
ABCDE: Approximating Betweenness-
Centrality ranking with progressive-
DropEdge
Martin Mirakyan1,2

1 Information Systems and Computer Engineering, Instituto Superior Técnico, Lisbon, Lisboa,
Portugal

2 YerevaNN, Yerevan, Yerevan, Armenia

ABSTRACT
Betweenness-centrality is a popular measure in network analysis that aims to
describe the importance of nodes in a graph. It accounts for the fraction of shortest
paths passing through that node and is a key measure in many applications including
community detection and network dismantling. The computation of betweenness-
centrality for each node in a graph requires an excessive amount of computing power,
especially for large graphs. On the other hand, in many applications, the main
interest lies in finding the top-k most important nodes in the graph. Therefore,
several approximation algorithms were proposed to solve the problem faster.
Some recent approaches propose to use shallow graph convolutional networks to
approximate the top-k nodes with the highest betweenness-centrality scores.
This work presents a deep graph convolutional neural network that outputs a
rank score for each node in a given graph. With careful optimization and
regularization tricks, including an extended version of DropEdge which is
named Progressive-DropEdge, the system achieves better results than the current
approaches. Experiments on both real-world and synthetic datasets show that the
presented algorithm is an order of magnitude faster in inference and requires several
times fewer resources and time to train.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence
Keywords Betweenness-centrality, Graph neural networks, Graph convolutional networks,
Approximation algorithms, Graph centrality, Progressive DropEdge

INTRODUCTION
Conducting network analysis has been a prominent topic in research, with applications
spanning from community detection in social networks (Behera et al., 2020b, 2016), to
detecting critical nodes (Behera et al., 2019), to hidden link prediction (Liu et al., 2013).
One of the more fundamental metrics for determining the importance of each graph
node for network analysis is betweenness-centrality (BC). BC aims to measure the
importance of nodes in the graph in terms of connectivity to other nodes via the shortest
paths (Mahmoody, Tsourakakis & Upfal, 2016). It plays a big role in understanding the
influence of nodes in a graph and, as an example, can be used to discover an important
member, like a famous influencer or the set of the most reputable users in a network
(Behera et al., 2019).

How to cite this article Mirakyan M. 2021. ABCDE: Approximating Betweenness-Centrality ranking with progressive-DropEdge. PeerJ
Comput. Sci. 7:e699 DOI 10.7717/peerj-cs.699

Submitted 19 April 2021
Accepted 6 August 2021
Published 6 September 2021

Corresponding author
Martin Mirakyan,
martin@yerevann.com

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.699

Copyright
2021 Mirakyan

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.699
mailto:martin@�yerevann.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.699
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Computing the measure can be very resource-demanding especially for the large graphs.
The fastest algorithm for computing exact betweenness-centrality in a given graph is
the Brandes algorithm (Brandes, 2001) which has OðjV jjEjÞ time complexity for
unweighted networks and OðjV jjEj þ jV j2 log jV jÞ for weighted ones, where |V| denotes
the number of nodes and |E| denotes the number of edges in the graph. As OðjV jjEjÞ can
grow very fast with the increase in the network size, several approximation algorithms
based on sampling have been proposed (Mahmoody, Tsourakakis & Upfal, 2016; Riondato
& Kornaropoulos, 2014). However, along with the growth in the size of the graph, we
face tantamount increases in the execution time and proportional decreases in the accuracy
of the prediction. In many applications, the computation of the betweenness-centrality
needs to be fast enough to handle dynamic changes in the graph (Fan et al., 2019).

Although several distributed computing algorithms exist for calculating betweenness-
centrality (Naik et al., 2020; Behera et al., 2020a, 2019), where the authors propose
approaches to compute BC of a network using map-reduce in a distributed environment,
this work focuses on a single machine algorithm. The model works on a single machine
and requires only a single GPU for training and can perform predictions on relatively
big networks without the need for many machines or excessive computational power.

In fields such as social network analysis and network dismantling it is at times far
more important to compute the relative importance of the nodes in the graph rather than
obtain the exact scores of betweenness-centrality (Holme et al., 2002). Several recent works
like Fan et al. (2019) and Maurya, Liu & Murata (2019) have proposed to reformulate
the problem into a learning-to-rank problem with the aim to learn a function that
would map the nodes in the input graph to relative ranking BC scores. So, instead of
computing the exact scores, the task is changed into finding the correct order of the nodes
with respect to their betweenness-centrality.

Instead of using approximation techniques like sampling, recent approaches have
proposed to train a graph convolutional neural network on synthetic small graphs that
would learn to rank nodes based on their BC and would be able to generalize on bigger
real-world graphs (Fan et al., 2019).

In general, it is hard to avoid over-fitting and over-smoothing when training deep graph
convolutional neural networks (Rong et al., 2020). In order to generalize better (over-
fitting) on small datasets and avoid obtaining uninformative representations for each node
(over-smoothing) in deep models, Rong et al. (2020) proposes to use the DropEdge
technique while training the network. During the training procedure, they drop a set of
random edges from the graph before feeding it to the model. This work further
develops this idea by introducing the Progressive-DropEdge technique, which drops a
random set of edges, with diminishing probability, based on the depth of a layer in the
model. Introducing Progressive-DropEdge in the training procedure improves the
performance of the model, especially on larger real-world networks.

This paper focuses on the benchmark of ranking based on betweenness-centrality
proposed by Fan et al. (2019) as they include various real-world and synthetic datasets and
detailed comparisons with other approximation algorithms. The main contributions are
threefold:

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 2/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

� First, Progressive-DropEdge is introduced in the training procedure which acts as
regularization and improves the performance on large networks.

� Second, deeper graph convolutional networks are shown to be able to have fewer
parameters and be more efficient than more shallow alternatives leading to state-of-the-
art results while being by an order of magnitude faster.

� Finally, the presented training procedure converges faster and requires fewer resources
which enables training on a single GPU machine.

The approach is named ABCDE: Approximating Betweenness-Centrality ranking with
progressive-DropEdge.

The source code is available on GitHub: https://github.com/MartinXPN/abcde. To
reproduce the reported results one can run:

$ docker run martin97/abcde:latest

RELATED WORK
Betweenness centrality
The best-known algorithm for computing exact betweenness-centrality values is the
Brandes algorithm (Brandes, 2001) which has OðjVjjEjÞ time complexity for unweighted
graphs and OðjV jjEj þ jV j2 log jV jÞ for weighted ones, where |V| denotes the number of
nodes and |E| denotes the number of edges in the graph. To enable approximate BC
computation for large graphs several approximation algorithms were proposed which use
only a small subset of edges in the graph. Riondato & Kornaropoulos (2014) introduce the
Vapnik-Chervonenskis (VC) dimension to compute the sample size that would be
sufficient to obtain guaranteed approximations for the BC values of each node (Fan et al.,
2019). If Vmax denotes the maximum number of nodes on any shortest path, λ denotes the
maximum additive error that the approximations should match, and δ is the probability of
the guarantees holding, then the number of samples required to compute the BC score
would be c

�2 ðblogðVmax � 2Þc þ 1þ log 1
dÞ. Riondato & Upfal (2018) use adaptive sampling

to obtain the same probabilistic guarantee as Riondato & Kornaropoulos (2014) with
smaller sample sizes. Borassi & Natale (2019) propose a balanced bidirectional breadth-

first search (BFS) which reduces the time for each sample from OðjEjÞ to OðjEj12 þ Oð1ÞÞ.
Yet both approaches require a second run of the algorithm to identify top-k nodes with the
highest betweenness-centrality scores.

Kourtellis et al. (2012) introduces another metric that is correlated with high
betweenness-centrality values and computes that metric instead, to identify nodes with
high BC scores. Borassi & Natale (2019) propose an efficient way of computing BC for
top-k nodes, which allows bigger confidence intervals for nodes with well-separated
betweenness-centrality values.

Fan et al. (2019) and Maurya, Liu & Murata (2019) propose a shallow graph
convolutional network approach for approximating the ranking based on the betweenness-
centrality of nodes in the graph. They treat the problem as a learning-to-rank problem and
approximate the ranking of vertices based on their betweenness-centrality.

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 3/16

https://github.com/MartinXPN/abcde
http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

Deep graph convolutional networks
Graph Convolutional Networks (GCNs) have recently gained a lot of attention and
have become the de facto methods for learning graph representations (Wu et al., 2019).
They are widely used in many graph representation tasks. Yet, different studies have
different findings regarding the expressive power of GCNs as the network depth increases.
Oono & Suzuki (2020) claims that they do not improve, or sometimes worsen their
predictive performance as the number of layers in the network and the non-linearities
grow. On the other hand, Rong et al. (2020) claims that removing random edges from
the graph during training acts as a regularisation for deep GCNs and helps to combat
over-fitting (loss of generalization power on small datasets) and over-smoothing (isolation
of output representations from the input features with the increase in network depth).
They empirically show that this trick, called DropEdge, improves the performance on
several both deep and shallow GCNs.

PRELIMINARIES
Let G = (V, E) denote a network where each node has a representation Xv 2 Rc for v ∈ V,
where c denotes the dimensionality of the representation, dv denotes the degree of the
vertex v, |V| denotes the number of nodes and |E| denotes the number of edges in the graph.

Betweenness-centrality accounts for the significance of individual nodes based on
the fraction of shortest paths that pass through them (Mahmoody, Tsourakakis & Upfal,
2016). Normalized betweenness-centrality for node w is defined as:

bðwÞ ¼ 1
jV jðjVj � 1Þ

X

u6¼w 6¼v

ruvðwÞ
ruv

(1)

where |V| denotes the number of nodes in the network, σuv denotes the number of
shortest paths from u to v, and σuv(w) the number of shortest paths from u to v that pass
through w.

METHOD
Input features
For the input, the model only needs the structure of the graph G represented as a sparse
adjacency matrix, and the degree dv for each vertex v ∈ V. In comparison to this method,
Fan et al. (2019) uses two additional features for each vertex, which were calculated
based on the neighborhoods with radii of sizes one and two for each node. Yet, in this
approach, having only the degree of the vertex and the network structure itself is sufficient
to approximate the betweenness-centrality ranking for each node. So, the initial feature
vector Xv 2 Rc for vertex v is only a single number—the degree of the vertex, which is
enriched in deeper layers of the model.

Output and loss function
For each node v in the graph G, the model predicts the relative BC ranking score, meaning
that for each input Xv the model only outputs a single value which represents the predicted
ranking score yv 2 R. As the output is the relative ranking score, the loss function is

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 4/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

chosen to be a pairwise ranking loss follow the approach proposed by Fan et al. (2019).
To compute the pairwise ranking loss, 5|V| node pairs (i,j) are randomly sampled,
following (Fan et al., 2019) binary cross-entropy between the true order and the predicted
order of those pairs is computed. So, having the two ground truth betweenness-centrality
values bi and bj for i and j pair, and their relative rank yi and yj, the loss of a single pair
would be:

Ci;j ¼ �rðbi � bjÞ � logrðyi � yjÞ � ð1� rðbi � bjÞÞ � logð1� rðyi � yjÞÞ (2)

where σ is the sigmoid function defined as 1 / (1 + e−x). The total loss would be the sum of
cross entropy losses for those pairs:

L ¼
X

i;j25jVj
Ci;j (3)

Evaluation metrics
As the baseline proposed by Fan et al. (2019) is adopted, the evaluation strategy is also the
same. There are several metrics presented in the baseline. Kendall tau score is a metric that
computes the number of concordant and discordant pairs in two ranking lists and is
defined as:

Kðl1; l2Þ ¼ 2ða� bÞ
n � ðn� 1Þ (4)

where l1 is the first list, l2 is the second list, α is the number of concordant pairs, β is the
number of discordant pairs, and n is the total number of elements. The range of the metric
is [−1; 1] where 1 means that two ranking lists are in total agreement and −1 means
that the two lists are in total disagreement.

Top-k% accuracy is defined as the percentage of overlap between the top-k% nodes in
the predictions and the top-k% nodes in the ground truth list:

Top‐k% ¼ fpredicted‐top‐k%g \ ftrue‐top‐k%g
djV j � k%e (5)

In these experiments, top-1%, top-5%, and top-10% accuracies as well as the Kendall tau
score are reported.

Training data
The training data is generated similar to Fan et al. (2019). Random graphs are sampled
from the powerlaw distribution during training. The exact betweenness-centrality scores
are computed for those graphs and are treated as the ground truth. As their sizes are
small, the computation of the exact betweenness-centrality score is not computationally
demanding. To avoid over-fitting on those graphs they are regenerated every 10 epochs.
Each training graph is reused eight times on average during a single training epoch.

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 5/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

Model architecture
The model architecture is a deep graph convolutional network which consists of a stack of
GCN layers and MaxPooling operations presented in Fig. 1. A GCN operation for a node v
which has a neighborhood N(v) is defined as:

Hv ¼ W �
X

u2NðvÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
dv þ 1

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
du þ 1

p hu (6)

where hu is the input vector representation of the node u, dv and du are the degrees of the
vertices v and u accordingly, Hv is the output vector representation of the node v, andW is
a learnable matrix of weights.

The model takes the input representation Xv of vertex v and maps it to an intermediate
vector representation which is followed by several blocks of GCNs with different feature
sizes, followed by MaxPooling operations which reduce the extracted features in the
block to a single number for each vertex. Each GCN block is followed by a transition block
which is a fully connected single layer that maps the sizes of the previous GCN block to the
current one.

For every GCN block, a different amount of random edge drops is applied which is
called Progressive-DropEdge. In these experiments the model best scales when the
probability of dropping an edge is higher in the initial GCN blocks, while slowly decreasing
the probability as the layers approach the output. That helps the model to focus on
more details and have a better, fine-grained ranking score prediction. To avoid having
isolated nodes only the edges of vertices with degrees higher than 5 are dropped.

Implementation details
The MLPs and transition blocks follow the {Linear! LayerNorm! PReLU! Dropout}
structure, while GCN blocks follow the {GCNConv! PReLU! LayerNorm! Dropout}

224

B
etw

eenness-centrality
ranking score

L
inear 1

48

DropEdge 0.3
DropEdge 0.3

DropEdge 0.2
DropEdge 0.2

DropEdge 0.1
DropEdge 0.1

T
ransition 16 48

32 24 24

2

2 2

4

2

3

2

2

1

N
ode M

L
P 16

Graph structure
with node degrees

32
G

C
N

 32
G

C
N

 32

G
C

N
 48

G
C

N
 48

G
C

N
 48

M
axPool

48

T
ransition 64 48

G
C

N
 48

G
C

N
 48

G
C

N
 48

G
C

N
 32

G
C

N
 32

G
C

N
 32

M
axPool

O
utput M

L
P 32

M
axPool

T
ransition 112 32

...

Figure 1 ABCDE model architecture. Each Transition block is a set of {Linear → LayerNorm → PRelu →
Dropout} layers, while each GCN is a set of {GCNConv → PReLU → LayerNorm →Dropout}.4 symbol is
the concatenation operation. Each MaxPooling operation extracts the maximum value from the given
GCN block. Full-size DOI: 10.7717/peerj-cs.699/fig-1

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 6/16

http://dx.doi.org/10.7717/peerj-cs.699/fig-1
http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

structure. The initial MLP that maps the input Xv to an intermediate representation has a
size of 16. There are six blocks of GCNs in total. The number of GCNConvs in the blocks
are {4, 4, 6, 6, 8, 8}, while their sizes are {48, 48, 32, 32, 24, 24}. The Progressive-DropEdge
for each block is applied with probabilities {0.3, 0.3, 0.2, 0.2, 0.1, 0.1}. Gradients are clipped
after the value 0.3.

For training and validation, random graphs from the powerlaw distribution are sampled
using the NetworkX library (Hagberg, Swart & Chult, 2008), having nodes from 4,000
to 5,000 with a fixed number of edges to add (m = 4), and the probability of creating a
triangle after adding an edge (p = 0.05) (following Fan et al. (2019)). For each training
epoch, 160 graphs are sampled, while during validation 240 graphs are used for stability.
The batch size is set to 16 graphs per step and the training lasts for at most 50 epochs.
The training is stopped whenever Kendall Tau on the validation set does not improve for
five consecutive epochs. Adam optimizer (Kingma & Ba, 2014) is used with an initial
learning rate of 0.01 and the learning rate is divided by 2 if the validation Kendall score
does not increase for two consecutive epochs.

The GCN training is implemented in Pytorch (Paszke et al., 2019) and Pytorch
Geometric (Fey & Lenssen, 2019) libraries. All the weights are initialized with their default
initializers. The ground truth betweenness-centrality values for training graphs are
calculated with python-igraph library (Csardi & Nepusz, 2006). Training and validation
results were tracked with Aim (Arakelyan, 2020) and Weights and Biases (Biewald, 2020)
libraries.

Complexity analysis
The training time complexity is intractable to estimate robustly as it largely depends on
the number of training steps, the network size, and the implementation of the operations
used within the network. In generic terms, the time complexity can be expressed as
OðSðF þ BÞÞ where S is the number of training steps which can be expressed by the
number of epochs times the number of minibatches within the epoch, F and B are the
operations required for a single forward and backward pass of a minibatch respectively.
F and B are proportional to the number of layers in the deep network L, and the
number of nodes and edges in the graph. GCN operation is Oðf � ðjV j þ jEjÞÞ, where f
is the size of the feature vector for each node. The overall time complexity would be
proportional to OðS � L � f � ðjV j þ jEjÞÞÞ. In this approach, the training procedure
converges in about 30 min and then the network can be reused for an arbitrarily
constructed input graph.

The inference time complexity is proportional to the operations required for a single
forward pass. For most graphs in practice, including all graphs used in this work, all the
vertices in a graph can be propagated in a single minibatch, so the complexity of inference
becomes OðL � f � ðjV j þ jEjÞÞ. Further analysis of this model empirically demonstrates
that L · f is a relatively small constant compared to other approaches and the speed of this
approach outperforms others by an order of magnitude.

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 7/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

EVALUATION AND RESULTS
The approach is evaluated on both real-world and synthetic graphs. Both of those are
present in the benchmark provided by Fan et al. (2019). The synthetic networks are
generated from powerlaw distribution with a fixed number of edges to add (m = 4), and the
probability of creating a triangle after adding an edge (p = 0.05), while the real-world
graphs are taken from AlGhamdi et al. (2017) and represent five big graphs taken from
real-world applications. The real-world graphs with their description and parameters are
presented in Table 1.

The ground truth betweenness-centralities for the real-world graphs are provided by
AlGhamdi et al. (2017), which are computed by the parallel implementation of Brandes
algorithm on a 96000-core supercomputer. The ground truth scores for the synthetic
networks are provided by Fan et al. (2019) and are computed using the graph-tool
(Peixoto, 2014) library.

The presented approach is compared to several baseline models. The performance of
those models are adopted from the benchmark provided by Fan et al. (2019):

� ABRA (Riondato & Upfal, 2018): Samples pairs of nodes until the desired accuracy is
reached. Where the error tolerance λ was set to 0.01 and the probability δ was set to 0.1.

� RK (Riondato & Kornaropoulos, 2014): The number of pairs of nodes is determined by
the diameter of the network. Where the error tolerance and the probability were set
similar to ABRA.

� k-BC (Pfeffer & Carley, 2012): Does only k steps of Brandes algorithm (Brandes, 2001)
which was set to 20% of the diameter of the network.

� KADABRA (Borassi & Natale, 2019): Uses bidirectional BFS to sample the shortest
paths. The variant where it computest the top-k% nodes with the highest betweenness-
centrality was used. The error tolerance and probability were set to be the same as ABRA
and RK.

� Node2Vec (Grover & Leskovec, 2016): Uses a biased random walk to aggregate
information from the neighbors. The vector representations of each node were then
mapped with a trained MLP to ranking scores.

� DrBC (Fan et al., 2019): Shallow graph convolutional network that outputs a ranking
score for each node by propagating through the neighbors with a walk length of 5.

For a fair comparison, the presented model was run on a CPU machine with 80 cores
and 512GB memory to match the results reported by Fan et al. (2019). Please note that due
to several optimizations and smaller model size, the training takes around 30 min on a
single 12GB NVIDIA 1080Ti GPU machine with only 4vCPUs and 12GB RAM compared
to 4.5 h reported by Fan et al. (2019) which used an 80-core machine with 512GB RAM,
and 8 16GB Tesla V100 GPUs. For the inference, the ABCDE model does not need the
512GB memory, it only utilizes a small portion of it. Yet, the machine is used for a fair
comparison. The inference is run on a CPU to be fairly compared to all the other
techniques reported, yet using a GPU for inference can increase the speed substantially.

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 8/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

Results on real-world networks presented in Table 2 demonstrate that the ABCDE
model outperforms all the other approaches for the ranking score Kendall-tau and is
especially good for large graphs. For the Top-1%, Top-5% and Top-10% accuracy scores,
ABCDE outperforms other approaches on some datasets, while shows close-to-top
performance on others. The presented algorithm is the fastest among all the baselines and
outperforms others by an order of magnitude.

Comparison of the ABCDE model with the previous GCN approach DrBC,
demonstrated in Table 3, shows that the presented deep model is more accurate and can
achieve better results even though it has fewer trainable parameters and requires less time
to train.

The results on synthetic datasets demonstrated in Table 4 show that ABRA performs
well on identifying Top-1% nodes in the graph with the highest betweenness-centrality
score, even though requiring a longer time to run. On all the other metrics including
Top-5%, Top-10%, and Kendall tau scores ABCDE approach outperforms all the others.
ABCDE is substantially faster than others on large graphs and for the small graphs, it has
comparable performance to DrBC.

It is important to note that the presented model has only around 70,000 trainable
parameters and requires around 30 min to converge during training as opposed to DrBC
which has around 120,000 trainable parameters and requires around 4.5 h to converge.

More GCN layers in the model enable the process to explore wider neighborhoods for
each vertex in the graph during inference. Fan et al. (2019) used only five neighbor
aggregations which limit the information aggregated especially for big graphs. We use a
deeper network with more neighbor aggregations on each stage, therefore helping the
network explore a wider spectrum of neighbors. That helps the network have better
performance even though the structure is way simpler.

To be able to have a deep network with many graph-convolutional blocks, progressive
DropEdge along with skip connections is used. Each GCN block gets only part of the graph
where a certain number of edges are removed randomly. Initial layers get fewer edges,
while layers closer to the final output MLP get more context of the graph which helps the
model explore the graph better.

Table 1 Summary of real-world datasets. Where |V| is the number of nodes, |E| is the number of edges, and D is the average degree of the
graph. Adapted from Fan et al. (2019).

Network |V| |E| D Diameter Description

com-Youtube 1,134,890 2,987,624 5.27 20 A video-sharing web site that includes a social network. Nodes are users and edges are
friendships

Amazon 2,146,057 5,743,146 5.35 28 A product network created by crawling the Amazon online store. Nodes represent products
and edges link commonly co-purchased products

Dblp 4,000,148 8,649,011 4.32 50 An authorship network extracted from the DBLP computer science bibliography. Nodes
are authors and publications. Each edge connects an author to one of his publications

cit-Patents 3,764,117 16,511,741 8.77 26 A citation network of U.S. patents. Nodes are patents and edges represent citations. In our
experiments, we regard it as an undirected network

com-lj 3,997,962 34,681,189 17.35 17 A social network where nodes are LiveJournal users and edges are their friendships

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 9/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

ABLATION STUDIES
To demonstrate the contribution of each part of the ABCDE approach, each part is
evaluated in ablation studies. Parts of the approach are removed to demonstrate the
performance changes on the real-world datasets.

From the experiments demonstrated in Table 5, it can be observed that each part’s
contribution differs for different graph types. ABCDE with no DropEdge outperforms the
proposed approach on the com-youtube and amazon graphs which are relatively small
networks. Constant DropEdge of 0.2 outperforms all the rest on the Dblp graph which is
larger than com-youtube and amazon but smaller than cit-Patents and com-lj. ABCDE

Table 2 Top-k% accuracy, Kendall tau distance, (×0.01), and running time on large real-world
networks adapted from Fan et al. (2019). It was not feasible to calculate the results marked with
NA. The bold results indicate the best performance for a given metric.

Dataset ABRA RK KADABRA Node2Vec DrBC ABCDE

Top-1%

com-youtube 95.7 76.0 57.5 12.3 73.6 77.1

amazon 69.2 86.0 47.6 16.7 86.2 92.0

Dblp 49.7 NA 35.2 11.5 78.9 79.8

cit-Patents 37.0 74.4 23.4 0.04 48.3 50.2

com-lj 60.0 54.2* 31.9 3.9 67.2 70.9

Top-5%

com-youtube 91.2 75.8 47.3 18.9 66.7 75.1

amazon 58.0 59.4 56.0 23.2 79.7 88.0

Dblp 45.5 NA 42.6 20.2 72.0 73.7

cit-Patents 42.4 68.2 25.1 0.29 57.5 58.3

com-lj 56.9 NA 39.5 10.35 72.6 75.7

Top-10%

com-youtube 89.5 100.0 44.6 23.6 69.5 77.6

amazon 60.3 100.0 56.7 26.6 76.9 85.6

Dblp 100.0 NA 50.4 27.7 72.5 76.3

cit-Patents 50.9 53.5 21.6 0.99 64.1 64.9

com-lj 63.6 NA 47.6 15.4 74.8 78.0

Kendall tau

com-youtube 56.2 13.9 NA 46.2 57.3 59.8

amazon 16.3 9.7 NA 44.7 69.3 77.7

Dblp 14.3 NA NA 49.5 71.9 73.7

cit-Patents 17.3 15.3 NA 4.0 72.6 73.5

com-lj 22.8 NA NA 35.1 71.3 71.8

Time/s

com-youtube 72,898.7 125,651.2 116.1 4,729.8 402.9 26.7

amazon 5,402.3 149,680.6 244.7 10,679.0 449.8 63.5

Dblp 11,591.5 NA 398.1 17,446.9 566.7 104.9

cit-Patents 10,704.6 252,028.5 568.0 11,729.1 744.1 163.9

com-lj 34,309.6 NA 612.9 18,253.6 2,274.2 271.0

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 10/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

Table 3 Comparison of Top-k% accuracy, Kendall-tau, and running time on large real-world networks with the baseline DrBC model. Results
are taken from Fan et al. (2019). The bold results indicate the best performance for a given metric.

Network DrBC ABCDE DrBC ABCDE DrBC ABCDE DrBC ABCDE DrBC ABCDE
Top-1% Top-5% Top-10% Kendall-tau Time/s

com-youtube 73.6 77.1 66.7 75.1 69.5 77.6 57.3 59.8 402.9 26.7

amazon 86.2 92.0 79.7 88.0 76.9 85.6 69.3 77.7 449.8 63.5

Dblp 78.9 79.8 72.0 73.7 72.5 76.3 71.9 73.7 566.7 104.9

cit-Patents 48.3 50.2 57.5 58.3 64.1 64.9 72.6 73.5 744.1 163.9

com-lj 67.2 70.9 72.6 75.7 74.8 78.0 71.3 71.8 2274.2 271.0

Table 4 Top-k% accuracy, Kendall tau, and execution time in seconds on synthetic graphs of different scales adapted from Fan et al. (2019).
The bold results indicate the best performance for a given metric. For each scale, the mean and standard deviation over 30 tests are reported.

Scale ABRA RK k-BC KADABRA Node2Vec DrBC ABCDE

Top-1%

5,000 97.8 ± 1.5 96.8 ± 1.7 94.1 ± 0.8 76.2 ± 12.5 19.1 ± 4.8 96.5 ± 1.8 97.5 ± 1.3

10,000 97.2 ± 1.2 96.4 ± 1.3 93.3 ± 3.1 74.6 ± 16.5 21.2 ± 4.3 96.7 ± 1.2 96.9 ± 0.9

20,000 96.5 ± 1.0 95.5 ± 1.1 91.6 ± 4.0 74.6 ± 16.7 16.1 ± 3.9 95.6 ± 0.9 96.0 ± 1.2

50,000 94.6 ± 0.7 93.3 ± 0.9 90.1 ± 4.7 73.8 ± 14.9 9.6 ± 1.3 92.5 ± 1.2 93.6 ± 0.9

100,000 92.2 ± 0.8 91.5 ± 0.8 88.6 ± 4.7 67.0 ± 12.4 9.6 ± 1.3 90.3 ± 0.9 91.8 ± 0.6

Top-5%

5,000 96.9 ± 0.7 95.6 ± 0.9 89.3 ± 3.9 68.7 ± 13.4 23.3 ± 3.6 95.9 ± 0.9 97.8 ± 0.7

10,000 95.6 ± 0.8 94.1 ± 0.8 88.4 ± 5.1 70.7 ± 13.8 20.5 ± 2.7 95.0 ± 0.8 97.0 ± 0.6

20,000 93.9 ± 0.8 92.2 ± 0.9 86.9 ± 6.2 69.1 ± 13.5 16.9 ± 2.0 93.0 ± 1.1 95.2 ± 0.8

50,000 90.1 ± 0.8 88.0 ± 0.8 84.4 ± 7.2 65.8 ± 11.7 13.8 ± 1.0 89.2 ± 1.1 92.1 ± 0.6

100,000 85.6 ± 1.1 87.6 ± 0.5 82.4 ± 7.5 57.0 ± 9.4 12.9 ± 1.2 86.2 ± 0.9 89.7 ± 0.5

Top-10%

5,000 96.1 ± 0.7 94.3 ± 0.9 86.7 ± 4.5 67.2 ± 12.5 25.4 ± 3.4 94.8 ± 0.7 97.6 ± 0.4

10,000 94.1 ± 0.6 92.2 ± 0.9 86.0 ± 5.9 67.8 ± 13.0 25.4 ± 3.4 94.0 ± 0.9 96.8 ± 0.6

20,000 92.1 ± 0.8 90.6 ± 0.9 84.5 ± 6.8 66.1 ± 12.4 19.9 ± 1.9 91.9 ± 0.9 94.9 ± 0.5

50,000 87.4 ± 0.9 88.2 ± 0.5 82.1 ± 8.0 61.3 ± 10.4 18.0 ± 1.2 87.9 ± 1.0 91.7 ± 0.6

100,000 81.8 ± 1.5 87.4 ± 0.4 80.1 ± 8.2 52.4 ± 8.2 17.3 ± 1.3 85.0 ± 0.9 89.4 ± 0.5

Kendall tau

5,000 86.6 ± 1.0 78.6 ± 0.6 66.2 ± 11.4 NA 11.3 ± 3.0 88.4 ± 0.3 93.7 ± 0.2

10,000 81.6 ± 1.2 72.3 ± 0.6 67.2 ± 13.5 NA 8.5 ± 2.3 86.8 ± 0.4 93.3 ± 0.1

20,000 76.9 ± 1.5 65.5 ± 1.2 67.1 ± 14.3 NA 7.5 ± 2.2 84.0 ± 0.5 92.1 ± 0.1

50,000 68.2 ± 1.3 53.3 ± 1.4 66.2 ± 14.1 NA 7.1 ± 1.8 80.1 ± 0.5 90.1 ± 0.2

100,000 60.3 ± 1.9 44.2 ± 0.2 64.9 ± 13.5 NA 7.1 ± 1.9 77.8 ± 0.4 88.4 ± 0.2

Time/s

5,000 18.5 ± 3.6 17.1 ± 3.0 12.2 ± 6.3 0.6 ± 0.1 32.4 ± 3.8 0.3 ± 0.0 0.5 ± 0.0

10,000 29.2 ± 4.8 21.0 ± 3.6 47.2 ± 27.3 1.0 ± 0.2 73.1 ± 7.0 0.6 ± 0.0 0.6 ± 0.0

20,000 52.7 ± 8.1 43.0 ± 3.2 176.4 ± 105.1 1.6 ± 0.3 129.3 ± 17.6 1.4 ± 0.0 0.9 ± 0.0

50,000 168.3 ± 23.8 131.4 ± 2.0 935.1 ± 505.9 3.9 ± 1.0 263.2 ± 46.6 3.9 ± 0.2 2.2 ± 0.0

100,000 380.3 ± 63.7 363.4 ± 36.3 3,069.2 ± 1,378.5 7.2 ± 1.8 416.2 ± 37.0 8.2 ± 0.3 3.2 ± 0.0

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 11/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

with Progressive-DropEdge and skip connections is the best for the largest two graphs,
namely cit-Patents and com-lj. Removing skip connections from the model drops the
performance significantly in all the cases.

As a lot of real-world graphs are very large, the final ABCDE approach is chosen to be
the one leading to the best performance on the large networks.

The over-fitting behavior of the proposed approach is also studied in details. As
demonstrated in the Fig. 2, the model without drop-edge over-fits faster than the models
with a constant 0.2 DropEdge probability and the ABCDE model with progressive
DropEdge. The ABCDE model over-fits less and has more stable validation loss compared
to both the constant drop-edge models (0.2 and 0.8) and no drop-edge model. When
the probability of dropping random edges from the input graph increases too much, the
model starts to perform worse as demonstrated in Fig. 2. That is caused by the network
structure being changed too much after the 0.8 dropout on the edges, and thus affecting
the betweenness-centrality of the input network.

Table 5 Top-k% accuracy, and Kendall tau distance, (×0.01) on large real-world networks showing
the ablation study for different parts of the ABCDE model. The bold results indicate the best per-
formance for a given metric.

Dataset No DropEdge DropEdge = 0.2 No skip connections ABCDE

Top-1%

com-youtube 78.5 77.8 66.5 77.1

amazon 86.2 91.0 85.3 92.0

Dblp 79.3 80.2 76.9 79.8

cit-Patents 47.4 47.1 37.6 50.2

com-lj 69.0 69.1 46.1 70.9

Top-5%

com-youtube 76.2 75.1 65.2 75.1

amazon 88.1 87.9 82.6 88.0

Dblp 72.3 74.2 71.5 73.7

cit-Patents 56.3 55.9 52.1 58.3

com-lj 75.4 75.4 62.8 75.7

Top-10%

com-youtube 78.1 77.1 67.5 77.6

amazon 86.1 85.4 77.6 85.6

Dblp 75.0 77.0 75.5 76.3

cit-Patents 63.4 63.0 60.4 64.9

com-lj 78.2 77.9 69.1 78.0

Kendall tau

com-youtube 59.8 59.3 56.8 59.8

amazon 77.3 77.5 70.9 77.7

Dblp 73.5 73.9 73.9 73.7

cit-Patents 73.2 72.8 71.1 73.5

com-lj 71.5 70.9 65.8 71.8

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 12/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

Unlike the experiments done by Rong et al. (2020), there is no over-smoothing noticed
in ABCDE as the model employs skip-connections for each block. That helps it avoid
converging to very similar activations in deep layers.

CONCLUSION
In this paper, a deep graph convolutional network was presented to approximate
betweenness-centrality ranking scores for each node in a given graph. The author
demonstrated that the number of parameters of the network can be reduced, while not
compromising the predictive power of the network. The approach achieves better
convergence and faster training on smaller machines compared to the previous
approaches. A novel way was proposed to add regularisation to the network through
progressively dropping random edges in each graph convolutional block, which was called
Progressive-DropEdge. The results suggest that deep graph convolutional networks are
capable of learning informative representations of graphs and can approximate the
ranking score for betweenness-centrality while preserving good generalizability for real-
world graphs. The time comparison demonstrates that this approach is significantly faster
than alternatives.

Several future directions can be examined, including case studies on specific
applications (e.g. urban planning, social networks), and extensions of the approach for
directed and weighted graphs. One more interesting direction is to approximate other
centrality measures in big networks.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

(1)

(2)
(4)
(3)

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

(1)
(2)
(4)

(3)

Figure 2 The left plot represents the training losses of No DropEdge, DropEdge = 0.2 and ABCDE
models; the right plot represents the validation losses of those models.

Full-size DOI: 10.7717/peerj-cs.699/fig-2

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 13/16

http://dx.doi.org/10.7717/peerj-cs.699/fig-2
http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

Author Contributions
� Martin Mirakyan conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available on GitHub: https://github.com/MartinXPN/abcde
Reported results can be reproduced using a docker image (The docker image is available

on DockerHub for Docker account holders): https://hub.docker.com/repository/docker/
martin97/abcde.

By running a bash command: docker run martin97/abcde:latest.

REFERENCES
AlGhamdi Z, Jamour F, Skiadopoulos S, Kalnis P. 2017. A benchmark for betweenness centrality

approximation algorithms on large graphs. In: Proceedings of the 29th International Conference
on Scientific and Statistical Database Management, SSDBM’17. New York, NY, USA: Association
for Computing Machinery.

Arakelyan G. 2020. Compare, 1000s, of AI experiments at once. Available at aimstack.io.

Behera R, Naik D, Ramesh D, Rath S. 2020a. MR-IBC: mapreduce-based incremental
betweenness centrality in large-scale complex networks. Social Network Analysis and Mining
10(1):2115 DOI 10.1007/s13278-020-00636-9.

Behera R, Naik D, Rath S, Ramesh D. 2020b. Genetic algorithm-based community detection in
large-scale social networks. Neural Computing and Applications 32:9649–9665
DOI 10.1007/s00521-019-04487-0.

Behera RK, Naik D, Sahoo B, Rath SK. 2016. Centrality approach for community detection in
large scale network. In: Proceedings of the 9th Annual ACM India Conference, COMPUTE’16.
New York, NY, USA: Association for Computing Machinery, 115–124.

Behera R, Rath S, Misra S, Damasevicius R, Maskeliunas R. 2019. Distributed centrality analysis
of social network data using mapreduce. Algorithms 12(8):161 DOI 10.3390/a12080161.

Biewald L. 2020. Experiment tracking with weights and biases. Available at wandb.com.

Borassi M, Natale E. 2019. KADABRA is an adaptive algorithm for betweenness via random
approximation. ACM Journal of Experimental Algorithmics 24:1–35 DOI 10.1145/3284359.

Brandes U. 2001. A faster algorithm for betweenness centrality. The Journal of Mathematical
Sociology 25(2):163–177 DOI 10.1080/0022250X.2001.9990249.

Csardi G, Nepusz T. 2006. The igraph software package for complex network research.
InterJournal, Complex Systems 1695(5):1–9.

Fan C, Zeng L, Ding Y, Chen M, Sun Y, Liu Z. 2019. Learning to identify high betweenness
centrality nodes from scratch: A novel graph neural network approach. In: Proceedings of the
28th ACM International Conference on Information and Knowledge Management, CIKM’19.
New York, NY, USA: Association for Computing Machinery, 559–568.

Fey M, Lenssen JE. 2019. Fast graph representation learning with PyTorch geometric. In: ICLR
Workshop on Representation Learning on Graphs and Manifolds.

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 14/16

https://github.com/MartinXPN/abcde
https://hub.docker.com/repository/docker/martin97/abcde
https://hub.docker.com/repository/docker/martin97/abcde
aimstack.io
http://dx.doi.org/10.1007/s13278-020-00636-9
http://dx.doi.org/10.1007/s00521-019-04487-0
http://dx.doi.org/10.3390/a12080161
wandb.com
http://dx.doi.org/10.1145/3284359
http://dx.doi.org/10.1080/0022250X.2001.9990249
http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

Grover A, Leskovec J. 2016.Node2vec: scalable feature learning for networks. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD’16. New York, NY, USA: Association for Computing Machinery, 855–864.

Hagberg A, Swart P, Chult DS. 2008. Exploring network structure, dynamics and function using
networkx. Los Alamos, NM, USA: Los Alamos National Lab. (LANL). Technical report.

Holme P, Kim BJ, Yoon CN, Han SK. 2002. Attack vulnerability of complex networks. Physical
Review E 65(5):056109 DOI 10.1103/PhysRevE.65.056109.

Kingma D, Ba J. 2014. Adam: a method for stochastic optimization. In: International Conference
on Learning Representations.

Kourtellis N, Alahakoon T, Simha R, Iamnitchi A, Tripathi R. 2012. Identifying high
betweenness centrality nodes in large social networks. Journal of Social Network Analysis &
Mining 3(4):899–914.

Liu H, Hu Z, Haddadi H, Tian H. 2013.Hidden link prediction based on node centrality and weak
ties. EPL 101(1):18004 DOI 10.1209/0295-5075/101/18004.

Mahmoody A, Tsourakakis CE, Upfal E. 2016. Scalable betweenness centrality maximization via
sampling. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’16. New York, NY, USA: Association for Computing
Machinery, 1765–1773.

Maurya SK, Liu X, Murata T. 2019. Fast approximations of betweenness centrality with graph
neural networks. In: Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM’19. New York, NY, USA: Association for Computing
Machinery, 2149–2152.

Naik D, Behera R, Ramesh D, Rath S. 2020. Map-reduce-based centrality detection in social
networks: an aapproach. Arabian Journal for Science and Engineering 45(12):10199–10222
DOI 10.1007/s13369-020-04636-x.

Oono K, Suzuki T. 2020. Graph neural networks exponentially lose expressive power for node
classification. In: International Conference on Learning Representations.

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N,
Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S,
Steiner B, Fang L, Bai J, Chintala S. 2019. Pytorch: An imperative style, high-performance deep
learning library. In: Wallach H, Larochelle H, Beygelzimer A, D Alché-Buc F, Fox E, Garnett R,
eds. Advances in Neural Information Processing Systems. Vol. 32. New York: Curran Associates,
Inc, 8024–8035.

Peixoto TP. 2014. The graph-tool python library. figshare. Available at https://figshare.com/
articles/dataset/graph_tool/1164194.

Pfeffer J, Carley KM. 2012. K-centralities: local approximations of global measures based on
shortest paths. In: Proceedings of the 21st International Conference on World Wide Web,
WWW’12 Companion. New York, NY, USA: Association for Computing Machinery,
1043–1050.

Riondato M, Kornaropoulos EM. 2014. Fast approximation of betweenness centrality through
sampling. In: Proceedings of the 7th ACM International Conference on Web Search and Data
Mining, WSDM’14. New York, NY, USA: Association for Computing Machinery, 413–422.

Riondato M, Upfal E. 2018. Abra: approximating betweenness centrality in static and dynamic
graphs with rademacher averages. ACM Transactions on Knowledge Discovery from Data
12(5):1–38 DOI 10.1145/3208351.

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 15/16

http://dx.doi.org/10.1103/PhysRevE.65.056109
http://dx.doi.org/10.1209/0295-5075/101/18004
http://dx.doi.org/10.1007/s13369-020-04636-x
https://figshare.com/articles/dataset/graph_tool/1164194
https://figshare.com/articles/dataset/graph_tool/1164194
http://dx.doi.org/10.1145/3208351
http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

Rong Y, Huang W, Xu T, Huang J. 2020. Dropedge: towards deep graph convolutional networks
on node classification. In: International Conference on Learning Representations.

Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K. 2019. Simplifying graph convolutional
networks. In: Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research. PMLR, 6861–6871.

Mirakyan (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.699 16/16

http://dx.doi.org/10.7717/peerj-cs.699
https://peerj.com/computer-science/

	ABCDE: Approximating Betweenness-Centrality ranking with progressive-DropEdge
	Introduction
	Related work
	Preliminaries
	Method
	Evaluation and results
	Ablation studies
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

