
Submitted 10 May 2021
Accepted 30 August 2021
Published 29 September 2021

Corresponding author
Abdullah Aljumah,
aljumah@psau.edu.sa

Academic editor
Nageswara Rao Moparthi

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.721

Copyright
2021 Aljumah

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

IoT-based intrusion detection system
using convolution neural networks
Abdullah Aljumah
College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Alkharj,
Saudi Arabia

ABSTRACT
In the Information and Communication Technology age, connected objects generate
massive amounts of data traffic, which enables data analysis to uncover previously
hidden trends and detect unusual network-load. We identify five core design prin-
ciples to consider when designing a deep learning-empowered intrusion detection
system (IDS). We proposed the Temporal Convolution Neural Network (TCNN), an
intelligent model for IoT-IDS that aggregates convolution neural network (CNN) and
generic convolution, based on these concepts. To handle unbalanced datasets, TCNN is
accumulated with synthetic minority oversampling technique with nominal continuity.
It is also used in conjunction with effective feature engineering techniques like attribute
transformation and reduction. The presented model is compared to two traditional
machine learning algorithms, random forest (RF) and logistic regression (LR), as well
as LSTM and CNN deep learning techniques, using the Bot-IoT data repository. The
outcomes of the experiments depicts that TCNNmaintains a strong balance of efficacy
and performance. It is better as compared to other deep learning IDSs, with amulti-class
traffic detection accuracy of 99.9986 percent and a training period that is very close to
CNN.

Subjects Artificial Intelligence, Computer Networks and Communications, Embedded Comput-
ing, Security and Privacy
Keywords Internet of Things, Random Forest, Linear Regression, Intrusion Detection System

INTRODUCTION
The Internet of Things (IoT) paradigm is comprised of intelligent sensors linked by the
Internet, including home appliances, phones, cars, and computers (Bhatia & Sood, 2016;
Bhatia & Sood, 2017a). This form of network is becoming an increasingly important part
of our daily lives, with implementations as diverse as smart grids, cities, homes, agriculture,
and smart transportation (Bhatia & Sood, 2017b; Bhatia & Sood, 2019). Specifically, an IoT
ecosystem is made up of web-enabled smart devices that gather, send, and act on data from
their surroundings using embedded systems such as CPUs, sensors, and communication
hardware. By connecting to an IoT gateway or other edge device, IoT devices may exchange
sensor data that is either routed to the cloud for analysis or examined locally, Bhatia, Sood
& Kaur (2019) and Bhatia & Manocha (2020). These gadgets may occasionally interact
with one another and act on the information they receive (Bhatia, Sood & Manocha,
2020). Although individuals may engage with the devices to set them up, give them

How to cite this article Aljumah A. 2021. IoT-based intrusion detection system using convolution neural networks. PeerJ Comput. Sci.
7:e721 http://doi.org/10.7717/peerj-cs.721

https://peerj.com/computer-science
mailto:aljumah@psau.edu.sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.721
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.721


instructions, or retrieve data, the gadgets conduct the majority of the work without human
participation (Bhatia et al., 2020; Bhatia, Sood & Kaur, 2020).

Research area
While the IoT will make life easier for humans, the aspect of data protection is of great
concern (Thakkar & Lohiya, 2021;Mahboub, Ahmed & Saeed, 2021). IoT platform has been
a popular target for cybercriminals as it faces significant risks. According to a survey from
Palo Alto Networks’ Unit 42, 98 percent of intelligent system data is not encrypted, and
42 percent are having IoT sensor flaws (Gill, Saxena & Sharma, 2020; Einy, Oz & Navaei,
2021;Heal & Kunreuther, 2005). Adversaries may use the compromised computers to enter
an IoT botnet and carry out effective and massive attacks. As an illustration (Antonakakis et
al., 2017), the first IoT botnet was capable of exploiting compromised CCTV camcorders
with generic credentials to unleash a DDoS attack over servers in October 2016. As a result
of this attack, Internet service in certain areas of the United States was disrupted. Mozi, an
IoT botnet discovered in April 2020, was found to be capable of launching multiple DDoS
attacks. IDS have been commonly utilized for the detection of malicious network traffic to
cope with the threat, particularly when security fails IoT device-end point. When threats
on IoT devices become complex and stealthy, IDS must adapt to keep up with the changing
security threats.

Research gaps
IoT networks produce high-dimensional, multimodal, and temporal data due to
heterogeneous structures. It is possible to uncover previously unseen trends, expose
latent similarities, and obtain new insights by using big data analytics on such data.
Artificial intelligence is becoming more prevalent in big data processing. Deep learning
(DL) methods, in particular, have shown their ability to work with heterogeneous data. It
can also analyze dynamic and large-scale data to gain information, spot data dependencies,
and learn from past attack patterns to distinguish current and unknown attack patterns.
Heavyweight functions like big data processing and constructing learning models must be
offloaded to fog and cloud servers because IoT computers are space-restricted and have
minimal storage and computing capacities. As a result, computation offloading will help
minimize task execution latency and save resources in battery-powered and handheld IoT
computers, but it also raises security issues. Many deep learning methods for IDS have
been suggested, with some of them focusing directly on IoT (Bhatia, Sood & Kaur, 2020).
However, there is still the large number of research gaps that have been identified from the
previous solutions. Some of these include
1. Limited work has been done for incorporating deep learning techniques for IDS

focusing on temporal aspects of the data.
2. Minimal work has been performed for heterogeneous data elements for the detection

of attacks.
3. The presented approach does not incorporate the energy efficiency aspect of the IDS.
4. Even though researchers have explored predictive aspects of IDS, however, the limited

focus is led on the temporal variability of the IDS.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 2/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


Figure 1 CNN architecture.
Full-size DOI: 10.7717/peerjcs.721/fig-1

Fundamentals
The term ‘‘deep learning’’ refers to the aggregation of several layers. The input layer is the
first layer, which is processed to generate output via the final layer. In between, hidden
layers are also added. Each layer is made up of a group of units known as neurons. The input
layer’s size is determined by the input data’s dimension, while the output layer is made up
of N nodes, which correspond to the N categories in a categorization task. Figure 1 shows
a convolutional neural network with multiple layers. Below are the 3 major categories of
layers:
1. Convolutional layer : It adds a series of filters to the input results, also known as

convolutional kernels. Each filter creates a function map by sliding over the input data.
The final production of the convolution layer is obtained by adding all of the generated
attribute maps together.

2. Pooling layer : It performs subsampling over the feature maps to reduce feature
reduction. The most popular pooling strategies are average pooling and maximum
pooling.

3. Fully connected layer : This layer accumulates the outputs of the connected layers
uni-formally for generating output.

State-of-the-art contributions
The current paper suggests five architecture principles to consider when designing an
accurate and efficient deep learning IDS for IoT in this article and presents TCNN, a
convolutions-based version of CNN. The beneficial aspect of CNN includes minimal
dependence on pre-processing, therefore decreasing the need for human effort for
developing its functionalities. Moreover, it is easy to understand and fast to implement.
Furthermore, it has the highest accuracy among all algorithms. Data balancing and

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 3/19

https://peerj.com
https://doi.org/10.7717/peerjcs.721/fig-1
http://dx.doi.org/10.7717/peerj-cs.721


effective function engineering were integrated with TCNN. The following are the paper’s
key contributions in detail:
1. For the creation of IoT-IDS, the current paper defines 5 core design concepts, including

handling over-fitting, data-set balance, function engineering, algorithm optimization,
and testing on IoT dataset.

2. The current paper builds and test the Temporal Convolution Neural Network (TCNN),
a DL platform to detect IoT intrusion. Convolution neural network (CNN) and causal
convolution are combined in TCNN.

3. The current paper combines TCNN with synthetic minority oversampling technique-
nominal continuous to address the problem of an imbalanced data-set (SMOTE-NC).

4. The current paper makes use of effective function engineering, which includes the
following: (1) Feature space reduction: It aids in memory utilization reduction. (2)
Function transformation: This converts warped data to a Gaussian-like distribution by
applying log transformation and regular scaler to continuous numerical functions.
Label-encoding, which replaces a categorical column with a special integer value, is
often used on categorical features.

Paper structure
The article structure is laid out as follows. The core architecture concepts for DL-IDS for
IoTs are presented in Section 3. The next section provides an outline of similar tasks. The
architecture and implementation of TCNN are described in Section 4 and 5, respectively.
Section 6 brings the paper to close-by outlining prospective study directions.

LITERATURE SURVEY
Many areas in cybersecurity have used DL, involving virus identification and IDS. The
current paper provide an overview of IoT-IDS networks in this section. A hybrid of
recurrent neural network (RNN) and convolutional neural network (CNN), was introduced
by Lopez-Martin et al. (2017) (CNN). Authors introduced layers like max-pooling, batch
normalization, and dropout to cope with overfitting. To boost the model’s usefulness,
authors just looked at a subset of functions. However, temproal aspects of the data is not
considered for effectiveness.

On the KDD 99Cup dataset, Putchala (2017) used the Gated Recurrent Unit (GRU)
algorithm. As a function filtering tool, Author used the random forest classifier.Minimizing
the loss function yields the best possible output outcomes. Bidirectional Long Short-Term
MemoryRecurrentNeuralNetwork (BLSTMRNN)was proposed byRoy & Cheung (2018).
Authors translated categorical functions to numeric values using function normalization.
The limiting aspect of the presented model is that energy effectiveness of IDS is not
discussed. On the NSL-KDD dataset, Diro & Chilamkurti (2018) used a DNN model.
Using stochastic gradient descent, the DNN’s loss function is minimized. Certain fog
devices are in charge of DL-algorithm preparation. For updating, the local parameters are
transmitted to fog-node. It encourages the right criteria to be shared and helps to prevent
local overfitting. However, no aspect of prediction is discussed in the proposed model.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 4/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


On the CICIDS2017 dataset, Roopak, Tian & Chambers (2019) used 4 separate
categorizations of MLP, LSTM, 1 Dimensional CNN, and CNN and LSTM. The authors
have duplicated documents to balance the dataset. However, no specification is presented
over the balancing approach. This problem is solved by using phases like max-pooling and
dropout in the model. However, the computational complexity of the presented model is
very high.

The Deep Belief Network is utilized to build a deep neural network in Thamilarasu &
Chawla (2019), which is then extended to an IoT simulation dataset. Each layer of the
DNN model is given a cost function, which is then optimized. The limiting aspect of the
presented model is that it doesnot addressees the issue of data balancing.

On the NSL-KDD data, Otoum, Liu & Nayak (2019) suggested the Stacked-Deep
Polynomial Network. Authors used the Spider Monkey Optimization (SMO) algorithm
(Bansal et al., 2014) to pick the best functions. The L2 regularization strategy is combined
with the loss function to prevent over-fitting. However, data balancing is not discussed in
the presented model.

On 2 generic data instances and the BoTIoT dataset, Ferrag & Maglaras (2019) utilized
RNNwith a reduced backpropagation technique. Before feeding the features toRNN-BPTT,
normalization was performed.

Roopak, Tian & Chambers (2020) suggested and tested a sequential architecture that
combined CNN and LSTM on the CISIDS2017 dataset. Authors used a multi-objective
optimization algorithm called a non-dominated sorting genetic algorithm (NSGA) to
pick the best functions. Authors used max-pooling among CNN to LSTM modules for
preventing over-fitting. However, computational complexity is very high for the presented
model. The BoT-IoT dataset was created by Koroniotis et al. (2019), who incorporated it
to validate the prediction models. Authors used attribute normalization to scale the data
within the range [0, 1] and the calculated correlation between data attributes for selection.
Aldhaheri et al. (2020) suggested a DeepDCA system by incorporating Self Normalizing
Neural Network and Dendritic Cell Algorithm. To choose the collection of features to
feed to the BoT-IoT dataset, they used Information Gain as an attribute identification
mechanism. About the fact that the authors reported findings with a balanced dataset,
there is little detail about the balancing process. The author incorporated a loss function
for weight modification of DNN layers for model optimization.

In the Bot-IoT dataset, Soe, Santosa & Hartanto (2019) suggested an Artificial Neural
Network (ANN) for detecting DDoS vulnerabilities. Authors used the SMOTE technique
to align the data set. Authors also applied function normalization to the input data before
feeding it to the ANN.

On the BoT-IoT dataset, Ge et al. (2019) used feed-forward neural networks. The data
instances are balanced using the algorithmic technique, rather than by oversampling, by
assigning class weights to the training results. Authors modified weights using the Adam
optimizer and a sparse-cross entropy loss module to refine the formula. Authors used
various regularization methods, including L1, and L2 with dropout, to cope with over-
fitting. Authors utilized one-hot encoding to encode categorical attributes as numerical.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


Table 1 IDS for IoT.

Reference DLmethod Over-fitting Balanced data Feature extraction Opitmization IoT dataset

Antonakakis et al. (2017) ANN N N FN N Y
Putchala (2017) GRU N Y FS-RF Y N
Roy & Cheung (2018) BLSTM N Y FE NY N
Roopak, Tian & Chambers (2020) RNN Y Y FS N N
Diro & Chilamkurti (2018) MLP Y Y FE N N
Roopak, Tian & Chambers (2019) DNN Y N N Y N
Soe, Santosa & Hartanto (2019) DAE Y N FE Y Y
Otoum, Liu & Nayak (2019) RNN Y Y FS N N
Thamilarasu & Chawla (2019) SDPN N Y N Y Y
Ferrag & Maglaras (2019) CNN N Y FN N Y
Muna, Moustafa & Sitnikova (2018) FNN N N FSR Y Y
Roy & Cheung (2018) FNN N SMOTE FE Y Y
Koroniotis et al. (2019) DCA N Y FS Y Y
Ge et al. (2019) FNN N Y FSR Y N
THIS WORK TCNN Y SMOTE-NC FT Y Y

Muna, Moustafa & Sitnikova (2018) suggested detecting malicious behaviors in
industrial IoT using a collaborative deep autoencoder and DNN. Evaluation of loss-
function, which allows weight modification and minimization of the dissimilarity between
the real and expected results, yields the desired parameters.

Table 1 describes and contrasts the IDS systems in terms of the 5 techniques as described
earlier. Unlike previous works, which use algorithmic-level data balancing, the current
model uses the SMOTE-NC algorithm, which can accommodate both continuous and
categorical functions, on the Bot-IoT dataset. To achieve successful IDS, the current paper
use over-fitting and optimization strategies. For memory utilization and training time,
feature space reduction is utilized along with feature transformation to achieve effective
IDS.

BACKGROUND STUDIES
DL-based IoT-IDS solutions have the goal of generating accurate models and efficient
(Bhatia, Sood & Manocha, 2020). However, each model makes design decisions that can
restrict its ability to achieve the goal. Some IoTDL-IDSs, for example, ignore the over-fitting
issue, implements over-unbalanced data, or fail to use function engineering, all of which
harm memory consumption, accuracy, and computing time. Furthermore, some IDSs do
not refine the prediction model, and others are assessed using obsolete data that does not
represent IoT traffic. As a result of the above findings, deep learning-specific solutions for
IoT should adhere to the following aspects:
1. Over-fitting : It occurs when a methodology acquires a strong match on trained data but

fails to generalize well to unknown data. Overfitting in deep learning can be avoided
using the following techniques: (1) Using regularisation, which increases the expense

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


of the model’s loss function for high weights. (2) Using dropout layers, which set
functions to 0 and delete them at random.

2. Data disparity : Data imbalance corresponds to a dataset’s disproportionate allocation
between groups. When a model is conditioned on an unbalanced sample, it becomes
skewed, favoring the dominant groups and failing to detect the minority. The model’s
effectiveness would be increased by balancing the dataset.

3. Feature engineering : It enables a reduction in the deep learning workflow’s memory and
time costs. It also allows for optimizing the model’s accuracy by removing unnecessary
features and adding feature transformation to increase the learning model’s accuracy.

4. Model optimization: Model optimization aims to minimize the size of a reduction
function, which calculates the disparity between the expected and real outputs. This is
accomplished by iteratively changing the model’s weights. The model’s effectiveness
can be increased by using an optimal technique.

PROPOSED MODEL
The proposed TCNN combines CNN architecture with causal padding to produce causal
convolutions. Figure 1 displays time-series input data being subjected to 1-Dimensional
general convolution having 3 kernel-size. Conspicuously, it is deduced that output is
convoluted with elements of the previous layer at a specific time. As a result, the data’s
temporal order is preserved, without overlapping historical data. The layers have 0 paddings
with 1 kernel size to make the same length as the input to TCNN.

Architecture in general
The proposed TCNN framework’s overall architecture is depicted in Fig. 2, and its
implementation is outlined in Section 5. The following stages make up the proposed
architecture:
1. Dataset balancing : An unbalanced dataset will lead to inaccurate performance. To

address this problem, the current paper employs the SMOTE-NC technique to generate
synthetic samples of minimal groups and can manage mixed data with categorical
attributes.

2. Initial Attribute reduction: The current paper enhances the data instances, reducing
the attribute vectors by eliminating redundant attributes and transferring memory-
intensive attributes to smaller data instances.

3. Dataset splitting: To avoid overfitting, the dataset is divided into 3 subsets: preparation,
evaluation, and checking.

4. Second Attribute Transformation: The current paper use attribute transformation
over the trained data in this process. On the continuous numerical features, a log
transformation with scaling is applied. Also, categorical attributes are encoded to
replace every class column with a numerical estimate. The validation and checking
subsets are then subjected to this transformation process.

5. Trained Optimization: TCNN model is constructed in this step, and its attributes
are optimized using the Adam optimizer to validate data. It includes (i) Get gradients
concerning stochastic objective at time-step t. (ii) Update biased first-moment estimate.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 7/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


Figure 2 TCNN framework.
Full-size DOI: 10.7717/peerjcs.721/fig-2

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 8/19

https://peerj.com
https://doi.org/10.7717/peerjcs.721/fig-2
http://dx.doi.org/10.7717/peerj-cs.721


Figure 3 TCNN framework training.
Full-size DOI: 10.7717/peerjcs.721/fig-3

(iii) Update biased second raw moment estimate. (iv) Compute bias-corrected first-
moment estimate. (v) Compute bias-corrected second raw moment estimate.(vi)
Update parameters.

6. Categorization: On the testing subset, the created TCNN model is used to assign every
tested instance to either standard or a special category for the attack.

TCNN model optimized training
2 1-Dimensional generic convolution layers, 2 interconnected layers, and a softmax layer for
application of softmax functions make up the proposed TCNN’s training and optimization
process (Fig. 3). Global maximum pooling, batch normalization, and dropout are utilized
to avoid over-fitting. To change weights and refine the cross-entropy loss function,
the current paper uses the Adam optimizer. It incorporates the benefits of 2 stochastic
gradient descent algorithms namely Root Mean Square Propagation (RMSP) and Adaptive
Gradient Algorithm. The proposed TCNN architecture’s training and optimization process
are comprised of the following:
1. Initial 1-Dimensional generic convolution layer : with 64 filters and a filter scale of 3, it

comprise the input vectors.
2. The 2nd 1-Dimensional generic convolution layer employs 130 filters with a 4 filter

dimension. Until pooling, the model learns more advanced functionality in the second
layer.

3. 1-Dimensional global maximum pooling layer : This layer substitutes data that is filtered
with its maximum value. By taking the highest value, it avoids over-fitting of the studied
functions.

4. Batch normalization layer : Before moving on to the next layer, it normalizes the data
from the previous layer.

5. Fully connected dense network: This layer has 130 intermediate nodes and a 29%dropout
value.

6. Fully connected inter-connection with soft-max activation: It generates 5 units for multi-
class grouping, 1 for each of the 5 traffic groups.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 9/19

https://peerj.com
https://doi.org/10.7717/peerjcs.721/fig-3
http://dx.doi.org/10.7717/peerj-cs.721


The topmost fully connected layers of the model estimate the outcome probability, as
p(y|u1:n)= p(Ny(h)), where Ny is the irregular event. The gate is modified to reflect the
admission of IDS events as follows: it = 1

mt
σ (WiXt +Uiht−1+bi) where mt represents

the type of the event. In this proposed study, the value of mt will always be equal to 1,
and σ represents the sigmoid function of a vector. Moreover, the output can be generated
as Ot = σ (WOXt +UOht−1+bO) Based on the aforementioned steps, the computational
complexity can be determined based on the number of layers (w), epochs(x), nodes at each
layer(y) and input features(z). Specifically, the time complexity can be determined as O(xz
∗ ((w-1)y2)). In general, it is O(n2 ∗ (n-1)n3).

EXPERIMENTAL IMPLEMENTATION
Intel Quad-core i7-8449U processor has been utilized with 16 GB RAM and a 256 GB hard
drive to introduce the detection learning models. To build deep learning networks, the
current paper uses the Python 3.6 programming language and TensorFlow. Furthermore,
Scikit-learn, Keras API, Panda, and Inmblearn are among the libraries used.

Data instances
Bot-IoT instances is an IoT data repository launched in 2018 by the Cyber Center of New
South Wales University. Legitimate and malicious traffic is created by the virtualization
of intelligent systems such as smart fridges, remotely triggered garage doors, motion-
controlled lights, and intelligent thermostats. The dataset contains over 73,000,000
instances, each of which is represented by 42 features. Each record is either classified
as regular or as an assault. The data instances are also categorized into 4 classes including
DoS, reconnaissance, DDoS, and intelligence stealing, with every class, is subdivided as
shown in Tables 2 and 3.

Dataset balancing
Dataset balancing is the process of balancing several datasets. There are 9,429 standard
samples and 73,000,000 vulnerable instances in the repository. There are 489 regular samples
and 3,459,125 vulnerable instances.More than 98 percent of the instances fall into theDDoS
and DoS groups. As a result, the learning algorithm will correctly estimate the majority
classes but miss the minority classes, indicating that the model is biased. To address this
problem, various re-sampling techniques are presented, including random oversampling,
which replicates the same samples of minority classes at random, and oversampling
by creating synthetic samples of minority classes using techniques including synthetic
minority oversampling technique, and synthetic minority oversampling technique. The
current paper uses the SMOTE-NCmethodology in this study because it can handle mixed
data instances with continuous attributes. In the training subset, the minority groups, such
as common and stealing, are increased to 99,98,989 samples.

Attribute minimization
The vital goal is to create an effective IDS for use in the IoT environment. As a result, it
is critical to increasing the detection models’ performance by attribute reduction, as well

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 10/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


Table 2 BoT-IoT attribute set.

Attribute Detail Data format

pkSeqID Row identifier Integer
stime Record start time Float
flgs Flow state flags seen in transactions Category
proto Textual representation of transaction protocols presents in

network flow
Category

Sport Source port number Category
Dport Destination port number Category
Pkts Total count of packets in transaction Integer
State Transaction state Category
Dur Record total duration Float
Mean Average duration of aggregated records Float
Dpkts Destination-to-source packet count Integer
Sbytes Source-to-destination byte count Integer
Dbytes Destination-to-source byte count Integer
TnBPSrcIP Total number of bytes per source IP Integer
TnP_PerProto Total number of packets per protocol Integer
AR_P_Proto_P_SrcIP Average rate per protocol per source IP. Float
AR_P_Proto_P_Dport Average rate per protocol per dport Float
Pkts_P_State_P_Protocol_P_SrcIP Number of packets grouped by state of flows and protocols

per source IP
Integer

Srate Source-to-destination packets per second Float

Table 3 BoT-IoT data set.

Attack Category Total records

Attack Reconnaissance 1,593,444
Attack DoS 254,659
Attack DDoS 12,123,565
Attack Information theft 1,654
Normal No 9,658

as memory consumption optimization with minimized computing complexity. A total
of 2.9 GB of memory is used while all of the functions are used. Feature space reduction
reduces computational overhead while still speeding up preparation and identification.
The following steps are added to the dataset, and the memory usage is successfully reduced
to 668 MB, a 77 percent reduction.
1. Data type conversion to categorical class: The number of attributes and corresponding

data formats are encoded for each form. The memory-intensive features flags, proto,
saddr, sport, daddr, dport, state, category, and subcategory are encoded as elements.
Object attributes are translated to category datatype since it is more powerful.

2. Int64 to Int32 data type conversion: The dataset’s integer properties, as depicted in
Tables 4 and 5, are accumulated in the Int64 (8-byte) data types by default. These
features do not surpass the capability of the Int32 (4-byte) sort, according to current

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 11/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


Table 4 Training dataset.

DDoS 155,151,156 DDoS 145,165,189
DoS 75956 Normal 121200
Normal 236 Theft 123213
Theft 59 Reconnaissance 72356

Table 5 Types of attributes.

Type INT64 Float-64 Object

Attributes 23 16 10

investigation. As a result, all the values of the Int64 class are converted into the Int32
type, which consumes 50% storage as compared to the Int64 type.

3. Removing superfluous features: The current paper removed certain superfluous features
from the dataset, such as (1) ‘‘pkSeqID’’: it serves the same purpose as the index that is
created automatically. (2) ‘‘stime’’ and ‘‘ltime’’ are acquired in the ‘‘dur’’ function for
calculating the length from ‘‘stime’’ to ‘‘ltime’’.

Transformation of attribute
The current paper define the transformation of mathematical and categorical elements.
The transition is only extended to the training subset after the data instances have been
broken for train, validation, and testing subsets. The validation and testing subsets are
then subjected to the same transformation. Transformation of numerical features: The data
includes 32 mathematical attributes, both specific and seamless estimates. There are 2
distinct functions, namely ‘‘spkts’’ and ‘‘dpkts’’, each of which has a finite number of
values. As a result, no feature engineering is needed. The graphical structure of the 4
attributes is shown in Fig. 4. The continuous attributes are not necessarily distributed,
which typically affects the output of linear models. To do this, the log-based modification
and regular scaler are added to the seamless attributes to achieve a Gaussian distribution:
1. Log transformation: The current feature value y = log10y, where y is the attributes

original value.
2. Standard scaler : This function calculates the average and standard deviation of a range.

The characteristics are then transformed into a Gaussian distribution.

Splitting a dataset
The most popular methods for separating data sets are traditional splitting and cross-
validation. It is primarily utilized inmachine learning to avoid over-fitting. Cross-validation
raises the training cost when a massive data repository is utilized for deep learning. The
data-set is divided into 3 subsets in this study, using the traditional 3-way split: preparation,
evaluation, and research. Also, where over-fitting occurs, regularization is used to deal with
it. A stratified split is often utilized to guarantee that each split contains a part of each
category.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 12/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


Figure 4 Energy conservation analysis: (A) records vs bytes; (B) records vs rate; (C) records vs packet
size; (D) records vs IP.

Full-size DOI: 10.7717/peerjcs.721/fig-4

Deep learning techniques
TensorFlow with Keras API is used to build all deep learning models. Preprocessing,
templates, layers, and optimizers are among the Keras programs included. In both versions,
the same activation functions are used. The ReLu activation function is used to analyze
cognitive interactions between given input and output. Softmax is utilized as the output
activation module, and a generalized logistic regression-based activation function is used as
the input layer activation function. In softmax, the frequency of production units is equal
to the number of attack groups plus the standard class. Table 6 depicts the deep learning
architectures of TCNN as well as hyperparameters. Overfitting is addressed using methods
such as global limit pooling, batch normalization, and dropout. The Adam optimizer is
chosen to change the weights because it outperforms other optimizers such as SGD and
AdaGrad.
Assessment
The current paper equates TCNN’s output to that of 5 machine/deep learning algorithms
of Random Forest (RF), Long Short TermMemory (LSTM), Convolution Neural Network
(CNN), Decision Tree (DT), and Logistic Regression (LR).

Metrics for performance estimation
The following metrics are used to test the multiclass detection models:
1. Effective Measure: In this, assessment is done on how well the identification model

distinguishes between various types of network traffic. The current paper use the
following metrics to do this:

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 13/19

https://peerj.com
https://doi.org/10.7717/peerjcs.721/fig-4
http://dx.doi.org/10.7717/peerj-cs.721


Table 6 Hyper-parameters of DLmodel.

Parameter Hyper-parameter Value Activation function

TCNN 1st Convolution Layer Filter=64, size=3 ReLU
TCNN 2nd Convolution Layer Filter=128, size=3 ReLU
TCNN Fully Connected neurons=128, dropout=0.3 ReLU
TCNN Fully Connected neurons=5 Softmax
Optimizer – ADAM –
Batch – 2048 –
Epochs – 16 –

(i) Precision = TP/TP + FP + FN
(ii) Accuracy = TP + TN/TP + TN + FP + FN
(iii) F1 score = 2 ∗Precision Recall/Precision + Recall
(iv) Recall = TP/TP + FN
where TP, TN, FP, and FN represent true positives, true negatives, false positives, and
false negatives, respectively.

2. Log loss: It assesses the accuracy of a categorization technique with a probabilistic
measure as an output. The log loss would be 0 in a perfect model, and it would increase
as the expected likelihood differed from the real label.

3. Training time: this is the amount of time it takes to construct a classification technique.

Prediction evaluation
Table 7 shows the effects of evaluating RF and LR on initial and re-balanced data-sets. All
of the experiments had almost identical training and testing ratings, indicating that there is
no over-fitting. In terms of LR, SMOTE-NC oversampling improves accuracy, recall, and
F1-score, implying that it is better at identifying minority groups. Oversampling, on the
other hand, has little bearing on the RF’s efficacy.

Deep learning model evaluation
To achieve the best efficiency, The current paper runs a sequence of experiments with
various hyper-parameter measures (as an instance batch size, learning rate, number of
units, and number of layers in each layer). The optimizer learning rates are investigated.
When the learning rate is 0.001, the best results are obtained. Also measured are various
epoch counts (10, 15, 25, 55, and 100) as well as different batch sizes of 105, 512, 1024, and
2048. The current paper can see that elevation of the frequency of epochs causes the learning
mechanism to slow down. Similarly, reducing the batch size has little effect on results. The
batch size and number of epochs for TCNN are set to 25 and 2048. Table 8 depicts the
TCNN’s multi-class classification accuracy and log failure during the preparation and
testing processes. TCNN achieves enhanced efficiency in the first epochs, implying that 15
epochs are sufficient. Furthermore, there is no evidence of overfitting in the training and
validation findings. Table 7 depicts the LSTM and CNN log failure data. In terms of log loss,
The current paper can see that TCNN is better than LSTM and CNN. As some accuracy
outcomes surpass 99.99 percent, the current paper can see that DL models outperform RF

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 14/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


Table 7 Performance analysis.

Prediction model Oversampling Phase Log loss Accuracy Precision Recall F1-score Training time

LR None Training 0.0569 97.2365 59.6598 81.2654 52.12654 503
LR None Testing 0.0568 97.6598 59.6589 82.2656 52.1458
LR SMOTE-NC Training 0.07458 99.659 75.2659 99.659 79.2658 710
LR SMOTE-NC Testing 0.7776 99.2659 74.2659 98.659 78.965487
RF None Training 0.20001 97.5896 80.2654 98.5659 86.21547 189
RF None Testing 0.19546 97.4584 77.2154 98.888 84.2655
RF SMOTE-NC Training 0.19595 96.63265 79.6598 98.1547 86.2654 201
RF SMOTE-NC Testing 0.19478 96.2565 75.3265 98.2658 82.658
DT None Training 0.22001 96.4896 78.2654 97.4659 84.21547 195
DT None Testing 0.22546 96.8584 74.5154 97.788 83.5655
DT SMOTE-NC Training 0.23595 94.65265 76.9598 92.6547 82.2654 251
DT SMOTE-NC Testing 0.29478 93.1565 72.6265 97.2658 81.658
CNN None Training 0.21001 96.5896 79.2654 97.5659 85.21547 203
CNN None Testing 0.21546 96.1584 75.1154 97.488 83.1655
CNN SMOTE-NC Training 0.21595 95.8265 77.4598 97.7847 85.564 285
CNN SMOTE-NC Testing 0.20478 95.45565 73.2265 97.9658 80.658
LSTM None Training 0.25201 97.4125 79.1256 97.1236 85.20124 232
LSTM None Testing 0.20125 94.2666 76.6595 96.8528 83.2555
LSTM SMOTE-NC Training 0.202325 95.55265 78.6298 94.5547 85.2554 212
LSTM SMOTE-NC Testing 0.20232 95.1455 74.36665 97.6658 81.558

Table 8 Performance analysis.

Oversampling Log-Loss Accurate
rate

Precise-Rate Recall F1 measure Training-Delay

None 0.00124 99.8956 99.2625 96.2154 98.6598 419
SMOTE-NC 0.1212 99.2356 97.1458 94.6598 95.1457 457

and LR. The precision findings are very similar, but in terms of efficacy measures, TCNN
marginally outperforms LSTM and CNN. It can be depicted that DL models do well even
though data balancing is not used. It is observed that a small and very minor reduction
of efficacy for LSTM and TCNN when SMOTE-NC oversampling is used. The efficacy of
CNN, on the other hand, improves marginally by using SMOTE-NC oversampling. CNN,
therefore, takes less time to practice than TCNN and LSTM. Since it is the nearest rival
to CNN in terms of preparation time and accuracy, TCNN has a fair trade-off between
efficacy and performance. Moreover, the energy conservation analysis is depicted in Fig. 4
for the proposed model.

Evaluation of related work
Table compares the success of the current model to that of related approaches validated
on the Bot-IoT data. In terms of precision, accuracy, F1-score, recall, training time, and
categorization task, the distinction is made.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 15/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


1. Binary classification task: distinguishing between standard and attack records is the aim
of this task.

2. Classification task for standard/one-attack records: This task attempts to differentiate
between normal records and specific-attack.

3. Multi-class categorization: It attempts to assign a record to 1 of the 5 classes (1 regular
class and 4 attack classes) under which it belongs.
Multi-class categorization is considered to be the most difficult task, while normal/1-

attack classification is the simplest since the data only includes 1 form of attack, resulting in
less diversity and easier learning for the detection model. It can be seen from Table 8 that
the presented model has a 99.9% effectiveness rate. This finding, on the other hand, can
be explained by the fact that the presented technique is designed to differentiate between
regular traffic and only 1 form of attack, namely DDoS. Since they are tested under a
multi-class categorization task, the 3 DL models LSTM, TCNN, and CNN outperform
other techniques. In terms of training time, it can be seen that LSTM, TCNN, and CNN
provide optimal results. This is due to the use of simplistic DL algorithms with greater
batch sizes and fewer layers, as well as feature engineering that decreases computation
complexity.

CONCLUSION
In this article, the current paper presents five design principles for developing a DL-based
IDS framework for the IoT environment that is both accurate and powerful. The current
paper modeled and implemented the Temporal Convolution Neural Network (TCNN),
which incorporates convolution neural network (CNN). SMOTE-NC data balancing and
efficient attribute engineering, which includes attribute reduction and transformation,
are combined with TCNN. On the Bot-IoT dataset, TCNN was tested and compared to
logistic regression, random forest, decision tree, LSTM, and CNN. The findings of the
evaluation suggest that TCNN maintains a successful balance of efficacy and performance.
It outperforms state-of-the-art DL IDS models, which were validated using the current
data repository, with a multi-class traffic detection accuracy of 99.9986 percent. Overall,
an enhancement of 2.56% was realized in comparison to the other approaches. In terms of
training time, it also performs very similarly to CNN. Another architecture theory worth
considering in future work is measuring the reliability of IDS against severe threats, for
assessing the DL model and cause prediction inaccuracy.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 16/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.721


Author Contributions
• Abdullah Aljumah conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The dataset is available at IEEE Dataport: Nour Moustafa, October 16, 2019, ‘‘The
Bot-IoT dataset’’, IEEE Dataport, doi: https://dx.doi.org/10.21227/r7v2-x988.

Neural Designer was used in this research and is available at: https://www.neuraldesigner.
com/.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.721#supplemental-information.

REFERENCES
Aldhaheri S, Alghazzawi D, Cheng L, Alzahrani B, Al-Barakati A. 2020. Deepdca: novel

network-based detection of iot attacks using artificial immune system. Applied
Sciences 10(6):1909 DOI 10.3390/app10061909.

Antonakakis M, April T, Bailey M, BernhardM, Bursztein E, Cochran J, Durumeric Z,
Halderman JA, Invernizzi L, Kallitsis M. 2017. Understanding the mirai botnet. In:
26th {USENIX} security symposium ({USENIX} Security 17). 1093–1110.

Bansal JC, Sharma H, Jadon SS, Clerc M. 2014. Spider monkey optimization algorithm
for numerical optimization.Memetic Computing 6(1):31–47
DOI 10.1007/s12293-013-0128-0.

Bhatia M, Kaur S, Sood SK, Behal V. 2020. Internet of things-inspired healthcare system
for urine-based diabetes prediction. Artificial Intelligence in Medicine 107:101913
DOI 10.1016/j.artmed.2020.101913.

Bhatia M, Manocha A. 2020. Cognitive framework of food quality assessment in IoT-
inspired smart restaurants. IEEE Internet of Things Journal Epub ahead of print 2020
10 June DOI 10.1109/JIOT.2020.3001447.

Bhatia M, Sood SK. 2016. Temporal informative analysis in smart-ICU moni-
toring: M-HealthCare perspective. Journal of Medical Systems 40(8):1–15
DOI 10.1007/s10916-015-0365-5.

Bhatia M, Sood SK. 2017a. A comprehensive health assessment framework to facilitate
IoT-assisted smart workouts: a predictive healthcare perspective. Computers in
Industry 92:50–66.

Bhatia M, Sood SK. 2017b. Game theoretic decision making in IoT-assisted ac-
tivity monitoring of defence personnel.Multimedia Tools and Applications
76(21):21911–21935 DOI 10.1007/s11042-017-4611-3.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 17/19

https://peerj.com
https://dx.doi.org/10.21227/r7v2-x988
https://www.neuraldesigner.com/
https://www.neuraldesigner.com/
http://dx.doi.org/10.7717/peerj-cs.721#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.721#supplemental-information
http://dx.doi.org/10.3390/app10061909
http://dx.doi.org/10.1007/s12293-013-0128-0
http://dx.doi.org/10.1016/j.artmed.2020.101913
http://dx.doi.org/10.1109/JIOT.2020.3001447
http://dx.doi.org/10.1007/s10916-015-0365-5
http://dx.doi.org/10.1007/s11042-017-4611-3
http://dx.doi.org/10.7717/peerj-cs.721


Bhatia M, Sood SK. 2019. Exploring temporal analytics in fog-cloud architecture
for smart office healthcare.Mobile Networks and Applications 24(4):1392–1410
DOI 10.1007/s11036-018-0991-5.

Bhatia M, Sood SK, Kaur S. 2019. Quantum-based predictive fog scheduler for IoT
applications. Computers in Industry 111:51–67 DOI 10.1016/j.compind.2019.06.002.

Bhatia M, Sood SK, Kaur S. 2020. Quantumized approach of load scheduling in fog
computing environment for IoT applications. Computing 102:1–19.

Bhatia M, Sood SK, Manocha A. 2020. Fog-inspired smart home environment
for domestic animal healthcare. Computer Communications 160:521–533
DOI 10.1016/j.comcom.2020.07.004.

Diro AA, Chilamkurti N. 2018. Distributed attack detection scheme using deep learning
approach for Internet of Things. Future Generation Computer Systems 82:761–768
DOI 10.1016/j.future.2017.08.043.

Einy S, Oz C, Navaei YD. 2021. The anomaly-and signature-based IDS for network
security using hybrid inference systems.Mathematical Problems in Engineering
2021:1–10.

FerragMA, Maglaras L. 2019. DeepCoin: a novel deep learning and blockchain-based
energy exchange framework for smart grids. IEEE Transactions on Engineering
Management 67(4):1285–1297.

GeM, Fu X, Syed N, Baig Z, Teo G, Robles-Kelly A. 2019. Deep learning-based intrusion
detection for iot networks. In: 2019 IEEE 24th pacific rim international symposium on
dependable computing (PRDC). Piscataway: IEEE, 256–25609.

Gill KS, Saxena S, Sharma A. 2020. GTM-CSec: game theoretic model for cloud security
based on IDS and honeypot. Computers & Security 92:101732
DOI 10.1016/j.cose.2020.101732.

Heal G, Kunreuther H. 2005. IDS models of airline security. Journal of Conflict Resolution
49(2):201–217 DOI 10.1177/0022002704272833.

Koroniotis N, Moustafa N, Sitnikova E, Turnbull B. 2019. Towards the develop-
ment of realistic botnet dataset in the internet of things for network forensic
analytics: bot-iot dataset. Future Generation Computer Systems 100:779–796
DOI 10.1016/j.future.2019.05.041.

Lopez-Martin M, Carro B, Sanchez-Esguevillas A, Lloret J. 2017. Network traffic
classifier with convolutional and recurrent neural networks for Internet of Things.
IEEE Access 5:18042–18050 DOI 10.1109/ACCESS.2017.2747560.

Mahboub SA, Ahmed ESA, Saeed RA. 2021. Smart IDS and IPS for cyber-physical
systems. In: Artificial intelligence paradigms for smart cyber-physical systems. Hasan
Kalyoncu University, Turkey: IGI Global, 109–136.

Muna A-H, Moustafa N, Sitnikova E. 2018. Identification of malicious activities in
industrial internet of things based on deep learning models. Journal of Information
Security and Applications 41:1–11 DOI 10.1016/j.jisa.2018.05.002.

Otoum Y, Liu D, Nayak A. 2019. DL-IDS: a deep learning–based intrusion detection
framework for securing IoT. Transactions on Emerging Telecommunications Technolo-
gies Epub ahead of print 2019 29 November DOI 10.1002/ett.3803.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 18/19

https://peerj.com
http://dx.doi.org/10.1007/s11036-018-0991-5
http://dx.doi.org/10.1016/j.compind.2019.06.002
http://dx.doi.org/10.1016/j.comcom.2020.07.004
http://dx.doi.org/10.1016/j.future.2017.08.043
http://dx.doi.org/10.1016/j.cose.2020.101732
http://dx.doi.org/10.1177/0022002704272833
http://dx.doi.org/10.1016/j.future.2019.05.041
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://dx.doi.org/10.1016/j.jisa.2018.05.002
http://dx.doi.org/10.1002/ett.3803
http://dx.doi.org/10.7717/peerj-cs.721


Putchala MK. 2017. Deep learning approach for Intrusion Detection System (IDS) in the
Internet of Things (IoT) network using Gated Recurrent Neural Networks (GRU).
Master Thesis, Wright State University. Available at https:// corescholar.libraries.
wright.edu/ cgi/ viewcontent.cgi?article=2989&context=etd_all .

RoopakM, Tian GY, Chambers J. 2019. Deep learning models for cyber security in IoT
networks. In: 2019 IEEE 9th annual computing and communication workshop and
conference (CCWC). Piscataway: IEEE, 452–457.

RoopakM, Tian GY, Chambers J. 2020. An intrusion detection system against ddos
attacks in iot networks. In: 2020 10th annual computing and communication workshop
and conference (CCWC), 0562–0567.

Roy B, Cheung H. 2018. A deep learning approach for intrusion detection in internet
of things using bi-directional long short-term memory recurrent neural network.
In: 2018 28th international telecommunication networks and applications conference
(ITNAC). Piscataway: IEEE, 1–6.

Soe YN, Santosa PI, Hartanto R. 2019. Ddos attack detection based on simple ann with
smote for iot environment. In: 2019 fourth international conference on informatics and
computing (ICIC), 1–5.

Thakkar A, Lohiya R. 2021. A review on machine learning and deep learning perspectives
of IDS for IoT: recent updates, security issues, and challenges. Archives of Computa-
tional Methods in Engineering 28(4):3211–3243 DOI 10.1007/s11831-020-09496-0.

Thamilarasu G, Chawla S. 2019. Towards deep-learning-driven intrusion detection for
the internet of things. Sensors 19(9):1977 DOI 10.3390/s19091977.

Aljumah (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.721 19/19

https://peerj.com
https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=2989&context=etd_all
https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=2989&context=etd_all
http://dx.doi.org/10.1007/s11831-020-09496-0
http://dx.doi.org/10.3390/s19091977
http://dx.doi.org/10.7717/peerj-cs.721

