
Accelerating covering array generation by combinatorial join
for industry scale software testing
Hiroshi Ukai Corresp., 1, 2 , Xiao Qu 3 , Hironori Washizaki 1 , Yoshiaki Fukazawa 1

1 Waseda University, Tokyo, Japan
2 Rakuten, Inc, Tokyo, Japan
3 Independent Researcher, Raleigh, North Carolina, United States of America

Corresponding Author: Hiroshi Ukai
Email address: hiroshi.ukai@akane.waseda.jp

Combinatorial interaction testing, which is a technique to verify a system with numerous
input parameters, employs a mathematical object called a covering array as a test input.
This technique generates a limited number of test cases while guaranteeing a given
combinatorial coverage. Although this area has been studied extensively, handling
constraints among input parameters remains a major challenge, which may significantly
increase the cost to generate covering arrays. In this work, we propose a mathematical
operation, called "weaken-product based combinatorial join", which constructs a new
covering array from two existing covering arrays. The operation reuses existing covering
arrays to save computational resource by increasing parallelism during generation without
losing combinatorial coverage of the original arrays. Our proposed method significantly
reduce the covering array generation time by 13-96% depending on use case scenarios.

PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Accelerating covering array generation by1

combinatorial join for industry scale2

software testing3

Hiroshi Ukai1,2, Xiao Qu3, Hironori Washizaki1, and Yoshiaki Fukazawa1
4

1Waseda University5

2Rakuten, Inc.6

3Independent Researcher7

Corresponding author:8

Hiroshi Ukai19

Email address: hiroshi.ukai@akane.waseda.jp10

ABSTRACT11

Combinatorial interaction testing, which is a technique to verify a system with numerous input parameters,

employs a mathematical object called a covering array as a test input. This technique generates a

limited number of test cases while guaranteeing a given combinatorial coverage. Although this area

has been studied extensively, handling constraints among input parameters remains a major challenge,

which may significantly increase the cost to generate covering arrays. In this work, we propose a

mathematical operation, called “weaken-product based combinatorial join”, which constructs a new

covering array from two existing covering arrays. The operation reuses existing covering arrays to save

computational resource by increasing parallelism during generation without losing combinatorial coverage

of the original arrays. Our proposed method significantly reduce the covering array generation time by

13–96% depending on use case scenarios.

12

13

14

15

16

17

18

19

20

21

1 INTRODUCTION22

Modern software systems consist of multiple components, each of which is comprised of several ele-23

ments and each element has a number of parameters. Due to combinatorial explosion, testing possible24

combinations of inputs exhaustively is impractical during product testing even if all possible values for25

each parameter are limited by equivalence partitioning. One way to handle this situation is to employ a26

technique called Combinatorial Interaction Testing (CIT) (Kuhn et al. (2013)). CIT applies a mathemati-27

cal object called a covering array that incorporates all possible t-way combinations of parameter values28

as a test input to a certain system under test (SUT). The variable t, which is called testing strength (use29

strength for short hereafter), guarantees all the possible value combinations of t parameters to be covered30

in the test. Previous studies intensively investigated how to reduce both the size of a covering array and31

time to generate it.32

However, challenges remain when applying CIT techniques to the real-world software products. First,33

real-world software product has a very large number of input parameters that will result in a very long34

time to generate a covering array of very large size. Second, a value for each parameter cannot be assigned35

independently but needs to be chosen to satisfy a certain set of conditions of it and the values of other36

parameters. Such conditions are called constraints and handling of them makes the size and generation37

time of a covering array sometimes impractically large. At the same time, constraints to describe a38

software product’s specification may become complicated and will increase the size and time even more.39

In order to mitigate this situation, where a covering array needs to be generated for a target software40

product which has numerous parameters under complex constraints, it is more efficient to apply a ”divide-41

and-conquer” approach instead of generating it at once. This approach will split a set of parameters into42

multiple groups, generate covering arrays for each group, and combine them into one. It will require43

constructing a new covering array from existing ones.44

PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Methods to construct a new covering array from existing ones are relatively less studied (Kampel et al.45

(2017a); Kruse (2016); Zamansky et al. (2017); Ukai et al. (2019)). There are three categories of methods46

have been studied. One is to construct a combined array from the input arrays by viewing each input array47

as a parameter whose values are its rows (Kampel et al. (2017b)). The second is to reuse and extend an48

existing covering array (Cohen et al. (1997), Czerwonka (2006), Nie and Leung (2011)). Many popular49

tools (Kuhn et al. (2008), Cohen et al. (1997), Czerwonka (2006)) are implemented for this method, they50

can handle new parameters that are not present in the initial covering array and generate an output that51

covers all combinations. This feature is usually called ‘seeding’ or ‘incremental generation’. The third is52

to apply an operation called combinatorial join (Ukai et al. (2019)), which generates a new covering array53

by combining rows in input covering arrays while ensuring all value combinations across input arrays are54

covered.55

By separating the implementation method from the operation introduced in the third method, in this56

paper we present a design of a novel algorithm to implement the combinatorial join operation, which is57

called “weaken-product based combinatorial join”. We also evaluate the efficiency and practicality of58

our method by comparing to the conventional methods (i.e., new generation and incremental generation)59

implemented in a popular tool called ACTS (Kuhn et al. (2008)). Our experiments are conducted on60

modelled systems with various constraints and sizes, measured by generation time. Since our approach61

constructs a new covering array from existing ones without creating a new row, it has less measures to62

minimize the size of output and we also conduct experiments to ensure the increases in the output sizes63

(”Size Penalty”) remain reasonable. The results of our evaluation (RQ1 and RQ2) show that our approach64

delivers significant reduction in generation time by 33-88% in strength 2 and 3, while its increase in size65

remains practical.66

Furthermore, as also evaluated in our study, our approach delivers other benefits. First, in a real67

software project, it is not practical to conduct combinatorial testing in the same strength regardless of68

each component’s importance. A variable strength covering array (VSCA) is a mathematical object to69

handle this situation (Cohen et al. (2003); Cohen et al. (1997)), where subsets of attributes in the entire70

array may have higher strength than the others. Various methods to construct it are proposed (Bansal et al.71

(2015), Wang and He (2013)). Since our combinatorial join operation is transparent to the input covering72

array’s strength, if we give covering arrays of strength u as the input and perform the operation in strength73

t, it will result in a VSCA. The results of our study (RQ4) show a 10%-60% reduction in generation time.74

Second, in some other practical situations, it is possible and desired to reuse test oracles designed for75

an earlier testing phase in a later one (Ukai et al. (2019)). However, existing CIT tools allow to reuse test76

oracles defined for only one single component among all, through “incremental generation”, the second77

of the aforementioned methods of constructing a new array from existing arrays (Kuhn et al. (2013)). The78

test oracle reuse is very limited in this method because the incremental generation allows to use only one79

covering array as the seeds and therefore a completely new covering array is generated for attributes that80

are not included in the seeds. This forces testers to redefine new test oracles for those attributes not in81

the seeds even if they already have ones for a covering array generated from the attributes outside the82

incremental generation procedure. The combinatorial join operation allows to give two input covering83

arrays as the inputs without creating any new row from scratch and it will enhance possibility to reuse84

test oracles for testers. In this work (RQ3), we define the operation using the characteristics of its inputs85

and outputs declaratively so that one can provide other implementation of the operation by satisfying the86

definitions. We also qualitatively discuss the conditions and assumptions, where test oracle reuse by the87

combinatorial join is able to deliver benefits for testers.88

Furthermore, in order to describe a software product’s specification, sometimes a sufficiently high-level89

abstraction of constraints is required and otherwise the constraint definition will become impractically90

complicated. Such a capability is provided only by limited tools. Various tools, which generates covering91

arrays of specified strength under constraints, have been developed and proposed, such as ACTS (Kuhn92

et al. (2008)), PICT (Czerwonka (2006)), JCUnit (Ukai, Hiroshi and Qu, Xiao (2017)), etc., each of which93

has its own strengths and weaknesses. Among all of them, ACTS is utilized most widely because of its94

rich functionality and outstanding performance in both time and the size of its output, on the other hand,95

its capability to model constraints only provides the most basic operators and data types. Nevertheless, to96

the best of our knowledge, no single tool is capable of handling all of these challenges mentioned above97

in a large scale software product development. With the combinatorial join operation, we can consider an98

approach where parameters are split into groups and the final covering array is constructed by combining99

2/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

sub-covering arrays each of which is generated by an optimal tool for each group. In this work (RQ5), we100

examine whether this approach is beneficial and possible in what circumstances, qualitatively.101

In summary, the contributions of this work are as follows, which altogether enhance the applicability102

of CIT toward the larger and more complex software products in the real world.103

• Our proposed algorithm and implementation of combinatorial join makes CIT technique more104

efficient and flexible in large scale software system with complex constraints.105

– we improved our previous work by introducing a new algorithm, where the strengths of the106

input covering arrays are reduced and then connected so that the desired strength in the output107

is achieved.108

– our tool generates covering arrays (with same strength) and VSCAs with constraints faster109

than a very popular tool (RQ1).110

• Our tool makes reuse of oracles with higher possibilities (RQ3).111

• Our tool makes it possible to use multiple tools to generate one test suite, by taking advantage of112

each tool to generate of sub-arrays in different situations (RQ4).113

The remainder of this paper is organized as follows. In Section 2, we introduce the background and114

related work of CIT technique and its related topics, such as constraint handling support, incremental115

generation, and variable strength covering arrays. In Section 3, we describe our algorithm to implement116

the combinatorial join operation and provide proofs that it can generate a new covering array from two117

given covering arrays. Then we conduct experiments to acquire the performance characteristics of an118

existing tool and examine whether our approach is beneficial. In Sections 4 and 5, we evaluate different119

use cases, parameter sizes, and constraint sets to determine whether our method accelerates covering array120

generation and realizes practical covering array sizes. We finish in Section 6, by discussing the efficiency121

and benefit of our approach with its limitations and future works.122

2 BACKGROUND AND RELATED WORKS123

2.1 Combinatorial Interaction Testing124

Combinatorial Interaction Testing (CIT) technique generates a test suite that contains all combinations of125

values among any t parameters for a system under test. A test suite generated by a CIT tool is called a126

coveringarray. It is denoted as CA(N; t,k,v) , where N is the number of rows, t is called testing strength,127

k is the number of columns (i.e., parameters), and v is the number of possible values for each parameter.128

(here we assume each parameter has the same number of possible values) k and v are called degree and129

order respectively (Kuhn et al. (2013)).130

CIT is useful to shrink the full Cartesian product space of a set of parameters, which becomes131

impractical for large-scale applications, into a reasonable test suite. The test suite generated by a CIT tool132

is called a covering array.133

The most common type of covering array in CIT is pairwise (t = 2) in which all two-way combinations134

of parameter values are tested together in at least one test case. Numerous algorithms have been proposed135

to generate such artifacts (Nie and Leung (2011); Anand et al. (2013)), from greedy algorithm (e.g.,136

AETG (Cohen et al. (1997)), IPOG (Lei et al. (2008), and PICT (Czerwonka (2006))), simulated-annealing137

(Garvin et al. (2011)) to heuristic search-based technique (Shiba et al. (2004)).138

CIT has been applied to various applications including GUI testing, configuration-aware system139

testing (such as product line testing), and unit testing. A study in 2018 reported 40 commercial or open140

source tools have been developed to generate CIT test suites (Jacek Czerwonka (2018)).141

The generation of a covering array has been extensively studied, to minimize the size of a covering142

array, to deal with constraints defined in a test model (Grindal et al. (2006), Wu et al. (2019)), or to143

generate a covering array by extending an existing covering array (i.e. incremental generation, Kampel144

et al. (2017a); Kruse (2016); Zamansky et al. (2017); Ukai et al. (2019)), rather than from scratch.145

3/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

2.2 Constraint Support by Existing Tools146

In a practical software system each parameter cannot be assigned independently. Instead, parameter values147

must be selected so that a certain set of conditions are satisfied. Such conditions are called constraints.148

For example, when we test a system equipped with web-based GUI, OS (Windows, Mac OS, Linux,149

etc.) and browser (Edge, Safari, Chrome, Firefox, etc), OS and browser are parameters and their values150

specified in the parentheses are different settings that a user may access to the system. In a test case where151

Safari or Edge is chosen as the parameter browser, Linux cannot be assigned as an OS parameter. This152

is an example of a constraint. If a test case that violates a constraint is introduced in a test suite, it will153

fail to cover the expected combinations of values that are even not related to the constraint, because this154

whole test case will be discarded. As a result, the combinatorial coverage of the whole test suite will be155

damaged. Specifically in our example, when we create a test case where Safari is chosen for Browser156

and Linux for OS, the test case is expected to cover valid value combinations for other parameters such157

as Font, Language, Timezone. Now the test case is violating a constraint about OS and browser and it158

makes the entire test case invalid. This means combinations for the other parameters (Font, Language,159

etc.) will not be executed unless they are accidentally covered by other test cases. This will happen much160

less frequently than one expects because test cases are generated as less as possible in CIT technique161

because the technique tries to avoid repeating the same value combinations in order to minimize the test162

suite to be generated.163

Constraints are often denoted in a format of tuples that are forbidden to be present in the output164

covering array. For example, the constraint that Linux of OS cannot be tested together with Sa f ari of165

browser is denoted as (OSLinux,browserSa f ari), where OS and browser are names of parameters and Linux166

and Sa f ari are their values.167

ACTS has a superior performance with respect to both generation speed of covering arrays and168

covering arrays size without constraints, based on a comparison between various tools conducted by Kuhn169

et al. (Kuhn et al. (2013)). For example, when ACTS generates a covering array of CA(2,2,100) with no170

constraint, it takes less than 1.0 [sec] and the size of the generated covering array is 14. Another popular171

tool, PICT can generate a covering array of CA(2,2,100) in less than 1.0 [sec] with 15 rows, but it shows172

quite unpractical performance when a complex constraint set is present (Czerwonka, Jacek (2016)).173

However, in terms of ability to define or describe complicated constraints and parameters (we call174

it flexibility), other tools (e.g., PICT and JCUnit) do better. Flexibility of defining constraints is less175

researched than performance of generating covering arrays under constraints, but it is very important176

in practice. The effort to define constraints is necessary to model relationships between parameters177

and such a model sometimes becomes so complex that it requires a notation as powerful as a popular178

programming language, where products under testing are developed. On the other hand, introducing such179

a rich feature into the notation to describe constraints makes it difficult to implement an efficient covering180

array generator because constraint handling sometimes relies on an external SAT solver, which is not as181

powerful as a general purpose programming language such as Java.182

In short, no single CIT tool provides superior performances for all requirements such as size, speed,183

and flexibility in constraint handling, simultaneously.184

We next describe three tools studied in our research, ACTS, PICT, and JCUnit, with a focus in their185

different characteristics in defining constraints.186

2.2.1 ACTS187

ACTS supports four data types, which are bool, number, enum, and range. The following code block188

contains examples to define factors of those types.189

190
<P a r a m e t e r s>191

<P a r a m e t e r i d =” 2 ” name=”enum1” t y p e =” 1 ”>192

<v a l u e s>193

<v a l u e>elem1</ v a l u e>194

<v a l u e>elem2</ v a l u e>195

</ v a l u e s>196

<b a s e c h o i c e s />197

<i n v a l i d V a l u e s />198

</ P a r a m e t e r>199

<P a r a m e t e r i d =” 3 ” name=”num1” t y p e =” 0 ”>200

<v a l u e s>201

<v a l u e>0</ v a l u e>202

<v a l u e>100</ v a l u e>203

. . .204

<v a l u e>2000000000</ v a l u e>205

</ v a l u e s>206

</ P a r a m e t e r>207

<P a r a m e t e r i d =” 4 ” name=” boo l1 ” t y p e =” 2 ”>208

<v a l u e s>209

<v a l u e>t r u e</ v a l u e>210

4/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

<v a l u e>f a l s e</ v a l u e>211

</ v a l u e s>212

</ P a r a m e t e r>213

<P a r a m e t e r i d =” 5 ” name=” r a n g e 1 ” t y p e =” 0 ”>214

<v a l u e s>215

<v a l u e>0</ v a l u e>216

<v a l u e>1</ v a l u e>217

<v a l u e>2</ v a l u e>218

<v a l u e>3</ v a l u e>219

</ v a l u e s>220

</ P a r a m e t e r>221

. . .222

</ P a r a m e t e r s>223224

ACTS has a very primitive set of mathematical and logical operators that can be used in constraint225

definitions. For instance, it supports < but not >. Although > can be expressed using the < and negate226

operator (!), it complicates the readability of the constraint definition. Also it lacks conditional operators227

such as a ternary operator or if-then-else structure. This can also be substituted with a combination of228

supported logical operators such as negate and conjunction or negate and disjunction, however, such229

substitutions also complicate the readability.230

In our experience, lacks of those operators result in impractical constraint definitions that are hard to231

read and understand. Following is an example to define a constraint with ACTS.232

233
<C o n s t r a i n t s>234

<C o n s t r a i n t t e x t =” l 0 1 & l t ;= l 0 2 || l 0 3 & l t ;= l 0 4235

|| l 0 5 & l t ;= l 0 6 || l 0 7& l t ;= l 0 8 || l 0 9 & l t ;= l 0 2 ”>236

<P a r a m e t e r s>237

<P a r a m e t e r name=” l 0 1 ” />238

<P a r a m e t e r name=” l 0 2 ” />239

<P a r a m e t e r name=” l 0 3 ” />240

<P a r a m e t e r name=” l 0 4 ” />241

<P a r a m e t e r name=” l 0 5 ” />242

<P a r a m e t e r name=” l 0 6 ” />243

<P a r a m e t e r name=” l 0 7 ” />244

<P a r a m e t e r name=” l 0 8 ” />245

<P a r a m e t e r name=” l 0 9 ” />246

</ P a r a m e t e r s>247

</ C o n s t r a i n t>248

</ C o n s t r a i n t s>249250

This is equivalent to the following formula:

l01 <= l02||l03 <= l04||l05 <= l06||l07 <= l08||l09 <= l02 (1)

We can also define a constraint that checks if values satisfy a certain formula using mathematical251

operators such as +, −, ∗, and /.252

2.2.2 PICT253

PICT supports a couple of data types, which are enum and numeric. Following is an example to define a254

test model in PICT (Czerwonka, Jacek (2015)).255

256
PLATFORM: x86 , ia64 , amd64257

CPUS : S i n g l e , Dual , Quad258

RAM: 128MB, 1GB, 4GB, 64GB259

HDD: SCSI , IDE260

OS : NT4 , Win2K , WinXP , Win2K3261

IE : 4 . 0 , 5 . 0 , 5 . 5 , 6 . 0262263

Unlike ACTS, PICT does not support data types such as bool or range, but this is not an essential264

drawback of the tool, because these types can be represented by enum with appropriate symbols as an265

alternative, and such substitutions will not affect readability severely. For constraint handling, PICT266

provides quite readable notation as shown below.267

268
IF [PLATFORM] in {” i a 6 4 ” , ”amd64”} THEN [OS] in {”WinXP” , ”Win2K3”};269

IF [PLATFORM] = ” x86 ” THEN [RAM] <> ” 64GB” ;270271

In this example, PICT uses IF-THEN-ELSE structure to define constraints. Without this structure, the272

same constraints need to be converted in a more complicated way, as shown below. This is how constraints273

are defined using ACTS. Though such conversion is not difficult, it is usually an error prone manual274

process. Moreover, as we pointed out already, the converted constraints are hard to read and understand275

by engineers, since they lost their original designs mapped back to the system test model.276

277
! PLATFORM = i a 6 4 && ! PLATFORM = amd64 || (OS = WinXP || Win2K3)278

! PLATFORM = x86 || ! RAM = 64GB279280

On the other hand, however, PICT does not support mathematical operators between parameters,281

hence it cannot define a constraint that requires such operators, which can be done by ACTS.282

5/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

2.2.3 JCUNIT283

Given that both ACTS and PICT have their own limitations in constraint definition, we introduced a new284

tool in our previous work Ukai, Hiroshi and Qu, Xiao (2017).285

JCUnit allows a user to define a constraint as a method written in Java, which takes values for factors286

as parameters and returns a boolean value. The following example defines a constraint for a set of integer287

parameters a, b, and c. These parameters are coefficients in a quadratic equation, ax2 +bx+ c, and the288

constraint checks if this equation has a solution in real.289

290
@Condit ion (c o n s t r a i n t = t rue)291

p u b l i c boolean d i s c r i m i n a n t I s N o n N e g a t i v e (292

@From(” a ”) i n t a ,293

@From(” b ”) i n t b ,294

@From(” c ”) i n t c) {295

re turn b * b − 4 * c * a >= 0 ;296

}297298

For programmers, this style delivers a benefit that they can define constraints in the same way as299

they write their product code, and the definition can be as readable as a regular Java language program.300

However the tool is unable to employ external tools such as SAT libraries because the constraints are301

expressed as a normal Java program that external tools do not understand. Hence, it needs to rely on its302

internal logic to handle constraints. This makes overall constraint handling cost less efficient, although it303

is still faster than PICT (Ukai, Hiroshi (2017)). JCUnit also allows any values as levels for a factor as304

long as they are an appropriately implemented Java object.305

306
@ParameterSource307

p u b l i c Simple . F a c t o r y<I n t e g e r> depos i tAmount () {308

re turn Simple . F a c t o r y . o f (a s L i s t (1 0 0 , 200 , 300 , 400 , 500 , 600 , − 1)) ;309

}310

311

@ParameterSource312

p u b l i c Regex . F a c t o r y<S t r i n g> s c e n a r i o () {313

re turn Regex . F a c t o r y . o f (” open d e p o s i t (d e p o s i t |withdraw | t r a n s f e r){0 ,2} g e t B a l a n c e ”) ;314

}315316

The code block shown above illustrates how a normal factor (e.g., depositAmount) and a regex type317

factor (e.g., scenario) can be defined. “depositAmount” is a factor of an Integer type defined in a method318

with the same name, which has 100, 200, 300, 400, 500, 600, and -1 as its levels. As mentioned already319

any Java object can be used as a possible value (level) of a parameter (factor), users are able to use320

methods defined for the class in the constraint definition. This makes it possible to define a constraint321

which examines whether the length of a string parameter exceeds a certain amount or not, for instance,322

and contributes to the readability of the constraint definition.323

In addition, it provides a special data type “regex”, which produces a set of factors that represents a324

sequence of values conforming to a given expression (“scenario” method in the example). Through this325

method, a user can access a parameter “scenario” whose possible values are list of Strings, which are326

[open, deposit, getBalance], [open, deposit, deposit, getBalance], [open, deposit, withdraw, getBalance],327

etc. This feature is implemented by expanding the parameter into multiple small factors, each of which328

represents an element in the list and constraints over them. JCUnit internally generates those factors and329

constraints and constructs a covering array from them.330

2.3 Reuse Covering Arrays331

Generating a covering array is an expensive task, especially when executed under complex constraints,332

a higher strength than two, and/or there are a number of parameters. Since a large software system can333

have a complex internal structure and hundreds or even more parameters, divide-and-conquer approach is334

desirable. If the time of covering array generation grows non-linearly along with the number of parameters335

n (e.g., n2, n3), this approach may accelerate the overall generation because a set of parameters can be336

divided into multiple groups. Dividing into groups can prevent an explosive increase in the generation337

time for each group, even if there is overhead to recombine them into one .338

To enable such an approach, a method to construct a new covering array reusing existing ones is339

necessary. However, such methods are not as well studied as methods to generate covering array from340

scratch (Kampel et al. (2017a); Kruse (2016); Zamansky et al. (2017); Ukai et al. (2019)).341

The most popular method for reusing a covering array is a feature called “seeding” (Cohen et al.342

(1997)). Seeding takes an existing covering array and parameters to be added as inputs. Hereafter, we343

refer to this method as incremental generation. This allows mandatory combinations to be specified for344

a tool, minimizing changes in the output. Minimizing changes is important because the output, which345

represents a test suite, sometimes contains fundamental parameters that are expensive to control such as346

6/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

OS or filesystem to be used in test execution. Popular tools for CIT such as ACTS (Kuhn et al. (2008)),347

PICT (Czerwonka (2006)), and JCUnit (Ukai, Hiroshi and Qu, Xiao (2017)) can add parameters not348

presented in an initial covering array and generate an output as by assigning values to them so that the349

combinations between the values of the given parameters and the existing ones are covered. However, this350

limits reuse of only one covering array.351

Another approach is to apply a CIT technique by setting each input covering array is a parameter352

whose rows are possible values (Zamansky et al. (2017)). One drawback to this approach is that it makes353

the final array's size larger than M×N, where M is the maximum array's size in the input and N is the354

second maximum's size. This results in an output with an impractical size for large-scale software product355

development.356

As a third approach, in our previous work, we proposed an operation called combinatorial join (Ukai357

et al. (2019)) to reuse covering arrays. Combinatorial join assumes that input arrays are already covering358

arrays and a new row in the output is created by connecting rows in the input arrays so that the entire359

output becomes a new covering array which has all the parameters to test. Ukai et al. (2019) presented an360

implementation of the combintorial join operation based on a covering array generation algorithm called361

IPOG (Lei et al. (2008)). However, the implementation was impractically expensive in terms of time and362

memory usage when there are more than 100 parameters or strength t exceeds 2.363

2.4 Variable Strength Covering Array364

A variable strength covering array (VSCA) is a covering array where the strength t can be different365

depending a set of parameters among all of them (Cohen et al. (2003)). It is considered useful to366

apply VSCA for testing a system which consists of multiple components since some components are367

more critical than others in a large system. Methods to generate VSCA have been proposed in related368

work (Bansal et al. (2015); Wang and He (2013)).369

As introduced later in Section 3, our proposed combinatorial join operation can also generate a VSCA,370

because this approach guarantees to include all the rows in input arrays at least once, if one array has a371

higher strength than the other, the portion corresponding to the array will have the same strength as the372

input.373

3 WEAKEN-PRODUCT-BASED COMBINATORIAL JOIN TECHNIQUE374

A real-world software product has numerous parameters, which causes a combinatorial explosion when375

conducting a fully exhaustive testing. A CIT technique provides a way to handle this situation while376

guaranteeing reasonable coverage over all combinations of possible parameter values. However, generating377

a test suite employing the CIT technique is an expensive process, particularly when complicated constraints378

over the parameters are present. One approach to solve this issue is to generate test suites for components379

in the system separately and then combine them into one. The combinatorial join operation can realize380

this idea as it takes two inputs LHS (Left Hand Side) and RHS (Right Hand Side) and generates one output381

covering array from them. LHS and RHS are pre-generated covering arrays and there is no constraint382

across them as the precondition of the operation.383

This output array contains all the rows from LHS and RHS, covers all the t-way combinations across384

them, but not include any extraneous rows that are not found in LHS or RHS. In a simple case, the input385

covering arrays (i.e., LHS and RHS) can be test suites generated for individual components. But when386

we employ the technique to apply “divide-and-conquer” approach with this technique for a large scale387

software product, we can split the parameters of the product into two groups as LHS and RHS, regardless388

of actual components. The split needs to be done in a way that parameters from LHS and RHS may not389

exist together in one constraint. It is also preferable to make both LHS and RHS have the same number of390

parameters and constraints in order to maximize the benefit of parallelism.391

The technique weaken-product based combinatorial join proposed in this paper implements the392

operation, which has practical performance for industry scale software developments.393

The method proposed in our previous work(Ukai et al. (2019)) intended to achieve the same goal of394

this work, but it was based on an algorithm similar to IPO and worked only when strength=2 and degree395

is less than hundred in practice. The method proposed in this paper improves the previous work in several396

ways: (1) it constructs a new covering array from input arrays so that the strengths of the input arrays can397

be reduced, hence the cost of generating the input arrays are reduced. (2) the new method is studied for398

strength greater than 2 and it handles degrees as large as one thousand.399

7/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Figure 1. Running example of weaken-product based combinatorial join

This approach will be beneficial for systems like listed below:400

• A system consists of multiple components whose parameters are too expensive to change for each401

test case, generating a covering array from existing ones provides an efficient way of testing while402

guaranteeing combinatorial coverage over the entire system.403

• A peer-to-peer communication system is tested and we desire to detect failures triggered by404

combinations of such parameter values across computers, for instance, OSes, browsers, languages,405

regions, and time-zones.406

As mentioned earlier, constraint handling is supported by various tools but in different ways, where407

each tool has its own strengths and weaknesses. Since the combinatorial join is an operation which can408

create a new covering array from already generated ones, we can utilize an optimal tool for each input.409

We also expect it to accelerate the overall generation even with the overhead of combining smaller input410

covering arrays and enhance the applicability of CIT technique toward the larger and more complicated411

software products. In this section, we first illustrate the procedure of our proposed technique “weaken-412

product based combinatorial join” with a running example, which implements the “combinatorial join”413

operation. We next introduce some notations and a formal definition of this technique. After the formal414

definition of the technique, we define the operation “combinatorial join” in a more general way that allows415

other implementations of this operation, in addition to our “weaken-product based” method.416

3.1 A Running Example417

We present a running example of our proposed algorithm weaken-product based combinatorial join with a418

concrete example (Figure 1) where both the input arrays’ and the output array’s strength are t = 2. In419

this example, the original LHS is a covering array that contains 3 parameters (i.e., OSL, LangL, and T ZL),420

each of which has 2 possible values Unix, Win, JA, EN, and EST, JST respectively. There is no constraint421

across LHS and RHS. Note that LHS and RHS can have different numbers of rows (i.e., different sizes)422

and columns as shown in the diagram (Figure 1). The original RHS is also a covering array that contains 3423

parameters which are OSR, LangR, and T ZR and they have the same possible values as the corresponding424

one in LHS. The goal of our algorithm (or method) is to combine them into one covering array that covers425

all the t-way combinations (in this example, t = 2) across the LHS and the RHS arrays without creating a426

new row neither in LHS nor RHS part.427

First, the weaken operation, which shrinks the input covering array into another one with lower428

strength, is executed for both LHS and RHS (Step 1). The operation can have only one output. In general,429

the output arrays of this step in LHS will be covering arrays with strength t −1, t −2, . . . , 1, while the430

corresponding arrays from RHS will be 1, 2, . . . , t −1. In this example, after this step, the output of LHS431

is only one covering array with strength 1 because the strength of the original LHS is t = 2, and the output432

of RHS is also one covering array whose strength is 1. Next, for each pair of output arrays of Step 1, a433

Cartesian Product is performed and the results are merged into one (Step 2). As it is seen in the figure,434

for each row in the output of Step 1 from LHS, every row in the output of Step 1 from RHS is connected.435

8/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

For instance, for a row (Unix,JA,JST) in LHS, every row in the output of the weaken operation for RHS436

(Unix,JA,JST),(Win,JA,EST),(Win,EN,JST) is associated.437

In this step, rows in the output with exactly the same values for all parameters are removed. This438

removal is necessary when the weaken− product is performed for the strength higher than 2 because the439

Step 1 is repeated multiple times and it may generate duplicated rows in the output.440

Then, the remaining rows in LHS and RHS that do not appear in the output of Step 2 are connected441

and included in the final output in (Step 3). For example, the row (Unix,EN,EST) in LHS and RHS442

is not found in the output of Step 2 and unless step 3 is done to make up the missing tuples, not all443

the t-way combinations inside the LHS and RHS are ensured to be covered. Step 2 guarantees that444

t-way combinations of parameter values across LHS and RHS are covered. Step 3 guarantees t-way445

combinations of parameters inside LHS and RHS are covered. Therefore, the entire output becomes a446

covering array of strength t. Finally, the rows generated in Step 2 and 3 are merged into one array (Step447

4).448

3.2 Notation449

Now we define some notations in order to formalize our proposed method ”weaken-product based450

combinatorial join” in Section 3.3. We first introduce a set of necessary functions before describing451

our proposed function, weaken product(LHS,RHS, t) that builds a new covering array from two input452

arrays. The function takes three parameters, LHS, RHS, and t. The output of the function is an array453

containing all the factors held by the input arrays. LHS and RHS are arrays that do not have the same454

factors in common. In general, they are covering arrays of strength greater than t, although this condition455

is not mandatory. For simplicity, we assume that LHS and RHS do not have any constraints inside them.456

However, the proposed mechanism can handle those under constraints transparently. If the input has457

higher strength, it will be kept in the output, too, and if its rows do not violate given constraints, rows in458

output will also not violate the constraints. This is given as459

weaken(A, i) = Aw (2)

where weaken is a function that returns a new array from input A. The output has the following460

features:461

• It has all the factors in A and only those factors.462

• It contains all the tuple of strength i that appear in A.463

• It contains rows that appear in A and only those.464

• Each row in the array is unique.465

When output of the weaken(A, i) is constructed, depending on the order of selecting rows from A, the466

size of the output can be different. Our implementation chooses to select a row that contains the most467

key-value pairs that are not covered in the output so far.468

In the case the input A is a covering array of strength i or greater, weaken(A, i) will be a covering array469

of strength i and its size can be smaller than A. This is expressed as470

|weaken(A, i)| ≤ |A| (3)

f actors is a function that returns a set of factors on which a given array is constructed.471

f actors(A) = F (4)

F is a set of all the factors that appear in an array A472

pro ject(A, f) is a function that returns an array created from an input array A and a set of factors f .473

pro ject(A, f) = P (5)

The returned array P satisfies the following characteristics.474

9/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

• It has all the factors given by f only.475

• For each row in P, a row in A, which contains the row, can be be found.476

connect is a function that returns an array created from a couple of given arrays, L and R.477

connect(L,R) =C (6)

The returned array satisfies following the characteristics.478

• It has all the factors that appear in L and R.479

• pro ject(C, f actors(L)) contains all the rows found in L and all the rows in it are contained by L.480

• pro ject(C, f actors(R)) contains all the rows found in R and all the rows in it are contained by R.481

• Each row in C has values for all the factors from L and R.482

• Each row in the array is unique.483

Since there is not a requirement for combinations of rows from A and B, |C| can be as small as484

max(L,R).485

set(A) = S (7)

S is a set that contains all the identical rows in an array A.486

3.3 Method of “weaken-product based combinatorial join”487

Based on the formulae in 3.2, the operation we propose weaken product can be defined as follows.488

WP =weaken product(LHS,RHS, t)

=[
t⋃

i=1

weaken(LHS, i)×weaken(RHS, t − i)]∪ connect(LHSunused ,RHSunused)
(8)

where489

LHSunused = LHS\ pro ject(W, f actors(LHS))

RHSunused = RHS\ pro ject(W, f actors(RHS))

W = weaken product(LHS,RHS, i)

(9)

Figure 2 illustrates the idea of the weaken product function.490

Next, we describe the characteristics of the output arrays generated by our proposed algorithm, in491

order to explain why we can use our algorithm to combine covering arrays generated under constraints.492

Given a set of parameters with their possible values, as well as a set of t −way tuples that is called493

“Forbidden tuples”, an array that covers all the possible t-way tuples but the forbidden ones is called a494

“constrained covering array” or CCA (Cohen et al. (2008)). The set of forbidden tuples are determined by495

the constraints under which a covering array is generated for the system under test.496

Suppose that LHS and RHS are constrained covering arrays generated under constraints with strength497

t. All rows in LHS are ensured to exist in WP and no new row is introduced according to Eq.(2) and498

Eq.(8). This is also true for RHS. This leads to Theorem 1.499

Theorem 1.

set(pro ject(WP, f actors(LHS))) = set(LHS) (10)

set(pro ject(WP, f actors(RHS))) = set(RHS) (11)

500

10/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Figure 2. Joining two covering arrays by weaken-product based combinatorial join

11/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

We demonstrate that WP is a CCA generated under the constraints of LHS and RHS. From the501

precondition of the operation, there is no constraint across LHS and RHS. It is clear that there is no502

row that violates given constraints in WP. A tuple T (|T | = t) that should be covered by WP, can be503

categorized into three.504

• A tuple inside LHS (Eq. (10)).505

• A tuple inside RHS (Eq. (11)).506

• A tuple across LHS and RHS.507

All the tuples that should be covered by WP inside LHS and RHS are found in the array (Theorem 1).508

In order to guarantee all the tuples across LHS and RHS are found in the WP, it is sufficient to include:509

weaken(LHS, i)×weaken(RHS, t − i) (12)

where 0< i< t. Those are guaranteed to be in WP by the definition of the weaken− product operation510

defined as Eq. (8).511

Thus, we can construct a new CCA from the existing CCA’s without inspecting into neither the512

semantics of the constraints nor the forbidden tuples defined for the input arrays. This allows users to513

employ an approach, where different CIT tools to construct input covering arrays and then combine them514

into one, later.515

The same discussion holds for constructing VSCA, when input arrays are the covering arrays of the516

higher strength than t.517

3.4 General Definition of Combinatorial Join518

We can generalize the operation we discussed in a way where our proposed method and Ukai et al. (2019)519

can be considered as implementations of one abstract operation based on the ideas introduced in 3.2. This520

improves the approach in our last work. The characteristics that are desired for the output of the operation521

can be described as follows.522

set(pro ject(combinatorial join(LHS,RHS, t), f actors(LHS)) = set(LHS) (13)

set(pro ject(combinatorial join(LHS,RHS, t), f actors(RHS)) = set(RHS) (14)

tuples(pro ject(combinatorial join(LHS,RHS, t), t)⊃

tuples(LHS×RHS, t)\ (tuples(LHS, t)∪ tuples(RHS, t))
(15)

where tuples(A, t) is a function that returns a set of all the t-way tuples in an array A.523

In this definition, note that any requirements are not placed on the input arrays. They do not need to524

be even any sort of covering arrays. These characteristics ensure that the operation does not introduce a525

new row that may violate constraints given to LHS or RHS and that it covers all the possible t-way tuples526

in and across LHS and RHS.527

4 EVALUATION528

4.1 Research Questions529

In order to evaluate our technique from the aforementioned perspectives, we are going to answer the530

following research questions:531

• RQ1: Can our weaken-product combinatorial join technique accelerate the existing CIT532

tools in covering array generation?533

• RQ2: How are the sizes of covering arrays generated through our combinatorial join tech-534

nique compared to the sizes of covering arrays generated without it?535

• RQ3: Can our approach reuse test oracles?536

12/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Figure 3. Research questions (overview)

• RQ4: How can our approach handle constraints with flexibility?537

There is another approach that constructs a new covering array from existing ones (Zamansky et al.538

(2017)). However it relies on converting an input array into a factor by reckoning each row in it as a level539

of the factor. This approach is not practical unless the number of factors are small. Due to the scalability540

issue, it is inapplicable to the experiment subjects used in our study. Hence, we are not going to compare541

our approach’s performance with their method but with that of ACTS.542

4.2 Evaluation Methodology543

In this section, we describe how we conduct evaluation to answer each research question, and we illustrate544

how each research question relates to the covering array generation process in Figure 3.545

In order to answer RQ1, we measure the execution time of our algorithm including necessary546

preprocesses for the input data for a desired input model. The preprocess may contain a covering array547

generation since our algorithm does not generate a covering array but it takes two covering arrays as input.548

It will be compared with the execution time to generate a covering array using a conventional method for549

the same desired output model.550

In order to generate covering arrays in our experiments, we need an external tool that executes551

the process and we chose ACTS for it. The reason why we chose ACTS is because it is not only552

widely used but also the fastest one among the tools available for us. We considered PICT as another553

choice, however it turned out to be too slow for our experiments because of its specification, where its554

covering array construction with constraint handling requires exponential time along with the number of555

factors(Czerwonka, Jacek (2016)).556

Similarly, the sizes of the generated covering arrays by the proposed method and conventional method557

are compared (RQ2).558

When covering array generation is executed from scratch, the preprocess for the desired covering559

array model consists of two parts as illustrated in Figure 4. One is to split the mode into LHS and RHS560

and the other is to generate covering arrays for them respectively. For splitting the model, we can think of561

some strategies. One is to divide the input into two groups each of which has the same number of factors.562

Moreover, well-known covering array generation tools support a feature called “seeds” or “incremental563

generation”, where an existing covering array is given as input whose rows are ensured to appear in output.564

This feature enables users to reuse test cases, test results, test oracles, etc. along with the input covering565

array. In this scenario (Figure 5), the requirements for the final output (”Desired Covering Array Model”566

in the diagram) and base covering array for the conventional method are given as input. On the other hand,567

for our method, the factors to be added to the seeds are given separately (”RHS Model” in the diagram)568

13/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Figure 4. Scratch generation

and it is necessary to take into account the time to generate a covering array for it. However, the base569

covering array can be used as LHS without any preprocessing.570

Figure 5. Incremental generation

Our approach constructs a new row by selecting rows from input arrays instead of constructing it571

from scratch, so it has less options to optimize (minimize) the size of its output. As a result, our approach572

cannot generate a smaller output array than the conventional method (RQ2). In order to answer RQ2, we573

will compare the size of covering arrays generated by our method and the conventional method.574

Those comparisons are conducted for artificial models designed based on our experience and well-575

known models distributed as Real-world benchmark (Shaowei Cai (2020)). The artificial models cover576

degrees from 20 up to 1,000.577

Our approach allows us to reuse test cases defined as input covering arrays, but the reusability of test578

oracles along with the input covering arrays is an independent question. In order to answer RQ3, we will579

14/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

extend our previous work (Ukai et al. (2019)) by examining various scenarios where test oracles may be580

reusable or not.581

Since constraint handling in CIT is an area actively being studied, there are a number of techniques582

each of which has its own pros-and-cons in performance, flexibility, and other aspects. Hence, it is583

beneficial to apply ”divide-and-conquer” approach to generation of a covering array so that we can utilize584

multiple covering array generators in combination. We will answer RQ4 by examining the detail of the585

procedure to employ the technique to implement the approach.586

4.3 Independent Variables587

As mentioned already, we measure the generation time and size of output covering arrays (the dependent588

variables of our evaluation), for various set of settings along with different number of parameters. One589

suite of settings is characterized by Generation Scenario and Desired Covering Array Model, which590

usually consists of Degree, Rank, Strength, and Constraint Set. We describe each of there independent591

variables in our evaluation in the next sections.592

4.3.1 Generation Scenario593

We define a couple of scenarios to generate a covering array using our weaken-product based combinatorial594

join approach.595

1. Generating a covering array from scratch596

2. Generating a covering array incrementally597

The first one refers to a scenario, where a covering array is generated from a couple of given models.598

In this scenario, we can expect our approach can improve the overall generation time by executing a CIT599

tool concurrently and then combining the arrays generated by it. To maximize the improvement, the input600

arrays for the join operation should be generated in the same amount of time. Hence we use the same601

model for generating both LHS (left hand side) and RHS (right hand side) covering arrays.602

For the second one, from an existing covering array, a new covering array with the specified degree603

and constraint set is generated. Incremental generation is useful when, for instance, you already have a604

covering array for a certain component and some attributes are added to the component. In this use case,605

there is already a test suite whose test oracles are defined for a covering array. By employing incremental606

join, you do not need to define test oracles for a completely new covering array. Such use case can be607

considered to happen when relatively a small number of new parameters are added to an existing system.608

4.3.2 Desired Covering Array Model609

We use two different types of models for our experiments, one is an artificial model designed based on our610

experience. The other is a well known benchmark model distributed as ”CASA” benchmarks (Shaowei611

Cai (2020)).612

For the first one, we use a model for generating input covering array where there are n×20 factors,613

each of which has 4 levels, where n is from 1 up to 49 depending on testing conditions, which results in614

980 factors at maximum. Hence, the number of parameters, degree, is ranging from 20 to 980 and the615

rank is always fixed to 4.616

In the incremental generation scenario, the RHS array degree is also fixed to 10, while n moves from 1617

to 370 for the LHS, which is used as seeds. This is because it is considered that incremental generation is618

useful when you need to reuse test oracles defined with the initial covering arrays and it happens when619

you already have a test suite for a system under test and some parameters added to the system.620

strength is the overall combinatorial coverage guaranteed in the output. In our experiments, we use 2621

and 3 because higher strength covering array generation in this degree is not practical since both of ACTS622

and our weaken− product algorithm were too much time consuming.623

We can also think of a covering array some of whose factors can be considered a higher strength624

covering array, which is called a variable strength covering array (VSCA). By employing weaken-product625

based combinatorial join, we can think of a method to construct a VSCA. That is, if we give a couple of626

covering arrays each of whose strength is 3 or higher and perform a combinatorial join operation with627

strength 2, the operation results in a new VSCA. For VSCAs, we only conduct the scratch generation628

experiments.629

15/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

The second one, real-world benchmark models, we use the original factors and constraints as they are630

provided. The factors are split into two groups of factors, which are referenced by a constraint at least631

once and which are not referenced by any constraints.632

4.3.3 Constraint Set633

In our evaluation for the artificial model, three constraintsets are prepared and used, which are none,634

basic, and basic+.635

There are real world practices that generate a combinatorial test suite from a high-level model such636

as a regular expression or a finite state machine(Usaola et al. (2017), Bombarda and Gargantini (2020)).637

Such high-level input models are turned into large parameter models with complex constraint sets and638

then they are processed by CIT tools, hence it’s hard to find any good benchmark factor-constraint sets for639

such models. In order to simulate this situation, we expand and use a software model originally designed640

to evaluate ACTS (Kuhn et al. (2008); Yu et al. (2013); Computer Security Research Center, NIST (2016))641

by designing and generating various constraint sets for it.642

The original model had only ten factors, we expand it by repeating the same factors and constraint set643

n times.644

In order to observe how dependent variable behave when a different set of constraints is given, we645

prepared three sets, which are “none”, “basic”, and “basic+”. The value “none” means no constraint was646

specified on a covering array generation. If the value “basic” is specified, a set of constraint defined by a647

following Equation (16) is used.648

p10i+1 > p10i+2∨ p10i+3 > p10i+4∨ p10i+5 > p10i+6∨ p10i+7 > p10i+8∨ p10i+9 > p10i+2(0≤ i< n) (16)

n is a variable, which is used to control the number of degrees in an experiment. The other constraint649

set is defined as follows.650

(p10i+1 > p10i+2 ∨ p10i+3 > p10i+4 ∨ p10i+5 > p10i+6 ∨ p10i+7 > p10i+8 ∨ p10i+9 > p10i+2)

∧ p10i+10 > p10i+1

∧ p10i+9 > p10i+2

∧ p10i+8 > p10i+3

∧ p10i+7 > p10i+4

∧ p10i+6 > p10i+5(0 ≤ i < n)

(17)

This was designed by adding several conditions to the “basic” set and made more complex than it in651

order to understand how covering array generation is affected by complexity of given constraints.1652

5 RESULTS653

In this section, we present and discuss the results of our evaluation. All the experiments in this section are654

executed on the computer with Intel(R) Core(TM) i9 2.40GHz (8 cores) CPU and 32GB memory working655

on macOS Catalina Version 10.15.7.656

5.1 Covering Array Generation Time657

5.1.1 Scratch Generation658

Figures 6, 7 and 8 compare the generation time between the covering arrays generated by our method659

and ACTS, given a degree set to 1,000, as it represents a large scale industrial system specification 4.3.2.660

As shown in the figures, our approach reduces the generation time by 21% to 25% or more, compared661

to ACTS, when the strength is 2 and degree is 980.662

Figures 9, 10 and 11 compare the generation time between the covering arrays generated by our663

method and ACTS, given a degree set to 380.664

As shown in the figures, our approach reduces the generation time by 89% to 91% compared to ACTS,665

when the strength is 3 and degree is 380.666

1This constraint can be simplified by manual transformation. However ACTS does not perform such a transformation by itself.

16/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

0 200 400 600 800 1,000
0

1,000

2,000

3,000

4,000

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 6. Scratch Generation;

t=2; constraint=none

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

1.2
·104

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 7. Scratch Generation ;

t=2; constraint=basic

0 200 400 600 800 1,000

0

0.5

1

1.5

2

·104

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 8. Scratch Generation;

t=2; constraint=basic+

0 40 80 120 160 200 240 280 320 360 400

0

0.5

1

·106

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 9. Scratch Generation;

t=3; constraint=none

0 40 80 120 160 200 240 280 320 360 400

0

0.5

1

1.5

·106

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 10. Scratch Generation;

t=3; constraint=basic

0 40 80 120 160 200 240 280 320 360 400

0

0.5

1

1.5
·106

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 11. Scratch Generation;

t=3; constraint=basic)

5.1.2 Variable Strength Covering Array Generation Scenario667

Figures 12, 13 and 14 compare the VSCA(t = 2,3) generation time between our method and ACTS,668

given a degree ranging from 20 to 380.669

0 200 400

0

0.2

0.4

0.6

0.8

1

·105

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 12. VSCA Generation;

t=2 and t=3; constraint=none

0 200 400

0

0.5

1

·105

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 13. VSCA Generation;

t=2 and t=3; constraint=basic

0 200 400

0

0.5

1

1.5

·105

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 14. VSCA Generation;

t=2 and t=3 (constraint = basic+)

As shown in the figures, our approach reduces the generation time by 28% to 30% compared to ACTS,670

when the mixed strengths are 2 and 3 and degree is 380.671

Figures 15, 16 and 17 compare the VSCA(t = 2,4) generation time between our method and ACTS,672

given a degree ranging from 20 to 160.673

5.1.3 Incremental Generation Scenario674

Figures 18, 19 and 20 compare the generation time between the covering arrays generated by our method675

and ACTS, given a degree set to 380.676

As shown in the figures, our approach reduces the generation time by 84% to 98% compared to ACTS,677

when the strength is 2 and degree is 380.678

Figures 21, 22 and 23 compare the generation time between the covering arrays generated by our679

method and ACTS, given a degree set to 380.680

17/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

40 80

0

1

2

3

4

5

·104

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 15. VSCA Generation;

t=2 and t=4; constraint=none

40 80

0

2

4

6

8

·104

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 16. VSCA Generation;

t=2 and t=4; constraint = basic

40 80

2

4

6

8

·105

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 17. VSCA Generation;

t=2 and t=4; constraint = basic+

0 200 400 600 800 1,000

0

2,000

4,000

6,000

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 18. Incremental

Generation; t=2 ; constraint=none)

0 200 400 600 800 1,000

0

0.5

1

·104

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 19. Incremental

Generation; t=2(constraint =

basic)

0 200 400 600 800 1,000

0

0.5

1

1.5

2

2.5

·104

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 20. Incremental

Generation; t=2(constraint =

basic+)

As shown in the figures, our approach reduces the generation time by 99% compared to ACTS, when681

the strength is 3 and degree is 380.682

5.1.4 Summary683 ✓ ✏
RQ1: Can our weaken-product combinatorial join technique accelerate the existing CIT tools?

Yes. When the degree is high (380 – 980), the acceleration is more significant. In strength 2,

our approach reduces the covering generation time of synthetic systems by 33%–95%. It can

accelerate the process by 84% – 99% in strength 3.

✒ ✑684

685

18/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

0 40 80 120 160 200 240 280 320 360 400

0

0.5

1

·106

seed degree

ti
m

e[
m

se
c]

POROPOSED METHOD/ACTS

ACTS

Figure 21. Generation time ;

t=3(constraint = none)

0 40 80 120 160 200 240 280 320 360 400

0

0.5

1

·106

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 22. Generation time ;

t=3(constraint = basic)

0 40 80 120 160 200 240 280 320 360 400

0

0.2

0.4

0.6

0.8

1

·106

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/ACTS

ACTS

Figure 23. Generation time ;

t=3(constraint = basic+)

5.2 Generated Covering Array Size686

5.2.1 Scratch Generation687

Tables 1 and 2 show the sizes of generated covering arrays in strength is 2 and 3 respectively. In strength688

2, the degree of output covering array was moved from 20 to 980.689

The “size penalty” represents how much percentage the size is increased by our proposed method690

comparing to the conventional approach (ACTS), which is named as a “penalty” (in size) for gaining a691

faster generation time.692

Table 1. Size of covering arrays; scratch; t = 2; d = [20,980]

constraint set none basic basic+

min max min max min max

PROPOSED METHOD based on ACTS 75 117 74 116 31 65

ACTS 41 82 39 80 23 50

Size Penalty with ACTS 83% 43% 90% 45% 35% 30%

The size penalty is about 35% to 90% depending on the constraint set at degree=20 and it is decreased693

to 30 to 43% when the degree is increased to 980 in strength=2.694

Table 2. Size of covering arrays; scratch; t = 3; d = [20,380]

constraint set none basic basic+

min max min max min max

PROPOSED METHOD based on ACTS 295 1356 455 1214 176 724

ACTS 208 562 228 567 118 301

Size Penalty with ACTS 42% 141% 100% 114% 49% 141%

In strength 3, the size penalty is about 42% to 100% depending on the constraint set at degree=20 and695

it is increased to 114% to 141% when the degree is increased to 980 and constraint set is present.696

5.2.2 Variable Strength Covering Array Generation Scenario697

Tables 3 and 4 show the sizes of generated covering arrays in strength is 2 and 3 respectively.698

We constructed a VSCA by splitting all the factors into two groups whose sizes are the same and they699

have higher strength than 2 (t=3 and 4) inside while the strength across each other is 2.700

When the VSCA’s strengths are 2 and 3, at the degree 20, the size penalty is 48-51% and it decreases701

down to 17-18% when the degree grows up to 380 (Table 3).702

When the VSCA’s strengths are 2 and 4, we needed to limit the degree up to 80 since it was too much703

time consuming (over 5 minutes) for conducting experiments this time to construct such covering arrays704

by ACTS. The size penalty was 13-21% at degree = 20 and 4-21%(Table 3)705

At the degree 20, the size penalty is -5-2.4% and it increases up to 2-2.7% when the degree grows up706

to 80(Table 4).707

19/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Table 3. Size of covering arrays; VSCA; t = 2,3; d = [20,380]

constraint set none basic basic+

min max min max min max

PROPOSED METHOD based on ACTS 163 330 191 339 88 176

ACTS 162 295 166 296 163 298

Size Penalty with ACTS 0% 8% 15% 8.8% -46% -43%

Table 4. Size of covering arrays; VSCA; t = 2,4; d = [20,80]

constraint set none basic basic+

min max min max min max

PROPOSED METHOD based on ACTS 721 1763 773 1786 297 806

ACTS 760 1735 774 1742 290 785

Size Penalty with ACTS -5% 2% 0% 2.5% 2.4% 2.7%

5.2.3 Incremental Generation Scenario708

Tables 5 and 6 show the sizes of generated covering arrays in strength is 2 and 3 respectively. We ran709

experiments moving LHS (seeds) degree from 10 to 370 while the RHS degree is fixed to 10 for each710

setting.711

Table 5. Size of covering arrays; incremental; t = 2; d = [20,80]

constraint set none basic basic+

min max min max min max

PROPOSED METHOD based on ACTS 75 124 74 122 31 65

ACTS 41 82 39 81 23 50

Size Penalty 83% 51% 90% 51% 35% 30%

In strength 2, the “size penalty” ranges from 80% to 89% in the degree = 20 while it decreases to712

57% – 59%(Table 5) in strength 3.713

The “size penalty” ranges from 41% to 100% in the degree = 20 while it decreases to 41% – 49%714

when the degree is increased to 380(Table 6) in strength 3.715

5.2.4 Summary716 ✓ ✏
RQ2: How are the sizes of covering arrays generated by our combinatorial join technique compared

to the sizes of covering arrays generated by the existing tools?

In strength 2, our approach increases the size of output covering array by 35% – 90%, and

the increase becomes 41% – 141% in strength 3. For VSCA generation, whose strengths are 2

and 3, it is -46% – 15%. When the strengths are 2 and 4, it becomes -5% – 2.7%. The increase

in the size becomes smaller when the more factors and more complex constraints are given.

✒ ✑717

718

20/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Table 6. Size of covering arrays; incremental; t = 3; d = [20,380]

constraint set none basic basic+

min max min max min max

PROPOSED METHOD based on ACTS 295 810 455 900 176 424

ACTS 208 562 228 567 118 301

Size Penalty 41% 44% 100% 60% 49% 41%

5.3 Reusability of Test Oracles by Our Method719

Our previous work (Ukai et al. (2019)) discussed how combinatorial join technique is employed to reuse720

test oracles over multiple software testing phases, in order to reduce total testing costs. The approach721

reuses the test oracles manually designed in component level test in later testing phases such as integration722

test, etc., by applying combinatorial join. The results of the work show that combinatorial join can reduce723

overall testing cost by more than 55%, depending on the complexity of the SUT and the ratio of oracle724

designing cost to test execution cost. However, there are further implicit assumptions behind that work,725

which we intend to study and discuss more in this paper, list as follows:726

1. Test oracles designed for one testing phase can be reused in the next testing phase.727

(a) Under what conditions the product under test should display the same behavior those oracles728

expect in the phase they are reused?729

(b) Under what conditions such test oracles can detect what sort of bugs in the product under730

test?731

2. In a testing phase, where these oracles are reused, no or small amount of extra test oracles are732

required.733

We first examine these assumptions and further clarify the conditions where combinatorial join can734

reduce overall testing costs. For simplicity, in this discussion, we model the testing effort into two phases,735

“component level testing” and “system level testing”. We then evaluate our method proposed in this paper736

based on those conditions.737

The assumption 1 is based on a couple of other underlying assumptions: first, the same test oracles738

can detect new bugs in later phases when a component is integrated into a larger system; the component739

for which test oracles are designed should behave in the same way as before the integration.740

In general, each component should be designed as much independent of each other as possible, and741

therefore as long as factors included in a test suite for a certain component cover all the input that affects742

the behaviour of it, the oracles defined in the component level are also valid in the system level testing743

(1a).744

If a bug is detected in system level testing but not component level testing given the same values, it745

means some value combinations across multiple components are exercised in the system level testing,746

which is impossible to find inside on single component. We can think of a few bug classes that would be747

detected by this approach in the system level testing, such as “resource conflict”, “incorrect abstraction”,748

and “unintended dependency”. Particularly “Resource conflict” refers to a bug that is triggered by749

conflicting usage of resources shared among multiple components. A list of typical bug examples of this750

class is shown as follows.751

• Data Corruption: A component modifies shared data (such as system configuration, etc.) in a way752

others do not expect. Or a component removes a directory in which other components expect their753

data files to be placed, etc.754

• Out Of Resources: A component consumes or occupies resources (e.g., memory, disk space,755

network band width) more than it is allowed.756

• Dead Lock: A component locks a resource (database table, file, shared memory), which others try757

to access, but does not unlock it.758

21/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Oracles to detect the “Out Of Resources” and “Dead Lock” are defined in a way agnostic to input759

parameters. That is, for instance, an oracle for “Out Of Resource” will be described as “An out of memory760

error should not be thrown during a test execution”, which does not require any cost to re-design for new761

input parameters. Therefore the “Data Corruption” is the only group of bugs among above, where reusing762

test oracles by combinatorial join leads to a testing cost reduction. A bug reported by Yoonsik Park (2018)763

is one instance in this class, where a bug that survived all unit tests for the Linux Kernel eventually caused764

data corruption in the QEMU virtual machine on the kernel.765

Another class of bugs is “Incorrect Abstraction”. A system sometimes has a component responsible766

for “abstracting” yet a lower level of components. For instance a graphic card driver is such an abstracting767

component and a graphics card is an example of a lower level component. When another component is768

accessing system’s graphics capability, it expects the capability works transparently regardless of the type769

of graphics card and its performance parameter settings. However, when a depending component assumes770

a specific behavior for the abstracting component (graphics driver), but it is only satisfied by specific771

implementations (a graphics card), this class of bugs will be observed. These bugs remain undetected772

until system level tests when the specification of the abstraction component is not sufficiently defined773

or the testing coverage over the abstraction component is insufficient. A bug found for Ubuntu (Linux)774

and Nvidia graphics card combination that produced unintended noise belongs to this class (Nvidia775

Corporation (2019)) and it could be avoided if they had an appropriate test oracle for the input.776

Sometimes a component unintentionally depends on a fact not always true when it is used as a part of777

the entire system. For instance, if a developer misses a requirement for the product, where it needs to be778

run not only on Linux but also on Windows and assumes a file separator can only be “/”, the product will779

break at the system level test, if the “OS” component is integrated in the testing phase. This is a class780

of bugs we referred to as “unintended dependency”. For instance, bugs are introduced by lack of such781

dependency considerations (Netty Project Community (2016), Kohsuke Kawaguchi (2020)) sometimes.782

These could be detected if there were test oracles for normal functionality of SUT (i.e., checking if783

the Netty or Jenkins starts up and it responds to basic requests) and the test cases with these oracles were784

exercised with the properly set-up configuration (i.e., installation=upgrade, OS=Microso f tWindows,785

dotNetVersion=4.0). However, the parameters are coming from different components (installation mode786

is a parameter of Jenkins and the OS and dotNetVersion are platform parameters) and only the specific787

combination can trigger the issue. This means just reusing oracles is not sufficient to detect them but also788

guaranteeing to cover combinations between parameters is necessary, which our method enables without789

resorting to Cartesian product between two covering arrays.790

The assumption 2 is satisfied if there exists a component which faces a consumer of the entire system791

among the components under the test and a test suite for the component can also be used as a test suite for792

the entire system level testing. This can be valid when the system level testing phase is only focusing793

on functionality, but this is not true in general. In usual testing practices, aspects that are not examined794

in earlier phases, such as performance, availability, scalability, etc., need to be more focused in later or795

the last testing phase and thus, the assumption is not always valid for all software development projects.796

Although having discussed that, when a consumer facing component is present, costs in system level797

testing for functionality aspect of the system will be reduced by the approach.798

Briefly, reusing test oracles by combinatorial join makes it possible to detect some classes of bugs799

which were not found in component level testing can be detected in system-level testing without re-800

defining test oracles such as “Data Corruption caused by Resource conflict”, “Incorrect abstraction”, and801

“Unintended dependencies between components”. At the same time by allowing test oracles to be reused,802

functionality testing cost can be reduced in system level testing.803

In order to make the functionality testing cost reduction happen, the are prerequisites as follows:804

First, test execution cost is much less expensive than oracle designing cost, which is made possible by805

testing automation. Second, there exists a component or components that cover most of consumer facing806

functionalities. Lastly, system level testing is mainly focusing on functionality testing.807

Since our proposed algorithm “weaken-product based combinatorial join” is just an implementation808

of the operation, those benefits and requirements are also held for it.809

22/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

✓ ✏
RQ3: What benefits does reusing test oracles across testing phases by weaken-product based

combinatorial join deliver and in what conditions?

Reusing test oracles by combinatorial join can detect new bugs in system-level testing that

are not found in earlier testing phases without extra manual effort.

✒ ✑810

811

5.4 Flexibility of Weaken Product Combinatorial Join812

The combinatorial join operation produces a new covering array from two existing covering arrays, it does813

not create a new combination of values or handle constraints by itself. In other words, it does not matter814

how the existing arrays are generated. In our experiments so far, we only chose ACTS for generating the815

input arrays due to its popularity and high performance, but in actual use case scenarios, any combinations816

of CIT tools can be utilized for the generation, depending on the actual requirements, characteristics and817

availability of tools, among other factors. Known CIT tools have different characteristics in performance818

(i.e., generation time), size efficiencies and functionalities, as described in Table 7. As we can see from819

the table, each tool has its own strengths and weaknesses. We summarize them as follows.820

• ACTS has the best efficiency in time and size almost all the time.821

• PICT provides more readable notation for defining data and constraints than ACTS, though ACTS822

is still able to define the same data and constraints with much less readability.823

• JCUnit has the richest functionalities in handling various data types and constraints and its notations824

are the most readable among the three. Some of its functionalities (e.g., defining a constraint using825

a regular expression) cannot be replaced with neither ACTS nor PICT.826

Given these characteristics, an optimal approach to build a covering array is proposed as follows:827

1. Generate a covering array A using ACTS for factors with constraints that can be implemented easily828

and directly by ACTS, or factors without any constraint.829

2. Generate a covering array B using JCUnit for factors with constraints that cannot be implemented830

by ACTS.831

3. Combine covering arrays A and B using the combinatorial join operation.832

This approach enhances applicability of CIT where any single tool cannot generate an appropriate833

test suite easily, efficiently, or even possibly. For instance, if an SUT has specification that involves too834

complex constraints for ACTS and/or too many factors for JCUnit to generate a test suite, this proposed835

approach makes it possible to use CIT methodology for testing such SUT.836

In summary, the combinatorial join operation is agnostic to how input arrays are generated and837

therefore it makes possible to combine multiple methods to build one covering array. As shown in this838

discussion, there are various tools each of which has its own distinct pros and cons and it is beneficial to839

employ the combinatorial join technique to combine covering arrays built by different tools.840

Table 7. Data types, Constraint Handlings, and Covering Array Generation Performance for 2100 by

Various Tools

Types
Available Operators Performance

Comparison Mathematical Logical Conditional Size Time

ACTS bool, number, <, <=, = +, -, *, / &&, ||, ! Not Supported 14 < 1.0 sec

enum, range

PICT string, numeric >, >=, <, Not supported AND, OR, NOT IF/THEN/ELSE 15 < 1.0 sec

<=, <>, =

JCUnit All Java types All Java operators All Java operators All Java operators All Java operators 18 6.5 sec

23/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

✓ ✏
RQ4: How can our approach handle constraints with flexibility?

It enables to build a covering array for a model with numerous parameters and complex con-

straints using multiple CIT tools in combination, by taking full advantage of the strength of

each tool, such as ACTS for its high performance and JCUnit for its rich constraint handling

support.

✒ ✑841

5.5 Performance in Various Scenarios842

We also examine the proposed method’s performance in time and size with a few settings to verify its843

applicability.844

5.5.1 Higher Strength845

We examine the behavior of our proposed method in strength 4 and 5. Since the generation time by ACTS846

itself becomes very long rapidly and it takes more than 20 to 30 minutes for one execution, the experiment847

was limited in degree and constraint sets. In strength 4, the maximum strength was 60. In strength 5,848

the maximum strength was 40 and it was not possible to conduct the experiment with the constraint set849

”BASIC+”.850

Table 8. Covering array generation performance; scratch; t = 4

CONSTRAINT

SET
DEGREE

ACTS

ACTS

+

PROPOSED

METHOD

SIZE

PENALTY

TIME

REDUCTION

SIZE TIME[msec] SIZE TIME[msec]

NONE
20 1,134 990 1,405 2,259 23.9% 128.2%

40 2,027 196,226 4,649 73,864 129.4% -62.4%

BASIC
20 1,236 8,756 1,958 4,884 58.4% -44.2%

40 2,041 247,151 4,261 123,471 108.8% -50.0%

BASIC+
20 537 197,244 729 82,074 35.8% -58.4%

40 945 909,183 1,817 453,700 92.3% -50.1%

Table 9. Covering array generation performance; scratch; t = 5

CONSTRAINT

SET
DEGREE

ACTS

ACTS

+

PROPOSED

METHOD

SIZE

PENALTY

TIME

REDUCTION

SIZE TIME[msec] SIZE TIME[msec]

NONE
20 5,746 12,771 6,187 54,122 7.7% -50.1

40 N/A N/A 45,108 4,773,071 N/A N/A

BASIC
20 6,192 152,885 8,637 86,623 39.5 -43.3

40 N/A N/A N/A N/A N/A N/A

BASIC+
20 N/A N/A N/A N/A N/A N/A

40 N/A N/A N/A N/A N/A N/A

5.5.2 PICT851

The proposed method does not generate a covering array itself but it construct a new covering array from852

ones generated by an external tool, which can be any CIT tool. To make sure our method can be applied853

to non-ACTS tool, we measure its performance using PICT as the underlying covering array generation854

engine. PICT was not able to generate covering arrays when the constraint sets we prepared were present855

even when the degree = 20 in 30 minutes. Also, when t = 3, it took more than 30 minutes to generate a856

covering array for degrees greater than 100.857

The Figure 24 and 25 compare the generation time between our method with PICT and PICT itself858

in strength 2 and 3 respectively. The Table 10 and 11 show the size of the generated covering array in859

strength 2 and 3. The proposed method accelerates the covering array generation up to 76% and the size860

penalty was 16% – 56 % in strength 2.861

In strength 3, the acceleration was 96% and the size penalty was 71%.862

24/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

0 200 400 600 800 1,000

0

0.5

1

·105

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/PICT

PICT

Figure 24. Scratch Generation; t=2;

constraint=none

0 40 80 120 160 200

0

1

2

3

·106

seed degree

ti
m

e[
m

se
c]

PROPOSED METHOD/PICT

PICT

Figure 25. Scratch Generation ; t=3;

constraint=none

Table 10. Size of covering arrays; scratch; t = 2; d = [20,980];PICT

constraint set none basic basic+

min max min max min max

PROPOSED METHOD based on PICT 61 94 N/A N/A N/A N/A

PICT 39 81 N/A N/A N/A N/A

Size Penalty with ACTS 56% 16% N/A N/A N/A N/A

5.5.3 Real World benchmark863

There is a data model suite called CASA for CIT tools and we applied ACTS and the proposed method to864

it.865

Table 12 compares the time to generate covering arrays and the size of the generated covering array866

from the models contained in the real-world benchmark data set in strength=2.867

As shown in the table no significant difference was observed in strength 2.868

Table 13 compares the performance for generating covering arrays from the models in strength=3.869

In strength 2, up to 24% acceleration is seen, while 38-130% increase in size is seen and the penalty is870

in general larger in models whose degrees are smaller (Table 12). Similarly, the method accelerates the871

generation process maximum 42%, while 16-90% increase in size is seen in strength 3, and the penalty is872

the larger in the smaller models (Table 13).873

25/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Table 11. Size of covering arrays; scratch; t = 3; d = [20,100];PICT

constraint set none basic basic+

min max min max min max

PROPOSED METHOD based on PICT 363 363 N/A N/A N/A N/A

PICT 226 692 N/A N/A N/A N/A

Size Penalty with ACTS 60% 71% N/A N/A N/A N/A

Table 12. Covering array generation performance; scratch; t = 2;CASA

ACTS

ACTS

+

PROPOSED

METHOD

SIZE

PENALTY

TIME

REDUCTION

SIZE TIME[msec] SIZE TIME[msec]

APCHE 33 939 60 712 45.0% -31.9%

BUGZILLA 19 499 28 476 32.1% -4.8%

GCC 23 719 30 698 23.3% -3.0%

SPINS 26 472 38 520 31.6% 9.2%

SPINV 45 644 84 630 46.4% -2.2%

TCAS 100 446 120 498 16.7% 10.4%

Table 13. Covering array generation performance; scratch; t = 3;CASA

ACTS

ACTS

+

PROPOSED

METHOD

SIZE

PENALTY

TIME

REDUCTION

SIZE TIME[msec] SIZE TIME[msec]

APCHE 173 5151 269 3382 35.7% -52.3%

BUGZILLA 68 572 104 596 34.6% 4.0%

GCC 108 5,615 203 3,251 46.8% -72.7%

SPINS 98 497 186 516 47.3 3.7%

SPINV 286 982 495 939 42.2% -4.6%

TCAS 405 488 471 537 14.0% 9.1%

26/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

5.6 Summary and Discussion874

The proposed method offers a way to reuse test oracles designed in earlier testing phases (e.g., unit875

testing) in later ones such as integration and system testing phases. Moreover, the method can accelerate876

covering array generation under complex constraint sets and this enhances applicability of combinatorial877

interaction testing tools with richer functionalities and poorer performance since the method is transparent878

to underlying generation algorithms.879

Therefore, in situations where the test execution time matters much less than the test generation880

time, the proposed method will be useful, from a comprehensive perspective. For example, in a software881

development project, in which test execution is highly automated not only in unit testing but also in later882

testing phases such as integration testing and system testing. Specifically, the increase in size goes up to883

141% while it reduces generation time by up to 99% when the method is applied to enhance a covering884

array. Besides, in a situation where the constraints are more complex or the degree is larger, our proposed885

method shows more significant benefit, because the size penalty becomes smaller and the time reduction886

is greater when the constraint set is more complex and the degree is larger. The aforementioned situations887

show that our proposed method is beneficial, even with the non-trivial size penalty at times.888

The proposed method accelerates an existing covering array generation algorithm by combining output889

of it at the cost of increase in output size.890

The reduction varies from 13% to 99% depending on generation scenarios and degrees of the method’s891

output.892

However, a size of a generated covering array becomes significantly larger especially when the degree893

is low. This is because the method can only utilize existing rows input arrays and not allowed to construct894

a new row to optimize the output size.895

The increase in size goes up to 141% while it reduces generation time by up to 99% when the method896

is applied to enhance a covering array. In general, The size penalty becomes smaller and the time reduction897

is greater when the constraint set is more complex and the degree is larger.898

Although the increase in size is significant and it needs to be used with consideration, it will still be899

beneficial.900

First, as shown in Figures 6 – 11, the generation time grows more rapidly along with the degree901

than linear, it becomes impractical quickly as the degree increases. Our approach first uses the engine902

to generate two smaller covering arrays and then combines them later. This approach enhances the903

applicability of current generation tools to areas where it has not been practical due to too many parameters904

and too long generation time. But with our approach, the large number of parameters are split into two sets,905

and the generation engine only handles half of the parameters, which may largely reduce the generation906

time.907

There are situations where a cost to change a value for a testing parameter is extremely different,908

such as some parameters require OS re-installation while some others can be changed just by operating909

an application. In this situation, we can generate covering arrays for OS parameters and for application910

parameters independently and combine them into one by our approach. Since the proposed method does911

not create a new row, the overall test execution cost will be reduced because the size penalty of the method912

is 140% at maximum while the OS installation cost is far more expensive than application operating cost.913

When a user needs to add some parameters to an existing test suite, ”seeding” functionality of a CIT914

tool has been used. As it was shown in Figure 20 and 19, the generation time was dramatically reduced,915

when the method is applied to this use case. This is because the conventional method needs to examine916

coverage of the input covering array first, which is time consuming and unnecessary for the proposed917

method. Since the size penalty for this use case is relatively modest (30%–60%), if test case design918

time matters more than execution time because of testing automation, for instance, it will be a practical919

solution.920

It is a limitation of the proposed method not to be able handle constraints defined across LHS and921

RHS and we will address this point in future.922

6 CONCLUSION923

The “combinatorial join” operation, which was first introduced in Ukai et al. (2019), combines two924

existing covering arrays to create a new covering array horizontally. In this paper, we proposed a novel925

algorithm called the “weaken-product based combinatorial join”, which implements the operation.926

27/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

We evaluated the algorithm from several aspects with regard to execution time and the size of an927

output array. We examined its performance in three scenarios as follows:928

• Scratch generation929

• Incremental generation930

• VSCA generation931

The improvements by our method in time efficiency were 33%–90%, 66%-99%, and 13%–34%932

respectively for Scratch, Incremental, and VSCA generation scenarios (RQ1). Although this method933

produces larger covering arrays than the conventional method, the increase in size remained reasonable in934

some practical use cases (RQ2). For instances, test execution is highly automated and the number of test935

cases less matters; the costs to change parameter values in test cases are very unbalanced; or several new936

parameters are added to an existing test suite.937

In addition, our algorithm has other benefits as follows:938

• Reusing test oracles across multiple testing phases (Oracle Reuse).939

• Employing multiple covering array generation tools (Divide-and-Conquer).940

For Oracle Reuse, we reviewed the discussion in the original paper (Ukai et al. (2019)) and clarified the941

assumptions that were not explicitly stated. We identified three classes of bugs that can be detected by that942

approach, which are “resource conflict”, “incorrect abstraction”, and “unintended dependencies between943

components”. To detect such bugs, a test suite for each component must be designed as independently944

as possible and must be fully described so that a consumer of the component can expect it to behave as945

defined by the reused oracle. The original paper asserted that the method can significantly reduce the total946

testing costs. We clarified that such a reduction is possible when the consumer-facing component of the947

test suite can be reused as a system-level test for functionality testing (RQ3).948

To evaluate the benefits of the ”Divide-and-Conquer”, we examined three well-known CIT tools,949

ACTS, PICT, and JCUnit. Specifically we evaluated their abilities to define test models, generation time950

and size efficiencies. Because existing tools have drastically different characteristics, it may be beneficial951

to apply multiple tools to construct one covering array. We had the following observations in this study:952

1. Of the three CIT tools, ACTS was the fastest and produced the smallest covering array for factors953

without constraints or with simple constraints.954

2. JCUnit had the most powerful notation to describe constraints for factors with a complex constraint955

set.956

3. No single CIT tool is capable of handling software with industry scale and complexity.957

As discussed in 5.6, testing parameters sometimes have quite different value changing costs. An OS-level958

parameter such as file system type might take hours to change, while an application level parameter value959

such as a text font type takes less than a second. In this situation, it becomes possible with this approach960

to generate an LHS covering array for OS parameters and RHS for application parameters and join them961

to construct a t-way-combination-covering test suite. This approach offers a way to guarantee t-way962

coverage among the OS parameters and application parameters without preparing a new OS installation963

nor executing all the test cases coming from the RHS(application) covering array on a configuration964

defined based on each row in LHS(OS).965

Different CIT tools have different characteristics in terms of generation time, output size, and966

especially constraint describing capability. Our proposed method combines covering arrays regardless967

of the generation tools, therefore for each given input covering array (or sub-model), we may choose968

the most effective (e.g., that can describe complex constraints) and efficient (e.g., short time and small969

size) CIT tool for generation. In addition, different CIT tools may use different modeling languages to970

describe models, our proposed method does not require an universal modeling language to construct a971

single covering array, given its capability to combine all sub-models which may describe in different972

languages.973

In summary, our approach can enhance the applicability of the CIT technique for software whose974

specifications are typically considered too complex for ACTS or too large for JCUnit (RQ4).975

28/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

The proposed method delivers acceleration of covering array generation while it requires an increase976

in output size. It provides a new efficient option to generate a covering array for non simple use cases,977

such as incremental generations, input models with complex constraint sets, and VSCA generations,978

which have been relatively less studied, by enabling ”divide-and-conquer” approach. The increase in the979

size comes from the step to ensure all the input rows appear in the output (Step 3 in Figure 1). We will980

improve this point to minimize the output size and the applicability of the method in our future works.981

6.1 Threats to Validity982

We designed the artificial model to simulate a situation where factors and constraints are automatically983

generated from a human friendly model. However to what extent it is representing practical situations is984

arguable. For instance, the rank is fixed to four, while in practice it may vary and the same constraint is985

repeated in the model, while its complexity also varies in the more realistic situations. We assumed that it986

is possible to convert such a high-level constraint into ACTS’s notation in a short amount of time, which987

is also arguable.988

The evaluation of the output size was based on the best practices and experiences of the first author’s989

development team for an industry-scale software product. The conclusion may not be applicable to teams990

and/or other software products in different sizes.991

6.1.1 Conclusion Validity992

We did not conduct statistical verification over our experiments results and this can be a threats to993

conclusion validity. However, the elements involved in the experiments all consist of deterministic994

algorithms and we do not need such a procedure for the output sizes. On the other hand, the generation995

time grew monotonically along with the degree always except for scratch generation scenario in t=3 and996

degree is 340 overall. Hence we consider that the threat is not major in our conclusion.997

6.1.2 External Validity998

Our experiments were mainly conducted on synthetic data models. The intention was to simulate tools999

that generate a large number of factors and constraints from high-level models such as regular expressions1000

and finite state machines. However, there is no general best practice for converting a high level model into1001

an input parameter model and the data model we used might not reflect practical situations. To mitigate1002

this, we conducted experiments using real world data sets called CASA.1003

6.2 Future Work1004

Our approach assumes that there is no constraint defined across LHS and RHS. However, it is usual not to1005

have such an assumption in practical situations, especially when we construct a VSCA for a system with1006

multiple components. From the technical point, sometimes it is even impossible to define a combinatorial1007

join operation when constraints across LHS and RHS are present. For instance, if the strength of LHS1008

and RHS is t and there is a constraint across them which involves more than t parameters in either LHS1009

or RHS, there might not exist sufficient rows to cover all t-way tuples or even any row that satisfies the1010

constraint at all. As one of our future works, we intend to study the exact criteria where the operation can1011

be meaningful, and design an efficient algorithm to perform the operation under the situation that satisfies1012

such criteria.1013

Our approach generates covering arrays of larger size than other tools, particularly when the strength1014

is higher than 2. As one of the future work, we intend to apply a squashing technique to diminish a1015

redundant covering array.1016

Lastly, our current algorithm is sufficiently fast in strength 2 and 3, but it may become less efficient in1017

strength 4 or greater. It is known that a bug can be found in a strength up to 6 or 7 (Kuhn et al. (2016)).1018

Therefore, in order to improve the applicability of our approach in practice in high strength, our algorithm1019

needs further improvement.1020

REFERENCES1021

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., Harman, M., Harrold, M. J.,1022

and Mcminn, P. (2013). An orchestrated survey of methodologies for automated software test case1023

generation. J. Syst. Softw., 86(8):1978–2001.1024

Bansal, P., Sabharwal, S., Mittal, N., and Arora, S. (2015). Construction of variable strength covering1025

array for combinatorial testing using a greedy approach to genetic algorithm. e-Informatica, 9:87–105.1026

29/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Bombarda, A. and Gargantini, A. (2020). An automata-based generation method for combinatorial1027

sequence testing of finite state machines. In 2020 IEEE International Conference on Software Testing,1028

Verification and Validation Workshops (ICSTW), pages 157–166.1029

Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton, G. C. (1997). The aetg system: An approach to1030

testing based on combinatorial design. IEEE Trans. Softw. Eng., 23(7):437–444.1031

Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton, G. C. (1997). The aetg system: an approach to1032

testing based on combinatorial design. IEEE Transactions on Software Engineering, 23(7):437–444.1033

Cohen, M., Gibbons, P., Mugridge, W., Colbourn, C., and Collofello, J. (2003). A variable strength1034

interaction testing of components. Proceedings 27th Annual International Computer Software and1035

Applications Conference. COMPAC 2003.1036

Cohen, M. B., Dwyer, M. B., and Shi, J. (2008). Constructing interaction test suites for highly-configurable1037

systems in the presence of constraints: A greedy approach. IEEE Transactions on Software Engineering,1038

34(5):633–650.1039

Computer Security Research Center, NIST (2016). Advanced Combinato-1040

rial Testing System (ACTS). https://csrc.nist.gov/projects/1041

automated-combinatorial-testing-for-software/downloadable-tools\1042

#acts. Online; accessed 12 oct 2018.1043

Czerwonka, J. (2006). Pairwise testing in real world. In Proceedings of 24th Pacific Northwest Software1044

Quality Conference.1045

Czerwonka, Jacek (2015). A PICT model example. https://github.com/microsoft/pict/1046

blob/master/doc/sample-models/machine.txt. Online; accessed may 2020.1047

Czerwonka, Jacek (2016). PICT issue 13. https://github.com/Microsoft/pict/issues/1048

13. Online; accessed may 2020.1049

Garvin, B. J., Cohen, M. B., and Dwyer, M. B. (2011). Evaluating improvements to a meta-heuristic1050

search for constrained interaction testing. Empirical Softw. Engg., 16(1):61–102.1051

Grindal, M., Offutt, J., and Mellin, J. (2006). Handling constraints in the input space when using1052

combination strategies for software testing. Technical Report, HSIKI-TR-06-01.1053

Jacek Czerwonka (2018). Pairwise Testing Available Tools. http://www.pairwise.org/tools.1054

asp. Online; accessed sep 2018.1055

Kampel, L., Garn, B., and Simos, D. E. (2017a). Combinatorial methods for modelling composed software1056

systems. In 2017 IEEE International Conference on Software Testing, Verification and Validation1057

Workshops (ICSTW), pages 229–238.1058

Kampel, L., Garn, B., and Simos, D. E. (2017b). Combinatorial methods for modelling composed software1059

systems. In 2017 IEEE International Conference on Software Testing, Verification and Validation1060

Workshops (ICSTW), pages 229–238.1061

Kohsuke Kawaguchi (2020). Unable to start windows service after upgrading to 2.248. https:1062

//issues.jenkins.io/browse/JENKINS-63198. Online; accessed feb 2021.1063

Kruse, P. M. (2016). Test oracles and test script generation in combinatorial testing. In 2016 IEEE Ninth1064

International Conference on Software Testing, Verification and Validation Workshops (ICSTW), pages1065

75–82.1066

Kuhn, D. R., Kacker, R. N., and Lei, Y. (2013). Introduction to Combinatorial Testing. Chapman &1067

Hall/CRC, 1st edition.1068

Kuhn, D. R., Kacker, R. N., and Lei, Y. (2016). Estimating t-way fault profile evolution during testing.1069

In 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), volume 2,1070

pages 596–597.1071

Kuhn, R., Kacker, R., and Lei, Y. (2008). Automated combinatorial test methods – beyond pairwise1072

testing. J. Defense Softw. Eng., 21(6):22 – 26.1073

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., and Lawrence, J. (2008). Ipog-ipog-d: Efficient test generation1074

for multi-way combinatorial testing. Softw. Test. Verif. Reliab., 18(3):125–148.1075

Netty Project Community (2016). Fix native library loading in Windows. https://github.com/1076

netty/netty/pull/5776. Online; accessed feb 2021.1077

Nie, C. and Leung, H. (2011). A survey of combinatorial testing. ACM Comput. Surv., 43(2):11:1–11:29.1078

Nvidia Corporation (2019). sound coming out of GPU very noisy. https://forums.developer.1079

nvidia.com/t/sound-coming-out-of-gpu-very-noisy/83545. Online; accessed1080

feb 2021.1081

30/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

Shaowei Cai (2020). CASA benchmark. http://lcs.ios.ac.cn/˜caisw/CIT.html. Online;1082

accessed 6 nov 2020.1083

Shiba, T., Tsuchiya, T., and Kikuno, T. (2004). Using artificial life techniques to generate test cases1084

for combinatorial testing. In Proceedings of the 28th Annual International Computer Software and1085

Applications Conference - Volume 01, COMPSAC ’04, pages 72–77.1086

Ukai, H., Qu, X., Washizaki, H., and Fukazawa, Y. (2019). Reduce test cost by reusing test oracles1087

through combinatorial join. In 2019 IEEE International Conference on Software Testing, Verification1088

and Validation Workshops (ICSTW), pages 260–263.1089

Ukai, Hiroshi (2017). jcunit performance under constraints. http://jcunit.hatenablog.jp/1090

entry/2017/08/09/024916. Online; accessed may 2020.1091

Ukai, Hiroshi and Qu, Xiao (2017). Test Design as Code: JCUnit. In Proceedings of the 10th IEEE1092

International Conference on Software Testing, Verification and Validation, ICST 2017, pages 508–515.1093

Usaola, M. P., Romero, F. R., Aranda, R. R., and Rodrı́guez, I. G. (2017). Test case generation with1094

regular expressions and combinatorial techniques. In 2017 IEEE International Conference on Software1095

Testing, Verification and Validation Workshops (ICSTW), pages 189–198.1096

Wang, Z. and He, H. (2013). Generating variable strength covering array for combinatorial software1097

testing with greedy strategy. JSW, 8(12):3173–3181.1098

Wu, H., Changhai, N., Petke, J., Jia, Y., and Harman, M. (2019). Comparative analysis of constraint1099

handling techniques for constrained combinatorial testing. IEEE Transactions on Software Engineering,1100

PP:1–1.1101

Yoonsik Park (2018). This Data Corruption Bug will Shock You. https://www.naut.ca/blog/1102

2018/10/23/rare-data-corruption/. Online; accessed feb 2021.1103

Yu, L., Lei, Y., Nourozborazjany, M., Kacker, R. N., and Kuhn, D. R. (2013). An efficient algorithm for1104

constraint handling in combinatorial test generation. Proceedings - IEEE 6th International Conference1105

on Software Testing, Verification and Validation, ICST 2013, pages 242–251.1106

Zamansky, A., Shwartz, A., Khoury, S., and Farchi, E. (2017). A composition-based method for1107

combinatorial test design. In 2017 IEEE International Conference on Software Testing, Verification1108

and Validation Workshops (ICSTW), pages 249–252.1109

31/31PeerJ Comput. Sci. reviewing PDF | (CS-2020:07:50704:1:1:NEW 4 Apr 2021)

Manuscript to be reviewedComputer Science

