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While traditional methods for calling variants across whole genome sequence data rely on alignment to
an appropriate reference sequence, alternative techniques are needed when a suitable reference does
not exist. We present a novel alignment and assembly free variant calling method based on information
theoretic principles designed to detect variants have strong statistical evidence for their ability to
segregate samples in a given dataset. Our method uses the context surrounding a particular nucleotide
to define variants. Given a set of reads, we model the probability of observing a given nucleotide
conditioned on the surrounding prefix and suffixes of length k as a multinomial distribution. We then
estimate which of these contexts are stable intra-sample and varying inter-sample using a statistic based
on the Kullback–Leibler divergence.

The utility of the variant calling method was evaluated through analysis of a pair of bacterial datasets
and a mouse dataset. We found that our variants are highly informative for supervised learning tasks
with performance similar to standard reference based calls and another reference free method
(DiscoSNP++). Comparisons against reference based calls showed our method was able to capture very
similar population structure on the bacterial dataset. The algorithm’s focus on discriminatory variants
makes it suitable for many common analysis tasks for organisms that are too diverse to be mapped back
to a single reference sequence.

PeerJ Comput. Sci. reviewing PDF | (CS-2015:12:8180:1:0:CHECK 2 May 2016)

Manuscript to be reviewedComputer Science



Information theoretic alignment free variant calling1
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Abstract8

While traditional methods for calling variants across whole genome sequence data rely9

on alignment to an appropriate reference sequence, alternative techniques are needed when10

a suitable reference does not exist. We present a novel alignment and assembly free variant11

calling method based on information theoretic principles designed to detect variants have12

strong statistical evidence for their ability to segregate samples in a given dataset. Our13

method uses the context surrounding a particular nucleotide to define variants. Given a14

set of reads, we model the probability of observing a given nucleotide conditioned on the15

surrounding prefix and suffixes of length k as a multinomial distribution. We then estimate16

which of these contexts are stable intra-sample and varying inter-sample using a statistic17

based on the Kullback–Leibler divergence.18

The utility of the variant calling method was evaluated through analysis of a pair of19

bacterial datasets and a mouse dataset. We found that our variants are highly informative for20

supervised learning tasks with performance similar to standard reference based calls and21

another reference free method (DiscoSNP++). Comparisons against reference based calls22

showed our method was able to capture very similar population structure on the bacterial23

dataset. The algorithm’s focus on discriminatory variants makes it suitable for many common24

analysis tasks for organisms that are too diverse to be mapped back to a single reference25

sequence.26

1 Introduction27

Many sequencing studies begin by the transformation of raw sequence data to relatively few28

features, usually single-nucleotide variants. Typically, this is done by aligning the individual29

sequence reads to a reference genome to identify single nucleotide differences from the reference.30

Although straightforward, the genome alignment approach has several shortcomings:31

• a suitable reference may not exist; this is especially important for unstable genomes such32

the anuploid genomes frequently encountered in cancer (Beroukhim, Mermel, Porter, et al.,33

2010), and also for some organisms with large genetic diversity such as bacteria (Ochman,34

Lawrence, and Groisman, 2000);35
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• selecting a reference may be difficult when there is uncertainty about what has been36

sampled; and37

• it performs poorly when a sample contains significant novel material, i. e., sequences that38

are not simple variations of the reference.39

Existing reference-free approaches are either based on assembly (Li, 2012), which possibly40

introduces misassembly biases, or on searching for structural motifs within a universal de Bruijn41

graph of all samples (Peterlongo, Schnel, Pisanti, et al., 2010; Iqbal, Caccamo, Turner, et al.,42

2012; Uricaru, Rizk, Lacroix, et al., 2015) that correspond to simple variants.43

We present a variant calling algorithm to generate features from unaligned raw reads. Rather44

than attempting to identify all genetic variation within a given set of samples, we instead focus on45

selected variants that have have strong statistical evidence for their ability to segregate samples in46

a given dataset. Such variants form useful features for many tasks including genomic prediction47

of a given phenotype, modelling population structure or clustering samples into related groups.48

Our method uses the context surrounding a particular nucleotide to define variants. Given49

a set of reads, we model the probability of observing a given nucleotide conditioned on the50

surrounding prefix and suffix nucleotide sequences of length k as a multinomial distribution. We51

then estimate which of these contexts form potential variants, i. e., those that are stable intra-52

sample and varying inter-sample, using a statistic based on the Kullback–Leibler divergence.53

Given this list of candidate variants, we call those variants by maximum likelihood of our54

multinomial model.55

Furthermore, we show that the size of the context k can be chosen using the minimum56

message length principle (Wallace and Boulton, 1968) and that our context selection statistic is57

γ-distributed. Consequently, k can be determined from the data and the contexts surrounding58

variants can be selected with statistical guarantees on type-1 errors.59

The utility of variant calling method was evaluated through simulation experiments and60

empirical analysis of a pair of bacterial datasets and a mouse dataset. Through simulations we61

showed the method has good power and false positive rate for detecting variants, though the62

ability to detect rare variants required high depth and large number of samples.63

Our empirical results indicated our variants are highly informative for antimicrobial resistance64

phenotypes on the bacterial datasets and were able to accurately capture population structure.65

On the mouse dataset, the variants were also found to be good for modelling coat colour.66

Further investigations of the variants found for the bacterial dataset using a known reference67

sequence revealed variants associated with boxB repeat regions, a repeat previously used for68

population structure mapping (Rakov, Ubukata, and Robinson, 2011), suggesting the model can69

generate features for more complex genetic elements. These results suggest the variants are70

capturing genotypic variation well and can model heritable traits in different organisms. Our71

proposed method will be of strongest utility when modelling of population structure, phylogenetic72

relationships or phenotypes from genotype for large scale datasets of organisms with either73

variable genomes (as is the case for many bacteria), or those lacking a reference genome.74

2 Methods75

Our variant calling method comprises two steps: modelling the probability that a base is observed76

in a sample given the surrounding context; and determining which contexts surround variable77

bases in a population represented by several samples. The former provides a mechanism to78

call variants in a sample given a set of contexts, and the latter determines the set of contexts79

associated with variants.80
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2.1 Variant calling81

We consider the case of variant calling directly from a collection of reads. Let random variable82

xi j taking values in {A,C,G,T} denote the jth nucleotide of the ith read, with 1 ≤ i ≤ n and83

1≤ j ≤ mi the number of reads and nucleotides in the read i.84

Definition 1 (k-context) The k-context around a nucleotide j consists of a k-prefix sequence85

πk(xi, j) := [xi( j−k),xi( j−k+1), . . . ,xi( j−1)].

and a k-suffix sequence86

σk(xi, j) := [xi( j+1),xi( j+2), . . . ,xi( j+k)].

Contexts that consist of only the prefix/suffix sequences are suffix/prefix-free.87

Definition 2 (k-context probability) The k-context probability is the probability of observing a88

base at a particular position given the context, that is89

P(xi j|πk(xi, j),σk(xi, j)).

The k-context probabilities can be estimated from the data by maximising a pseudolikelihood.90

Let f (b,πk,σk) := 1+∑i jJxi j = b∧πk = πk(xi, j)∧σk = σk(xi, j)K denote the counts of how91

often b was observed with k-prefix πk and k-suffix σk in the read set x, where J·K is the Iverson92

bracket. Here the pseudocount encodes a weak uniform prior. The probability density estimate93

of observing a base b in context (πk,σk) is then given by94

P̂(b|πk,σk) :=
f (b,πk,σk)

∑b′ f (b′,πk,σk)
.

The suffix/prefix free densities are thus95

P̂(b|πk) = ∑
σk

P̂(b|πk,σk) and P̂(b|σk) = ∑
πk

P̂(b|πk,σk).

Given a context (πk,σk), the base can be called as argmaxb P̂(b|πk,σk), and similarly for96

prefix/suffix free densities.97

2.2 Variant finding98

Determining the list of variants consists of determining which contexts (πk,σk) surround a99

variable base in our population, then call the base for each variant-defining context and each100

sample. We consider inter-sample variants and not intra-sample variants; we are interested in101

finding contexts which define variants that differ amongst samples and are not attributable to102

noise. In this section, we develop a statistic based on the Kullback–Leibler (KL) divergence that103

achieves these two points.104

Let X be a set of samples, each consisting of a collection of reads as defined above. For105

each x ∈X , we refer to the jth nucleotide of the ith read as xi j, the number of reads in the sample106

as nx, and the number of nucleotides in read xi as mxi . Similarly to the previous section, we107

denote fx(b,πk,σk) as the frequency of observing base b given context (πk,σk) for sample x. As108

before, a pseudocount is used when estimating fx to encode a uniform prior.109

The KL divergence measure provides a way of quantifying the differences between two110

probability distributions. We will develop a statistic based upon the KL-divergence that compares111

the individual sample distributions of nucleotide occurrence for a given context with a global112

expected distribution. Contexts that significantly diverge from the global expected distribution113

surround a site which is variant in the population sample.114
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Definition 3 (Kullback–Leibler divergence) Let P and Q be two discrete probability densities115

over the domain Y . The Kullback–Leibler (KL) divergence is116

P(·) ||kl Q(·) := ∑
y∈Y

P(y) log
P(y)
Q(y)

.

Definition 4 (Total divergence) The total divergence for a given context (πk,σk) is estimated117

as the total KL divergence between the samples in the dataset X and the expected probability118

distribution given the context:119

DX (πk,σk) := ∑
x∈X

P̂x(·|πk,σk) ||kl Q(·|πk,σk),

where120

P̂x(·|πk,σk) :=
fx(b,πk,σk)

∑b′ fx(b′,πk,σk)
.

denotes the probability density estimated for sample x and context (πk,σk) and121

Q(b|πk,σk) :=
∑x∈X fx(b,πk,σk)

∑x∈X ,b′ fx(b′,πk,σk)
.

The total divergence statistic is proportional to the expected KL-divergence between a sample122

and the global expected probability distribution. To see why this statistic is robust to noise123

consider the case where variation is due purely to noise. As the noise distribution is independent124

of sample, it will be well modelled by the expected distribution Q and therefore the divergence125

between each sample and Q will be small. Conversely, if variation is due to samples being drawn126

from two or more latent probability densities, then Q will be an average of these latent densities127

and divergence will be high.128

The next theorem is crucial for determining when a particular divergence estimate indicates129

a significant divergence from the expected distribution Q. Using this theorem, we can use130

hypothesis testing to select which contexts are not well explained by Q. These contexts not well131

explained by Q are variant and we call them as in section 2.1.132

Theorem 5 Under random sampling from Q, D follows a γ distribution.133

The proof of this theorem is trivial given a well known result regarding the G-test (see Sokal134

and Rohlf (1994)):135

Lemma 6 Let fx be a frequency function and g := E[ fx]. The G-test is136

G := ∑
x∈X

∑
b∈{A,T,C,G}

fx(b,πk,σk) log
(

fx(b,πk,σk)

g(b,πk,σk)

)
.

Under the null hypothesis that fx results from random sampling from a distribution with expected137

frequencies g, G follows a χ2 distribution with 3|X | degrees of freedom asymptotically.138

From this lemma, the proof of theorem 5 follows easily:139

Proof D is proportional to the G-test. As the G-test is χ2-distributed, D is γ-distributed.140

141
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Clearly our statistic D is very similar to G, but has an important property: D is invariant to142

coverage. As D operates on estimates of the probability rather than the raw counts, changes143

in coverage are effectively normalised out. This is advantageous for variant discovery as it144

avoids coverage bias and allows variants to be called for (proportionally) low-coverage areas, if145

statistical support for their variability in the population exists.146

To select contexts a γ distribution is fitted to the data. For the results in our experiments, we147

used a Bayesian mixture model with a β prior over the mixing weights whereby each context148

could originate from the null (γ) distribution or from a uniform distribution. The mixing weights149

were then used to determine if a context is not well supported by the null distribution. Such a150

model comparison procedure has several advantages and directly estimates the probabilities of151

support by the data for each context (Kamary, Mengersen, Robert, et al., 2014), providing an152

easily interpretable quantity.153

2.3 Choosing context size154

The problem of choosing context size k is difficult; if too large then common structures will not155

be discovered, and if too small then base calling will be unreliable. We propose to choose k156

using the minimum message length principle (Wallace and Boulton, 1968).157

Consider a given sample x. The message length of a two-part code is the length of the158

compressed message plus the length of the compressor/decompresser. In our case, the length of159

the compressed message is given by the entropy of our above probability distribution:160

L(x; P̂(·|πk,σk)) :=−∑
i j

log P̂(xi j|πk,σk).

The compressor/decompresser is equivalent to transmitting the counts for the probability distri-161

bution. This can be thought of as transmitting a k length tuple of counts. Let N = ∑i(mi−2k) be162

the total number of contexts in the read set (i. e., the total number of prefix and suffix pairs in the163

data). Thus,
(N+42k−1

42k−1

)
count distributions are possible amongst the number of total prefix and164

suffix pairs (4k×4k = 42k distinct prefix/suffix pairs), giving a total message length of165

ML(x; P̂(·|πk,σk)) := L(x; P̂(·|πk,σk))+ log
(

N +42k−1
42k−1

)
.

Approximating the R.H.S using Stirling’s approximation and dropping constant terms yields

ML∼∝ L(x; P̂(·|πk,σk))+

(
2N +24k+1−1

)
log
(
N +24k)

2
−
(
4k
(
24k+1−1

)
+1
)

log2
2

.

For suffix free densities the message length simplifies to

ML(x; P̂(·|πk)) := L(x; P̂(·|πk))+ log
(

N +4k−1
4k−1

)
∼
∝ L(x; P̂(·|πk))+

(
2N +22k+1−1

)
log
(
N +22k)

2
−
(
2k
(
22k+1−1

)
+1
)

log2
2

,

and similarly for prefix free.166
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2.4 Prefix/suffix free contexts167

The method we have presented so far has been developed for any contexts defined by any168

combination of prefix and suffix. The question of whether prefix/suffix-free contexts or full169

contexts (both prefix and suffix) naturally arises. The decision depends on the type of variants of170

interest: using full contexts will restrict the variants to single nucleotide variants (SNV), while171

one sided contexts allow for more general types of variants such as insertions and deletions. Full172

contexts also have less power to detect variation caused by close-by SNVs; two SNVs in close173

proximity will create several different contexts when modelling with both prefixes and suffixes.174

It is also worth remarking that the choice between prefix and suffix free contexts is immaterial175

under the assumption of independent noise and sufficient coverage. Thus, our experiments176

concentrate on suffix-free contexts as it is the more general case.177

2.5 Reference-based variant calling178

To compare the ability of our proposed method to a reference-based approach, we have processed179

all datasets using a standard mapping-based SNP calling pipeline. Using SAMtools v1.2-34, raw180

reads from each sample were mapped to the relevant reference sequence and sorted. The mapped181

reads are then further processed to remove duplicates arising from PCR artefacts using Picard182

v1.130 and to realign reads surrounding indels using GATK v3.3-0. Pileups are then created183

across all samples using SAMtools and SNPs are called using the consensus-method of BCFtools184

v1.1-137. The resulting SNPs were then filtered to remove those variants with phred-scaled185

quality score below 20, minor allele frequency below 0.01 or SNPs that were called in less than186

10% of samples.187

3 Results188

3.1 Simulation study189

We first investigate the power and the false positive rate (FPR) of our method by simulations190

as minor allele frequency (MAF), sequencing depth, and sample size are varied. A total of191

3,000 contexts per sample, of which one was a variant site with two possible alleles across the192

population, were simulated by sampling counts from a multinomial distribution. This corresponds193

to a simulating a SNP, indel or any other variant whose first base, i. e., the base directly following194

the context, is bi-allelic. Each context was simulated with a sequencing read error of 1% by195

sampling from a multinomial distribution, with the total number of simulations per context196

determined by the specified sequencing depth. Variants were determined by fitting a gamma197

distribution and rejecting at a level of p < 0.05 corrected for multiple testing by Bonferroni’s198

method. This procedure is repeated 1,000 times for each combination of simulation parameters.199

Figure 1 and fig. 2 shows the results of the simulation. With a depth of 25 our method is200

able to recover the variant site with high power when the MAF is 20% or higher, even with few201

samples (50). The FPR was also well controlled, but reduces sharply with moderate depth (>25)202

at 100 samples, and is low at most depth for 1,000 samples. Identification of rare variants at low203

sample sizes (1% MAF at 100 samples) is not reliable, however rare variants are still identifiable204

with high power at high depth and samples (depth greater than 64 and 1,000 samples).205
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Figure 1: Power curves for 3000 simulated contexts with a single variant context for varying
depth and sample size (panels). The bi-allelic variant context was simulated 1,000 times and
curves show the mean of the 1,000 simulations. The error for the mean is less than 3% in all
cases.

3.2 Empirical experiments206

We also evaluated our method on three different datasets: two datasets are of Streptococcus207

pneumoniae bacteria, one collected in Massachusetts (Nicholas J Croucher, Finkelstein, Pelton,208

et al., 2013) and the other in Thailand (Chewapreecha, Harris, Nicholas J Croucher, et al., 2014);209

and one mouse dataset (Fairfield, Gilbert, Barter, et al., 2011). The two S. pneumoniae datasets210

comprise 681 and 3,369 samples sequenced using Illumina sequencing technology. The Jax6211

mouse dataset (Fairfield, Gilbert, Barter, et al., 2011) contains sequenced exomes of 16 inbred212

mouse lines.213

All experiments were conducted with suffix-free contexts and only contexts present across all214

samples were evaluated for variants. Our method identified 40,071 variants in the Massachusetts215

dataset, 57,050 in the Thailand dataset, and 50,000 in the mouse dataset. We refer to these as KL216

variants.217

We also compare our method with a mapping-based SNP calling approach on the S. pneumo-218

niae datasets. Using sequence for S. pneumoniae ATCC 700669 (NCBI accession NC_011900.1)219

as a reference, there were 181,511 and 251,818 SNPs called for the Massachusetts and Thailand220

datasets. To be comparable with the resulting binary SNPs calls, we transform our multi-allelic221

variants to binary variants with the major allele being one and other alleles being zero.222

Finally, we compare our results with variants called by another reference-free caller Dis-223

coSNP++ (Uricaru, Rizk, Lacroix, et al., 2015) (v2.2.1). DiscoSNP++ finds 8,728 variants for224

the Massachusetts S. pneumoniae data, and 290,615 variants for Jax6. DiscoSNP++ results are225

not available on the Thailand dataset as the software fails to run in reasonable time on such a226

large dataset.227
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Figure 2: False positive rate for 3000 simulated contexts with a single variant context for varying
depth and sample size (panels) as described in fig. 1. The error for the mean is less than 3% in
all cases.

3.3 Message lengths228

Our first experiment investigated the optimal k resulting from our message length criterion (see229

section 2.3). Figure 3 shows the results of various contexts sizes on three samples, one from230

each of the Massachusetts S. pneumoniae, Thailand S. pneumoniae and Jax6 mouse data. Both S.231

pneumoniae samples had the shortest message length at k = 14, and the 129S1/SvImJ mouse232

line had the shortest message length at k = 15.233

To evaluate the stability of the message length criterion, the optimal k according to message234

length was calculated on all samples from the Massachusetts data (table 1). Most samples (83%)235

had an optimal length of k = 14, with the remainder being optimal at k = 13. Investigation into236

the singleton sample with minimal length at k = 9 revealed a failed sequencing with only 18,122237

reads present. We also evaluated all samples present in the Jax6 dataset and found all samples238

had minimal message length at k = 15. The stability of k is therefore high and we use k = 14239

for the two S. pneumoniae datasets and k = 15 for the Jax6 mouse dataset henceforth in all240

experiments.241

Table 1: Proportion of samples in Massachusetts data by optimal k.

Optimal k Count

9 1
13 113
14 567
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Figure 3: Message length for prefix-only contexts on two S. pneumoniae samples from the
Massachusetts and Thailand datasets, and the 129S1/SvImJ mouse line from the Jax6 dataset.
The optimal k under the MML framework is k = 14 for the S. pneumoniae datasets and k = 15
for Jax6.

3.4 Supervised learning performance242

To investigate the robustness of our variants for genomic prediction tasks, we evaluated the ability243

of variants called on the Massachusetts S. pneumoniae dataset for the prediction of Benzylpeni-244

cillin resistance under different training and testing scenarios across the two S. pneumoniae245

datasets. Each sample was labelled as resistant if the minimum inhibitory concentration exceeded246

0.063 µg/mL (Chewapreecha, Marttinen, Nicholas J. Croucher, et al., 2014). In all tasks, a247

support vector machine (SVM) (Schlkopf and Smola, 2001) was used to predict resistance248

from the variants, and the performance measured using the Area under the Receiver Operating249

Characteristic (AROC).250

Table 2 shows the results of the experiments. Each row indicates what dataset models were251

trained on and the columns denote the testing dataset. For intra-dataset experiments (i. e., the252

diagonal), AROC was estimated using 10-fold cross validation.253

Our variants are clearly capturing the various resistance mechanisms, as evident by the strong254

10-fold cross validation predictive performance. In comparison to the traditional pipeline and255

DiscoSNP++ features (on Massachusetts data only) also performed well. Given the high level of256

accuracy, the three methods do not differ significantly in performance.257

The model trained using our variants on the Massachusetts data is moderately predictive258

on the Thailand dataset. Conversely, the model from the Thailand dataset can also moderately259

predict resistance in the Massachusetts data, but to a lesser degree. One possible explanation260

for this limited predictive ability is the existence of resistance mechanisms unique to each261

dataset, hence a model trained on one dataset will not capture unobserved mechanisms and262

consequently the model is unable to predict resistance arising form these unknown mechanisms.263

This hypothesis is supported by the strong performance observable on the diagonal: when264
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Table 2: AMR prediction results using KL variants. Variants were discovered only on the
Massachusetts dataset and then called on both Massachusetts and Thailand datasets. Each
row indicates what dataset models were trained on and the columns denote the testing dataset.
Numbers are the Area Under the Receiver Operating Characteristic (AROC). The AROC was
estimated using 10-fold cross-validation within datasets. The numbers in parentheses are the
performance when predicting on standard SNP calls (S) derived through a traditional alignment
pipeline and DiscoSNP++ (D) calls. DiscoSNP++ results are not available on the Thailand
dataset as the software fails to run in reasonable time on such a large dataset.

Training dataset Massachusetts Thailand All

Massachusetts 95.6 (S: 94.4,D: 96.6) 81.3 (S: 88.6)
Thailand 72.5 (S: 66.8) 97.6 (S: 97.6)
All 97.1

combining both datasets and preforming cross-validation, the performance is high.265
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Figure 4: ROC produced from leave-one-out cross-validation performance predicting agouti coat
colour from KL variants on Jax6 mouse dataset. AROC is 96%.

We also evaluated our variants for predicting coat colour on the Jax6 mouse dataset (Fairfield,266

Gilbert, Barter, et al., 2011). As few samples are available (14 labelled samples), we reduced267

the problem to a 2-class classification problem, classifying coat colour into agouti or not. This268

led to a well balanced classification problem with 8 samples in the agouti classes and 6 not.269

The performance for this task was estimated at 96% AROC using leave-one-out (LOOCV)270

cross-validation, suggesting the variants are also predictive of heritable traits in higher level271

organisms. Figure 4 shows the ROC for this classification problem.272

10
PeerJ Comput. Sci. reviewing PDF | (CS-2015:12:8180:1:0:CHECK 2 May 2016)

Manuscript to be reviewedComputer Science



3.5 Population structure273

Finally, we investigate the population structure captured by KL variants and the SNP calls on the274

Massachusetts dataset. The population structures were estimated using Principle Component275

Analysis (PCA), a common approach whereby the top principal components derived across all276

genetic variants reflect underlying population structure rather than the studied phenotype of277

interest (Price, Zaitlen, Reich, et al., 2010). Five sub-populations (clusters) were identified using278

k-means on the first two principal components from the SNP data. Projecting those 5 clusters279

on to the principal component scores of our variants (fig. 5) results in highly concordant plots.280

Four out of the five clusters can be easily identified using our variants, indicating the detected281

variation preserves population structures well.282

Figure 5: First two principal components derived from alignment-based SNP calls (left) and
from variants detected by our method (right) applied to the Massachusetts S. pneumoniae dataset.
Each point represents a sample and the colours denotes the cluster assignment determined by
k-means clustering. The similar pattern of samples in each plot indicates that the same population
structure signal is detected by the two variant detection methods.

A canonical correlation analysis (CCA) was performed to further assess the similarities283

between the two feature sets. Regularisation was used to find the canonical vectors as the284

cross-covariance matrices are singular for our dataset. As there are significantly more features285

than samples, regularised CCA was used and the correlation between projections estimated using286

100 samples of leave-one-out bootstrap (Hastie, Tibshirani, and Friedman, 2011). We found the287

first three components explain all the variance (99%), with the first component alone explaining288

76%. Therefore, both mapping-based SNPs and KL variants are largely capturing the same289

variance on the Massachusetts data.290

3.6 Analysis of contexts291

To further elucidate the type of variants that are being discovered by our method, we aligned292

the significant contexts from the Massachusetts dataset to the S. pneumoniae reference. Of the293
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Table 3: Correlation coefficients for first 5 CCA components, estimated using 10-fold cross-
validation on Massachusetts data.

Component Correlation coefficient (±95% CI)

1 0.873 ± 0.014
2 0.880 ± 0.006
3 0.877 ± 0.007
4 0.862 ± 0.007
5 0.867 ± 0.008

contexts, less than 1% failed to align, 41% aligned in a single location, and the remainder aligned294

in two or more locations.295

One context aligned in 82 different locations in the reference genome. Further investigation296

revealed the context corresponds to a boxB repeat sequence. Such repeats have previously297

been used to identify population structure of S. pneumoniae isolates carrying the 12F serotype,298

supporting our population structure findings (Rakov, Ubukata, and Robinson, 2011). This299

suggests the variants may be tagging more complex structural elements than just single nucleotide300

variants.301

4 Conclusions302

We presented a novel reference-free variant detection method for next-generation sequence data.303

Our method has the advantage of no tuning parameters, rapid calling of known variants on new304

samples, and may be suited for targeted genotyping once a known set of variants are obtained.305

Simulation experiments showed the method is relatively robust and has good power and306

FPR to detect common variants, but for rare variants the power was lower and a high depth and307

number of samples were required to reliably detect them.308

In a typical genomic prediction setting the method was able to predict heritable phenotypes309

on both a bacterial dataset (anti-microbial resistance) and on a mouse dataset (coat-colour). On310

the S. pneumoniae datasets, our method was shown to have similar performance to a standard311

alignment-based SNP calling pipeline, with its requirements for a suitable reference genome.312

Moreover, the method was shown to capture the same population structure on the Massachusetts313

Streptococcus bacterial datasets as an alignment-based variant calling approach. These results314

show our method is capable of capturing important genomic features without a known reference.315

As with other reference-free variant calling methods, interpretation of the detected variants is316

more difficult compared to a mapping-based approach as called variants are reported without317

positional information. One approach to obtain such annotations is to map the variant and its318

context back to a given reference. Given that most sequences with a length greater than 15bp that319

exist in a given bacterial reference will have a unique mapping, many variants could be easily320

mapped back. However, such information is unlikely to exist for variants that do not occur in the321

reference, or may be misleading for variants that arise through complicated procedures such as322

horizontal gene transfer. Alternatively, variants and their context could be examined via BLAST323

searches to determine whether these sequences correspond to previously identified genes or other324

genomic features.325

In our experiments we used a combination of these approaches to investigate some of the326

variants found on the bacterial dataset. We identified contexts that mapped to numerous locations327

in the reference genome and then used BLAST to identify the likely origin of the sequence.328
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Through this method, variants associated with boxB repeat sequence were found, suggesting our329

method is capturing variance associated with complex structures.330

We envisage that the method proposed here could be used to conduct a rapid initial analysis331

of a given dataset, such as species identification, outbreak detection or genomic risk prediction.332

Our method also enables analysis of data without a suitable reference while still avoiding the333

computationally expensive step of assembly. Furthermore, our method scales linearly with the334

total number of reads, allowing application to large datasets.335

The statistical framework established in this work is quite general and could be expanded336

in several ways. While we have examined only single nucleotide variants within this work,337

insertions and deletions could be explicitly modelled within this framework at the cost of338

increased computational expense. It may also be possible to model other types of variants, such339

as microsatellites, provided that a suitable representation for them could be found.340
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