at
time t . At the same time, due to the existence of the defense system, the conversion rate of
infected nodes I and Ĩ to immune group R is γ I (t ) and γ Ĩ (t ), respectively. Considering
that the node cannot continue to work due to physical device damage or exhaustion of
battery power, the death and births rate of the node are both set to b, which ensures that
the number of nodes in the network remains constant. In this way, we can obtain the state
transition relationship between groups in the cluster network shown in Fig. 2.

In accordance with the rates of change between different states shown in Fig. 2, one can
establish a mathematical model of a system of differential equations based on cluster-based
WSNs for malware propagation:

dS̃(t )
dt
= bN1−β

σπr2

N1
S̃(t )̃I (t )− b̃S(t )

d̃I (t )
dt
=β

σπr2

N1
S̃(t )̃I (t )−γ Ĩ (t )− b̃I (t )

dS(t )
dt
= bN2−β

S(t )
N1

I ′(t )−bS(t )

dI (t )
dt
=β

S(t )
N1

I ′(t )−γ I (t )−bI (t )

dR(t )
dt
= γ Ĩ (t )+γ I (t )−bR(t )

(9)
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Figure 2 State-transition relationships of nodes inWSNs.
Full-size DOI: 10.7717/peerjcs.728/fig-2

Since the total number of sensor nodes in the system is a fixed value (N1+N2), one can
obtain

R(t )=N1+N2− S̃(t )−S(t )− Ĩ (t )− I (t ) (10)

Therefore, primarily the first four equations in system (9) are considered. Letting

α1=β
σπr2

N1
(11)

α2=
β

N1
(12)

The system model Eq. (9) can finally be simplified as

dS̃
dt
= bN1−α1̃S̃I− b̃S

d̃I
dt
=α1̃S̃I−γ Ĩ− b̃I

dS
dt
= bN2−α2S̃I−bS

dI
dt
=βα2S̃I−γ I−bI

(13)

EXISTENCE AND STABILITY OF EQUILIBRIUM
In this section equilibrium points of system Eq. (13) are derived and their stability proved.
If an equilibrium point is globally stable, then the final state of the system is certain under
any initial conditions. For equilibrium points of system Eq. (13), one has

dS̃
dt
= 0,

d̃I
dt
= 0,

dS
dt
= 0,

dI
dt
= 0 (14)
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Letting

α1̃S̃I−γ Ĩ− b̃I = 0 (15)

one has (i) Ĩ = 0 or (ii) S̃= (γ +b)/α1 and Ĩ > 0. For the case of Ĩ = 0, one hasmalware-free
equilibrium

E0= (̃S0,̃I0,S0,I0)= (N1,0,N2,0) (16)

For the case of S̃= (γ +b)/α1 and Ĩ > 0, one has endemic equilibrium:

E1= (̃S1,̃I1,S1,I1) (17)

where

S̃1=
γ +b
α1

(18)

Ĩ1=
bN1

γ +b
−

b
α1

(19)

S1=
bN2

α2̃I1+b
(20)

I1=
bN2

(γ +b)(1+ b
α2̃I1

)
(21)

Letting

R0=
N1α1

γ +b
=
βσπr2

γ +b
(22)

R0 is the basic reproductive number of system Eq. (13), and only if R0> 1; thus, Ĩ1> 0,
and the endemic equilibrium E1 is meaningful.

Malware-free equilibrium and its stability
To investigate the local stability of the equilibrium points of the system Eq. (13), one must
calculate the corresponding Jacobian matrix as

J =


−α1̃I−b −α1̃S 0 0
α1̃I α1̃S−γ −b 0 0
0 −α2S −α2̃I−b 0
0 α2S α2̃I −γ −b

 (23)

Lemma 1. The malware-free equilibrium E0 of system Eq. (13) is locally asymptotically
stable if R0< 1 and unstable if R0> 1.
Proof. Calculating the Jacobian matrix Eq. (25) at malware-free equilibrium, one obtains

J (E0)=


−b −α1N1 0 0
α1̃I α1N1−γ −b 0 0
0 −α2N2 −b 0
0 α2N2 0 −γ −b

 (24)
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To prove the stability at the point E0, one will find all the eigenvalues (λ) of the matrix
Eq. (26). The eigenvalues are given as

λ=−b, −γ −b, α1N1−γ −b (25)

where −b is a double eigenvalue.
Hence, when R0< 1, all eigenvalues of the matrix (26) have no positive real part, and the

malware-free equilibrium E0 is locally asymptotically stable; when R0> 1, Eq. (26) has a
positive eigenvalue α1N1−γ −b. Thus, malware-free equilibrium E0 is unstable. Theorem
2. The malware-free equilibrium E0 is globally asymptotically stable if R0< 1.
Proof. Let

D=
{
(̃S,̃I ,S,I )∈R4 ∣∣06 S̃+ Ĩ 6N1, 06 S+ I 6N2, S̃,̃I ,S,I > 0

}
(26)

Obviously, D is the positive invariant set of system Eq. (13). When R0< 1, construct the
Liapunov function

V (t )= Ĩ (t ) (27)

The derivative of V (t ) along the trajectory of system Eq. (13). is

dV (t )
dt
=

d̃I (t )
dt
=
[
α1̃S−(b+γ )

]̃
I

6 [α1N1−(b+γ )]̃I
(28)

Since R0< 1, then α1N1−(b+γ )< 0. Thus,

Q=
{(̃

S,̃I ,S,I
)
∈D

∣∣∣∣dV (t )dt
= 0

}
=
{̃
I = 0

}
(29)

Therefore, the maximum invariant set of the system in Q is
{̃
I = 0

}
. According to the

principle of Lasalle invariance,

lim
t→∞̃

I (t )= 0 (30)

Substituting the preceding equation into system Eq. (13).

lim
t→∞̃

S(t )=N1, lim
t→∞

S(t )=N2, lim
t→∞

I (t )= 0 (31)

Therefore, E0 is globally attractive. Combined with the local stability of E0, it can be seen
that E0 is globally asymptotically stable.

Endemic equilibrium and its stability
Lemma 3. The endemic equilibrium E1 of system Eq. (13) is locally asymptotically stable if
R0> 1.
Proof. At the endemic equilibrium point, the Jacobian matrix is

J (E1)=



−α1̃I1−b −γ −b 0 0
α1̃I1 0 0 0

0 −
bN1

Ĩ1+ b
α2

−α2̃I1−b 0

0
bN1

Ĩ1+ b
α2

α2̃I1 −γ −b


(32)
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Two eigenvalues are given as

λ=−α2̃I1−b, −γ −b (33)

and are negative. The remaining two eigenvalues are given by

λ2+ (α1̃I1+b)λ+ (γ +b)α1̃I1= 0 (34)

According to the Routh–Hurwitz criteria, since all the coefficients of Eq. (36) are positive,
there is no positive real part eigenvalue. When R0> 1, all eigenvalues of the matrix Eq. (34)
have no positive real part, and endemic equilibrium E1 is locally asymptotically stable.
Theorem 4. The endemic equilibrium E1 is globally asymptotically stable if R0> 1.
Proof.When R0> 1, construct the Liapunov function

V (t )=
1
2
ω1
(̃
S− S̃1

)2
+ω2

(̃
I− Ĩ1− Ĩ1 ln

Ĩ
Ĩ1

)
(35)

where ωi> 0,i =1 ,2. The derivative of V (t ) along the trajectory is

dV (t )
dt
=ω1

(̃
S− S̃1

) dS̃(t )
dt
+ω2

(
1−

Ĩ1
Ĩ

)
d̃I (t )
dt

=ω1
(̃
S− S̃1

)(
bN1−α1̃S̃I− b̃S

)
+ω2

(̃
I− Ĩ1

)(
α1̃S−α1̃S1

)
=−ω1

(̃
S− S̃1

)2(
α1̃I+b

)
+α1

(
ω2−ω1̃S1

)(̃
I− Ĩ1

)(̃
S− S̃1

) (36)

Letting ω2=ω1̃S1, and any value ω1> 0, one thus obtains

dV (t )
dt
=−ω1

(̃
S− S̃1

)2(
α1̃I+b

)
6 0 (37)

and, obviously,

Q=
{(̃

S,̃I ,S,I
)
∈D

∣∣∣∣dV (t )dt
= 0

}
=
{̃
S= S̃1

}
(38)

where D is determined by Eq. (28). Therefore, the maximum invariant set of the system in
Q is

{̃
S= S̃1

}
According to the principle of Lasalle invariance,

lim
t→∞̃

S(t )= S̃1 (39)

Substituting this into system Eq. (13), one has

lim
t→∞̃

I (t )= Ĩ1, lim
t→∞

S(t )= S1, lim
t→∞

I (t )= I1 (40)

Therefore, E1 is globally attractive. Combined with the local stability of E1, it can be seen
that E1 is globally asymptotically stable.

SIMULATION AND NUMERICAL ANALYSIS
According to Theorem 2 and Theorem 4, the size of basic reproductive number R0 is of
great significance in determining whether WSNmalware will continue to propagate. When
R0< 1, the system reaches global stability at the malware-free equilibrium point regardless
of the initial state of each group in the network, and the malware will eventually disappear.
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Figure 3 Dynamics showing that number of nodes in different states changes with time. (A) R0 < 1
(β = 0.0061, γ = 0.0044), the number of infected nodes is eventually reaches zero. (B) R0 > 1 (β = 0.3,
γ = 0.0333), the number of infected nodes is eventually reaching a constant value at the disease equilib-
rium point E1.

Full-size DOI: 10.7717/peerjcs.728/fig-3

However, when R0 > 1, the system reaches global stability at the epidemic equilibrium
point, and the number of infected nodes in the final system will be maintained at a normal
state. Therefore, one can manipulate the size of the basic reproductive number R0 by
changing network parameters, for example node density, communication radius, and
death rate, to determine the effects of these parameters on malware propagation. To verify
the results, a numerical simulation experiment was conducted using the system dynamics
modeling software Vensim.

It is assumed that the number of cluster head nodes N1 = 100, and the number of
common nodes N2= 1000 in a WSN, and a set of simulation parameters was chosen as
follows: b= 0.01,γ = 0.01,σ = 0.5, r = 1, ε = 8, ν= 1, τ = 5, e= 50, and β = 0.01. Initial
values of susceptible, infected, and recovered nodes in WSNs are S̃(0)= 75, Ĩ (0)= 25,
S(0)= 1000, I (0)= 0, and R(0)= 0. According to Eqs. (5) and (6), one can obtain the
infection and recovery rates as 0.0061 and 0.0044 under the game of the malware and the
defend system, respectively, and further calculate that R0< 1.

The dynamics that the number of nodes in different states changes with time is shown
in Fig. 3. Based on Fig. 3A, throughout the propagation of WSN malware, the number of
infected cluster head nodes is monotonously decreasing, and eventually reaches zero; the
number of infected common nodes increases rapidly in the initial stage, but as the number
of cluster head infected nodes decreases, the number of common nodes infected gradually
decreases, and eventually reaches zero. The other three state groups eventually reach a
stable level. Therefore, the system state eventually reaches the malware-free equilibrium
point E0, which is consistent with Theorem 2.

To further verify the propagation dynamics when R0> 1, the loss detected by the system
is reduced to ν= 5 and the revenue of node recovery increased to e= 10. At this time, the
infection and recovery rates will increase to 0.3 and 0.0333, respectively. In this situation,
one can obtain R0> 1. The numerical simulation results are shown in Fig. 3B. It is found
that the number of infected nodes increases rapidly in the initial stage, and then begins
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Figure 4 Dynamics of infected nodes for different communication radii r . (A) Infected cluster head
nodes Ĩ (t ), (B) Infected common nodes I (t ). When r < rth, the malware in the system will eventually dis-
appear; when r > rth, the number of infected nodes eventually tends to a constant value.

Full-size DOI: 10.7717/peerjcs.728/fig-4

to decline before eventually reaching a constant value. Malware continues to propagate
among network nodes, which shows the influence of the infection and recovery rates
on malware propagation in WSNs. This is also in line with the conclusion obtained in
Theorem 4, namely that the system is ultimately at the disease equilibrium point E1. Next,
the effects of sensor-node density, node communication radius, and node death rate on
WSN malware infection are studied.

Node communication radius r
Letting R0= 1 for Eq. (24), one can obtain the node communication radius threshold of
the malware propagation in a cluster-based WSN:

rth=
√
(γ +b)/βσπ (41)

That is to say, when r < rth, R0< 1, according to Theorem 2, system Eq. (13) will stabilize at
the malware-free equilibrium E0, and the malware in the system will eventually disappear.
When r > rth, R0> 1, and, according to Theorem 4, system Eq. (13) will stabilize at the
endemic equilibrium E1, and malware in WSNs will exist consistently. According to the
aforementioned WSN parameters, one can calculate rth= 1.2259. As shown in Fig. 4, when
r = 0.5< rth and r = 1< rth, system Eq. (13) stabilizes at malware-free equilibrium. The
number of infected nodes eventually reaches zero, and convergence speed increases as
r decreases. When r = 2> rth and r = 3> rth, system Eq. (13) stabilizes at the endemic
equilibrium. The number of infected nodes eventually tends to a constant value, and the
constant value increases with r .

Node distributed density σ

One can also obtain the node distributed density threshold of malware propagation in a
cluster-based WSN according to Eq. (24):

σth=
γ +b
βπr2

(42)
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Figure 5 Dynamics of infected nodes for different distributed densities σ. (A) Infected cluster head
nodes Ĩ (t ), (B) Infected common nodes I (t ). When σ < σth, the malware in the system will eventually dis-
appear; when σ >σth, the number of infected nodes eventually tends to a constant value.

Full-size DOI: 10.7717/peerjcs.728/fig-5

That is to say, when σ <σth,R0< 1, and themalware in the systemwill eventually disappear.
When σ > σth, R0> 1, and system Eq. (13) will stabilize at the endemic equilibrium E1,
and malware will exist consistently. By calculation, σ = 0.7514. As shown in Fig. 5, when
σ = 0.1<σth and σ = 0.5<σth, themalware will eventually disappear, and the convergence
speed increases as σ decreases. When σ = 1>σth and σ = 5>σth, the number of infected
nodes eventually tends to a constant value, and the constant value increases with σ .

Node death rate b
The threshold of malware propagation about the death rate of nodes is

bth=βσπr2−γ (43)

That is to say, when b> bth, R0< 1, the malware in the system will eventually disappear.
When b< bth, R0 > 1, system Eq. (13) will stabilize at the endemic equilibrium E1, and
malware will exist consistently. By calculation, bth = 0.0052. As shown in Fig. 6, when
b= 0.001< bth and b= 0.003< bth, system Eq. (13) stabilizes at endemic equilibrium.
When b= 0.01> bth and b= 0.03> bth, system Eq. (13) stabilizes at malware-free
equilibrium. In contrast with communication radius r and node density σ , even when R0

is greater than 1, the number of infected cluster head nodes decreases monotonically and
eventually tends to a constant value. In Figs. 4A and 5A, it can be seen that when R0> 1
the number of infected cluster head nodes increases rapidly in the initial stage and then
decreases to a constant level.

CONCLUSION
In this paper, a differential equation model is proposed to analyze the propagation
dynamic of malware based on epidemiology and game theory for cluster-based WSNs.
The game between malware and the WSN defend system is established, and the model’s
mixed strategy Nash equilibrium obtained. Different from the malware infection rate and
recovery rate assumed in other existing propagation models, one can calculate the specific
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Figure 6 Dynamics of infected nodes for different death rates b. (A) Infected cluster head nodes Ĩ (t ),
(B) infected common nodes I (t ). When b < bth, the number of infected nodes eventually tends to a con-
stant value; when b> bth, the malware in the system will eventually disappear.

Full-size DOI: 10.7717/peerjcs.728/fig-6

parameter expression of the infection and recovery rates according to the Nash equilibrium.
When infectious disease theory is used to build a dynamic model of transmission, the
communication methods of cluster head nodes and common nodes in a cluster-based
network is considered and the malware propagation characteristics determined. The
equilibrium point of themodel is derived and the stability of the equilibrium point analyzed
to determine conditions for avoiding the continuous propagation of malware in WSNs.
The theoretical analysis and numerical simulations performed in this paper show that the
propagationdynamics ofmalware inWSNs is closely related to node communication radius,
node density, and node death rate. To effectively prevent and control the propagation of
malicious software, cluster-based WSNs should set reasonable network parameters so that
the basic reproductive number of malicious software propagation is less than 1, thereby
improving WSN defense capabilities. In future work, we will further study the malware
detection and defense issues in the WSN system, so that the system can detect malware in
time and prevent damage.
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