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ABSTRACT
Dempster–Shafer evidence theory (D–S theory) is suitable for processing uncertain
information under complex circumstances. However, how to measure the
uncertainty of basic probability distribution (BPA) in D–S theory is still an open
question. In this paper, a method of measuring total uncertainty based on belief
interval distance is proposed. This method is directly defined in the D–S theoretical
framework, without the need of converting BPA into probability distribution by
Pignistic probability transformation. Thus, it avoids the loss of information. This
paper analyzes the advantages and disadvantages of the previous total uncertainty of
measurement, and the uncertainty measurement examples show the effectiveness of
the new uncertainty measure. Finally, an information fusion method based on the
new uncertainty measure is proposed. The validity and rationality of the proposed
method are verified by two classification experiments from UCI data sets.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence
Keywords Evidence theory, Belief structure, Uncertainty measure, Euclidean distance,
Classification

INTRODUCTION
Uncertain information processing methods have always been a hot topic in the application
of information fusion technology (Zhang & Mahadevan, 2019; He, Jiang & Chan, 2017).
Dempster–Shafer evidence theory (D–S theory) (Shafer, 1976), as a typical tool for
intelligent processing of uncertain information and information fusion, has been
extensively studied. It has a wide range of applications in both military and civilian fields,
such as target recognition (Li et al., 2016), classification (Xu et al., 2020; Liu et al., 2019;
Tang, Wu & Liu, 2021; Wu, Liu & Tang, 2020), fault diagnosis (Fan & Zuo, 2006), risk
analysis (Yang et al., 2011), decision-making (Fu, Chang & Yang, 2020; Fu et al., 2020) and
pattern recognition (Zhou et al., 2018; Liu et al., 2020). D–S theory is an extension of
probability theory, which in some cases can be degenerated into probability theory. In D–S
theory, the Dempster’s combination rule is used to fuse basic probability assignment
(BPA). However, when classical combination rules are used to fuse conflicting evidence,
the result may be counterintuitive (Martin, 2019; Su et al., 2019). Therefore, in order to
solve this problem, we can apply uncertainty measurement to the pre-processing
before information fusion (Yong et al., 2004; Jing & Tang, 2021), so as to obtain more
accurate information fusion results.
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As the basis of information processing and evaluation, uncertainty plays an important
role in the process of information processing. We can make use of the uncertainty of each
information to preprocess the information appropriately to reduce the conflict or
unreliability between the information. However, how to measure the uncertainty in the
belief function is still an open question. In D–S theory, there are two types of uncertainty
(Yager, 2008), namely conflict (Körner & Näther, 1995) and non-specificity (Dubois &
Prade, 1985). In view of the above uncertainties, scholars have proposed different
measurement methods for individual and total uncertainty (Jiroušek & Shenoy, 2020;
Dubois & Prade, 1987). The measurement methods of conflict include the strife (Klir &
Parviz, 1992) and the confusion (Hohle, 1982), etc. The measurement methods of non-
specificity include Yager’s measure (Yager, 2008) and Hartley’s entropy-based (Hartley,
1928) measurement proposed by Dubois & Prade (1985). In addition, for the measurement
methods of total uncertainty in the belief function, aggregated uncertainty (AU) (Harmanec
& Klir, 1994) and ambiguity measure (AM) (Jousselme et al., 2006) are the most
representative measurement methods. Although they meet the five axiom requirements
proposed by Klir & Wierman (2013) and have been widely applied, they still have some
shortcomings (Abellán & Masegosa, 2008; Klir & Lewis, 2008; Klir & Smith, 1999). For
example, AU’s calculation is highly complex and insensitive to BPA changes. Although
AM has ameliorated some of AU’s problems, it does not distinguish the uncertainty of
different BPA with the same probability assignment. Recently, some new uncertainty
measures in D–S theory are also proposed by researchers including the decomposable
entropy in Jiroušek & Shenoy (2018, 2020), the Deng entropy (Deng, 2016), the correlation
coefficient (Jiang, 2018) the divergence measure (Xiao, 2020) and so on (Song et al., 2018).

In general, the above uncertainty measurement methods are developed on the basis of
Shannon entropy (Shannon, 2001). They need to convert basic probability assignment
(BPA) into probability distribution under certain probability conversion rules (Smets &
Kennes, 1994), and then calculate Shannon entropy to measure uncertainty. However, the
conversion between such frameworks will lead to certain information loss, thus resulting in
certain limitations. Therefore, in order to avoid this problem, a measurement method
defined directly under the framework of D–S theory should be proposed (Yang & Han,
2016; Deng, Xiao & Deng, 2017).

Yang and Han proposed a new distance-based measure of total uncertainty (Yang &
Han, 2016), which is a measure directly defined in the framework of D–S theory. They
analyzed that the belief interval [Bel(A), Pl(A)] of the elements in the frame of discernment
contained both conflict and non-specific uncertainties in the D–S theory, and the total
uncertainty could be obtained by calculating the distance between the belief interval of
each element and the maximum uncertainty case [Bel(A),Pl(A)] = [0, 1]. The magnitude of
uncertainty is inversely proportional to the distance. However, Deng, Xiao & Deng’s (2017)
research found that this method has some defects, which may lead to counter-intuitive
results in some cases. In order to solve this problem, Deng et al. changed the calculation
method of distance based on Yang & Han’s (2016) measure.

In this paper, we propose a new measure of total uncertainty noted as ZU, which is
directly defined in the framework of D–S theory. This ZU can also solve the defects of
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Yang and Han’s measure mentioned above. This method gets total uncertainty by
calculating the distance between the belief interval of each element and the interval [0.1],
which avoids the limitation caused by the transformation of the framework in the
calculation process, and the calculation method is relatively simple.

The rest of this paper are arranged as following. In “Basics of D–S Theory”, the related
concepts of D–S theory are introduced. In “Analysis of Existing Measures”, various
uncertainty measurement methods in D–S theory are introduced, and the limitation of
partial total uncertainty measurement method is illustrated with numerical examples.
In “Proposed Method”, a new total uncertainty measurement method ZU is proposed and
its properties are analyzed. In “Numerical Example”, numerical examples are used to verify
the effectiveness of the measurement method ZU. In “Application in Classification”, we
propose a new classification method based on ZU, and verify its performance with two
experiments. In “Conclusion”, the full paper is summarized.

BASICS OF D–S THEORY
Some basic concepts of D–S theory are as follows.

The Frame of Discernment (FOD) is a non-empty set of information processed by D–S
theory, defined as � ¼ h1; h2; . . . ; hi; . . . ; hNf g. The power set of the Frame of
Discernment contains 2N elements, which are expressed as follows:

2� ¼ [; h1f g; . . . ; hNf g; h1; h2f g; . . . ; h1; h2; . . . ; hif g; . . . ;�f g: (1)

A mass function m (BPA) is the mapping of the power set of the FOD on the interval
[0, 1], which satisfies the following relation:

mð[Þ ¼ 0;
X
A22�

mðAÞ ¼ 1: (2)

The mass function can also be expressed by the belief function (Bel) and the plausibility
function (Pl), defined as follows (Smets & Kennes, 1994):

BelðAÞ ¼
X

[ 6¼B�A

mðBÞ;PlðAÞ ¼
X

B\A 6¼[

mðBÞ (3)

The Bel(A) represents the lower limit value of evidence’s support for proposition A. And
the Pl(A) represents the upper limit value of evidence’s support for this proposition.

In the D–S theory, two groups of independent mass functions m1 and m2 can conduct
data fusion through Dempster’s rule, which satisfies:

mðAÞ ¼ m1 �m2ð ÞðAÞ ¼ 1
1� k

X
B\C¼A

m1ðBÞm2ðCÞ; (4)

where, k is a normalized factor, defined as follows:

k ¼
X

B\C¼[

m1ðBÞm2ðCÞ:
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For subset A, its mass function can be converted to probability distribution by Pignistic
probability conversion. The transformation to meet mapping BetPm :� ! ½0; 1�, is defined
as follows:

BetPm Aið Þ ¼
X

A�Pð�Þ;Ai2A

mðAÞ
jAj ; (5)

where, Aj j represents the cardinality of subset A.

ANALYSIS OF EXISTING MEASURES
The total uncertainty measure is to simultaneously measure the two kinds of uncertainty,
namely conflict and non-specificity. And the aggregated uncertainty (AU) and ambiguity
measure (AM) are the most representative measurement methods.

Aggregated uncertainty and ambiguity measure
The Aggregated uncertainty (AU) is defined as (Harmanec & Klir, 1994):

AUðmÞ ¼ max �
X
h2�

ph log2 ph

" #
(6)

s:t:

ph 2 ½0; 1�; 8h 2 �
BelðAÞ � P

h2A
ph � 1� Belð�AÞ;8A � �P

h2�
ph ¼ 1

8>><
>>:
AU refers to the value of the maximum Shannon entropy corresponding to the given

mass function. Therefore, it is also called “upper entropy”.
The ambiguity measure (AM) is defined as (Jousselme et al., 2006):

AMðmÞ ¼ �
X
h2�

BetPmðhÞ log2 BetPmðhÞð Þ (7)

AM converts BPA into probability distribution by Pignistic probabilistic conversion,
and then the total uncertainty is calculated. However, AU and AM have some limitations,
which will be analyzed by the following example 1.
Example 1 Define that FOD � ¼ h1; h2; h3; h4f g, three BPAs are given as:

m1ð�Þ ¼ 1

m2 h1; h2ð Þ ¼ 1
2
;m2 h3; h4ð Þ ¼ 1

2

m3 h1ð Þ ¼ m3 h2ð Þ ¼ m3 h3ð Þ ¼ m3 h4ð Þ ¼ 1
4

Evidently, we can find that for m1, The BPA: m1(Ω) = 1 represents total ignorance.
For m2, it divided the elements into groups of two and divided the probabilities equally
among the groups, while m3 divided the probabilities equally among each element.
Therefore, it is intuitive that the uncertainty of the three mass functions should gradually
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decrease. However, the calculation results of AU and AM are contrary to the intuitive
results, which are shown as follows:

AU m1ð Þ ¼ AU m2ð Þ ¼ AU m3ð Þ ¼ 2
AM m1ð Þ ¼ AM m2ð Þ ¼ AM m3ð Þ ¼ 2

We can observe that the value of all three BPA, AU and AM is 2, which is obviously
against the intuition. The reason for this is as follows: For AU, it focuses on the maximum
Shannon entropy for the given BPA condition. So it’s not sensitive to changes in BPA.
For AM, we can calculate that by applying Pignistic probability conversion to each BPA,
the three BPA have the same probability distribution, that is BetPm hið Þ ¼ 0:25; ði ¼
1; 2; 3; 4Þ, so the calculation results of AM are unchanged.

The total uncertainty measure TUI

Define that FOD � ¼ h1; h2; � � � ; hi; � � � ; hNf g, the total uncertainty measure TUI by Yang
and Han’s is defined as (Yang & Han, 2016):

TUIðmÞ ¼ 1� 1
n
� ffiffiffi

3
p �

Xn
i¼1

dI Bel hið Þ;Pl hið Þ½ �; ½0; 1�ð Þ: (8)

with

dI a1; b1½ �; a2; b2½ �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ b1

2
� a2 þ b2

2

� �2
þ 1
3

b1 � a1
2

� b2 � a2
2

� �2s
: (9)

TUI obtains the total uncertainty by calculating the distance between the belief interval
of each element and the interval [0.1], and finally normalized the value of the total
uncertainty range into [0,1]. However, although TUI is sensitive to BPA changes and has
low computational complexity, counter-intuitive results can occur under certain
circumstances, which will be analyzed by the following example 2.
Example 2 Define that FOD � ¼ h1; h2f g, two BPAs are given as:

m1 h1ð Þ ¼ 1
2
;m1 h2ð Þ ¼ 1

2
:m2 h2ð Þ ¼ 1

2
;m2ð�Þ ¼ 1

2
:

For the two BPA groups, the belief intervals are as follows:

Bel1 h1ð Þ; Pl1 h1ð Þ½ � ¼ 1
2
;
1
2

� �

Bel1 h2ð Þ; Pl1 h2ð Þ½ � ¼ 1
2
;
1
2

� �
Bel1ð�Þ;Pl1ð�Þ½ � ¼ ½1; 1�

8>>>><
>>>>:

Bel2 h1ð Þ; Pl2 h1ð Þ½ � ¼ 0;
1
2

� �

Bel2 h2ð Þ; Pl2 h2ð Þ½ � ¼ 1
2
; 1

� �
Bel2ð�Þ;Pl2ð�Þ½ � ¼ ½1; 1�

8>>>><
>>>>:
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By comparing the belief intervals of m1 and m2, we can get that ∀ A ∈ Ω,
Bel1ðAÞ; Pl1ðAÞ½ � � Bel2ðAÞ; Pl2ðAÞ½ �, which means that the belief intervals of m1 are all
proper subsets of the belief intervals of m2. Therefore, the uncertainty of m2 should be
higher than m1. Here are the results of several measurements.

AU m1ð Þ ¼ AU m2ð Þ ¼ 1
AM m1ð Þ ¼ 1;AM m2ð Þ ¼ 0:8113

TUI m1ð Þ ¼ TUI m2ð Þ ¼ 1
2

We can observe that the results of the three measures appear counterintuitive, and AM
appears contrary to monotonicity. Therefore, in this case, none of the three measures can
correctly quantify the total uncertainty.

Through the above description, we can observe that there are some limitations in the
application of the above total uncertainty measurement methods. Therefore, in the
next section, we will propose a new measure of total uncertainty, called ZU, which is
directly defined in the framework of D–S theory. The ZU can solve the defects of Yang and
Han’s measure mentioned above.

PROPOSED METHOD
The new total uncertainty measure
In the belief interval of focal element A, the information related to uncertainty includes the
conflict part and the non-specificity part (Yang & Han, 2016). Therefore, for a focal
element A, its belief interval can represent its degree of uncertainty, and its value can be
expressed by the Euclidean distance between the belief interval of A and the most uncertain
case [Bel(A),Pl(A)] = [0,1], as shown in the following formula:

dð½BelðAÞ; PlðAÞ�; ½0; 1�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BelðAÞ � 0½ �2 þ PlðAÞ � 1½ �2

q
(10)

When [Bel(A),Pl(A)] = [0,1], it means complete unknown, with the greatest degree
of uncertainty. Therefore, when the belief interval distance of A is far from the most
uncertain case [0,1], the distance value is large and indicates that the uncertainty is small;
conversely, the smaller the value is, the greater the degree of uncertainty is. Therefore,
for a given BPA, the total uncertainty can be expressed by calculating the distance between
the belief interval of each element and the interval [0,1], and then integrating it through the
following formula:

ZUðmÞ ¼
Xn
i¼1

4
3

1

ð1þ dÞ2 �
1
4

 !
(11)

In the above formula, n is the cardinality of FOD Ω, and the formula expresses the
decreasing relationship between distance d and uncertainty through the inverse
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proportional relationship. After trying a variety of functional expressions, we choose
1/(1 + d)2 with better experimental effect as the main part of the formula. In addition,
the selection of 4/3 and 1/4 parameters is to limit that the value range of the uncertainty for
any element is [0, 1]. That is, when d = 0, the value of the uncertainty is 1. And when d = 1,
the value is 0, so its property of boundedness is guaranteed.

The steps of calculating the total uncertainty by ZU are shown in Fig. 1. And to
demonstrate how to calculate ZU, we provide an example as follows:

Define that FOD � ¼ h1; h2; h3f g, the BPA is given as: m h1ð Þ ¼ 0:2; m h1; h2ð Þ ¼ 0:5;
m h2; h3ð Þ ¼ 0:3. The specific calculation process of its total uncertainty is shown below:

Step 1: Calculate the belief interval for singletons

Bel h1ð Þ ¼ m h1ð Þ ¼ 0:2
Bel h2ð Þ ¼ m h2ð Þ ¼ 0
Bel h3ð Þ ¼ m h3ð Þ ¼ 0
Pl h1ð Þ ¼ m h1ð Þ þm h1; h2ð Þ ¼ 0:7
Pl h2ð Þ ¼ m h2ð Þ þm h1; h2ð Þ þm h2; h3ð Þ ¼ 0:8
Pl h3ð Þ ¼ m h3ð Þ þm h2; h3ð Þ ¼ 0:3

8>>>>>><
>>>>>>:

Step 2: Calculate the distance between each belief interval of singleton and the interval
[0, 1]

d Bel h1ð Þ; Pl h1ð Þ½ �; ½0; 1�ð Þ ¼ dð½0:2; 0:7�; ½0; 1�Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:2� 0Þ2 þ ð0:7� 1Þ2

q
¼ 0:36

d Bel h2ð Þ; Pl h2ð Þ½ �; ½0; 1�ð Þ ¼ dð½0; 0:8�; ½0; 1�Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0� 0Þ2 þ ð0:8� 1Þ2

q
¼ 0:2

Figure 1 The flowchart of generating the total uncertainty measurement.
Full-size DOI: 10.7717/peerj-cs.710/fig-1
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d Bel h3ð Þ; Pl h3ð Þ½ �; ½0; 1�ð Þ ¼ dð½0; 0:3�; ½0; 1�Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0� 0Þ2 þ ð0:3� 1Þ2

q
¼ 0:7

Step 3: Calculate the total uncertainty based on the distance of each singleton

ZUðmÞ ¼Pn
i¼1

4
3

1

ð1þ dÞ2 �
1
4

 !

¼ 4
3

1

ð1þ 0:36Þ2 �
1
4

 !
þ 4
3

1

ð1þ 0:2Þ2 �
1
4

 !

þ 4
3

1

ð1þ 0:7Þ2 �
1
4

 !
¼ 1:10816

Some properties of the proposed uncertainty measure
Property 1: monotonicity Assuming that there are two groups of BPA m1 and m2,
which are defined on FOD Ω. If Bel1ðAÞ; Pl1ðAÞ½ � � Bel2ðAÞ;Pl2ðAÞ½ �, ∀ A ∈ Ω, then ZU
(m1) ≤ ZU(m2).

Proof of Monotonicity: By the calculation formula of distance, if
Bel1ðAÞ; Pl1ðAÞ½ � � Bel2ðAÞ; Pl2ðAÞ½ �, ∀ A ∈ Ω, then
d Bel1ðAÞ;Pl1ðAÞ½ �ð Þ 	 d Bel2ðAÞ;Pl2ðAÞ½ �ð Þ, ∀ A ∈ Ω. In addition, through the final
integration formula, it can be seen that the value of ZU(m) is inversely proportional to the
value of distance, that is, the larger distance is, the smaller ZU (m) is. So we can get ZU (m1)
≤ ZU (m2).

Property 2: boundness The value range of ZU(m) is [0,N], where N is the cardinality of
FOD Ω.

Proof of Boundness: when the BPA is a vacuous BPA, that ism(Ω) = 1, we have [Bel(A),Pl
(A)] = [0,1], ∀ A ∈ Ω. In this case d ½BelðAÞ; PlðAÞ�; ½0; 1�ð Þ ¼ 0, ∀ A ∈ Ω. And through
the final integration formula, the result is obtained to be ZU(m) = N. In addition, since
the belief interval of any BPA is a subset of [0,1], it can be known from the monotony
obtained above that N is the maximum value of ZU (m). Similarly, the lower bound of ZU
(m) is 0. This result is obtained when d ½BelðAÞ; PlðAÞ�; ½0; 1�ð Þ ¼ 1, ∀ A ∈ Ω, which
corresponds to [Bel(A),Pl(A)] = [0,0] or [1,1], ∀ A ∈ Ω. This is a completely accurate case,
where the uncertainty is zero.

Property 3: invariance Assuming thatm is a BPA defined in FOD Ω, the total uncertainty
of m is represented as ZU� mð Þ, then ZU� mð Þ ¼ ZU� mð Þ, where Θ = Ω ∪ ϕ and ϕ is an
arbitrary set.
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Proof of Invariance: Assuming that each singleton of Θ is hi, Since BPA m is initially
defined on Ω, we can get Bel hið Þ;Pl hið Þ½ � ¼ 0; 0½ �, when hi ∈ � and hi ∉ Ω. Thus,

ZU�ðmÞ ¼ P
hi2�

4
3

1

1þ d Bel hið Þ;Pl hið Þ½ �; ½0; 1�ð Þð Þ2 �
1
4

 !" #

þ P
hi=2�;hi2�

4
3

1

1þ dð½0; 0�; ½0; 1�Þð Þ2 �
1
4

 !" #

¼
X
hi2�

4
3

1

1þ d Bel hið Þ;Pl hið Þ½ �; ½0; 1�ð Þð Þ2 �
1
4

 !" #
þ

X
hi=2�;hi2�

0

¼
X
hi2�

4
3

1

1þ d Bel hið Þ;Pl hið Þ½ �; ½0; 1�ð Þð Þ2 �
1
4

 !" #
¼ ZU�ðmÞ

Property 4: monotonicity among Bayesian BPAs Bayesian BPA is defined asP
A��mðAÞ ¼ 1 and m Að Þ ¼ 0; 8 Aj j 6¼ 1. For the Bayesian BPA, it has the following

properties:

Property 4.1: Supposem is the Bayesian BPA, defined as FOD� ¼ h1;h2;…; hn
� �

; n 	 2.
When the m hið Þ ¼ 1

n ; i ¼ 1; 2;…; n, ZU(m) obtains the maximum value.

Proof of Property 4.1: When m Að Þ ¼ 0;8 Aj j 6¼ 1, we can get m hið Þ ¼ Bel hið Þ ¼ Pl hið Þ.
Therefore, we can assume that m hið Þ ¼ Bel hið Þ ¼ Pl hið Þ ¼ ai; 8hi 2 �, and

Pn
i¼1 ai ¼ 1.

So the distance is:

dð½BelðAÞ;PlðAÞ�; ½0; 1�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai � 0ð Þ2 þ ai � 1ð Þ2

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ai2 � 2ai þ 1
p

To obtain the maximum value of ZU(m), the Lagrange function can be obtained as
follows:

L mð Þ ¼Pn
i¼1

4
3

1

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2i � 2ai þ 1

p� �2 � 1
4

0
B@

1
CAþ �

Xn
i¼1

ai � 1

 !

By taking the partial derivatives of the above function, we can get

@LðmÞ
@ai

¼ 4
3

1� 2ai

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2i � 2ai þ 1

p� �3 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2i � 2ai þ 1

p
0
B@

1
CAþ � ¼ 0

@LðmÞ
@�

¼
Xn
i¼1

ai � 1 ¼ 0

8>>>>>><
>>>>>>:
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Assume that the numerator of @L mð Þ
@ai

is N1 aið Þ, and the denominator is N2 aið Þ, where

N
0
2 aið Þ ¼ 3

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2i � 2ai þ 1

q	 
2

þ
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a2i � 2ai þ 1
p� �3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2i � 2ai þ 1

p
When ai 2 0; 1½ �, we have N 0

2 aið Þ > 0, so the denominator N2 aið Þ increases
monotonically at ai 2 0; 1½ �, and N2 0ð Þ ¼ 10. For the numerator N1 aið Þ ¼ 1� 2ai, it
decreases monotonically and greater than 0 at ai 2 0; 1½ �. Therefore, @L mð Þ

@ai
is monotonically

decreasing.
So the equation @L mð Þ

@ai
¼ �� has only one result, ai = x,i = 1,2,…,n. Thus it can be

obtained:

a1 ¼ a2 ¼ … ¼ an ¼ xPn
i¼1

ai ¼ 1:

8<
:

Therefore when the m hið Þ ¼ 1
n
; i ¼ 1; 2;…; n, ZU(m) obtains the maximum value.

Property 4.2: Suppose m is the Bayesian BPA, defined as FOD Ω, and �j j ¼ n. As n
increases, its maximum uncertainty maxZU mð Þ increases.
Proof of Property 4.2: According to the derivation of Property 4.1, the maximum
uncertainty maxZU mð Þ can be obtained by the following formula:

f ¼ maxZUðmÞ ¼Pn
i¼1

4
3

1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1=nÞ2 � 2ð1=nÞ þ 1

q	 
2 �
1
4

0
BBB@

1
CCCA

¼ 2
3

n2

n� 1þ 1
n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2nþ 2

p � 1
2

0
B@

1
CA

and

f
0 ¼ 2

3


2n n� 1þ 1

n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2nþ 2

p	 

� n2 1� 1

n2
þ n� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � 2nþ 2
p

	 


n� 1þ 1
n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2nþ 2

p	 
2

¼ 2
3



n2 � 2nþ 3þ n3 � 3n2 þ 4nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2nþ 2

p

n� 1þ 1
n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2nþ 2

p	 
2
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When n > 1, the numerator and denominator of the function f ′ are both greater than 0,
so f ′ is greater than 0. Therefore, as n increases, maxZU mð Þ increases, conforming to the
monotonicity.
Property 5: sensitivity ZU is sensitive to the changes of BPAs. Sensitivity refers to the
relative change degree of total uncertainty when BPA changes. For AU, its variation range
is ½0; log2 �j j�, and in some cases, with the change of BPA, its total uncertainty will remain
approximately unchanged. Therefore, its sensitivity is low. For AM and TUI, there are
fewer restrictions on their use, but their value ranges are relatively small: ½0; log2 �j j�
and [0, 1] respectively. When BPA changes, the obtained total uncertainty changes
relatively little, so the sensitivity is moderate. For ZU, the value range is large, which is
[0, N]. When BPA changes, its total uncertainty ZU(m) changes the most and its sensitivity
is the highest. This property will also be illustrated with some numerical examples in the
next section. And the comparison of properties of AU, AM, TUI and ZU is shown in
Table 1:

NUMERICAL EXAMPLE
In this section, we will show several numerical examples to verify the performance of ZU,
with the AU, AM and TUI in comparison with the results of three methods of
measurement.

Continue to Example 1 Under the given BPAs in Example 1, the total uncertainty of
the three groups of BPAs can be obtained through the calculation method of ZU(m) as
follows: ZU(m1) = 4, ZU(m2) = 1.037, ZU(m3) = 0.33. It can be found that the uncertainty
of the three groups of BPA in this result is gradually decreasing, which is consistent
with the above analysis.

Continue to Example 2 In the given two groups of BPA in Example 2, the belief
interval of m1 is a true subset of the belief interval of m2 through the previous analysis.
Therefore, the uncertainty ofm2 should be higher than that ofm1. Through the calculation
method of ZU (m), the total uncertainty of the two groups of BPA can be obtained as
follows: ZU(m1) = 0.2484, ZU(m2) = 0.5185. We can find that the result of ZU (m) is
consistent with the actual analysis. Therefore, in this kind of problem, ZU ’s sensitivity to
the BPA changes relative to AU, AM and TUI is better.
Example 3 Define that FOD � ¼ h1; h2; h3f g, the BPA is given as: m h1ð Þ ¼ a, m h2ð Þ ¼ b,
m(Ω) = 1 − a − b. Figure 2 shows the change images of total uncertainty obtained by four
measurement methods, AU, AM, TUI and ZU, under different values of a and b.

Table 1 Comparison of properties of each measurement method.

Measure Boundness Monotonicity Invariance Sensitivity

AU(m) ½0; log2 �j j� Satisfied Satisfied Low

AM(m) ½0; log2 �j j� × Satisfied Medium

TUI(m) [0,1] Satisfied × Medium

ZU(m) [0,N] Satisfied Satisfied High
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As can be seen from Fig. 2, the calculation results of AU and AM are both
counterintuitive. For AU, with the change of a and b, the total uncertainty calculated from
AU is always 1. For AM, when a = b, the total uncertainty does not change with the
change of a and b, and is always the maximum. This is because when a = b, the probability
is evenly distributed over the two elements, that is, BetPm(h1) = BetPm(h2) = 0.5. For TUI, it
can be seen from the figure that when a and b change, the change of total uncertainty
can be better reflected. But it doesn’t reflect the difference betweenm(h1) =m(h2) = 0.5 and

Figure 2 The change of total uncertainty measures in Example 3. Full-size DOI: 10.7717/peerj-cs.710/fig-2
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m(h1) = m(Ω) = 0.5 orm(h2) =m(Ω) = 0.5. As shown in Fig. 2, ZU ’s measurement results
are more reasonable. It is not only sensitive to the change of BPA, but also overcomes the
problems of TUI.

And from Fig. 3, we can find that when a + b is a certain value. If a = b, then the
uncertainty reaches the maximum. The figure shows the change curve of uncertainty
obtained by each measurement method with the change of a and b, when a + b = 0.3.
According to the figure, when a = b, the uncertainty is the maximum. This is because, in
the process of change, m(Ω) is a certain value of 0.7, which means that the non-specificity
in the uncertainty is fixed. When a = b, the conflict is at its maximum. So the total
uncertainty is the highest.
Example 4 Define that FOD � ¼ h1; h2; h3f g, the BPA is m(Ω) = 1. Now let the BPA
changes according to certain rule. In each step, m(Ω) decrease Δ = 0.05 and the mass of
each singleton m(hi), i = 1, 2, 3 increase D

3. And the BPA will eventually become

mðh1Þ ¼ mðh2Þ ¼ mðh3Þ ¼ 1
3. Figure 4 shows the variation curve of the total uncertainty

obtained by each measurement method under the above conditions.
Evidently, the mass of m(Ω) shifted to singletons gradually in the process of change,

So the total uncertainty should be decreasing continually. But in the figure we can see
that AU and AM are a constant value, which is counterintuitive. The reason is that AU and
AM need to carry out probability conversion, and the result after conversion is always

BetPmðhiÞ ¼ 1
3, i = 1, 2, 3. So the values of AU and AM are always the same. ZU and TUI can

better reflect the change of total uncertainty. In the process of change, TUI is a linear
change and ZU is a nonlinear change. Moreover, ZU has a wider range of variation and
higher sensitivity.
Example 5 Define that FOD � ¼ h1; h2; h3f g, the initial given BPA is m(Ω) = 1. Now let
the BPA changes with some regularity. In each step, m(Ω) decrease Δ = 0.05 and the
mass of m(h1) increase the Δ. And the BPA will become m(h1) = 1 finally. Figure 5 shows
the variation curve of the total uncertainty obtained by each measurement method.

Figure 3 The change of when a + b = 0.3. Full-size DOI: 10.7717/peerj-cs.710/fig-3
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Intuitively, BPA goes from m(Ω) = 1 to m(h1) = 1, which means it goes from
completely unknown to certain. The total uncertainty should also be gradually reduced to
0. Figure 5 shows that all the four measurement methods can correctly reflect the changing
trend of total uncertainty. However, AU and AM change slowly in the early stage and
their sensitivity is not high. TUI is a linear change, but its range of change is narrow. AU,
AM and ZU showed nonlinear changes. Moreover, ZU has the widest variation range and
higher variation speed.
Example 6 Define that FOD � ¼ h1; h2; � � � ; h10f g, and the BPA is m(Ω) = 1 − a, m(A) =
a. Now let the BPA changes according to certain rule. The initial condition is A ¼ h1f g.
At each step, adding an element hi to A, and eventually A becomes the FOD Ω.

Figure 4 The change of total uncertainty measures in Example 4.
Full-size DOI: 10.7717/peerj-cs.710/fig-4

Figure 5 The total uncertainty measures in Example 5. Full-size DOI: 10.7717/peerj-cs.710/fig-5
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Figure 6 shows the change curve of total uncertainty obtained by various measurement
methods under different values of a.

Evidently, in the process of change, the total uncertainty is constantly increasing,
because its non-specificity is constantly increasing. As shown in Fig. 6, When the value of a
is small, the sensitivity of AU and AM is poor, especially in the latter part of the change
process, and their values almost remain unchanged. When a increased to 0.8, the
sensitivity of AM was improved, but the sensitivity of AU was still poor in the later period.
Relatively speaking, the total uncertainty measured by ZU and TUI always increases
intuitively with the change of BPA. In addition, ZU ’s change is more obvious and its
sensitivity is higher, which also reflects the rationality of ZU.

APPLICATION IN CLASSIFICATION
In this section, we will apply the proposed ZU to two classification experiments to verify its
effectiveness. This data set is derived from the UCI Machine Learning Repository.

Experiment 1
In the iris dataset, there are three species and four attributes for classification. Each
species contains 50 instances. In Wang, Zhang & Deng (2019), Wang et al. randomly
selected 40 instances from each species to generate triangular fuzzy numbers, and the
remaining 10 instances were used as a test set. Moreover, Wang et al. randomly selected an
instance from the test set of Setosa (a) species to generate BPA. The results are shown in
Table 2.

In the following, we will show the specific application steps of ZU in the classification
experiment, and the flow chart is shown in Fig. 7.

Under the above given conditions, the specific calculation steps in the application
process of ZU are as follows:

Step 1: Calculate the uncertainty of each BPA. The calculation results are shown below.

ZU m1ð Þ ¼P3
i¼1

4
3

1

ð1þ dÞ2 �
1
4

 !
¼ 0:362

ZU m2ð Þ ¼ 0:4418;ZU m3ð Þ ¼ 0:2096;ZU m4ð Þ ¼ 0:2047

Step 2: Calculating the weight of each BPA based on the uncertainty.
In this paper, the weight definition method refers to the (Jiang et al., 2016). This method

attaches great importance to uncertain and unknown information. The greater the
uncertain degree calculated by the measure, the more uncertain information it contains,
so the higher weight should be given. Therefore, the weight calculation method in this
paper is as follows:

w mið Þ ¼ ZU mið ÞPn
i¼1 ZU mið Þ (12)
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Figure 6 (A–C) The total uncertainty measures in Example 6.
Full-size DOI: 10.7717/peerj-cs.710/fig-6
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The calculation results of each weight are as follows:

w m1ð Þ ¼ 0:2972;w m2ð Þ ¼ 0:3627
w m3ð Þ ¼ 0:1721;w m4ð Þ ¼ 0:2048

Step 3: Modify the BPA based on weight factor. The modified BPA can be obtained by
the following calculation method:

mwðaÞ ¼
X4
i¼1

wimiðaÞ: (13)

Table 2 BPAs of four attributes.

Attribute m(a) m(b) m(c) m(a,b) m(a,c) m(b,c) m(a,b,c)

SL 0.3337 0.3165 0.2816 0.0307 0.0052 0.0272 0.0052

SW 0.3164 0.2501 0.2732 0.0304 0.0481 0.0515 0.0304

PL 0.6699 0.3258 0 0 0 0.0043 0

PW 0.6699 0.2778 0 0 0 0.0226 0

Figure 7 The flowchart of data fusion based on ZU. Full-size DOI: 10.7717/peerj-cs.710/fig-7
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The modified BPA is as follows:

mwðaÞ ¼ 0:4468;mwðbÞ ¼ 0:2875;mwðcÞ ¼ 0:1828;
mwða; bÞ ¼ 0:0201;mwða; cÞ ¼ 0:019;
mwðb; cÞ ¼ 0:0313;mwð�Þ ¼ 0:0126:

Step 4: Information fusion based on Dempster’s rule. According to Murphy’s evidence
fusion strategy (Murphy, 2000), we combine the modified BPA (n − 1) times by the
Dempster’s rule. And in this experiment, n = 4. So the fusion results are as follows:

mðaÞ ¼ mw �mwð Þ1 �mw
� �

2 �mw
� �

3
ðaÞ ¼ 0:7592;

mðbÞ ¼ 0:1841;mðcÞ ¼ 0:043;
mða; bÞ ¼ mða; cÞ ¼ mðb; cÞ ¼ mð�Þ ¼ 0:

According to the above results, Iris species Setosa (a) has the highest confidence, so the
species is Setosa (a), which is consistent with the reality. Table 3 shows the comparison of
classification results of different methods. All the three methods can correctly conclude
that Setosa (a) is the target species. But compared with other methods, the proposed ZU
has a great improvement in the accuracy of classification results. This reflects the
effectiveness of the application of ZU classification.

Experiment 2
In reference (Yuan & Deng, 2019), Yuan et al. used 120 samples from the iris dataset as the
training set and the remaining 30 samples as the test set to generate BPA. And the evidence
of SW characteristics is disturbed to produce conflicting evidence. In this paper, five
groups of BPAs from Setosa (a) species generate by Yuan et al. are selected for the
classification experiment. The BPAs of each sample is shown in Table 4.

According to the application steps of ZU as shown in Fig. 7, each sample is calculated
and its classification results are obtained. Table 5 shows the comparison of classification
results of the methods proposed by ZU and Yuan et al. The classification results of the
two methods can correctly conclude that the species is species Setosa (a). However,
compared with method in Yuan & Deng (2019), the proposed ZU had a higher
classification accuracy, and the accuracy was improved significantly. Therefore, it could
be explained that the problem of conflicting data could be effectively dealt with by the
proposed ZU and more information could be obtained in the framework of D–S theory.
The classification results show the validity and rationality of this method.

Table 3 Results of Iris classification with different methods.

Methods m(a) m(b) m(c) m(Ω)

Yager rule (Yager, 1987) 0.5337 0.1484 0.0000 0.3180

Method in (Wang, Zhang & Deng, 2019) 0.6232 0.2671 0.1083 0.0000

Proposed ZU 0.7592 0.1841 0.0430 0.0000
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Table 4 BPAs of four attributes of five samples.

SL SW PL PW

Sample 1 m(a) = 0.8650 m(a) = 0.0000 m(a) = 0.6486 m(a) = 0.7477

m(b) = 0.0000 m(b) = 0.9000 m(b) = 0.0000 m(b) = 0.0000

m(a,b) = 0.0821 m(a,b) = 0.0000 m(a,b) = 0.0000 m(a,b) = 0.0000

m(b,c) = 0.0000 m(b,c) = 0.1000 m(b,c) = 0.0000 m(b,c) = 0.0000

m(Ω) = 0.0529 m(Ω) = 0.0000 m(Ω) = 0.3514 m(Ω) = 0.2523

Sample 2 m(a) = 0.1356 m(a) = 0.0000 m(a) = 0.6486 m(a) = 0.7547

m(b) = 0.0000 m(b) = 0.9000 m(b) = 0.0000 m(b) = 0.0000

m(a,b) = 0.0000 m(a,b) = 0.0000 m(a,b) = 0.0000 m(a,b) = 0.0000

m(b,c) = 0.0000 m(b,c) = 0.1000 m(b,c) = 0.0000 m(b,c) = 0.0000

m(Ω) = 0.8644 m(Ω) = 0.0000 m(Ω) = 0.3514 m(Ω) = 0.2453

Sample 3 m(a) = 0.6780 m(a) = 0.0000 m(a) = 0.8649 m(a) = 0.7477

m(b) = 0.0000 m(b) = 0.9000 m(b) = 0.0000 m(b) = 0.0000

m(a,b) = 0.0000 m(a,b) = 0.0000 m(a,b) = 0.0000 m(a,b) = 0.0000

m(b,c) = 0.0000 m(b,c) = 0.1000 m(b,c) = 0.0000 m(b,c) = 0.0000

m(Ω) = 0.3220 m(Ω) = 0.0000 m(Ω) = 0.1351 m(Ω) = 0.2523

Sample 4 m(a) = 0.4068 m(a) = 0.0000 m(a) = 0.8649 m(a) = 0.7547

m(b) = 0.0000 m(b) = 0.9000 m(b) = 0.0000 m(b) = 0.0000

m(a,b) = 0.0000 m(a,b) = 0.0000 m(a,b) = 0.0000 m(a,b) = 0.0000

m(b,c) = 0.0000 m(b,c) = 0.1000 m(b,c) = 0.0000 m(b,c) = 0.0000

m(Ω) = 0.5932 m(Ω) = 0.0000 m(Ω) = 0.1351 m(Ω) = 0.2453

Sample 5 m(a) = 0.5253 m(a) = 0.0000 m(a) = 0.9143 m(a) = 0.7547

m(b) = 0.0000 m(b) = 0.9000 m(b) = 0.0000 m(b) = 0.0000

m(a,b) = 0.2887 m(a,b) = 0.0000 m(a,b) = 0.0000 m(a,b) = 0.0000

m(b,c) = 0.0000 m(b,c) = 0.1000 m(b,c) = 0.0000 m(b,c) = 0.0000

m(Ω) = 0.1860 m(Ω) = 0.0000 m(Ω) = 0.0857 m(Ω) = 0.2453

Table 5 Results of different methods for five samples.

Methods m(a) m(b) m(c) m(a,b) m(a,c) m(b,c) m(Ω)

Sample 1 Method in (Yuan & Deng, 2019) 0.9450 0.0088 0.0000 0.0047 0.0000 0.0008 0.0406

Proposed ZU 0.9796 0.0123 0.0000 0.0010 0.0000 0.0008 0.0053

Sample 2 Method in (Yuan & Deng, 2019) 0.7221 0.0312 0.0000 0.0000 0.0000 0.0033 0.2435

Proposed ZU 0.9472 0.0574 0.0000 0.0546 0.0000 0.0046 0.1595

Sample 3 Method in (Yuan & Deng, 2019) 0.9562 0.0074 0.0000 0.0000 0.0000 0.0080 0.0357

Proposed ZU 0.9840 0.0103 0.0000 0.0000 0.0007 0.0000 0.0046

Sample 4 Method in (Yuan & Deng, 2019) 0.8100 0.0207 0.0000 0.0000 0.0000 0.0022 0.1671

Proposed ZU 0.9340 0.0264 0.0000 0.0000 0.0000 0.0023 0.0371

Sample 5 Method in (Yuan & Deng, 2019) 0.8475 0.0175 0.0000 0.0645 0.0000 0.0011 0.0695

Proposed ZU 0.9595 0.0183 0.0000 0.0130 0.0000 0.0003 0.0014
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CONCLUSION
In this paper, a new uncertainty measurement method is proposed based on the belief
interval uncertainty measure. This method can not only avoid the problem of information
loss caused by framework transformation, but also solve the defects of the old measure.
In the examples of uncertainty measurement, the new measure ZU shows a good
effect. Compared with the old measures, ZU is more sensitive to the change of BPA and
can better measure the uncertainty of each BPA. In addition, we propose a data fusion
method based on ZU, which takes the uncertainty of each evidence as the weight, and then
modifies the evidence, so as to reduce the conflict or unreliability between the evidence.
Then, Dempster’s rule is used for data fusion. Through the experiments, we can find that
the proposed ZU has higher classification accuracy. This reflects the effectiveness and
rationality of ZU.

In general, ZU can effectively deal with the problem of conflicting data and obtain more
effective information from the framework of D–S theory so as to obtain more accurate
information measure and fusion results. However, it should be noted that ZU still has some
open issues for studying. The proposed ZU can’t be applied to the open-world hypothesis
(Smets, 1990; Deng, 2015; Tang, Wu & Liu, 2021) of increasing uncertain information
sources. And we found that ZU maybe ineffective in some conditions. It is assumed
that the total uncertainty obtained by ZU will fail when the belief intervals of singleton
elements obtained by the two BPA groups are the same.
Define that FOD � ¼ h1; h2; h3; h4f g, two BPAs are given as:

m1 h1; h2ð Þ ¼ m1 h3; h4ð Þ ¼ 0:2
m1 h1; h2; h3ð Þ ¼ m1 h1; h2; h4ð Þ ¼ m1 h1; h3; h4ð Þ ¼ m1 h2; h3; h4ð Þ ¼ 0:1
m1 �ð Þ ¼ 0:2:

8<
:
m2 h1; h2ð Þ ¼ m2 h3; h4ð Þ ¼ 0:1
m2 h1; h2; h3ð Þ ¼ m2 h1; h2; h4ð Þ ¼ m2 h1; h3; h4ð Þ ¼ m2 h2; h3; h4ð Þ ¼ 0:2:



After calculation, the belief interval of the singletons obtained for both BPA groups is
Bel hið Þ;Pl hið Þ½ � ¼ 0; 0:7½ �; i ¼ 1; 2; 3; 4. So ZU(m) gives the same total uncertainty, which
is ZU m1ð Þ ¼ ZU m2ð Þ ¼ 1:822. The reason for this may be that using belief intervals
for singletons alone may not fully specify a set of BPA. Therefore, in the following time, we
will try to solve this problem by adding the belief interval of multiple elements into
the calculation formula of ZU and we will continue to study how to extend ZU to the
open-world hypothesis.
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