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ABSTRACT
Coronavirus Disease 2019 (COVID-19) pandemic has been ferociously destroying
global health and economics. According toWorld Health Organisation (WHO), until
May 2021, more than one hundred million infected cases and 3.2 million deaths
have been reported in over 200 countries. Unfortunately, the numbers are still on the
rise. Therefore, scientists are making a significant effort in researching accurate,
efficient diagnoses. Several studies advocating artificial intelligence proposed COVID
diagnosis methods on lung images with high accuracy. Furthermore, some affected
areas in the lung images can be detected accurately by segmentation methods.
This work has considered state-of-the-art Convolutional Neural Network
architectures, combined with the Unet family and Feature Pyramid Network (FPN)
for COVID segmentation tasks on Computed Tomography (CT) scanner samples
from the Italian Society of Medical and Interventional Radiology dataset. The
experiments show that the decoder-based Unet family has reached the best (a mean
Intersection Over Union (mIoU) of 0.9234, 0.9032 in dice score, and a recall of
0.9349) with a combination between SE ResNeXt and Unet++. The decoder with the
Unet family obtained better COVID segmentation performance in comparison with
Feature Pyramid Network. Furthermore, the proposed method outperforms recent
segmentation state-of-the-art approaches such as the SegNet-based network,
ADID-UNET, and A-SegNet + FTL. Therefore, it is expected to provide good
segmentation visualizations of medical images.

Subjects Bioinformatics, Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer
Vision, Data Mining and Machine Learning
Keywords Covid segmentation, Covid diagnosis, Computed tomography scanner, Segmentation
visualization

INTRODUCTION
Since the end of 2019, the COVID-19 pandemic has affected human lives heavily. In
addition to a considerable number of deaths, the economic losses caused by the COVID-19
pandemic are hard to estimate. Based on the report published by the World Bank, the
world economy is estimated to decline by 4.3% in 2020 (https://www.worldbank.org/en/
news/press-release/2021/01/05/global-economy-to-expand-by-4-percent-in-2021-
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vaccine-deployment-and-investment-key-to-sustaining-the-recovery). Many observers
commented that this significant decline only occurred during the Great Depression and
two world wars. Since a pandemic is so damaging to health and society, it is worthwhile
to gather great resources to fight it. According to experts, to combat the COVID-19
epidemic, the COVID-19 vaccine is the best solution. COVID-19 has also infected over 157
million cases and caused more than 3.2 million deaths according to World Health
Organisation (WHO) (https://www.who.int/emergencies/diseases/novel-coronavirus-
2019) across 223 countries, areas, or territories with cases. The number of deaths still
increases thousands every day. Therefore, COVID-19 diagnosis improvement is essential
not only for treatment but also for preventing its infection. Fortunately, we are in an
era where science and technology have been walking a decisive step forward with
tremendous achievements. This development has changed the world, and it also promotes
and speeds up the enhancement of medicine and other fields.

Recent medical imaging analysis studies have revealed huge benefits with the current
advancements in technology and have been considered an essential role in determining
patients’ condition and status. Achievements information technologies have greatly
supported doctors during the diagnosis and treatment of patients. Also, there is a global
trend in applying information technology to health care. Hospital information systems,
clinical decision-making support systems, telemedicine, virtual reality, and health
information highway have been developing and appearing globally so that public health
care gets better and better. The government in various regions has developed national
health information technology programs to computerize and digitize health records. Many
research and application programs are implemented in hospitals and health facilities with
hospital information systems (Ferdousi et al., 2020), communication systems (Nayak &
Patgiri, 2021; Belasen et al., 2020), robot-based surgeon systems (Lee et al., 2021), and
nursing care information systems (Booth et al., 2021). Medical records, images of x-ray,
ultrasound, magnetic resonance imaging, positron-emission tomography become rich and
diverse.

Modern medicine with information technology applications can make disease diagnosis
faster based on various clinical symptoms and subclinical symptoms (subclinical
diagnosis). In subclinical diagnostics cases, doctors usually evaluate and examine images
generated and screened from medical imaging devices and equipment. Modern and
high-tech medical machines with computer support software make the image clearer
and more accurate with a very high resolution. The diagnostic imaging methods are
diversified, such as radiological diagnosis, ultrasound imaging, ultrasound-color Doppler,
endoscopic images (commonly used as gastrointestinal endoscopy and urinary
endoscopy), Computed Tomography (CT) Scanner, Magnetic Resonance Imaging (MRI)
and so on.

Image segmentation is to divide a digital image into various parts, which can be the
collections of pixels or superpixels (Shapiro, 2001). The goal of image segmentation aims to
simplify and or represent an image into something more meaningful and easier to analyze.
In recent years, deep learning algorithms have provided great tools for medical
segmentation, which plays an essential role in disease diagnosis and is one of the most
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crucial tasks in medical image processing and analysis. Diagnostic based on segmented
medical images holds an essential contribution to improving accuracy, timeliness, and
disease diagnosis efficiency (Saood &Hatem, 2021; Budak et al., 2021; Zhou, Canu & Ruan,
2020; Raj et al., 2021; Yakubovskiy, 2020). For example, for ultrasound images, the
physician and doctors can accurately detect and measure the size of the solid organs in the
abdomen and abnormal masses on the segmented areas in the images (Ouahabi &
Taleb-Ahmed, 2021; Zhou et al., 2021). Another type of medical image is Chest x-ray
(Rahman et al., 2020), where cancer tumors can be detected and segmented for surgeons
and efficient treatment monitors. The CT scanner images marked abnormal regions also
help physicians identify signs of brain diseases, especially identifying intracranial
hematoma, brain tumors (Ramesh, Sasikala & Paramanandham, 2021; Munir, Frezza &
Rizzi, 2020). Signs of the disease can be revealed via such segmented images, but
sometimes these signs can be too small to be observed by humans. Moreover, in a short
time, doctors may have many patients for diagnosis simultaneously. Besides, it takes so
much time to train a doctor to perform medical image analysis. Artificial intelligence
algorithms can outperform human ability in image classification and provide techniques to
interpret the results (Geirhos et al., 2018). Therefore, leveraging artificial intelligence’s
development with segmentation image techniques is crucial to accelerate medicine
advancement and improve human health. With an outbreak of the COVID-19 pandemic,
it requires significant efforts from all citizens worldwide to stop the pandemic, but human
resources seem insufficient. Technology-based medical approaches are necessary and
urgent to support humans to reduce and prevent the pandemic, so algorithms on image
processing for diagnosis of COVID-19 have attracted the attention of numerous scientists.
The efficiency of the Unet family in image segmentation and outstanding image
classification performance of well-known convolutional neural network architectures
revealed in a vast of previous studies has brought a significant research question on the
benefits of their combinations to enhance the performance in COVID-19 lung CT image
segmentation. This study has leveraged well-known deep learning architectures as
encoders and Unet family, Feature Pyramid Network techniques as decoders to produce
segmentation on chest slices for supporting COVID-19 diagnosis. The principal
contributions include as follows:

� Numerous configurations generated by combining five well-known deep learning
architectures (ResNet, ResNeSt, SE ResNeXt, Res2Net, and EfficientNet-B0) and Unet
family are evaluated and compared to the state-of-the-art to reveal the efficiency in
the COVID-19 lung CT image segmentation. Moreover, we also include Feature
Pyramid Network (FPN), a famous architecture for segmentation tasks in configurations
for comparison.

� The visualizations including segmented regions in lungs are examined with various
metric performances and exhibit similar infected areas compared to the ground truths.

� Augmentation on the COVID-19 lung images dataset is performed with mirror,
contrast, and brightness transforms. In addition, gamma and Gaussian noise are
manipulated before adding spatial transforms. Such techniques help to enhance the
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segmentation performance. Besides, we evaluate the performance of COVID-19
segmentation without augmentation techniques.

� The training time and inference time are measured and compared among the considered
configurations.

� From the obtained results, we found that the integration between SE ResNeXt and Unet
++ has revealed the best performance in COVID-19 segmentation tasks.

The rest of this study is organized as follows. ‘RelatedWork’ introduces the main related
works. ‘Method’ presents a brief introduction of the segmentation network based on
encoder-decoder architectures, the dedicated loss function for segmentation tasks, and
augmentation techniques. Afterward, we present our settings, the public COVID-19
dataset, and the evaluation metrics in ‘Evaluation’. ‘Experimental Results’ exhibits and
analyzes the obtained results. We conclude the study and discuss future work in
‘Conclusion’.

RELATED WORK
Machine learning for medical imaging analysis has gained popularity in recent years.
Advancements in computer techniques have also been proposed with an increase in
quality and quantity. To support doctors better, researchers have focused on model
explanation and segmentation methods for medical images. ‘Applications of deep learning
in healthcare’ examines the robust studies of deep learning in the healthcare sector.
‘Applications of deep learning in COVID-19 detection’ reviews the main related
approaches in the domain of COVID-19 detection from CT images.

Applications of deep learning in healthcare
Ravi et al. (2017) presented several robust applications of deep learning to health
informatics. We have obtained benefits from rapid improvements in computational power,
fast data storage, and parallelization, and so there are more and more efficient proposed
models for health services. Furthermore, Srivastava et al. (2017) gave us an overview of
recent trends and future directions in health informatics using deep learning. In another
study, Huynh et al. (2020) introduced a shallow convolutional neural network (CNN)
architecture with only a few convolution layers to perform the skin lesions classification,
but the performance is considerable. The authors conducted the experiments on a
dataset including 25,331 samples. For discriminating between melanoma and vascular
lesion, the proposed model obtained an accuracy of 0.961 and an Area Under the
Curve (AUC) of 0.874. Several studies deal with abnormality bone detection (Chetoui &
Akhloufi, 2020; Varma et al., 2019) also revealed a promising result. For instance,
Chetoui & Akhloufi (2020) developed a deep learning architecture based on EfficientNet
(Tan & Le, 2019) to detect referable diabetic and diabetic retinopathy on two public
datasets, namely EyePACS and APTOS 2019. The proposed method achieved the highest
AUC of 0.990 and 0.998 on EyePACS and APTOS 2019, respectively. Similarly, an
approach to detect abnormalities on musculoskeletal images has been proposed by using
CNN architecture. The authors collected a massive dataset of 93,455 radiographs.
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The obtained AUC is recorded of 0.880, sensitivity and specificity of 0.714 and 0.961,
respectively.

To recognize COVID-19 from chest CT images, a deep architecture named COVNet
has been proposed by Li et al. (2020). Community-acquired pneumonia and healthy
control are utilized in the testing phase and collected from six hospitals. AUC, specificity,
and sensitivity report the performance. For detecting COVID-19, the proposed method
obtained an AUC of 0.96, a specificity of 0.96, and a sensitivity of 0.90. Shi et al. (2021)
presented a review on emerging artificial intelligence technologies to support medical
specialists. The authors also stated that “image segmentation plays an essential role in
COVID-19 applications”.

Applications of deep learning in COVID-19 detection
Saood & Hatem (2021) proposed an approach for image tissue classification by leveraging
segmentation networks, namely SegNet and U-Net. The purpose of using both models is to
distinguish the infected and healthy lung tissue. The networks are trained on 72 and
validated on ten images. The proposed method obtained an accuracy of 0.95 with
SegNet and 0.91 with U-Net. Empirically, the authors also stated that the mini-batch size
affects the performance negatively. Budak et al. (2021) presented a new procedure for
automatic segmentation of COVID-19 in CT images using SegNet and attention gate
mechanism. A dataset with 473 CT images has been utilized as the evaluation data. The
performance of the proposed method is judged based on Dice, Tversky, and focal Tversky
loss functions. The authors reported that the obtained sensitivity, specificity, and dice
scores are 92.73%, 99.51%, and 89.61%, respectively.

Zhou, Canu & Ruan (2020) proposed an effective model to segment COVID-19 from
CT images. In comparison to other existing studies (Budak et al., 2021), the model
obtained comparable results. For each CT slice, the proposed method takes 0.29 s to
generate the segmented results and obtained a Dice of 83.1%, Hausdorff of 18.8. However,
the method is conceived to segment the single class and on a small dataset. A recent
approach (Raj et al., 2021) leverages a depth network, namely ADID-UNET, to enhance
the COVID-19 segmentation performance on CT images. The proposed method is
evaluated on public datasets and achieved a 97.01% accuracy, a precision of 87.76%, and an
F1 score of 82.00%.

METHOD
This section contains five parts. ‘Segmentation network architecture’ describes
systematically the complete architecture of segmentation models. We present the
explanation of the encoders and decoder for a general segmentation architecture are
presented in ‘Efficient deep learning model-based encoder’ and ‘Decoders for
segmentation network’ respectively. Afterwards, the description of loss function and
several data augmentation methods are explained in ‘Loss function for segmentation task’
and ‘Data augmentation’ respectively.
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Segmentation network architecture
The overall system architecture is visualized in Fig. 1. We leveraged the segmentation
model with architecture to discriminate the COVID-19 infections from the lung on the
medical images, including the encoder and decoder. The trained weights are validated on a
separated dataset to find the optimal weights during the training section. To segment
lung and COVID-19 infection regions from medical images, we utilized the encoder built
based on ResNet, ResNeSt, SE ResNeXt, and Res2Net, with the structures are presented in
Table 1. Furthermore, the encoder’s generated feature maps are handled by the Unet

Figure 1 The proposed architecture of COVID-19 segmentation system on medical images.
Full-size DOI: 10.7717/peerj-cs.719/fig-1

Table 1 The model structures with Unet family and FPN decoder.

ResNet 34 ResNeSt SE ResNeXt Res2Net EfficientNet-B0

Input Layer Input Layer Input Layer Input Layer Input Layer

Output: 1 × 512 × 512 Output: 1 × 512 × 512 Output: 1 × 512 × 512 Output: 1 × 512 × 512 Output: 1 × 512 × 512

Layer 1 Layer 1 Layer 1 Layer 1 Layer 1

Output: 64 × 256 × 256 Output: 64 × 256 × 256 Output: 64 × 256 × 256 Output: 64 × 256 × 256 Output: 32 × 256 × 256

Layer 2 Layer 2 Layer 2 Layer 2 Layer 2

Output: 64 × 128 × 128 Output: 256 × 128 × 128 Output: 256 × 128 × 128 Output: 256 × 128 × 128 Output: 24 × 128 × 128

Layer 3 Layer 3 Layer 3 Layer 3 Layer 3

Output: 128 × 64 × 64 Output: 512 × 64 × 64 Output: 512 × 64 × 64 Output: 512 × 64 × 64 Output: 40 × 64 × 64

Layer 4 Layer 4 Layer 4 Layer 4 Layer 4

Output: 256 × 32 × 32 Output: 1024 × 32 × 32 Output: 1024 × 32 × 32 Output: 1024 × 32 × 32 Output: 112 × 32 × 32

Layer 5 Layer 5 Layer 5 Layer 5 Layer 5

Output: 512 × 16 × 16 Output: 2048 × 16 × 16 Output: 2048 × 16 × 16 Output: 2048 × 16 × 16 Output: 320 × 16 × 16

Decoder Layer Decoder Layer Decoder Layer Decoder Layer Decoder Layer

Output: 16 × 512 × 512 Output: 16 × 512 × 512 Output: 16 × 512 × 512 Output: 16 × 512 × 512 Output: 16 × 512 × 512

Segmentation Layer Segmentation Layer Segmentation Layer Segmentation Layer Segmentation Layer

Output: 3 × 512 × 512 Output: 3 × 512 × 512 Output: 3 × 512 × 512 Output: 3 × 512 × 512 Output: 3 × 512 × 512
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family and FPN. Each encoder has a distinct feature map dimension. The input of the
decoder needs to be adapted based on this dependence. Moreover, the encoders leverage
the Imagenet pre-trained weights to reduce the computation cost during training. The
medical images are pass into the input layer with the dimension of 512 × 512. It is
forwarded through five different layers with complex structures to extract the most
meaningful features.

Afterward, the decoders control the critical stages by generating the masks, including
the important regions. The final result obtained a 3 × 512 × 512 array, including three
masks. The first mask consists of the non-lung nor COVID-19 regions. The second mask
includes the lung’s pixels, whereas the final mask reveals COVID-19 infection regions’
information. Besides, the combination between the encoder and decoder architectures is
presented in Table 2. We considered to use 20 experimental configurations, i.e., Ci = 1,…,
20. In this study, we also present the process diagram of the segmentation model in
Fig. 2. The input takes medical images where the output generates two masks consisting of
lung and infection regions. Ronneberger, Fischer & Brox (2015) and Long, Shelhamer &
Darrell (2015) demonstrated that the improvement of segmentation tasks recently
relied more on the encoder-decoder than other architectures. Furthermore, this
architecture was inspired by the Convolutional Neural Network (LeCun et al., 1989) and
added the decoder network, which effectively tackled the pixel-wise prediction.

Table 2 The complete architecture and configurations of segmentation models.

Configuration name Encoder Decoder # of trainable params Model size

C1 ResNet 24,430,677 293.4 MB

C2 ResNeSt 24,033,525 288.8 MB

C3 SE ResNeXt Unet 34,518,277 414.8 MB

C4 Res2Net 32,657,501 392.5 MB

C5 EfficientNet-B0 6,251,473 72.2 MB

C6 ResNet 13,394,437 160.9 MB

C7 ResNeSt 13,394,437 160.9 MB

C8 SE ResNeXt Unet2d 13,394,437 160.9 MB

C9 Res2Net 13,394,437 160.9 MB

C10 EfficientNet-B0 13,394,437 160.9 MB

C11 ResNet 26,072,917 313.2 MB

C12 ResNeSt 40,498,165 468.4 MB

C13 SE ResNeXt Unet++ 50,982,917 612.5 MB

C14 Res2Net 49,122,141 590.2 MB

C15 EfficientNet-B0 6,569,585 76.1 MB

C16 ResNet 23,149,637 270.8 MB

C17 ResNeSt 17,628,389 211.9 MB

C18 SE ResNeXt FPN 28,113,141 337.9 MB

C19 Res2Net 26,252,365 315.6 MB

C20 EfficientNet-B0 5,759,425 66.3 MB
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Efficient deep learning model-based encoder
In an attempt to improve the performance of image segmentation task on medical
images, we leveraged the advantages of numerous pre-trained models as the encoder,
which are modern architectures and have impressive performances on classification tasks,
such as EfficientNet (Tan & Le, 2019), ResNet (He et al., 2016), or ResNeSt (Zhang et al.,
2020). The responsibilities of the encoder are learning features and providing the initial
low-resolution representations. The segmentation architecture will refine the encoder’s
outputs, referred to as the decoder network. To avoid the vanishing gradient problem
(Kolen & Kremer, 2009) and retrieve the fine-grained information from the previous layer.
The skip connections are utilized between the encoder and decoder network or between
the encoder and decoder network layers. Assuming x denotes the input, the expected
underlying mapping obtaining by training is f(x), the block within the dotted-line box
demands to apply the residual mapping f(x) − x. In the case of f(x) = x, the identity
mapping is the desired underlying mapping. The weights and biases of the block within the
dotted-line box need to be set at 0.

In the scope of this study, we leveraged ResNet, ResNeSt, SE ResNeXt, and Res2Net
as the encoders to generate the features map and transfer the features to the decoder
network segmenting the COVID-19 regions on medical images. ResNeSt is a new network
inherited from ResNet with an attention mechanism, performed promising results on
image classification and segmentation tasks. In this architecture, the feature maps are split
into G groups where G = #Cardinality × #Radix. The introduction of Cardinality is
presented from Resnext (Xie et al., 2017), which repeats the bottle-neck blocks and
breaks channel information into smaller groups, whereas Radix represents the block of
Squeeze-and-Excitation Networks (SENet) (Hu, Shen & Sun, 2018). In summary, this
architecture combines the Cardinality of Resnext and Attention of Squeeze and Excitation
Networks to formulate the Split Attention. In other words, Split Attention is the
modification of the gating mechanism. Recently, Gao et al. (2021) proposed a novel

Figure 2 The process diagram of segmentation model. Full-size DOI: 10.7717/peerj-cs.719/fig-2
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building block for CNN constructs hierarchical residual-like connections within one single
residual block, namely Res2Net. In other words, the bottle-neck block of the ResNet
architecture is re-designed and contributes to increasing the range of receptive fields for
each network layer by representing multi-scale features at a granular level. By leveraging
kernel size of 7 × 7 instead of 3 × 3, the computation of multi-scale feature extraction
ability is enhanced but achieved a similar cost.

Decoders for segmentation network
The emergence of artificial intelligence and especially Convolutional Neural Network
architectures in computer vision brings the field of image processing to light. Once
considered untouchable, several image processing tasks now present promising results
like image classification, image recognition, or image segmentation. The image
segmentation task’s primary purpose is to divide the image into different segment regions,
representing the discriminate entity. Compared with classification tasks, segmentation
tasks require the feature maps and reconstructing the feature maps’ images. In this study,
we leveraged the advantages of several CNN-based architectures as the decoder of
segmentation models.

Unet family
We use the implementations of Unet (Ronneberger, Fischer & Brox, 2015) with the
architecture includes three sections, namely the contraction, the bottle-neck, and the
expansion section. Generally, the contraction section is the combination of several
contraction blocks. Each block consists of 3 × 3 convolution and 2 × 2 max-pooling layers.
The number of feature maps gets double at each max-pooling layer. It helps the
architecture learn complex patterns effectively. Furthermore, the kernels of size 3 × 3 are
widely used as filters for the widespread deep neural networks (Chollet, 2017; Tan et al.,
2019). Besides, the model’s performance also depends on the size of kernels and improves
the efficiency of capturing high-resolution images. Similar to contraction blocks, the
bottle-neck layers also consist of the 3 × 3 convolution but followed by 2 × 2 up
convolution layers. The most crucial section of Unet architecture is the expansion section.
This section consists of several expansion blocks, and the number of expansion blocks
should be equal to the number of contractions. Each block also contains 3 × 3 convolution
and 2 × 2 up convolution layers, half of the feature maps after each block are leveraged
to maintain symmetry. Moreover, the feature maps corresponding with the contraction
layers also include the input. Hence, the image will be reconstructed based on the learned
features while contracting the image. To produce the output, a 1 × 1 convolution layer is
utilized to generate the feature maps with the number equal to the desired segments.

Also, Zhou et al. (2018), Zhou et al. (2019) proposed an Unet-like architecture, namely
Unet++. The advantages of Unet++ can be considered as capturing various levels of
features, integrating features, and leveraging a shallow Unet structure. The discriminations
between Unet and Unet++ are the skip connection associating two sub-networks and
utilizing the deep supervision. The segmentation results are available at numerous nodes in
the structure of Unet++ by training with deep supervision. Another Unet-like architecture
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has been proposed by Guan et al. (2020) for detaching artifacts from 2D photoacoustic
tomography images. We leverage the Unit, Unet++, and Unet2d as the decoder
architectures to conduct the experiments. When compared with original Unet architecture,
Unet++ and Unet2d have been built to reduce the semantic gap between the feature maps
and efficiently learn the global and local features.

Feature pyramid network
Like Unet, FPN (Lin et al., 2017) is also a famous architecture appropriate to segmentation
tasks. FPN is a feature extractor with a single-scale image of a stochastic dimension
and generates the feature maps with proportional size. The primary purpose of FPN is to
build feature pyramids inside convolutional neural networks to be used in segmentation or
object recognition tasks. The architecture of the FPN involves a bottom-up pathway
and a top-down pathway. The bottom-up pathway defines a convolutional neural network
with feature extraction, and it composes several convolution blocks. Each block consists of
convolution layers. The last layer’s output is leveraged as the reference set of feature
maps for enriching the top-down pathway by lateral connection. Each lateral connection
merges feature maps of the same spatial size from the bottom-up and top-down pathways.
Thus, FPN architecture consists of a top-down pathway to construct higher resolution
layers from a semantic-rich layer. To improve predicting locations’ performance, we
deploy the lateral to connect between reconstructed layers, and the corresponding feature
maps are utilized due to the reconstructed layers are semantic strong, whereas the locations
of objects are not precise. It works similarly to skip connections of ResNet.

Furthermore, the spatial resolution decreases as going up and detecting more high-level
structures, the semantic value for each layer can potentially increase. Nevertheless, the
bottom layers are in high resolution but can not be utilized for detection due to the
semantic value is unsuitable for justifying the slow-down training computation based on
it. By applying the 1 × 1 convolution layer at the top-down pathway, the channel
dimensions of feature maps from the bottom-up pathway can be reduced and become the
top-down pathway’s first feature map. Furthermore, element-wise addition is applied to
merge the feature maps, the bottom-up pathway, and the top-down pathway.

Loss function for segmentation task
In deep learning and computer vision, the boundary detection definition comes from
extracting features to produce significant representations of the objects. More specifically,
boundary detection aims to identify object boundaries from images. Therefore, we can
consider boundary detection as segmentation problems and target the boundaries to 1
and the rest of the image to 0 as the label. Thus, the loss function can be formulated with
the classical function, namely Cross-entropy or Hinge loss. However, in terms of
segmentation tasks, the classical loss function models can work imperfectly due to the
highly unbalanced label distribution of each class and the per-pixel intrinsic of the classical
loss function.

To enhance segmentation models’ performance, we considered using Dice loss
(Milletari, Navab & Ahmadi, 2016) originates from the Dice coefficient. We will introduce
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more details about the Dice coefficient in ‘Metrics for comparison’. The ground truth and
predicted pixels can be considered as two sets. By leveraging Dice loss, the two sets are
trained to overlap little by little, and the reduction of Dice loss can be obtained when the
predicted pixels overlap only the ground-truth pixels. Furthermore, with Dice loss, the
total number of pixels at the global scale is investigated as the denominator, whereas
the numerator pays attention to the overlap between two sets at the local scale. Hence, the
loss of information globally and locally is utilized by Dice loss and critically improves
accuracy. Moreover, in thin boundaries, the model utilizing Dice loss can achieve better
performance than others.

Data augmentation
Deep learning requires more data to improve classification and regression tasks,
although it is not easy to collect needed data. Augmentation techniques was introduced in
the work of Van Dyk & Meng (2001), and leveraged by Zoph et al. (2020), Frid-Adar et al.
(2018), Xu, Li & Zhu, 2020 and Ahn et al. (2020) in a vast of studies. More specific,
data augmentation is the technique to abound the number of samples in the dataset by
modifying the existing samples or generating newly synthetic data. Leveraging the
advantages of the augmentation approach can help reduce over-fitting during the training
section. In terms of image segmentation, the most general techniques for data
augmentation are adjusting brightness or contrast, zoom in/out, cropping, shearing,
rotation, noise, or flipping.

In this study, we adapted several techniques as follows. Firstly, the outlier will be cut off
from the original image, and we set 10% and 90% for the cut-off lower and upper
percentiles, respectively. Then, the low resolution of the cut-off outlier image is simulated.
We also applied the mirror, contrast, and brightness transform. Furthermore, gamma and
Gaussian noise are utilized before adding spatial transforms. Figure 3 visualizes the
original medical image, and the image leveraged data augmentation techniques.

EVALUATION
In this section, we present our experimental configurations in ‘Settings for experiment’.
Furthermore, the research information referred as the COVID-19 dataset and the
considered evaluation metrics are explained in ‘Dataset’ and ‘Metrics for comparison’
respectively.

Settings for experiment
We implemented the trained models built based on Pytorch framework (https://pytorch.
org). We also accelerated the training section by utilizing the weights trained on the
ImageNet dataset (Russakovsky et al., 2015). The processing includes three main
phases: training and validation, as described in Fig. 1. For the first stage, the medical
images dataset is split into training and validation sections. Afterward, we evaluated
several segmentation architectures and stored internal parameters with the highest
performance. A robust computational resource is required for the segmentation model.
Thus, we used a server with configurations listed in Table 3 to conduct our experiments.
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Dataset
We investigated our approach’s performance on the COVID-19 segmentation
dataset from the Italian Society of Medical and Interventional Radiology
(http://medicalsegmentation.com/covid19/). The dataset includes 829 slices belonging to
nine axial volumetric CTs. Furthermore, the experienced radiologist has evaluated,
segmented, and marked as COVID-19 on 373 out of the total of 829 slices. The medical
images have been transformed to greyscaled with 630 × 630 and in NIFTI file format.
The segmented labels include the infection masks but also lung masks. Therefore, it
could be more attractive for performing segmentation tasks on this dataset. Figure 4
visualizes a sample of the dataset; the left CT slide presents the original image of a
COVID-19 patient, the right image includes the lung, and the infection region visualizing
by blue and orange color, respectively.

The further information of the dataset is detailed in Table 4. The dataset includes
829 total samples (infection masks, lung masks, and images). However, the number of

Figure 3 The visualization of the data augmentation techniques. The original medical image is on the
left, whereas the image with data augmentation techniques is on the right.

Full-size DOI: 10.7717/peerj-cs.719/fig-3

Table 3 Hardware and software configurations.

Name RAM CPU GPU OS

Description 64 GB Intel� i9-10900F
CPU @ 2.80 GHz

NVIDIA GeForce GTX
2060 SUPER

Ubuntu 20.04 LTS
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COVID-19 masks is 373 out of 829 samples. This work proposes COVID diagnosis
research to reduce pandemics’ effect so only images labeled as COVID-19 are selected
and split into training and testing tests in this study. The training test consists of 300
samples, whereas the testing set includes 73 images. Furthermore, we have transformed the
NIFTI files to DCM format, the lung, and infection masks into PNGs format to perform
our evaluation. The images are normalized to the range of 0–255 and rescaled to a
resolution in 512 × 512 pixels reducing the computation cost.

Metrics for comparison
In this study, we considered using two metrics to evaluate the current approach’s
performance, namely dice (Sørensen, 1948; Dice, 1945) and Jaccard coefficients. Intuitively,
the segmentation performance is measured by evaluating the overlap between the
predictions and the ground-truth object. The results with more overlap regions with the
ground truth reveal better performance than those with fewer overlap regions. Both Dice
and Jaccard indices are in the range between 0 and 1. We assume that A and B are
prediction and ground-truth masks, respectively, for a given class. If A and B match
perfectly, the value of both Dice and Jaccard indices is equal to one. Otherwise, A and B are
no overlap, and the value is equal to 0. Thus, the Dice coefficient can be evaluated by 2 ×
the area of overlap divided by the total number of pixels in both masks as in Eq. (1).

Figure 4 A sample of the COVID-19 segmentation dataset. The left image presents a CT slice of a
COVID-19 patient, whereas the right image visualizes the lung and infection region of the patient.

Full-size DOI: 10.7717/peerj-cs.719/fig-4

Table 4 The information of the considered dataset.

Type # of samples

Lung Masks 829

Infection Masks 829

Infection Masks with COVID-19 373

Training set 300

Testing set 73
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DiceðA;BÞ ¼ 2� jjA \ Bjj
jjAjj þ jjBjj (1)

Like the Dice coefficient, the Jaccard index is also one of the most common metrics in
image segmentation tasks. Jaccard index can be referred to as Intersection-Over-Union
(IoU). Generally, the IoU is the overlap regions between the predicted and the ground-
truth mask divided by the union region between the predicted and the ground truth
mask. In terms of binary or multi-class segmentation, we need to calculate the IoU of each
class and average them to achieve the mean IoU. The Jaccard index or IoU can be
calculated as in Eq. (2). Besides, the Precision, Recall, and F1 score are also utilized to
evaluate the segmentation performance.

JaccardðA;BÞ ¼ IoU ¼ jjA \ Bjj
jjA [ Bjj (2)

We also consider the following definitions:

� True Positive (TP) reveals the number of positives. In other words, the predictions
match with the ground-truth label.

� True Negative (TN) indicates the predictions do not belong to the ground-truth and are
not segmented.

� False Positive (FP) demonstrates the predicted masks unmatch with the ground-truth
masks.

� False Negative (FN) expresses the predictions belong to the ground-truth, but it is not
segmented correctly.

Furthermore, in terms of the confusion matrix, the Dice and IoU equation can be
rephrased as in Eqs. (3) and (4). We also present the measuring of the segmentation errors
in Fig. 5.

Figure 5 The illustration of the segmentation error. Full-size DOI: 10.7717/peerj-cs.719/fig-5
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Dice ¼ 2TP
2TP þ FP þ FN

(3)

Jaccard ¼ IoU ¼ TP
TP þ FP þ FN

(4)

The formula of computing Dice is relevant to the F1 score. In other words, the Dice and
F1 achieve the same value in comparison with each other. Moreover, Fig. 6 visualizes in
detail the differences between Dice and Jaccard/Iou indices. In Figure 6, the left image
represents the Dice coefficient, whereas the right image exhibits the Intersection over
Union between the predicted mask and the ground-truth mask.

EXPERIMENTAL RESULTS
In this section, we present in detail our experimental results. ‘Segmentation
performance on the medical image dataset’ presents the segmentation performance of the
configurations introduced in Table 1. All the models are trained over 100 epochs, and
the model that achieved the best performance will be stored for inferring purposes.
Afterward, the discussion of the proposed methods and the other systems is presented in
‘Benchmark’.

Segmentation performance on the medical image dataset
We describe the results of both cases, non-augmented and augmented data in Tables 5
and 6, respectively. More specifically, the IoU, mean IoU (mIoU), Precision, Recall, and F1
score of our experimental configurations are reported to express the performance when
applying data augmentation techniques and vice versa.

Table 5 reveals the results of inferring the trained model without using data
augmentation techniques. The architectures built based on the Unet decoder family
obtained better results compared to FPN. Among the proposed configurations, C9 acquires
the best mIoU of 0.9262, whereas C7 gets 0.9259 in the second place. In terms of the Dice
coefficient, C9 achieves 0.9016 for the COVID-19 category, being the best architecture.

Figure 6 The visualization of Dice and IoU. The left image presents the Dice coefficient, the right
describes the IoU. Full-size DOI: 10.7717/peerj-cs.719/fig-6
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Considering Precision and Recall, C9 earns 0.9129, 0.8906, and gives a comparable
performance to the others. Table 6 presents the performance of our experimental
configurations. The proposed networks are trained under data augmentation techniques.
Overall, almost the configuration with decoder-based Unet family (C1 to C15) achieved
mIoU over 0.9, whereas the architecture-based FPN obtained approximately at 0.8.
Between the configurations, C6 achieves the best performance with the mIoU obtained
of 0.9283. Configuration C6 represents the combination of ResNet and Unet2d.
Furthermore, the second place gets the mIoU of 0.9234 with configuration C13 trained with
SE ResNeXt and Unet++ model as the encoder and decoder.

As for lung and COVID-19 segmentation, the average IoU achieves 0.8 on overall
configurations for COVID-19 infection regions and 0.94 for lung masks. The
configurations of C6 and C13 exhibit promising performance on the COVID-19
segmentation task with obtained IoU of 0.8241 and 0.8234. Meanwhile, the configurations

Table 5 The experimental results in details of various configurations described in Table 2. The data augmentation techniques are not utilized to
perform the experiment.

Configuration C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

IoU Not Lung Nor COVID-19 0.9954 0.9948 0.9956 0.9956 0.9941 0.9956 0.9968 0.9956 0.9971 0.9954

Lung 0.9449 0.9407 0.9393 0.9464 0.9315 0.9492 0.9575 0.9475 0.9581 0.9460

COVID-19 0.7978 0.7860 0.7631 0.8059 0.7498 0.8175 0.8233 0.8177 0.8233 0.8127

mIOU 0.9127 0.9072 0.8993 0.9160 0.8918 0.9208 0.9259 0.9204 0.9262 0.9219

F1-score/Dice Not Lung Nor COVID-19 0.9977 0.9975 0.9978 0.9978 0.9971 0.9978 0.9975 0.9977 0.9977 0.9978

Lung 0.9717 0.9695 0.9687 0.9725 0.9645 0.9724 0.9716 0.9725 0.9735 0.9722

COVID-19 0.8875 0.8802 0.8656 0.8925 0.8570 0.8996 0.8934 0.8993 0.9016 0.8967

Precision Not Lung nor COVID-19 0.9986 0.9982 0.9981 0.9986 0.9988 0.9974 0.9971 0.9981 0.9977 0.9981

Lung 0.9691 0.9721 0.9656 0.9747 0.9633 0.9764 0.9707 0.9706 0.9718 0.9749

COVID-19 0.8683 0.8386 0.8737 0.8502 0.8036 0.8883 0.9145 0.8979 0.9129 0.8730

Recall Not Lung nor COVID-19 0.9968 0.9967 0.9975 0.9969 0.9953 0.9981 0.9979 0.9974 0.9977 0.9976

Lung 0.9742 0.9669 0.9718 0.9702 0.9658 0.9684 0.9725 0.9745 0.9752 0.9696

COVID-19 0.9077 0.9261 0.8577 0.9394 0.9180 0.9112 0.8732 0.9008 0.8906 0.9233

Configuration C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

IoU Not Lung nor COVID-19 0.9959 0.9956 0.9959 0.9956 0.9950 0.9941 0.9942 0.9948 0.9944 0.9933

Lung 0.9488 0.9476 0.9475 0.9415 0.9358 0.9351 0.9305 0.9379 0.9369 0.9234

COVID-19 0.8168 0.8138 0.8073 0.7776 0.7608 0.7745 0.7311 0.7758 0.7786 0.7299

mIOU 0.9205 0.9191 0.9169 0.9049 0.8972 0.9013 0.8852 0.9029 0.9033 0.8822

F1-score/Dice Not Lung nor COVID-19 0.9979 0.9978 0.9979 0.9978 0.9975 0.9971 0.9971 0.9974 0.9972 0.9966

Lung 0.9737 0.9731 0.9731 0.9646 0.9668 0.9665 0.9640 0.9680 0.9674 0.9602

COVID-19 0.8992 0.8973 0.8934 0.8749 0.8641 0.8729 0.8446 0.8738 0.8755 0.8439

Precision Not Lung nor COVID-19 0.9988 0.9991 0.9989 0.9975 0.9981 0.9987 0.9986 0.9986 0.9982 0.9978

Lung 0.9726 0.9689 0.9744 0.9752 0.9722 0.9625 0.9666 0.9709 0.9665 0.9647

COVID-19 0.8742 0.8711 0.8522 0.8548 0.8139 0.8350 0.7823 0.8187 0.8445 0.7822

Recall Not Lung nor COVID-19 0.9971 0.9964 0.9970 0.9981 0.9969 0.9954 0.9955 0.9962 0.9962 0.9954

Lung 0.9749 0.9773 0.9717 0.9646 0.9615 0.9705 0.9615 0.9651 0.9684 0.9557

COVID-19 0.9254 0.9252 0.9386 0.8959 0.9209 0.9144 0.9177 0.9370 0.9089 0.9162
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of C13 and C14 get the maximum F1 score for the COVID-19 category with an obtained
value of 0.9032 and 0.9031. By examining Precision and Recall, C6 acquires the best
precision performance, whereas C13 gains the maximum Recall. Figure 7 depicts the
confusion matrix for configuration C13. We also normalize the confusion matrix over rows
for analyzing purposes. The confusion matrix values reveal that most of the misjudgments
of COVID-19 infection regions are categorized as lung and vice versa.

The comparison of not using data augmentation and using data augmentation reveals
the architectures with FPN-based tend to be more effective when not utilizing
augmentation techniques. It can be demonstrated by the results of C16–C18. By the
Unet family decoder, the outcomes depict that the models with nearly equivalent
performance, i.e., C2, C4, C8, C10, and C12. The most discriminate configurations are C11

and C14. The performance of C11 and C14 are strongly boosted by applying data
augmentation techniques. Furthermore, C11 and C14 also obtain better performance. In

Table 6 Experimental results in details with various configurations of the architectures mentioned and described in Table 2.

Configuration C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

IoU Not Lung Nor COVID-19 0.9956 0.9951 0.9952 0.9958 0.9945 0.9981 0.9952 0.9951 0.9955 0.9953

Lung 0.9468 0.9422 0.9351 0.9477 0.9341 0.9628 0.9443 0.9492 0.9462 0.9465

COVID-19 0.8121 0.7868 0.7569 0.8103 0.7581 0.8241 0.8169 0.8193 0.8147 0.8239

mIOU 0.9182 0.9081 0.8957 0.9181 0.8955 0.9283 0.9188 0.9212 0.9188 0.9219

F1-score/Dice Not Lung Nor COVID-19 0.9978 0.9976 0.9976 0.9979 0.9972 0.9978 0.9976 0.9979 0.9976 0.9977

Lung 0.9727 0.9703 0.9664 0.9731 0.9661 0.9734 0.9714 0.9737 0.9714 0.9725

COVID-19 0.8963 0.8807 0.8616 0.8952 0.8623 0.8941 0.8992 0.9003 0.8979 0.9034

Precision Not Lung nor COVID-19 0.9985 0.9986 0.9983 0.9985 0.9981 0.9972 0.9977 0.9981 0.9978 0.9974

Lung 0.9721 0.9712 0.9651 0.9735 0.9712 0.9761 0.9726 0.9732 0.9697 0.9776

COVID-19 0.8716 0.8393 0.8432 0.8709 0.8061 0.9025 0.8884 0.8948 0.9027 0.8844

Recall Not Lung nor COVID-19 0.9971 0.9965 0.9969 0.9973 0.9964 0.9984 0.9975 0.9976 0.9975 0.9979

Lung 0.9733 0.9694 0.9677 0.9728 0.9607 0.9707 0.9702 0.9743 0.9732 0.9675

COVID-19 0.9224 0.9263 0.8801 0.9209 0.9272 0.9258 0.9103 0.9059 0.8932 0.9233

Configuration C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

IoU Not Lung nor COVID-19 0.9958 0.9956 0.9961 0.9954 0.9936 0.9947 0.9941 0.9951 0.9945 0.9931

Lung 0.9498 0.9476 0.9508 0.9465 0.9293 0.9327 0.9341 0.9308 0.9344 0.9235

COVID-19 0.8186 0.8138 0.8234 0.8232 0.7671 0.7495 0.7616 0.7395 0.7524 0.7356

mIOU 0.9214 0.9191 0.9234 0.9217 0.8966 0.8923 0.8966 0.8884 0.8938 0.8841

F1-score/Dice Not Lung nor COVID-19 0.9979 0.9978 0.9981 0.9977 0.9968 0.9973 0.9971 0.9974 0.9973 0.9965

Lung 0.9742 0.9731 0.9748 0.9725 0.9633 0.9652 0.9659 0.9642 0.9661 0.9602

COVID-19 0.9002 0.8973 0.9032 0.9031 0.8681 0.8568 0.8647 0.8502 0.8587 0.8476

Precision Not Lung nor COVID-19 0.9989 0.9991 0.9989 0.9991 0.9986 0.9975 0.9981 0.9975 0.9965 0.9982

Lung 0.9721 0.9689 0.9741 0.9669 0.9583 0.9726 0.9682 0.9737 0.9721 0.9613

COVID-19 0.8762 0.8711 0.8735 0.8836 0.8327 0.8102 0.8172 0.7988 0.8528 0.7874

Recall Not Lung nor COVID-19 0.9969 0.9964 0.9971 0.9963 0.9945 0.9971 0.9959 0.9974 0.9981 0.9948

Lung 0.9765 0.9773 0.9755 0.9781 0.9684 0.9579 0.9637 0.9548 0.9601 0.9591

COVID-19 0.9256 0.9252 0.9349 0.9234 0.9066 0.9091 0.9179 0.9088 0.8648 0.8879
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this respect, we can conclude that the augmentation techniques affect the results with
almost all configurations.

Furthermore, the training and inference times are reported in Table 7. The training
presents the total time needs for 100 epochs, whereas the inference expresses the average
time to segment each slice. With the Unet and FPN decoder, the architectures are trained
with lower computation costs than the rest. The least and most time-consuming
configurations for training/inference are C16 and C13, respectively. As observed from the
results, with the same encoders, architectures FPN decoder-based segment fastest for each
slice.

We also visualize several samples with ground truth and the prediction masks in
and Fig. 8. The lung is colored by slate blue and orange for COVID-19. As observed from
the results, our predictions express promising segmentation performance. In terms of
complex COVID-19 infection regions as in Figs. 8B, 8C, or 8E, the boundary of COVID-19
segmentation is equivalent to the corresponding ground-truth. For the different view as in
Figs. 8A and 8D, the interesting regions are segmented quite correctly. Meanwhile, the
lungs are also produced identically in comparison with the ground truth.

Table 7 The report (in second(s)) of training time (1) and inference time (2) of 20 configurations.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

(1) 5,949 6,390 7,900 6,659 6,248 7,351 7,377 7,497 7,465 7,526

(2) 0.5753 0.5892 0.6164 0.6027 0.6301 0.5891 0.6438 0.6287 0.6287 0.6301

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

(1) 6,656 8,884 10,207 9,147 6,505 5,832 6,127 7,481 6,388 5,999

(2) 0.6109 0.6931 0.7328 0.7027 0.5986 0.5684 0.5889 0.6054 0.5972 0.5794

Figure 7 The visualization of confusion matrix for segmentation model-based SE ResNeXt and
Unet++. Full-size DOI: 10.7717/peerj-cs.719/fig-7
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Figure 8 The COVID-19 samples, ground-truth and predictions from test set. The purple regions
denote the lung, whereas the yellows represent the COVID-19 infection.

Full-size DOI: 10.7717/peerj-cs.719/fig-8
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Benchmark
Lung segmentation
The comparison of lung segmentation is presented in Table 8. As observed from the
results, our configurations with different decoders have outperformed the approach by
Saood & Hatem (2021). More specifically, the work of Saood & Hatem (2021) obtained a
Dice of 0.7490 and Sensitivity of 0.9560 with the SegNet method, while our best
configuration, C13, achieved a maximum Dice of 0.9748 and Sensitivity of 0.9755. In
particular, by leveraging SE ResNeXt and Unet++ architecture, we get the maximum score
compared to the others.

COVID-19 segmentation
Table 9 reveals the the compared performance of the proposed approach with the state-of-
the-art methods including SegNet (Budak et al., 2021), Unet (Zhou, Canu & Ruan, 2020)
with attention mechanism, and ADID-UNET (Raj et al., 2021). We compared our
configurations with the others on Dice, Sensitivity, and Precision values. Our approach
achieves a better performance in terms of Dice, Sensitivity, and Precision concerning
three other methods. Specifically, the study of Budak et al. (2021) acquired a Dice of 0.8961
and a Sensitivity of 0.9273 with SegNet. Also, Zhou, Canu & Ruan (2020) leveraged
Unet with attention mechanism and obtained the performance of 0.8310 and 0.8670 by
Dice and Sensitivity, respectively. The method of Raj et al. (2021) achieved a Dice of
0.8031, Sensitivity of 0.7973, and Precision of 0.8476 with ADID-UNET. In particular,
using configuration C10, the segmentation performance obtained the best performance
with 0.9034 in Dice, Sensitivity of 0.9233, and Precision of 0.8844, whereas C13 achieved a

Table 8 The performance of lung segmentation, the lung includes non of infected COVID-19 region.

Method Dice Sensitivity

Our configurations C4 0.9731 0.9728

C6 0.9734 0.9707

C13 0.9748 0.9755

C19 0.9661 0.9601

Saood & Hatem (2021) SegNet 0.7490 0.9560

Table 9 The summarization of quantitative results of infected COVID-19 regions. A ‘–’ symbol
means that there was no relevant information in the original study.

Method Dice Sensitivity Precision

Our configurations C1 0.8963 0.9224 0.8716

C10 0.9034 0.9233 0.8844

C13 0.9032 0.9349 0.8711

C17 0.8966 0.9179 0.8172

Umit Budak et al. (2021) A-SegNet + FTL 0.8961 0.9273 –

Zhou, Canu & Ruan (2020) Unet + attention mechanism 0.8310 0.8670 –

Raj et al. (2021) ADID-UNET 0.8031 sw 0.7973 0.8476
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Dice of 0.9032, Sensitivity of 0.9349, and Precision of 0.8711. Table 9, the architecture
based on Unet++ decoder is the best segmentation model among the others. Our
configurations get a promising performance compared with the others.

CONCLUSION
In this study, we systematically presented a viable solution for lung and COVID-19
segmentation from CT images. The proposed model is implemented based on the
convolutional neural networks, i.e., ResNet, ResNeSt, SE ResNeXt, Res2Net, or
EfficientNet decoder-based Unet family and Feature Pyramid Network as the encoders and
decoders of segmentation models. We evaluated the proposed method by the open
segmentation dataset with numerous model structures. The experimental results reveal
that the model with the decoder-based Unet family obtained better performance than
FPN. Furthermore, the segmentation results are compared with the ground truth
annotated by an experienced radiologist and exhibit promising performance. More
specifically, the best architecture obtained a mIoU of 0.9234, 0.9032 of F1-score, 0.8735,
and 0.9349 of Precision and Recall, respectively. Also, segmenting the minimal infection
regions still challenges us due to their size and ambiguous regions.
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