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ABSTRACT
The satisfaction of employees is very important for any organization to make sufficient
progress in production and to achieve its goals. Organizations try to keep their
employees satisfied by making their policies according to employees’ demands which
help to create a good environment for the collective. For this reason, it is beneficial
for organizations to perform staff satisfaction surveys to be analyzed, allowing them to
gauge the levels of satisfaction among employees. Sentiment analysis is an approach
that can assist in this regard as it categorizes sentiments of reviews into positive
and negative results. In this study, we perform experiments for the world’s big six
companies and classify their employees’ reviews based on their sentiments. For this,
we proposed an approach using lexicon-based and machine learning based techniques.
Firstly, we extracted the sentiments of employees from text reviews and labeled the
dataset as positive and negative using TextBlob. Then we proposed a hybrid/voting
model named Regression Vector-Stochastic Gradient Descent Classifier (RV-SGDC)
for sentiment classification. RV-SGDC is a combination of logistic regression, support
vector machines, and stochastic gradient descent. We combined these models under
a majority voting criteria. We also used other machine learning models in the
performance comparison of RV-SGDC. Further, three feature extraction techniques:
term frequency-inverse document frequency (TF-IDF), bag ofwords, and global vectors
are used to train learning models. We evaluated the performance of all models in
terms of accuracy, precision, recall, and F1 score. The results revealed that RV-SGDC
outperforms with a 0.97 accuracy score using the TF-IDF feature due to its hybrid
architecture.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Natural Language and Speech
Keywords Employees classification, Machine learning, Sentiment analysis, Hybrid model, Text
classification

INTRODUCTION
In recent years, people have adopted new ways of communication and interaction with
each other due to the development of information and communication technologies
and the exponential growth of Word Wide Web applications. People communicate their
experiences, opinions, interests, etc. on online platforms such as Facebook, Twitter, Reddit,
and other web forums provided by organizations for employees. Employee online reviews
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are marked as the most prevalent form of user-generated content which has the potential to
convey critical and useful meanings to their readers along with the satisfaction of employees
of the company’s services. Other than social media platforms, many companies such as
Samsung, Microsoft, Netflix, etc. provide a platform for their employees to express their
personal opinions regarding the company’s policies, working environment, and products.
Considering the reviews and comment assists in decision-making processes for business
owners to redesign policies or make changes to products, it is important to have the means
to collect data effectively. Similarly, employee online reviews regarding their job experience
are a major contribution in defining a company’s reputation for its employee-centeredness
positivity, and supportiveness. Being the voice of employees, mining the sentiment of these
reviews offers new opportunities for company owners and managers to acquire valuable
insights by the satisfaction and dissatisfaction of employees with their job (Feng, 2020). The
main aim of this research is to help organizations to make good progress in production.
Organizations try to keep their employees happy and make their policies according to
employees’ demands which help to create a good environment between the organization
and employees. The proposed research is based on Sentiment Classification for Employees
Reviews and categorized into positive or negative reviews so the organization can easily
find the satisfaction or dissatisfaction of employees about their products.

Sentiment analysis (SAs) is a natural language processing (NLP) task which deals
with the computation of people’s emotions, opinions, and sentiments directed towards
a specific entity (Basiri et al., 2021). Different studies (Medhat, Hassan & Korashy, 2014)
used sentiments analysis to solve different problems. SAs aims to reveal the positive or
negative sentiment in data examined and, in some cases, neutral sentiment can also be
considered which was not the case in this study as we consider this study as a binary
classification problem. There are several relevant methods in SAs that can be integrated in
analyzing sentiments of employees’ reviews, lexicon-basedmethod, and supervisedmachine
learning method (Özçelik et al., 2021). The machine learning method requires annotated
data for training which is often difficult to acquire (Huang et al., 2020). Comparatively, the
lexicon-based method utilizes a pre-defined dictionary, also known as, sentiment lexicon
for exploring sentiments of data under analysis (Khan et al., 2021b). This study utilizes a
dataset in which employees’ reviews are unannotated, making the lexicon-based method
more appropriate for the current analysis.

A sentiment lexicon is a database of sentiment bearing words with their corresponding
polarity scores (Mohamed, Moussa & Haggag, 2020). A sentiment lexicon works by
assigning respective polarity score (Pscore) to the sentiment bearing words (Wn)
in a whole text, which is further aggregated into an overall polarity score (Overall
Pscore =

∑n
i=1P(scoren)). Each sentiment lexicon has a relative overall polarity score

range(R(Pscore) = [R+,R−]) in which R+ corresponds to the positive sentiment and R−
corresponds to negative sentiment value. The resulting overall polarity score is then
compared with a threshold value (th), explicitly set by the programmer, which discloses
the nature of the text under analysis.
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Algorithm 1 Algorithm to find sentiments
Input: Text under analysis (W _n)
Output: Sentiment
Assigning Polarity Score (P_score)
W _1⇐H P_score_1
W _2⇐H P_score_2
W _n⇐H P_score_n
Aggregating Polarity Score
Overall P_score=

∑
W _1+W _2++W _n

Comparing with Threshold Value
if
Overall P_score> 0
return
Sentiment (Positive)
else-if
Overall P_score< 0
return
Sentiment (Negative)

The foundation of this study is that utilizing polarity-based sentiments of employees’
online reviews as the ground truth for prediction of job satisfaction or dissatisfaction,
produces more accurate results as compared to previous studies (Rustam et al., 2021a;
Rehan et al., 2021). For this purpose, the current study incorporates preexisting SLs for
exploiting the sentiment score of employees’ reviews which are further classified bymachine
learning (ML) classifiers. In addition to this, a voting classifier is proposed and evaluated
on employees’ reviews dataset containing employee reviews from Facebook, Google,
Microsoft, Apple, and Amazon (Rehan, 2020).

The main contributions for this study are listed below:

• TextBlob is utilized for extracting the sentiment score of the reviews which are further
categorized as positive and negative sentiments based on the threshold value. These
sentiments are incorporated as the ground truth for further analysis in this study.
• Seven supervised machine learning algorithms including logistic regression (LR),
random forest (RF), AdaBoost Classifier (AC),Multi-layer Perceptron (MLP), Stochastic
Gradient Descent Classifier (SGDC), Support Vector Classifier (SVC), and Extra Tree
Classifier (ETC) are examined to evaluate their performance on a dataset containing
employee reviews.
• A voting classifier referred to as Regression Vector Stochastic Gradient Descent Classifier
(RV-SGDC) is devised to classify employees’ reviews as positive and negative. RV-SGDC
is based on LR, SVC, and SGDC under hard voting. The performance of the proposed
voting classifier is compared with selected state-of-the-art ML models.
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• The effficacy of three feature extraction techniques including term frequency-inverse
document frequency (TF-IDF), bag of words (BoW), and global vectors for word
representation (GloVe) is compared.
• Selected classification models along with a proposed voting classifier are evaluated and
compared in terms of accuracy, precision, recall, and f1-score.
• Performance of results is analyzed on another data set Twitter US Airline Sentiment.
• Performance of proposed framework is analyzed against the previous study conducted
concerning job satisfaction prediction which considered users’ rating as the ground truth
for carrying out a sentiment analysis of employees’ reviews (Rustam et al., 2021a; Rehan
et al., 2021).

The rest of the paper is structured as ‘Related work’ provides a deep insight into the
previous researches carried out related to the current study. Additionally, this section
describes the contribution of the present study to the literature. ‘Materials and Methods’
discusses the dataset in detail, data preparation techniques, feature extraction techniques,
machine learning models, and evaluation metrics used in the proposed framework.
‘Proposed Approach’ describes the proposed architecture in detail. ‘Experimental Results’
explores the results of the proposed approach along with its comparison with state-of-
the-art methods. This section also compares the current study with the previous study.
‘Conclusion’ concludes the study along with limitations and future work.

RELATED WORK
The performance of an employee is believed to be directly correlated with job satisfaction as
it plays a significant role in the success and development of an organization (Kuzey, 2012).
Job satisfaction is associated with a variety of variables such as higher productivity, lower
turnover, and customer satisfaction. Regarding the platforms provided by organizations,
employees communicate their personal opinion concerning the organization which depicts
the satisfaction of employees with the organization. In recent years, researchers have
more focused on exploiting employees’ reviews using machine learning models to deduce
useful insights for organizations. Previous researches concerning the exploitation of job
satisfaction and dissatisfaction from employees’ reviews are briefly described in Table 1.

Contribution to literature
Exploring the literature review in the previous section illustrates that recent approaches
used for predicting job satisfaction from employees’ reviews target the rate as the ground
truth, whereas Rehan et al. (2021) concluded that overall ratings are not entirely correlated
with corresponding textual reviews renderingmisleading information for the organizations.
The present study contributes to literature proposing an efficient system for evaluation
of employees’ reviews as satisfied and unsatisfied by incorporating textual features. The
primary goal is to exploit the sentiment of employees’ reviews using a sentiment lexicon
which is further regarded as the target class or ground truth for the machine learning
models to perform classification tasks. Another limitation in employee classification is
the low accuracy score in previous studies which is a motivation for other researchers to
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Table 1 Brief description of previous work related to present study.

Ref. Summary

Moniz & de Jong (2014) Forecasting of organizations’ earnings is correlated with the satisfaction level of
employees of an organization. As stated by the authors of this study as they identi-
fied one significant aspect of employees’ reviews using Latent Dirichlet Allocation
(LDA) which was associated with the organizations’ outlook. Authors integrated
the General Inquirer dictionary to explore sentiment of the reviews which was fur-
ther utilized for exploring job satisfaction of employees when combined with the
outlook aspect of the organization.

Costa & Veloso (2015) Contributed to employee analytics by focusing on improving text representations
by computing vector representations of fixed lengths. The authors implemented
word2vec for extracting features of employees’ reviews and used SVR and SVM as
the machine learning classifiers for sentiment-based classification of reviews.

Jung & Suh (2019) Derived 30 factors and their corresponding keywords, impacting the degree of job
satisfaction, using LDA. Afterward, the authors conducted importance and senti-
ment analysis of these factors at various levels. They calculated the sentiment based
on the frequency of nouns correlated with the description of job satisfaction fac-
tors. They also analyzed the most dominant factors impacting job satisfaction.

Bajpai et al. (2019) Proposed ELM (extreme learning machine); an ensemble model which integrated
SentiWordNet and SenticNet for exploiting sentiment of the reviews and machine
learning models for classifying the satisfaction and dissatisfaction of employees. In
addition to this, the authors also evaluated the proposed approach using SVM. Re-
sults showed that ELM obtained a 74.09% accuracy score whereas, SVM yielded an
accuracy score of 74.85%.

Stamo lampros et al. (2019) Explored the employee turnover and determinants of job satisfaction by incorpo-
rating. They exploited factors impacting job satisfaction from employees’ reviews
obtained from Glassdoor.com using an unsupervised approach of structural topic
modeling such as LDA. In addition to this, the authors also explored the impact of
the overall rating given by employees on the satisfaction of employees with the job.
The study concluded that positive reviews are more correlated to the factors such
as leadership, culture, career opportunities, etc. Contrarily, negative reviews corre-
spond to topics such as communication with management, managerial behavior,
etc.

Kashive, Khanna & Bharthi (2020) Conducted sentiment analysis of employees’ reviews along with text analysis us-
ing SAS analyzer tool. Authors carried out their research on employees’ reviews
from four sectors including info-tech, manufacturing, FMCG, and Pharmaceuti-
cals. Sentiment analysis of reviews showed that factors concerning the job satisfac-
tion level of an employee are social value, work-life value, interest value, economi-
cal value, brand value, development value, management value, and interest value.

Dina & Juniarta (2020) Proposed aspect-based sentiment analysis of employees’ reviews crawled from
Glassdoor.com using Webharvy web-scrapper to exploit employees’ satisfaction
and dissatisfaction. Crawled reviews were then preprocessed to produce keywords
using RapidMiner. Afterward, authors assigned the weights to each keyword using
term frequency to which Stanford POS tagger was used to tag nouns only. Nouns
were then classified based on their aspect as negative and positive.

(continued on next page)
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Table 1 (continued)

Ref. Summary

Rajendran (2020) Proposed a four-fold framework for analysis of employees’ reviews concerning an
improvement in the performance of the delivery services industry. The proposed
approach integrates employee reviews related to four delivery companies which are
then preprocessed to eliminate unnecessary data and separated as positive, nega-
tive, and neutral based on the overall rating. Afterward, bigrams, trigrams are ex-
tracted which are then analyzed by SWOT technique. The study concluded that
most of the negative reviews by the employee were related to health issues, quality
planning of routes, etc.

Rustam et al. (2021a) Integrated machine learning and deep learning models for classifying employee re-
views into satisfied and unsatisfied. Authors referred to overall ratings (1-5) as the
ground truth for carrying out classification tasks. For this purpose, they assigned
rating >2.5 to satisfied class and rating <2.5 to unsatisfied class. Afterward, the pre-
processed the reviews and extracted features using TF-IDF which were then uti-
lized for the training of MLP. Evaluation of the proposed model yielded an accu-
racy score of 83%.

Rehan et al. (2021) Exploited the correlation between reviews written by employees and overall ratings.
The authors proposed the ERCE model which combined two modules with AND
gate logic. Module-1 utilized an aggregate of all numeric ratings as the ground
truth, whereas, module-2 utilized overall rating as the ground truth, both modules
were trained and evaluated on the employees’ review dataset. The study concluded
that 76% of reviews and ratings correlate whereas, 24% of the reviews and ratings
do not correlate. In addition to this, authors also classified employees’ reviews as
satisfied and unsatisfied which yielded 100% accuracy by module-1 and 79% accu-
racy by module-2.

work. Concerning all the presented works, we focused on the correlated target class and
the improvement in the machine learning model’s performance.

MATERIALS AND METHODS
The proposed framework is five-fold i.e., pre-processing of the reviews to eliminate
unnecessary data, sentiment labeling, feature extraction, training of prediction models,
and evaluating the performance of trained predictors. These steps involved in carrying out
job satisfaction prediction are briefly discussed in this section.

Dataset description
Employee reviews dataset contains reviews from Facebook, Microsoft, Netflix, Apple,
Amazon, and Google employees and were obtained from Kaggle (Rehan, 2020). The
dataset contains a total of 67,529 records and sixteen variables among which seven are
numeric variables which include numeric and star ratings given by employees from 1 to 5,
and four are text variables including summary, pros, cons, and advice to management by
the reviewer employee. Rest variables correspond to information regarding the reviewer
employee. These variables are discussed in Table 2. Current research work concatenates
four text variables for carrying out job satisfaction prediction which is illustrated in Table 3.

To make a comparison another dataset is used for the experimental process. Another
dataset is based on sentiments of US airlines names ’’Twitter US Airline Sentiment’’ (Figure
Eight, 2019). Twitter US Airline Sentiment dataset is based on 8473 records with 18 features.
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Table 2 Description of dataset variables.

Variable Description

Index Index of record
Company Name of company
Location Company location
Date Date on which review was written
Job-Title Job title of employee
Summary Summary of review written by employee
Pros Benefits regarding employees of company
Cons Drawbacks regarding employees of company
Advice to Management Advice given by employee to management of company
Overall Rating Overall rating given by employee from 1–5
Work/Life Balance Rating Rating given by employee on balance between work and life

1–5
Culture and Values Rating Rating given by employee on culture of the company 1–5
Career Opportunities Rating Rating given by employee showing how many career

opportunities does company provide 1–5
Senior Management Rating Rating given by employee according to management of

company 1–5
Helpful Review Count Count of how many people found this review useful
Link to Review Link which will redirect to the particular review

Table 3 Sample of data utilized for research work.

Summary Pros Cons Advice to management Review

good but i rreally
dont kniow about
that

i think its may be even
better than any other ...

hmmmm i think all the
downsides working at exc...

there is only one advice to
the management tha...

good but i rreally dont
kniow about that i think its
may. . .

social media
marketing

creating engaging social
media strategies and...

monitoring the success of
social media campaig...

assisting the company’s
business development t...

social media marketing
creating engaging social
media . . .

Data preprocessing
Preprocessing techniques are used to clean the data to increase the ML model’s efficiency.
Preprocessing of the data involves eradicating unreliable, noisy, and irrelevant data which
affect the performance of machine learning models (Kotsiantis, Kanellopoulos & Pintelas,
2006). The current study incorporates preprocessing steps such as:

• Tokenization: Reviews are split into tokens of single words on the criteria of white-space.
• Lowercase Conversion: Each token was converted into lowercase as ML models are case
sensitive.
• Spelling Correction: Misspelled words are corrected. The spell checker is used to check
the misspelled words and convert them into correct words.
• Remove Numeric: Numeric values are removed such as contact number, value, or date
which is not included in another review
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• Removing unnecessary data: Username and stop-words do not add meaning to current
analysis thus are removed.
• Remove Punctuation: Punctuations marks are removed from data, to increase the
computation time. The punctuation signs like , #, $, %, &, etc., have been removed.
Removal of these signs is done using regular expressions.
• Stemming: Tokens are converted into their root forms for reducing the complexity.

Preprocessing minimizes computation overhead and significantly influences predictive
accuracy (Crone, Lessmann & Stahlbock, 2006). Data preprocessing is carried out using
Python NLTK libraries.

Sentiment labeling
Sentiment refers to an individual’s feelings, point of view, or opinion towards an entity.
These opinions can be expressed by writing reviews or giving numeric or star ratings.
Sentiments are broadly categorized as positive or negative based on the written review
or rating (Khan et al., 2021b). The current study utilizes sentiment orientation of reviews
written by employees’ which is explored by sentiment lexicon namely TextBlob (Rustam et
al., 2021b).

TextBlob
TextBlob is a well-known python library that provides sentiment orientation of the text
under analysis (Chaudhri, Saranya & Dubey, 2021a). It assigns a Pscore which is a float
value within the range, R(Pscore)= [+1.0,−1.0], in which Pscore =+1.0 refers to positive
polarity and Pscore =−1.0 refers to negative polarity. In addition to this, TextBlob also
provides a subjectivity score which quantifies the text under analysis as factual information
or a personal opinion (Chaudhri, Saranya & Dubey, 2021b). This analysis is only concerned
with the polarity score thus we did not integrate the subjectivity score. The threshold for
TextBlob was set to 0, thus categorizing reviews with Overall Pscore> 0 as positive reviews
(satisfied) and Overall Pscore< 0 as negative reviews (unsatisfied). Sample of polarity score
assigned by TextBlob to employees’ reviews is shown in Table 4.

Feature extraction
ML models require pre-defined features for training to carry out predictive tasks (Peng,
2021). In order to do so, features are extracted from data by using several feature extraction
techniques. Feature extraction is a method that represents the text into a set of features
relative to the current analysis. In this study, three feature extraction techniques such
as TF-IDF, BoW, and GloVe are used to extract features from preprocessed employees’
reviews. We select these feature extraction methods because of their importance in the
literature review. These methods are mostly used by the research for text classification and
have good results (Rupapara et al., 2021; Khan et al., 2021b).

Term Frequency-Inverse Document Frequency (TF-IDF)
TF-IDF is an information retrieval algorithm that statistically measures the relevance of a
term in a document (Jiang et al., 2021). It works by weighing a term t’s frequency (tf) and its
inverse document frequency (idf). Term frequency refers to the number of occurrences of a
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Table 4 TextBlob score assigned to review text and their corresponding sentiments class.

Review text Polarity score Sentiment

pockets incompetence overall google. . . −0.05 Negative
bad free food bad management. . . −0.291 Negative

term in a document and inverse document frequency refers to the significance of that term
in the whole dataset (D). In this study, we used the scikit-learn library, TfidfVectorizer, in
which TF-IDF assigns weight to each term t in correspondence to its significance in the
review R under analysis in the following manner:

t fid f (t ,R,D)= t f (t ,R)× id f (t ,D) (1)

where,

t f (t ,R)= log (1+ freq(t ,R)) (2)

id f (t ,D)=
logN

(d f +1)
. (3)

Bag of Words (BoW)
The BoW is awell-known feature extraction technique that represents text data disregarding
word order and grammatical details (Sahin, 2021). It is widely used for NLP tasks,
text classification, topic modeling, and information retrieval. This approach is easy to
implement. Each instance in this feature extraction technique is tokenized to construct a
vocabulary then, frequency of each token in the vocabulary is calculated (Boag et al., 2021).
In simple words, BoW converts text of variable lengths into a vector of fixed length thus
making it easy for ML models to work with data. For the implementation of BoW in our
experiments, we integrated CountVectorizer which is a sci-kit-learn library in python.

Global Vector Representation of Words (GloVe)
GloVe was released by a group of NLP researchers from Stanford for vector representation
of words in continuous space (Li, He & Chen, 2021). It maps words into relevant space by
the distance between words and their semantic similarity. The GloVe is widely used for
entity name recognition, machine translation, and many other NLP tasks. It mainly works
by constructing a co-occurrence matrix M, in whichMij represents the frequency of word
i appearing in some context of word j, in which co-occurrence is calculated by moving a
context size window over each sentence in the text. The study import GloVe embedding
from ‘zeugma’ library to employ in our experiments.

Supervised machine learning models
We have incorporated eight machine learning models including LR, RF, AC, MLP, ETC,
SVC, SGDC, and RV-SGDC in our experiments. These ML models are briefly described in
this section. Best hyper-parameters were used for the optimization of ML models by the
hit and trial method. During tuning each time we split the dataset and change the model’s
hyper-parameters values. These hyper-parameters settings are shown in Table 5.
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Table 5 Hyper-parameter settings for supervised machine learning models.

Model Hyper-parameter Settings

LR random_state=100, multi_class=‘ovr’, C = 3
RF n_estimators=100, random_state=50, max_depth=250
AC n_estimators=300, random_state=50
MLP random_state=20, max_iter=300
ETC n_estimators=200, random_state=50, max_depth=150
SGDC max_iter=1000, tol=1e−3
SVC kernel=‘linear’, C = 1.0, random_state=500
RV-SGDC LR, SVC, and SGDC, Voting=Hard

Logistic regression
LR is a statistical ML model which models a set of input features (X: input) into target
variables (Y: output) by means of a sigmoid function which is an ‘S’ shaped curve and
restricts Y in the range of 0 and 1 (De Cock et al., 2021). Sigmoid function σ :R−→ (0,1)
is defined as:

σ (X)=
1

1+e(−X)
(4)

where e is the base of the natural log. LR with its easy implementation produces efficient
results in the case of binary classification (Rupapara et al., 2021). In our experiments,
we have integrated various parameters in LR such as multi_class, random_state, and C.
Multi_class is set to ovr which is the best choice for binary classification, random_state is
set to 100, and C is set to 3 for strong regularization.

Random forest
RF is a meta estimator which utilizes the bagging method for learning patterns from data.
It is an ensemble of decision trees that are built on numerous sub-samples of the dataset.
It produces optimized prediction results by pooling outputs obtained from each decision
tree in the ensemble (Chen et al., 2021). It controls over-fitting by adding additional
randomness to the model, it does so by considering the most appropriate features from a
random subset of features while splitting a node instead of utilizing the most important
feature. One of the most significant tasks in the construction of a decision tree in RF is the
selection of a significant attribute as a root node. For this purpose, two techniques including
Gini impurity and Information Gain are used Baranauskas, Oshiro & Perez (2012). The
current study involves Gini impurity as the criterion to quantify the split of a node. Gini
impurity for a node can be calculated as:

N∑
x=

fx(1− fx) (5)

where, fx is the number of occurrences of target attribute x at a node and N is the number
of unique attributes. Several hyper-parameters are utilized for tuning of RF to acquire the
best results. In our experiments, we set n_estimators, which defines the number of decision
trees to be built in the ensemble, to 100. The randomness of samples bootstrapped in the
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construction of decision trees in the forest is set to 50, and the depth of each decision tree
is set to 250 as shown in Table 5.

AdaBoost classifier
AC, also referred to as Adaptive Boosting, is an ensemble method that reassigns weights
to each classified instance of the learner and higher weights are assigned to instances that
had been classified incorrectly (Wu et al., 2020). AC constructs an ensemble of learners in a
sequential manner in which each successive learner is constructed from preceding learners
which results in less variance and bias of the models. It employs boosting for transforming a
weak learner into a strong learner by concentrating on instances that are wrongly classified
by a preceding weak learner. For a given dataset {(x1,y1),...,(xn,yn)}where each instance xi
has a corresponding target variable yiε{−1,+1}, weak learners {k1,k2,...,km} are combined
in the form:

C(t−1)(xn)=w1k1(xn)+,,,+w(t−1)k(t−1)(xn) (6)

where, w1,,,w(t−1) is the weight assigned to each predicted instance and C(t−1)(xn)
represents the target variable at (t−1)th iteration which is further extended to construct a
strong learner by adding another weak learner kt with another weight wt .

Ct (xn)=C(t−1)(xn)+wtCt (xn). (7)

The hyper-parameter setting for AC used in our experiments is shown in Table 5. We
set n_estimators to 300 and random_state to 50 to acquire optimized results.

Multilayer perceptron
MLP classifies an input vector ′x ′ by multiplying it with a weight ’w’ and adding bias ’b’ to
it, such as, output:w ×x + b. MLP is restricted to the linear mapping of input and output
variables, whereas, perceptron in MLP is capable of carrying out the classification of data
which is not linearly separable (Car et al., 2020). MLP is an extended feed-forward neural
network that maps a non-linear relationship (f :Rm

−→Rn) between the input layer of m
dimensions and output vectors of n dimensions. Additionally, MLP consists of an arbitrary
number of hidden layers in which neurons are trained by integrating the back-propagation
technique. Computationally, a set of {ni|n1,n2,...,nm} input features from input layer are
assigned a weight in the hidden layer such as: w1n1+w2n2+,,,+wmnm in relation to a
non-linear function (f: R→ R). Current study utilizes rectified linear unit function (relu:
f(x) =max(0,x)) as an activation function. The hyper-parameter setting for MLP in our
experiments is shown in Table 5.

Extra tree classifier
ETC is an ensemble of unpruned decision trees that involves an arbitrary subset of
features for splitting of nodes (Bhati & Rai, 2020). Unlike RF, it integrates whole data in
the construction of a decision tree instead of bootstrapping data. It involves two main
parameters such as the number of randomized input features selected at each node(K), the
minimum size of sample required for splitting a node nmin, and the number of decision
trees in the ensemble (M). Decision trees in ETC are less likely to be correlated due to the
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randomized selection of points of the split. ETC averages predictions of decision trees in
the ensemble to produce a final prediction in case of regression (Alsariera et al., 2020). This
study concerns binary classification thus pertaining to majority voting of decision trees’
predictions to output a final prediction. There are several hyper-parameters involved in
the tuning of ETC. In our experiments we have set n_estimators which states the number
of trees in the ensemble to 200, random_state to 50, max_depth of each decision tree to
150, and Gini impurity as the criteria for node split.

Support vector classifier
SVC is a pattern-based classifier which utilizes linear kernel function to map input vectors
xi into a high dimensional vector space (Rezaeinia et al., 2019). It then creates a linear
hyper-plane with the optimized margin between the target classes yi. The linear kernel
function integrates the following mathematical computation for pattern recognition.

K (xi,yi)= x ′iyi. (8)

Hyper-parameters concerning SVC in this study are shown in Table 5. Regularization
parameter C is set to 1.0 for strong regularization and random_state, to shuffle the data for
estimating probability, is set to 500 for optimized results.

Stochastic gradient descent
Gradient descent (GD) is a well-known optimization technique that learns the optimized
values of models’ parameters at each iteration tominimize the cost function (c f ) (Rustam et
al., 2019). SGD is a variant of GDwhich concerns itself with randomprobability (stochastic)
such that, at each iteration, a single sample is selected for the training of the model (Tan
et al., 2021). It requires significantly less training time for finding c f of only one training
sample x i at each iteration to reach local minima. It does so by updating the parameters of
the model for each x i and corresponding target class y i.

θj = θj−α(y i
′

−y i)x ij (9)

where θj is the parameter and α is the learning rate of the model. SGD employs several
hyper-parameters which supports its performance on data under analysis. In this study,
loss function hinge was selected as default with l2 regularization. Maximum epochs were
set to 1000 and the criterion of stopping iteration was set to 1e−3 as shown in Table 5.

Regression Vector Stochastic Gradient Descent Classifier (RV-SGDC)
This study proposed an RV-SGDC model which is a combination of three individual
models LR, SVC, and SGDC. The RV-SGDC outperforms all other models because of its
ensemble architecture. We combined these models using majority voting criteria which
mean that individual models will give their predictions for the target class and then the
most predicted class by the models will be considered as the final target class. We combined
LR, SVC, and SGDC because of their better performance individually as compare to other
models and these models produce a more efficient and accurate model with the hard voting
combination. We can describe RV-SGDC mathematically as:

LRprediction= LRtrained(Data) (10)

Gaye et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.712 12/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.712


SVCprediction= SVCtrained(Data) (11)

SGDCprediction= SGDCtrained(Data) (12)

And

RV −SGDCprediction=model{LRprediction,SVCprediction,SGDCprediction}. (13)

Here LRprediction,SVCprediction,SGDCprediction are the predictions by the individual models
and RV − SGDCprediction is final prediction using majority voting between individual
models’ predictions. The architecture of proposed model is shown in Fig. 1.

PROPOSED APPROACH
The current study proposes a framework that is focused onmining sentiments of employees’
reviews. The proposed framework involves an SL for sentiment labeling and ML models
for classifying employees’ reviews as positive and negative.

Employees’ reviews are first acquired by concatenating four textual features such as
summary (f1), pros (f2), cons (f3), and advice to management (f4) from the dataset into a
single text feature (f : f1+ f2+ f3+ f4). Preprocessing techniques including tokenization,
lowercase conversion, numeric removal, punctuation removal, stop-word removal, and
stemming were employed to remove unnecessary data for low computation. For each
preprocessed f, sentiment score s is assigned using TextBlob. Then, we set threshold value
to 0 which referred s> 0 as a positive sentiment: f+, and s< 0 as a negative sentiment:
f− resulting in 62,465 f+ instances and 5,064 f− instances from a total of 67,529 records.
This causes an imbalance in data which might lead to ambiguous results. Therefore, to
address the problem of imbalanced data, we included 5,064 records randomly from f+ thus
balancing both classes as shown in Table 6. For further process, 10128 records were used.

Afterward, features were extracted from f by using TF-IDF, BoW, and GloVe. ML
models and proposed RV-SGDC are then trained on feature sets extracted from feature
extraction techniques and labels extracted by TextBlob. In the last, the performance of
trained predictive models is evaluated in terms of accuracy, precision, recall, and f1-score
on the test set. The architecture of the proposed model is illustrated in Fig. 2.

Evaluation
Evaluation of models focuses on estimation of the performance of the model on unseen
data.

Carrying out the classification of reviews into positive or negative produced four
outcomes described below (Rustam et al., 2020):
• True positive (TP): Instances that are actually positive and also predicted positive.
• True Negative (TN): Instances belonging to the negative class which are correctly
predicted as negative.
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Figure 1 Proposed model architecture.
Full-size DOI: 10.7717/peerjcs.712/fig-1

Table 6 Dataset count for experiments.

Dataset Positive Negative Total

Original dataset 62,465 5,064 67,529
Used dataset 5,064 5,064 10128

• False Positive (FP): Instances that belong to negative class but are predicted positive.
• False Negative (FN): Positive instances predicted as negative instances.

• Accuracy refers to the percentage of correctly predicted instances by ML model. It can
be calculated as:

Accuracy =
(TP+TN )

(TP+TN +FP+FN )
. (14)

• Precision refers to the percentage of predicted instances relevant to a certain class among
all the instances. It can be calculated as:

Precision=
TP

(TP+FP)
. (15)

• Recall is the fraction of relevant instances which are successfully predicted by MLmodel.
It can be calculated as:

Recall =
TP

(TP+FN )
. (16)
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Figure 2 Proposed methodology.
Full-size DOI: 10.7717/peerjcs.712/fig-2

• F1-Score is the harmonic mean of recall and precision.

F1= 2∗
Precision∗Recall
Precision+Recall

. (17)

This study evaluates the proposed approach in terms of accuracy, precision, recall, and
f1-score.

EXPERIMENTAL RESULTS
This section provides details of experimental results as well as a discussion of the
results. Experiments are implemented in Python language. Experiments are conducted
by integrating ML models such as LR, RF, ETC, AC, SGDC, SVC, MLP, and RV-SGDC for
classifying employees’ reviews into positive (satisfied) and negative (unsatisfied) classes. The
efficacy of the proposed approach is tested over a 3:1 train-test set by using three different
feature extraction techniques such as TF-IDF, BoW, and GloVe. The presented results of
this study were achieved from sentiments, whereas the experiments were also done using

Gaye et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.712 15/27

https://peerj.com
https://doi.org/10.7717/peerjcs.712/fig-2
http://dx.doi.org/10.7717/peerj-cs.712


the other rating attributes such as work balance, culture-values, carrier-opportunities..,
as a target class but the achieved results are not as good or significant shows where the
classification accuracy goes down because all these features contain the data of single
departments so it is difficult to train the models whereas the review is about the whole
company. Results obtained by integrating TF-IDF are shown in Table 7.

Experimental results of ML models using TF-IDF features demonstrate that LR, SVC,
and SGDC perform well with a maximum accuracy score of 0.96. In terms of positive
and negative classes, these three models have also yielded the highest precision, recall, and
f1-score of 0.96 in comparison to other ML models. Except for SVC which yielded 0.95
precision in prediction of negative class and 0.95 recall in the prediction of the positive
class. LR works best for problems on binary classifications due to its powerful working
architecture involving sigmoid functions. In our experiments, LR worked well because
instead of making presumptions about the categorization of positive and negative classes
in vector space, it integrates maximum likelihood for the estimation of accurate results.
On the other hand, SVC provides optimum generalizability to the proposed approach
with minimization of structural risk along with exploiting a maximum boundary between
target classes. Whereas, SGD with its capability of computing any sample at a time and
frequently updating parameters assist in better learning of data under consideration and
thus producing better results. Table 8 shows results of ML models obtained when trained
and tested on features extracted by BoW.

Empirical results show that ML models have shown better performance with BoW
features. MLP, SVC, SGDC, and AC have yielded maximum accuracy of 0.96 while ETC
and RF acquired a 0.94 accuracy score on test data. Whereas, the performance of LR was
not affected by changes in the feature set as can be observed by the results. TF-IDF produces
weighted features which as a result reduces the feature size, on the other hand, BoW extract
features regardless of their weight in the document thus creating a larger feature set. This
is leveraged by MLP, since, being a neural network, it requires a larger feature set for better
training. Therefore, producing better results with the BoW feature set when evaluated on
the test set. Similarly, AC has shown outstanding performance as well in classifying data
into positive and negative classes. Although RF and AC are both ensembles of decision trees
the main difference between them is that RF assigns equal weight to decisions made by
each decision tree, whereas, in AC the errors made by the preceding decision tree influence
the weight-age given to the successive decision tree. This results in minimization of error
and improvement in accuracy results of AC rather than RF. Consequently, ETC being a
meta estimator adds randomization in choosing the split of nodes instead of selecting the
optimized one. This causes low accuracy results as shown by the experiments in this study.

GloVe generates word embedding in a vector space by measuring the distance between
words, but sentiment information of words is ignored by this feature extraction technique
(Rezaeinia et al., 2019). For instance, it might create a co-occurrence between words good
and bad which limits its performance in sentiment analysis. Results with GloVe features
reveal a drop in classification accuracy of ML models in classifying employees’ reviews as
shown in Table 9.
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Table 7 Accuracy, precision, recall and F1-score results of all MLmodels using TF-IDF.

Model Accuracy Negative class Positive class

Precision Recall F1-Score Precision Recall F1-Score

RF 0.94 0.95 0.92 0.93 0.92 0.96 0.94
LR 0.96 0.96 0.97 0.96 0.97 0.96 0.96
ETC 0.94 0.95 0.92 0.93 0.92 0.95 0.94
MLP 0.95 0.95 0.95 0.95 0.95 0.95 0.95
AC 0.95 0.95 0.95 0.95 0.95 0.95 0.95
SVC 0.96 0.95 0.98 0.96 0.98 0.95 0.96
SGDC 0.96 0.96 0.97 0.96 0.96 0.96 0.96

Table 8 Accuracy, precision, recall and F1-score results of all MLmodels using BoW.

Model Accuracy Negative class Positive class

Precision Recall F1-Score Precision Recall F1-Score

RF 0.94 0.96 0.92 0.94 0.92 0.96 0.94
LR 0.96 0.96 0.97 0.96 0.97 0.96 0.96
ETC 0.94 0.96 0.92 0.94 0.92 0.96 0.94
MLP 0.96 0.96 0.96 0.96 0.96 0.96 0.96
AC 0.96 0.95 0.96 0.96 0.96 0.95 0.96
SVC 0.96 0.96 0.96 0.96 0.96 0.96 0.96
SGDC 0.96 0.95 0.96 0.96 0.96 0.95 0.95

Performance comparison of ML models using TF-IDF, BoW and GloVe
We employed three feature extraction techniques to analyze themost appropriate technique
for the classification of employees’ reviews data under analysis. Figure 3 shows results
yielded by the proposed approach using three different feature extraction techniques
such as TF-IDF, BoW, and GloVe. We can see that the overall performance of BoW is
observed to be best as compared to TF-IDF and GloVe. BoW tends to produce a feature
set based on word count regardless of the grammar or structure of a sentence. TF-IDF
produces weighted features and eliminates common words thus reducing feature set size.
On the other hand, GloVe extracts features by generating a co-occurrence matrix which
sometimes is not able to learn words that are out of vocabulary. This causes a reduction
in the accuracy of classification results. In terms of ML models, LR with its effective and
efficient architecture along with SVC and SGD has performed well with TF-IDF and BoW.
Similarly, MLP and AC showed maximum accuracy with the BoW feature set. On the other
hand, RF, ETC have shown poor performance in the case of all three feature sets of the
employees’ reviews data under consideration.
Figure 4 demonstrates the confusion matrix of ML models with maximum accuracy for

classification of employees’ reviews data as positive and negative. We can see that LR with
BoW predicted a total of 2,433 correct instances among 2,532 total instances in which 1217
instances were correctly predicted from negative class and 1216 instances were correctly
predicted from positive class. Whereas, it predicted 43 instances as negative which belonged
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Table 9 Accuracy, precision, recall and F1-score results of all MLmodels using GloVe.

Model Accuracy Negative class Positive class

Precision Recall F1-Score Precision Recall F1-Score

RF 0.82 0.81 0.84 0.82 0.83 0.80 0.82
LR 0.82 0.81 0.83 0.82 0.83 0.81 0.82
ETC 0.82 0.81 0.84 0.82 0.83 0.81 0.82
MLP 0.83 0.81 0.87 0.84 0.86 0.80 0.83
AC 0.81 0.82 0.81 0.81 0.81 0.82 0.81
SVC 0.82 0.82 0.84 0.83 0.83 0.81 0.82
SGDC 0.82 0.84 0.81 0.82 0.81 0.84 0.82

Figure 3 Graphical representation of accuracy results yielded byMLmodels using TF-IDF, BoW and
GloVe.

Full-size DOI: 10.7717/peerjcs.712/fig-3

to the positive class and 56 instances belonging to the negative class were predicted positive.
There can be seen a minor difference in the performance of LR with TF-IDF as it predicted
2,439 correct instances among a total of 2,532 instances. It succeeds in predicting positive
instances more accurately. As for MLP and AC, we can see that they lagged behind LR
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Figure 4 Confusionmatrices of MLmodels with maximum accuracy (0: Negative Class; 1: Positive
Class).

Full-size DOI: 10.7717/peerjcs.712/fig-4

in classifying employees’ reviews correctly as positive or negative. MLP predicted 2,423
correct instances and AC predicted 2,419 correct instances which are somewhat less than
instances correctly predicted by LR. In the case of SVC, it predicted a total of 2,436 correct
predictions and 96 wrong predictions with TF-IDF whereas, with BoW it predicted 2,432
correct predictions and 100 instances were predicted wrong which demonstrates that SVC
works comparatively better with TF-IDF. In the case of SGD, out of 2,532 instances, it
predicted 2,426 correct instances, and 106 instances were predicted wrong in terms of
BoW features. Conversely, SGD with TF-IDF carried out 2,424 correct predictions and 108
wrong predictions showing that it performed better with weighted features of TF-IDF. In
summary, we can say that LR, SGD, and SVC with TF-IDF performed comparatively better
in our proposed approach which is the base of our proposed voting classifier.

Performance analysis of proposed RV-SGDC
The proposed model RV-SGDC outperforms all other individual models in terms of all
evaluation parameters. The study performed experiments in the same environment using
RV-SGDC as we did with individual models and find the ensemble model is significant
with all features. RV-SGDC results are shown in Table 10 and according to the results,
the model achieved the highest accuracy of the study 97% with the TF-IDF features. This
significant performance shows the efficiency of the proposed ensemble architecture and
weighted TF-IDF features. RV-SGDC also achieved the highest F1 score on both negative
and positive target classes with TF-IDF features.

Figure 5 shows the confusionmatrix for the evaluation of RV-SGDCwith TF-IDF, BoW,
and GloVe features. According to the confusion matrices, RV-SGDC gave the lowest wrong
predictions ratio of the study with TF-IDF features which are 81 out of 2532 and gave 2451
correct predictions. Performance with BoW feature was also good in comparison to GloVe
which gave 103 wrong predictions out of 2532 predictions and 2429 correct predictions.
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Table 10 Accuracy, precision, recall, and F-score results of proposed RV-SGDCmodel with TF-IDF,
BoW and GloVe.

Features Accuracy Positive class Negative class

Precision Recall F1-Score Precision Recall F1-Score

TF-IDF 0.97 0.97 0.96 0.97 0.96 0.98 0.97
BoW 0.96 0.96 0.96 0.96 0.96 0.97 0.96
GloVe 0.84 0.83 0.82 0.83 0.83 0.84 0.83

Figure 5 Confusionmatrix of RV-SGDCwith TF-IDF, BoW, and GloVe features.
Full-size DOI: 10.7717/peerjcs.712/fig-5

RV-SGDC also gave the highest correct prediction ratio using GloVe features compared to
other individual models. RV-SGDC gave 2121 correct predictions out of 2531 using GloVe
features which show the significance of proposed models on all features.
Further for performance analysis, we have experimented 15 times, each time we run the
train and test split method to train and test models on different sets. Themean accuracy and
standard deviation (SD) of each model after 15-time experiments are shown in Table 11.
There is not too much fluctuation in the results with that method. Still, the RV-SGDC is
on top with 0.96 mean accuracy 0.01, 0.02 SD with TF-IDF and BoW respectively. There is
some fluctuation with GloVe features as RV-SGDC accuracy goes down 0.84 to 0.82 with
0.02 SD.

K-fold cross-validation is also applied to classify employee reviews and analyze the
performance of RV-SGDC. For the experimental process, 10 fold were used. Experimental
results of ML models with 10-fold cross-validation using TF-IDF features demonstrate
that Rv-SGDC performs well with a maximum accuracy score of 0.96. Whereas LR, SVC,
SDGC, and AC also perform well with 0.95 accuracies. The performance of all models
shown in Table 12.

Performance comparison of models with another dataset
In this section, the results of all models on another dataset are presented to make a
comparison. The US airlines tweets dataset is used to perform the experiments to show
the significance of the proposed approach. TF-IDF feature extraction technique is used to
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Table 11 Mean accuracy and SD after doing experiments 15 times on different training and testing
sets.

Model TF-IDF BoW GloVe

Accuracy SD Accuracy SD Accuracy SD

RF 0.92 0.02 0.91 0.03 0.80 0.03
LR 0.95 0.01 0.93 0.02 0.82 0.02
ETC 0.93 0.03 0.92 0.05 0.81 0.04
MLP 0.93 0.02 0.94 0.03 0.80 0.02
AC 0.91 0.05 0.92 0.07 0.81 0.07
SVC 0.94 0.02 0.93 0.03 0.81 0.02
SGDC 0.94 0.01 0.95 0.02 0.82 0.03
RV-SGDC 0.96 0.01 0.96 0.02 0.82 0.02

Table 12 Ten fold cross-validation results with TF-IDF.

Model Accuracy

RF 0.91 (+/- 0.11)
LR 0.95 (+/- 0.06)
ETC 0.91 (+/- 0.11)
MLP 0.94 (+/- 0.07)
AC 0.95 (+/- 0.06)
SVC 0.95 (+/- 0.06)
SGDC 0.95 (+/- 0.06)
RV-SGDC 0.96 (+/- 0.05)

Table 13 Accuracy, precision, recall and F1-score results of all MLmodels using TF-IDF.

Model Accuracy Negative class Positive class

Precision Recall F1-Score Precision Recall F1-Score

RF 0.88 0.89 0.79 0.84 0.87 0.94 0.90
LR 0.90 0.91 0.84 0.87 0.89 0.94 0.92
ETC 0.88 0.91 0.79 0.85 0.87 0.94 0.91
MLP 0.89 0.87 0.85 0.86 0.90 0.91 0.90
AC 0.89 0.90 0.82 0.86 0.88 0.94 0.91
SVC 0.89 0.91 0.82 0.86 0.88 0.94 0.91
SGDC 0.89 0.90 0.84 0.87 0.89 0.94 0.92
RV-SGDC 0.90 0.91 0.83 0.87 0.89 0.94 0.92

perform analysis. Table 13 shows the performance results of all used models on the US
airline tweets dataset.

Performance comparison of RV-SGDC with previous studies
The performance of the proposed framework was compared to previous studies carried out
to classify sentiments of employees’ reviews. The author proposed multilayer perceptron
(MLP); a deep neural network; for classification of employees’ reviews as satisfied (positive)
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and unsatisfied (negative) in Rustam et al. (2021a). They integrate overall numeric rating
(1-5) given by employees as the ground truth for training and testing of ML models.
Reviews with an overall rating greater than or equal to 2.5 were considered as satisfied
reviews and the rest were considered as unsatisfied reviews.

In Rehan et al. (2021) researcher’s proposed a framework based on combining of
two modules by AND gate in which averaging the numeric ratings were considered for
classification of reviews as positive and negative in module 1 and module, 2, summary
and overall ratings were used as features and classes respectively for classification tasks.
Furthermore, the outputs from these modules are unified to classify the reviews as proper
and improper. Since this study is concerned with classifying employees’ review data into
positive (satisfied) and negative (unsatisfied) therefore; we will compare our results with
module 2.

The study uses polarity-based sentiments of employees. In this study, TextBlob is utilized
for extracting the sentiment scores of the reviews which are further categorized as positive
and negative sentiments based on the threshold value. Whereas Rustam et al. (2021a) used
the overall rating of employees. In this research work to analyze the sentiments of TextBlob
and overall rating, the dataset is manually assessed which shows that TextBlob produces
more accurate results as compared to the overall rating because in overall rating if the rating
is positive and text is negative then it is labeled as positive as well as if the text is positive
and the rating is negative then it is also labeled as positive and same for the negative label.
So, the dataset is analyzed manually to check the ground truth. Results in Table 14 show
that the current study outperformed previous studies in text classification of employees’
reviews as positive and negative. The proposed system performs best from previous studies
by using RV-SGDC. RV-SGDC performs best because of its ensemble architecture.

Statistical analysis to show significance of RV-SGDC
This study performs a T -test to show the statistical significance of the proposed RV-SGDC
model on other used state-of-the-art models (Fatima et al., 2021). T -test gives us output
in terms of acceptance or rejection of the null hypothesis.

• Null Hypothesis: The proposed model is statistically significant as compared to other
models.
• Alternative Hypothesis: The proposed model is not statistically significant as compared
to other models.

RV-SGDC accepts the null hypothesis with TF-IDF features in comparison with other
models which show that the model is statistically significant. While in the case of the BoW
case rejects the null hypothesis and accepts the alternative hypothesis which means that
RV-SGDC is not too statistically significant on BoW features. In the case of GloVe features,
RV-SGDC shows statistical significance on other models by accepting null hypotheses.

CONCLUSION
This study experimented with sentiment classification using lexicon and machine learning
based techniques. Analysis was performed on employee reviews datasets which contains
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Table 14 Performance comparison of previous studies with current study.

Ref Dataset Features Ground truth Features Model Results

Employees’ Reviews Summary Overall Rating TF-IDF MLP 0.83
Employees’ Reviews Summary Overall Rating TF-IDF ETC 0.79

Proposed Employees’ Reviews Summary, Pros, Cons, and
Advice to Management

TextBlob
Sentiments

TF-IDF RV-SGDC 0.97

six well-known companies’ employees’ reviews to find the sentiments using text review.
First, this study used preprocessing techniques to clean the text dataset, and then TextBlob
was used to label the data with sentiments. TF-IDF, BoW, and GloVe features are used to
train machine learning models. Performance of machine learning classifiers such as RF, LR,
ETC, MLP, SVC, SGD, AC, and proposed RV-SGDC analyzed on these text features for
the sentiment classification. Obtained results show that RV-SGDC attained a maximum
accuracy score of 0.97 with TF-IDF features followed by similar precision, recall and
f1-score whereas from BOW and GloVe RV-SGDC achieved 0.96 and 0.84 respectively.
This significant performance of RV-SGDC shows the efficiency of the voting scheme
between multiple models for final prediction. TF-IDF also shows its significance because
of its approach to compute weighted features for machine learning models. Moreover,
the proposed approach is compared with previous work conducted in the same direction.
Results show that the proposed approach yielded state-of-the-art results as compared
to previously done research on the same dataset concerning sentiment classification of
employees’ reviews. It can be observed that using TextBlob sentiments has highly impacted
the accuracy of ML models individually as well as in a voting classifier as an improvement
of 0̃.14 accuracy score is observed with our experiments. In the end, we also show the
statistical significance of the proposed model RV-SGDC on other models using the T -test
which shows that the voting model is statistically significant as compared to individual
models using TF-IDF features. However, the obtained results are not irrefutable as accuracy
can be impacted by integrating a larger dataset which is the future direction of this work.
One of the possible future directions can be the integration of deep learning models
for improvement in accuracy results. We will consider ensemble deep learning models
such as CNN-LSTM with the latest embedding schema which can be useful to improve
the results.
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Özçelik M, Arıcan BN, Bakay Ö, Sarmış E, Ergelen Ö, Bayezit NG, Yıldız OT. 2021.
HisNet: a polarity lexicon based on wordnet for emotion analysis. In: Proceedings of
the 11th Global Wordnet Conference, 157–165.

PengW. 2021. Big data mining and analysis based on convolutional fuzzy neural
network. Arabian Journal for Science and Engineering 1–11 Epub ahead of print Apr
07 2021.

Rajendran S. 2020. Improving the performance of global courier & delivery ser-
vices industry by analyzing the voice of customers and employees using text
analytics. International Journal of Logistics Research and Applications 1–21
DOI 10.1080/13675567.2020.1769042.

RehanMS. 2020. Employee reviews dataset. Available at https://www.kaggle.com/saqlainrehan/
employeesreviews-dataset.

RehanMS, Rustam F, Ullah S, Hussain S, Mehmood A, Choi GS. 2021. Employees
reviews classification and evaluation (ERCE) model using supervised machine
learning approaches. Journal of Ambient Intelligence and Humanized Computing 1–18
Epub ahead of print May 05 2021.

Rezaeinia SM, Rahmani R, Ghodsi A, Veisi H. 2019. Sentiment analysis based on im-
proved pre-trained word embeddings. Expert Systems with Applications 117:139–147
DOI 10.1016/j.eswa.2018.08.044.

Rupapara V, Rustam F, Shahzad HF, Mehmood A, Ashraf I, Choi GS. 2021. Impact of
SMOTE on imbalanced text features for toxic comments classification using RVVC
model. IEEE Access 9(1):78621–78634 DOI 10.1109/ACCESS.2021.3083638.

Rustam F, Ashraf I, Mehmood A, Ullah S, Choi GS. 2019. Tweets classification
on the base of sentiments for US airline companies. Entropy 21(11):1078
DOI 10.3390/e21111078.

Gaye et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.712 26/27

https://peerj.com
http://dx.doi.org/10.1016/j.asej.2014.04.011
http://dx.doi.org/10.1142/S1469026820500315
http://dx.doi.org/10.1080/13675567.2020.1769042
https://www.kaggle.com/saqlainrehan/employeesreviews-dataset
https://www.kaggle.com/saqlainrehan/employeesreviews-dataset
http://dx.doi.org/10.1016/j.eswa.2018.08.044
http://dx.doi.org/10.1109/ACCESS.2021.3083638
http://dx.doi.org/10.3390/e21111078
http://dx.doi.org/10.7717/peerj-cs.712


Rustam F, Ashraf I, Shafique R, Mehmood A, Ullah S, Sang Choi G. 2021a. Review
prognosis system to predict employees job satisfaction using deep neural network.
Computational Intelligence 37(2):924–950.

Rustam F, Khalid M, AslamW, Rupapara V, Mehmood A, Choi GS. 2021b. A perfor-
mance comparison of supervised machine learning models for Covid-19 tweets
sentiment analysis. PLOS ONE 16(2):e0245909 DOI 10.1371/journal.pone.0245909.

Rustam F, Mehmood A, AhmadM, Ullah S, Khan DM, Choi GS. 2020. Classification of
shopify app user reviews using novel multi text features. IEEE Access 8:30234–30244
DOI 10.1109/ACCESS.2020.2972632.

Sahin O. 2021.Develop intelligent IOS apps with swift: understand texts, classify sentiments,
and autodetect answers in text using NLP. New York: Apress.

Stamo lampros P, Korfiatis N, Chalvatzis K., Buhalis D. 2019. Job satisfaction and em-
ployee turnover determinants in high contact services: insights from Employees On-
line reviews. Tourism Management 75:130–147 DOI 10.1016/j.tourman.2019.04.030.

Tan Z, Chen J, Kang Q, ZhouM, Abusorrah A, Sedraoui K. 2021. Dynamic em-
bedding projection-gated convolutional neural networks for text classifi-
cation. IEEE Transactions on Neural Networks and Learning Systems 1–10
DOI 10.1109/TNNLS.2020.3036192.

WuY, Ke Y, Chen Z, Liang S, Zhao H, Hong H. 2020. Application of alternating decision
tree with AdaBoost and bagging ensembles for landslide susceptibility mapping.
Catena 187:104396 DOI 10.1016/j.catena.2019.104396.

Gaye et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.712 27/27

https://peerj.com
http://dx.doi.org/10.1371/journal.pone.0245909
http://dx.doi.org/10.1109/ACCESS.2020.2972632
http://dx.doi.org/10.1016/j.tourman.2019.04.030
http://dx.doi.org/10.1109/TNNLS.2020.3036192
http://dx.doi.org/10.1016/j.catena.2019.104396
http://dx.doi.org/10.7717/peerj-cs.712

