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ABSTRACT
In image analysis, orthogonal moments are useful mathematical transformations for
creating new features from digital images. Moreover, orthogonal moment invariants
produce image features that are resistant to translation, rotation, and scaling
operations. Here, we show the result of a case study in biological image analysis to
help researchers judge the potential efficacy of image features derived from
orthogonal moments in a machine learning context. In taxonomic classification of
forensically important flies from the Sarcophagidae and the Calliphoridae family
(n = 74), we found the GUIDE random forests model was able to completely classify
samples from 15 different species correctly based on Krawtchouk moment invariant
features generated from fly wing images, with zero out-of-bag error probability.
For the more challenging problem of classifying breast masses based solely on digital
mammograms from the CBIS-DDSM database (n = 1,151), we found that image
features generated from the Generalized pseudo-Zernike moments and the
Krawtchouk moments only enabled the GUIDE kernel model to achieve modest
classification performance. However, using the predicted probability of malignancy
from GUIDE as a feature together with five expert features resulted in a reasonably
good model that has mean sensitivity of 85%, mean specificity of 61%, and mean
accuracy of 70%. We conclude that orthogonal moments have high potential as
informative image features in taxonomic classification problems where the patterns
of biological variations are not overly complex. For more complicated and
heterogeneous patterns of biological variations such as those present in medical
images, relying on orthogonal moments alone to reach strong classification
performance is unrealistic, but integrating prediction result using them with carefully
selected expert features may still produce reasonably good prediction models.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning, Data
Science
Keywords Breast mammograms, Fly wings, Geometric morphometric data, Generalized
Pseudo-Zernike moments, GUIDE classification and regression tree, Image analysis, Krawtchouk
moments, Machine learning, Orthogonal moments

How to cite this article Goh JY, Khang TF. 2021. On the classification of simple and complex biological images using Krawtchouk
moments and Generalized pseudo-Zernike moments: a case study with fly wing images and breast cancer mammograms. PeerJ Comput. Sci.
7:e698 DOI 10.7717/peerj-cs.698

Submitted 19 March 2021
Accepted 6 August 2021
Published 9 September 2021

Corresponding author
Tsung Fei Khang,
tfkhang@um.edu.my

Academic editor
Masood Ur-Rehman

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.698

Copyright
2021 Goh and Khang

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.698
mailto:tfkhang@�um.�edu.�my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.698
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


INTRODUCTION
Image analysis, the extraction of information from digital pictures by quantitative means,
is a powerful way to study biological variation without directly interacting with the
physical object that is imaged. After suitable image processing steps such as zooming or
reduction, denoising, and segmentation, the pattern of shape variation in an image,
which is represented by a matrix of pixel values, can be extracted using suitable feature
extraction methods (Gonzalez & Woods, 2002). To be practically useful, such methods
need to be invariant to translation, rotation, and scaling.

Moment invariants, which are abstract representations of shape that satisfy the three
properties of translation, rotation and scale invariance, were first proposed by Hu (1962).
These moments can serve as useful feature representation of images, thus allowing
class recognition by suitable statistical learning (i.e. machine learning) algorithms.
Subsequently, Teague (1980) showed that continuous orthogonal moments based on
orthogonal polynomials such as the Legendre polynomials (see Szegö (1975)) and the
Zernike polynomials (von Zernike, 1934) enable approximate image reconstruction.
Examples of other continuous orthogonal moments include the pseudo-Zernike moments
(Teh & Chin, 1988), the Gegenbauer moments (Liao et al., 2002), and the generalized
pseudo-Zernike moments (GPZM; Xia et al. (2007)).

Discrete orthogonal moments based on the Chebyshev polynomials (see Szegö (1975))
were introduced to overcome the problem of computational complexity of continuous
orthogonal moments, and they enable exact image reconstruction (Yap, Raveendran &
Ong, 2001; Mukundan, Ong & Lee, 2001). An important member of this class of discrete
orthogonal moments is the Krawtchouk moments (KM), which is unique for being able
to extract local features in images (Yap, Paramesran & Ong, 2003). Other members include
the Hahn moments (Zhou et al., 2005), dual Hahn moments (Zhu et al., 2007) and the
Racah moments (Zhu et al., 2007).

In applications, orthogonal moments are widely used for non-trivial image analysis
tasks, such as the identification of written alphabets in different languages (e.g. Liao &
Pawlak (1995), Bailey & Srinath (1996)). In biology, they have been used in the analysis of
complex biological images, for tasks like classification of cellular subtypes (Ryabchykov
et al., 2016), bacteria strains (Bayraktar et al., 2006), ophthalmic pathologies (Adapa et al.,
2020), cancer cell phenotypes (Alizadeh et al., 2016), breast cancer phenotypes (Tahmasbi,
Saki & Shokouhi, 2011; Narváez & Romero, 2012; Saki et al., 2013; Cordeiro, Santos &
Silva-Filho, 2016), fingerprint identification (Kaur & Pannu, 2019), and facial recognition
(Akhmedova & Liao, 2019).

Presently, the ease of acquiring image data from biology and medicine has created the
possibility of mimicking human expert classification decisions using a purely data-driven
approach via machine learning models. While state-of-the-art deep learning algorithms
(LeCun, Bengio & Hinton, 2015), which use image pixel data directly from images, are
currently in vogue for image-based machine learning applications, they are not suitable for
initial exploratory work where data are limited. In addition, technical and infrastructural
know-how to properly execute and interpret results from deep learning algorithms are
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substantial barriers for the diffusion of deep learning to many areas in biology and
medicine.

Might the method of orthogonal moments become increasingly redundant in biological
image analysis against a background of unrelenting shift towards deep learning
methods? To better understand this situation, we performed a case study to assess the
usefulness of KM and GPZM as image features in classification problems involving
biological images. In this paper, we address two classification problems in biology
using images of varying degree of complexity. The first problem concerns fly species
identification using patterns of wing venation. Specifically, we aim to contrast the quality
of classifying fly species using KM features extracted from wing image data compared to
using landmark data from standard geometric morphometric approach. The second
problem concerns breast mass classification using information from digital mammograms.
Along with several expert features, we explore how global features extracted from GPZM,
and local features extracted from KM help improve classification of benign and malignant
breast masses. Here, we consider variations in wing venation patterns to be relatively
simple compared to variations in breast mass patterns, which are highly heterogeneous
(Aleskandarany et al., 2018).

In the following subsections, we provide the background of the two problems.

Problem 1: fly wing venation patterns for species identification
Generally, identifying a biological specimen down to the species level with certainty
requires a certain level of taxonomic expertise. The taxonomist examines morphological
characteristics of the specimen physically, and applies expert judgement to classify the
specimen. This process is often slow and expensive. Additionally, taxonomists may also be
increasingly hard to find in the future, as the number of permanent positions stagnate or
shrink as a consequence of lack of funding and training at the tertiary level (Britz,
Hundsdörfer & Fritz, 2020).

Traditional morphometric analysis (Marcus, 1990), which mainly captures size
variation, or geometric morphometric analysis (Bookstein, 1991; Adams, Rohlf & Slice,
2013), which captures shape variation, are possible quantitative methods that potentially
allow a data-driven approach to species identification. Landmark-based geometric
morphometrics relies on using homologous landmarks, which can be unambiguously
identified on an image. However, depending on the organism of interest, it is possible that
few or no homologous landmarks are available, despite the fact that biological shape
variation is apparent (e.g. cellular shape, claw shape) to the human observer.

Species identification by analysis of wing venation patterns often leads to correct
identification at the species or even subpopulation level because the main source of
variation in wing venation patterns is evolutionary divergence between taxa, with only
rare and incomplete secondary convergence (Perrard et al., 2014). Currently, there is
persistent interest in applying geometric morphometric analysis of wing venation patterns
as a basis for identifying forensically important flies (e.g. Sontigun et al. (2017),
Sontigun et al. (2019)). Recently, Khang et al. (2021) provided proof-of-concept that the
species identities of forensically important flies predicted using wing venation geometric
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morphometric data with random forests are highly concordant with those inferred from
DNA sequence data. Since analysis of whole wing image is likely to yield higher resolution
data, we hypothesize that this will yield improved species prediction performance
compared to using geometric morphometric landmark data which is relatively low
resolution. Indeed, Macleod, Hall & Wardhana (2018) reported encouraging results from
an image analysis of fly wing venation patterns using pixel brightness as features. However,
their method requires the use of undamaged wings and a standardized protocol to
minimize imaging artefacts arising from slide preparation (e.g. bubbles, lighting variation).
Therefore, capturing information in image pixel data as translation, rotation and scale-
invariant features may improve usability of images without the need to apply a rigid
imaging protocol.

Here, we do not consider comparison against Elliptic Fourier Analysis (Kuhl &
Giardina, 1982), another shape analysis method, since it is used for shapes that are closed
contours, which wing venation patterns are not.

Problem 2: breast mass classification
The classification of breast masses based solely on digital mammograms is a challenging
problem, owing to the heterogeneous morphology of breast masses (Aleskandarany et al.,
2018). Several researchers who used orthogonal moments to construct image features
for the classification of benign and malignant masses reported encouraging findings
(Tahmasbi, Saki & Shokouhi, 2011; Narváez & Romero, 2012). Current state-of-the-art
deep learning approach to image analysis of breast cancer mammograms gave highly
optimistic results. Shen et al. (2019) reported sensitivity of 86.7%, and specificity of 96.1%
in the classification of benign and malignant breast masses, using 2478 images in the
CBIS-DDSM database (training set size = 1903; validation set size = 199; test set size =376;
(Clark et al., 2013; Lee et al., 2017)). Nevertheless, the opacity and plasticity of powerful
black-box methods such as deep learning pose challenges to their formal adoption in
medical practice (Nicholson Price, 2018). In the end, combining the complementary
strengths of features derived from human expert judgement and those from statistical
learning models seems to be the most convincing approach (Gennatas et al., 2020).

Here, we hypothesize that integrating the result of statistical learning outcome from
image analysis using orthogonal moments with relevant expert features may ameliorate
performance deficiencies based solely on image analysis.

MATERIALS AND METHODS
Fly wing images
For the problem of fly species identification using images of wing venation patterns, we
used species from two forensically important fly families: Sarcophagidae and Calliphoridae
(Amendt et al., 2011). Images of wings of male specimens that are of sufficiently good
quality for image analysis, and their associated geometric morphometric data from 19
landmarks (Fig. 1) were taken from Khang et al. (2020).
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The samples were taken from male flies from the Calliphoridae family (seven species),
namely Chrysomya megacephala (Fabricius, 1794) (n = 5), Chrysomya nigripes
Aubertin, 1932 (n = 5), Chrysomya pinguis (Walker, 1858) (n = 5), Chrysomya rufifacies
(Macquart, 1842) (n = 5), Chrysomya villeneuvi Patton, 1922 (n = 5), Lucilia cuprina
(Wiedemann, 1830) (n = 4) and Lucilia porphyrina (Walker, 1856) (n = 5). From the
Sarcophagidae family (eight species), we had Boettcherisca javanica Lopes, 1961 (n = 5),
Boettcherisca karnyi (Hardy, 1927) (n = 5), Boettcherisca peregrina (Robineau-Desvoidy,
1830) (n = 5), Sarcophaga ruficornis (Fabricius, 1794) (n = 5), Sarcophaga dux Thompson,
1869 (n = 5), Parasarcophaga albiceps (Meigen, 1826) (n = 5), Parasarcophaga misera
(Walker, 1849) (n = 5) and Sarcophaga princeps Wiedemann, 1830 (n=5). In total, 74
specimens from 15 different species were used.

Breast cancer images and associated expert features
The DDSM (Digital Database for Screening Mammography) database (Heath et al., 1998,
2000) is a public repository of breast cancer mammograms. Although this database
contains a large collection of 2,620 scanned film mammograms, the quality of annotations
in the images varies. Examples of errors include wrongly annotated images and lesion
outlines that do not form precise mass boundary (Lee et al., 2017; Song et al., 2009).
Inclusion of such poor quality images in the training phase of a statistical learning model
can weaken model generalizability.

To overcome this problem, a curated subset of images in the DDSM database, known as
the CBIS-DDSM (Curated Breast Imaging subset of DDSM) collection (Clark et al., 2013;
Lee et al., 2017) was created. Images in this database consist of selected mammograms
that have been segmented using an automated segmentation algorithm. The segmented
images were evaluated by comparing outlines of mass lesion images with hand-drawn
outlines made by a trained radiologist. The CBIS-DDSM collection comprises scanned
filmed mammography from 1,566 participants. A patient could have more than one type of
lesions (e.g. mass, calcification) in a single mammogram. The images were decompressed
and converted to the DICOM format containing updated region of interest (ROI)

Figure 1 The position of landmarks (gray circles) on a sample wing image.
Full-size DOI: 10.7717/peerj-cs.698/fig-1
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segmentation, bounding boxes, and pathologic diagnosis. Moreover, a total of 3,568
focused images are also available in this database to cater to studies that do not require the
use of full mammogram images but only a focused region of abnormalities. We used 1,151
images from the CBIS-DDSM collection, of which 48% (556/1,151) are of benign class,
and 52% (595/1,151) are of malignant class. The images were downloaded from the CBIS-
DDSM database in the PNG file format.

Each mammogram image is further associated with five expert features: (i) BI-RADS
assessment; (ii) mass shape; (iii) mass margin; (iv) breast density; (v) subtlety rating.
The Breast Imaging-Reporting and Data System (BI-RADS) provides a standard for
reporting breast examination results based on mammography, ultrasound, and magnetic
resonance imaging data. First published in 1992 (American College of Radiology, 1992),
BI-RADS has become a standard communication tool for mammography reports
globally (Balleyguier et al., 2007), and is now in its fifth edition (Sickles et al., 2013).
By standardizing the reporting of mammography results, BI-RADS facilitates
communication among radiologists and clinicians, and aids the training and education of
junior radiologists in developing countries (Lehman et al., 2001).

There are seven categories in the BI-RADS assessment that can be assigned based on
evaluation of the lexicon descriptors or the biopsy findings of a lesion (Sickles et al.,
2013). Category 0 indicates that materials are insufficient for evaluation and additional
imaging evaluation or prior mammograms for comparison are required. Category 1 is
given when no anomalies are found. Category 2 is given when there is evidence of benign
tumors such as skin calcifications, metallic foreign bodies, fat-containing lesions and
involuting calcified fibroadenomas. If radiologists are unsure of the lesion categorization, a
BI-RADS category of 3 is given, and a follow-up over a certain interval of time is done to
determine stability of the lesion. The risk of malignancy in this category is considered
to be at most 2%. Category 4 is assigned when malignant tumors are suspected.
Three subcategories are possible: a, b, and c. The subcategory (a) reflects a subjective
probability of malignancy between 2% to 10%. Subcategory (b) reflects a subjective
probability of 10% to 50% for malignancy, while subcategory (c) reflects a subjective
probability of malignancy ranging from 50% to 95%. Category 5 reflects a strong belief
(probability of 95% or more) that a lesion is malignant. When a lesion placed in this
category is contradicted by a benign biopsy report, a surgical consultation may still be
advised. Finally, a BI-RADS category of 6 is given when a lesion receives confirmation of
malignancy from the biopsy result.

A breast mass has two important aspects: shape and margin. BI-RADS lexical
descriptors of mass shape include oval, irregular, lobulated, etc. The mass margin describes
the shape of the edges of a mass, such as being circumscribed, ill-defined, or spiculated.
Breast density (Sickles et al., 2013) is a categorical variable with four categories. Category 1
describes breast composition that is almost entirely fatty. Category 2 indicates the presence
of scattered fibroglandular densities. Category 3 indicates breast that is heterogeneously
dense. Category 4 indicates breast that is extremely dense, which lowers sensitivity of
mammography. Finally, the subtlety rating, which is not part of the BI-RADS standards, is
an ordinal variable on a scale of 1 to 5 representing the difficulty in viewing the
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abnormality in a mammogram (Lee et al., 2017). The scale ranges from 1 for “subtle” to 5
for “obvious”.

Data processing
Fly wing images
For the fly images, the images could not be used directly because of the presence of
non-biological variation such as damaged wing membranes, lighting variation, and
presence of bubbles in the slides. We processed the images by converting them into binary
images using Pinetools (https://pinetools.com/threshold-image), with a focus on retaining
the pattern of venation on the wing. Subsequently, we denoised the binary images
manually. All images were cropped to a uniform size of 724 × 254 pixels. The final images
were stored in PNG format.

Breast cancer images
The regions of interest associated with the CBIS-DDSM breast cancer images were resized
to a uniform size of 300 × 300 pixels, and normalized using the EBImage R package
(Version 3.0.3; Pau et al. (2010)). Subsequently, we enhanced the contrast in the ROI of
images using the histogram equalization method (Gonzalez & Woods, 2002).

Feature extraction
Fly wing images
To use geometric morphometric data from the wing images, raw coordinate data from the
19 landmarks were processed using Generalized Procrustes Analysis in the geomorph
R package (Version 3.3.2; Adams & Otarola-Castillo, 2013) to produce the translation,
rotation, and scale-invariant Procrustes coordinates. To remove the effect of allometry, we
used the residuals produced from linear regression of the Procrustes coordinates against
the logarithm (base 10) of centroid size (Sidlauskas, Mol & Vari, 2011; Klingenberg,
2016). To remove correlation between the Procrustes coordinates, we applied R-mode
principal component analysis (PCA), and kept the first 15 principal components that
cumulatively explain 98.7% of the total variation in the data.

For image analysis, since the fly wing images are rectangular, we used higher order
moments to ensure that the reconstruction captured image details distal from the image
centroid (Fig. 2). We found that Krawtchouk moment invariants (see Appendix) of
order 200 was appropriate for extracting image features from the binary images of the fly
wings. Thus, 40,000 moment invariant features were obtained. Since the range of values
for these features was generally large, we scaled these features using the Z-score, and
then applied Q-mode PCA to reduce the dimension of the feature space. The first 60
principal components accounting for 92.6% of total variance were used as features for
downstream statistical learning work.

Breast cancer images
For the breast cancer images, we used KM of order 163. For GPZM, we used order 126,
and set α = 0. The choice of α value was guided by results in Xia et al. (2007), which showed
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that reconstruction error tended to be relatively smaller for α = 0 compared to larger values
of α, under the assumption of the presence of low level noise in the images.

The KM and GPZM orders were estimated using data as follows. First, we randomly
picked 8 images from the CBIS-DDSM collection and resized the images to a uniform size
of 300 x 300 pixels. The images were then normalized and enhanced using the histogram
equalization method. Subsequently, the GPZM and KM moments from order 1 to order
300 were computed for the images. For each order, we reconstructed the images and
calculated the mean squared error (MSE) for each image. The MSE can be obtained by
squaring the difference of the reconstructed image from the original image followed by
averaging using the dimension of the image.

Figure 2 An example of fly wing image data taken from C. nigripes. (A) Raw image; (B) binary image
after manual denoising; (C) reconstructed image using Krawtchouk moment invariants of order 200.

Full-size DOI: 10.7717/peerj-cs.698/fig-2
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For KM, order 163 was used as it produced the lowest MSE error, with mean and
standard deviation of the reconstructed images being 0.0128 and 0.0030, respectively.
For GPZM, the lowest MSE ranged from order 11 to order 238 with mean of 0.0028
and standard deviation of 0.0044, respectively. Order 126 was the mean of the orders
producing the lowest MSE among the 8 images. The mean and the standard deviation of
the reconstructed images with order 126 were 0.0040 and 0.0060, respectively. Plots of the
MSE for orders 1 to 300 for each of the 8 images are given in Supplemental File 1.

The top 1% of features with the largest magnitude of t-statistic values were selected as
the feature vector. We then applied Q-mode PCA on these selected features, and used the
first k principal components that explain about 95% of the total variance.

Study design and analysis
Data analysis
For Problem 2, consider an n × p input data matrix that has been subjected to Q-mode
PCA. This producesWT, the p × nmatrix of principal component loadings. With p > n, as
is the case with features extracted using orthogonal moments, the matrix of principal
component scores V is of dimension n × n. A partial principal component scores matrix
Vβ accounting for β proportion of total variation in the training samples is the n × k
submatrix obtained from V by taking the first k columns of V. Applying Fisher’s linear
discriminant analysis using Vβ, we then obtain the k × (s − 1) matrix of weights A for the
s−1 linear discriminants, where s is the number of classes.

Given an ntest × p matrix of test samples Xtest, we first center the test samples
Xtest, centered = Xtest − ( μtrain,…, μtrain)

T, where μTtrain is the 1 × p vector of mean of each of
the p variables in the training set. Then, we map the test samples into the principal
component space of training samples using the matrix operation Vtest = Xtest, centeredW

T.
Thereafter, we obtain the partial principal component scores matrix Vtest, β, which is of
dimension ntest × k, and finally map the test samples into the linear discriminant space
of the training samples using the matrix product Vtest, βA

T., which is of dimension ntest ×
(s−1). We use the latter for testing.

Statistical learning model
For classification, we used a kernel discriminant model in the GUIDE (Generalized,
Unbiased, Interaction Detection and Estimation) classification and regression tree
program (Loh, 2009, 2014). The kernel method is a non-parametric method that estimates
a Gaussian kernel density (Silverman, 1986) for each class in a node, and uses the estimated
densities in a maximum likelihood framework for classification. The tree complexity
parameter k-SE in GUIDE was set at the default value of 0.5, with the number of cross-
validated trees set at 10.

For Problem 1, it was not feasible to split the samples into another test set for assessing
generalization error, because the average sample size per class was already small (about 5).
Hence, we applied the random forests ensemble classifier (2001 trees) and obtained the
out-of-bag error estimate for generalization error.
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For the CBIS-DDSM data set in Problem 2, we randomly chose 70% of the data set for
training, and the remainder 30% for testing. A total of 10 such instances were made to
study variation in performance metrics. Subsequently, the predicted probability of
malignancy (P(mal)) was used as a feature together with subsets of the expert features to
build another machine learning model. For this, we considered four models: (I) expert
features with BI-RADS assessment and P(mal) from image analysis; (II) expert features
with BI-RADS assessment, without P(mal); (III) expert features with BI-RADS assessment
replaced by P(mal) from image analysis; (IV) expert features without BI-RADS assessment.
To understand the relative contribution of the set of variables in the four models, we
computed variable importance scores for each variable in Models I to IV using GUIDE,
following the method in Loh (2012). We ranked the importance scores of each variable in
the four models (1 being most important) and then reported the mean and standard
deviation of the ranks.

Performance evaluation
We used standard metrics for the evaluation of classifier performance. Accuracy is
defined as the probability that the predicted class is the same as the true class. For
multi-class prediction in the fly images, we did not use sensitivity or specificity, as
contextually no particular species is of any special interest. Hence, sensitivity and
specificity were considered only in the breast cancer classification. There, sensitivity is
defined as the probability of predicting the malignant class, given that a sample is
malignant. Specificity is defined as the probability of predicting the benign class, given that
a sample is benign.

In the case of the fly images, we used the Bayesian posterior mean of accuracy with
uniform prior (see Appendix), and reported the 95% Bayesian credible interval (Brown,
Cai & DasGupta, 2001). For the breast cancer images, we reported the mean of accuracy,
sensitivity, and specificity from the 10 random instances, along with their associated
standard error estimate (sample standard deviation /√10).

Software and computation
For image analysis, we used R version 3.6.1 (R Core Team, 2018) to perform the
computations and run the IM R package (Rajwa et al., 2013). Data processing and analyses
of the CBIS-DDSM samples and fly wing images were done using a 22 CPU core, 23 GB
RAM server running on Ubuntu 16.04.4 LTS at the Data Intensive Computing Centre,
Universiti Malaya, Malaysia. For classification using decision trees with kernel model and
random forests, we used the GUIDE program (Version 35.2; Loh (2009, 2014)).

RESULTS
Quality of moment feature representation of images
For the fly wings, images reconstructed from KM of order 200 approximated the
binary images very well (Fig. 2C). Similarly, images reconstructed from KM (order
163) and GPZM (α = 0) for the breast images also approximated the ROI well.
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An example showing a malignant mass is given in Fig. 3. For additional examples, see
Supplemental File 2.

Classification of fly species
Krawtchouk moment invariants of order 200 captured important patterns of variation in
wing venation that led to 94.7% correct classification of 74 training samples (95% Bayesian
credible interval for accuracy = [88.8–98.5%]). Indeed, within species variation was
substantially smaller for 12 species, compared to between species variation (Fig. 4). In
comparison, the use of geometric morphometric data produced classification accuracy
of 64.5% (95% Bayesian credible interval for accuracy = [53.5–74.8%]). Baseline prediction
accuracy using the majority class was 7.9%. The classification matrices for both cases are
given in Supplemental File 3.

Under the random forests model, predicting species using Krawtchouk moment
invariants produced 100% accurate classification result, whereas two errors were made
when geometric morphometric data was used. Out-of-bag error using Krawtchouk
moment invariants was 0% (0/74), compared to 39.2% using geometric morphometric data
(29/74).

Classification of benign and malignant breast masses
The mean classification accuracy based solely on image data was about 57% ± 1%, with
mean sensitivity about 70% ± 1%, and mean specificity of 43% ± 2%. Baseline prediction
accuracy using majority class was 52%. Figure 5 shows, for a particular training-testing
instance, the estimated bivariate Gaussian kernel densities in the space of the first linear
discriminants derived from KM and GPZM, with test samples superimposed on the plot.

When expert features were used together with P(mal) as a feature, we observed
substantial increase of mean accuracy (from 57% to between 68% and 75%; Table 1), mean

Figure 3 (A) An example of the raw mammogram image showing malignant spiculated breast mass
(index no. P_01461). (B) Image after thresholding showing the tumor (white). (C) Region of interest
centered on the mass (390 × 385 pixels) before (D) Enhancement. (E) Reconstruction using KM; (F)
Reconstruction using GPZM. Full-size DOI: 10.7717/peerj-cs.698/fig-3
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sensitivity (from 70% to between 80% and 97%), and mean specificity (from 43% to
between 51% and 61%, excluding Model IV). Using the set of expert features without
P(mal) (Model II) produced the best mean accuracy (75% ± 1%) and best mean sensitivity
(97% ± 0%).

Removal of the BI-RADS assessment (Model IV) affected mean specificity substantially,
causing it to drop from 51% (Model II) to 40%. If BI-RADS assessment was replaced by
P(mal), mean specificity improved slightly, at the expense of mean sensitivity, which
dropped from 97% (Model II) to 80%, thus causing a concurrent drop in mean
accuracy from 75% to 68%. This suggests that the information in BI-RADS assessment and
P(mal) are non-redundant and may complement each other. Finally, these two features
interact to produce a model (Model I) where the difference in sensitivity and specificity
is minimized (24%) compared to other models (Model II: 46%; Model III: 34%; Model IV:
55%). Thus, the inclusion of P(mal) as a feature seemed to be important for reducing
the discrepancy between model sensitivity and model specificity by decreasing the former
but increasing the latter.

Table 2 shows summary statistics of feature importance (mean ± standard deviation) for
each of the four models. Across all four models, BI-RADS assessment (where used) and
mass margin were consistently ranked as the two most important features, and the order of
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Figure 4 Scatter plot of fly wing shape in LD3 and LD4 space, with contour plots of the estimated
species-specific bivariate Gaussian kernel densities (heat-colored regions). Abbreviations: al, P. albi-
ceps; cu, L. cuprina; du, S. dux; ja, B. javanica; ka, B. karnyi; me, C. megacephala; mi, P. misera; ni,
C. nigripes; po, L. porphyrina; pi, C. pinguis; rc, S. ruficornis; rf, C. rufifacies; pe, B. peregrina; pr,
S. princeps; vi, C. villeneuvi. LD3, third linear discriminant score; LD4, fourth linear discriminant score.
Color annotation: black for Sarcophagidae species; blue for Calliphoridae species.

Full-size DOI: 10.7717/peerj-cs.698/fig-4
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Figure 5 Example of contour plots of estimated bivariate Gaussian kernel densities for benign (light
blue to dark blue tones) and malignant (yellow to red tones) training data (CBIS-DDSM data with
seed 261) in the space of linear discriminants (first) based on Krawtchouk moments and generalized
pseudo-Zernike moments. Squares and crosses indicate benign and malignant test samples, respectively.

Full-size DOI: 10.7717/peerj-cs.698/fig-5

Table 1 Mean accuracy, sensitivity and specificity (±standard error) of Models I to IV, in
percentages.

Model Accuracy Sensitivity Specificity

I 70 ± 1 85 ± 1 61 ± 2

II 75 ± 1 97 ± 0 51 ± 1

III 68 ± 2 80 ± 1 54 ± 3

IV 69 ± 1 95 ± 1 40 ± 3

Table 2 Variable (feature) importance of the predicted probability of malignancy (P(mal)) and the
five expert features for Models I to IV. The most important variable is ranked 1, with larger ranks
indicating less importance. Abbreviation: NA, not available.

Model P(mal) Assessment Mass margins Mass shape Subtlety Breast density

I 2.8 ± 0.6 1.5 ± 0.5 1.7 ± 0.6 4.0 ± 0.0 5.0 ± 0.0 6.0 ± 0.0

II NA 1.6 ± 0.5 1.4 ± 0.5 3.0 ± 0.0 4.0 ± 0.0 5.0 ± 0.0

III 1.9 ± 0.3 NA 1.1 ± 0.3 3.0 ± 0.0 4.0 ± 0.0 5.0 ± 0.0

IV NA NA 1.0 ± 0.0 2.0 ± 0.0 3.0 ± 0.0 4.0 ± 0.0
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importance (in decreasing importance) for mass shape, subtlety, and breast density was
also consistent. Where P(mal) was used in Model I, on average it ranked third in order of
importance; in Model III, on average it ranked second, after mass margin. This suggests
that P(mal), which summarizes abstract information from image data, provides useful
information to the statistical learning model when used together with the expert features.

DISCUSSION
Currently, geometric morphometrics is the standard method for the analysis of wing shape
variation in entomology (Tatsuta, Takahashi & Sakamaki, 2018), of which species
identification is only one possible application. Nevertheless, for routine species
identification, direct image analysis can also be practical and produce more accurate
prediction results. Indeed, we showed that images containing artefacts could still be useful
for species identification, as such artefacts can be removed in the binary images viamanual
denoising. Krawtchouk moment invariants of images can be generated quickly, thus
making them useful as sample features for statistical learning models in the initial
evaluation of the difficulty of a biological image classification problem. Indeed, in
situations where only a few landmarks can be reliably identified, image analysis using
orthogonal moments is a feasible alternative to addressing the species identification
problem.

Given the encouraging results of applying Krawtchouk moment invariants to image
analysis of fly wing venation patterns in the present study, we conjecture that image-based
identification of other insects where substantial species-specific variation is present in
the wing organs, such as dragonflies (Kiyoshi & Hikida, 2012) and mosquitoes (Lorenz
et al., 2017), may also be fruitful.

For classification of breast masses using KM and GPZM, the result was less satisfactory.
A potential source of error may be noise generated in some ROI images that were
originally smaller (e.g. 159 × 95 pixels) when they were rescaled to 300 × 300 pixels. Several
studies that used orthogonal moments in breast mass classification reported apparently
optimistic results, but their study design should be considered carefully. For example,
Tahmasbi, Saki & Shokouhi (2011) reported classification accuracy of 96%, sensitivity
of 100%, and specificity of 95%. They used a different set of breast cancer images (n = 121)
from the much smaller Mini-MIAS database (Suckling et al., 1994), of which about 55%
(n = 67) are benign cases, and 45% (n = 54) are malignant cases. As a result, the
number of images available for testing (n ≈ 36, with benign and malignant cases being
approximately equal) was limited. By introducing manual segmentation in their work to
accentuate mass boundaries in the ROIs, the authors inadvertently injected expert
knowledge into the study. They extracted features using Zernike moments (Khotanzad &
Hong, 1990) and applied artificial neural network as the classifier. Narváez & Romero
(2012) used KM and Zernike moments to extract features from images in the DDSM
database for the classification of breast masses. They reported test accuracy of about
90% with KM features. However, the size of the test samples was small (n = 100; half
benign, half malignant). It was also unclear from their study design whether the selected
training samples (n = 300) and test samples were randomized.
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The United States of America national performance benchmark on screening
mammography by radiologists recently established a mean sensitivity 86.9% (95%
confidence interval [86.3–87.6%]) and a mean specificity of 88.9% (95% confidence
interval [88.8–88.9%]), using a sample of 359 radiologists who examined about 1.7 million
digital mammograms (Lehman et al., 2017). In comparison, deep learning algorithms
produced impressive prediction performance that was seemingly on par with, or
surpassed expert performance. Using 2,478 images in the CBIS-DDSM database (training
set size = 1,903; validation set size = 199; test set size = 376), Shen et al. (2019) reported
sensitivity of 86.7%, and specificity of 96.1% in the classification of malignant and
benign masses. However, the apparent optimism in deep learning as the last word in
medical image analysis was recently questioned. Wang et al. (2020) reported that deep
learning test accuracy dropped substantially when test samples with distribution of
patterns of variation that differed from that of the validation samples’ were used to
challenge the trained deep learning model. It seems that allowing image information to
interact with expert features may produce more robust models when we attempt to classify
biologically complicated images such as mammograms.

CONCLUSIONS
Through the analysis of fly wing images, we showed that orthogonal moments such as the
Krawtchouk moments are effective features for summarizing meaningful patterns in
relatively simple biological images. The GUIDE kernel model that uses Krawtchouk
moment invariants gave highly accurate prediction of all 15 fly species studied,
beating the similar model that uses geometric morphometric data by a wide margin.

On the other hand, the efficacy of orthogonal moments-based features for summarizing
patterns of variation that are more heterogeneous and less well-defined in complex
biological images appears modest. Through analysis of the CBIS-DDSM breast
mammograms, we found statistical learning models that use orthogonal moments
produced classification performance that was far below those achieved by trained
radiologists. Nevertheless, when output of the predictive model in the form of predicted
probability of malignancy was used as a feature to summarize image evidence for the
malignancy class, we found its variable importance score surpassed those of expert features
associated with mammograms (e.g. mass shape, breast density, and subtlety rating).
We also found the predicted probability of malignancy to interact with the important
BI-RADS assessment for malignancy expert feature, leading to prediction performance
that is optimal in the sense of having the smallest discrepancy between sensitivity and
specificity.

To summarize, we believe orthogonal moments are still feasible as image features in the
analysis of biological images. They should be adequate for handling species prediction
problems on the basis of the shape of specific anatomies. The ease of applying them
means that orthgonal moments are ideal for estimating a lower bound of prediction
performance. On the other hand, expert features that accompany more complex biological
images are probably necessary to offset the modest performance of statistical learning
models that use orthogonal moments for class prediction.
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APPENDIX
Orthogonal moments
In this section, we provide sufficient mathematical background for the appreciation of
the use of orthogonal moments as feature extractors of images. For further advanced
details, we refer readers to Szegö (1975) for the theory of orthgonal polynomials, Yap,
Paramesran & Ong (2003) for Krawtchouk moments, Xia et al. (2007) for generalized
pseudo-Zernike moments, and Shu, Luo & Coatrieux (2007) for a general introduction to
using orthogonal moments for image analysis.

Mathematical preliminaries
Definition 1. (Szegö, 1975) Let pn(x) be a polynomial in x of order n. For the interval a ≤ x
≤ b, if w(x) is a weight function in x, and δnm is the Kronecker delta which is equal to 1
when n = m, and 0 when n ≠m, then pn(x) is said to be an orthogonal polynomial associated
with the weight function w(x) if it satisfies the conditionZ b

a
pnðxÞpmðxÞwðxÞdx ¼ dnm:

Definition 2. (Oberhettinger, 1964) The hypergeometric function, 2F1(a,b;c;z) is a special
function defined as the power series

2F1ða; b; c; zÞ ¼
X1
k¼0

ðaÞkðbÞk
ðcÞk

zk

k!
;

where a,b,c are real numbers, with |z| < 1. The notation (a)k denotes the Pochhammer
symbol for the rising factorial (a)k = a(a + 1)(a + 2)…(a + k − 1), with (a)0 = 1.

Krawtchouk polynomials and moments
The Krawtchouk polynomials (Krawtchouk, 1929a, 1929b) are discrete orthogonal
polynomials associated with a binomial probability weight function. The Krawtchouk
polynomial of order n is denoted by kn x; p;N � 1ð Þ, and can be conveniently representing
as a hypergeometric function

kn x; p;N � 1ð Þ ¼ 2F1 �n;�x;�N þ 1;
1
p

� �

where n, x = 0, 1, 2,… , N − 1, N >1, 0 < p < 1. The weighted Krawtchouk polynomial (Yap,
Paramesran & Ong, 2003) kn x; p;N � 1ð Þ is given by

kn x; p;N � 1ð Þ ¼ kn x; p;N � 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x x; p;N � 1ð Þ
q x; p;N � 1ð Þ

s
;

where x x; p;N � 1ð Þ is the binomial probability mass function

xðx; p;N � 1Þ ¼ N � 1
x

� �
pxð1� pÞN�1�x;
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and ð1� pÞN�1=q x; p;N � 1ð Þ ¼ xðn; p;N � 1Þ. For brevity, we will write knðx; p;N � 1Þ
as knðxÞ.

Let the Krawtchouk moments matrix of order l be an l × l square matrix, Q. The (n,m)
element of Q, denoted as Qnm, is related to the image intensity function f(x,y) on the two-
dimensional discrete domain through

Qnm ¼
XN�1

x¼0

XM�1

y¼0

kn xð Þkm yð Þf ðx; yÞ:

Consider an image of dimension N × M. If we denote K1 and K2 as the l × N and l × M
matrix of weighted Krawtchouk polynomials, respectively, with A as the N × M matrix of
image intensity functions, then

Q ¼ K1AK
T
2 :

The orthogonality property of the weighted Krawtchouk polynomials

XN�1

x¼0

kn xð Þkm xð Þ ¼ dnm;

implies that the product of an l × N matrix of weighted Krawtchouk polynomials with its
transpose is the l × l identity matrix. Therefore, the image intensity functions can be
reconstructed from Q as

A ¼ K1
TQK2;

that is,

f x; yð Þ ¼
XN�1

n¼0

XM�1

m¼0

kn xð Þkm yð ÞQnm:

Generalized pseudo-Zernike polynomials and moments
The pseudo-Zernike polynomials (Bhatia & Wolf, 1954) are polynomials in two variables
that form a complete orthogonal set for the interior of the unit circle. The pseudo-Zernike
polynomials of order n and repetition m is denoted by Vnm(r,θ), and expressed in polar
coordinate form as

Vnmðr; hÞ ¼ RnmðrÞeimh;

where i is the complex number
ffiffiffiffiffiffi�1

p
, and Rnm(r) is the radial polynomial defined as

RnmðrÞ ¼
Xn�jmj

j¼0

ð�1Þjð2nþ 1� jÞ!
j!ðn� jmj � jÞ!ðnþ jmj þ 1� jÞ! r

n�j;

where n ¼ 0; 1; 2; ;1; and |m| ≤ n. Xia et al. (2007) proposed a generalization of Rnm(r)
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Ra
nmðrÞ ¼

ðnþ jmj þ 1Þ!
ðaþ 1Þnþjmjþ1

Xn�jmj

j¼0

ð�1Þj ðaþ 1Þ2nþ1�j

j!ðn� jmj � jÞ!ðnþ jmj þ 1� jÞ! r
n�j;

where α > − 1, with R0nm(r) = Rnm(r). The weighted generalized radial polynomial is given
by

�Ra
nmðrÞ ¼ Ra

nmðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ aþ 2Þðaþ 1þ n� jmjÞ2jmjþ1Þ

2pðn� jmj þ 1Þ2jmjþ1

s
ð1� rÞa=2;

leading to the generalized pseudo-Zernike polynomials

�Va
nmðr; hÞ ¼ �Ra

nmðrÞeimh:

The generalized pseudo-Zernike moments (GPZM) of order n and repetition m are
defined as

�Za
nm ¼

Z 2p

0

Z 1

0
½�Va

nmðr; hÞ��f ðr; hÞrdrdh;

where * denotes complex conjugate. The orthogonality property of the pseudo-Zernike
polynomials implies that

Z2p
0

Z1

0

�Va
nmðr; hÞ½�Va

klðr; hÞ��rdrdh ¼ dnkdml:

The image can be approximately reconstructed using the inverse transform formula
(Teague, 1980)

f ðr; hÞ �
X1
n¼0

X
jmj�n

�Za
nm

�Va
nmðr; hÞ:

Bayesian estimator of classification accuracy
Let Xi, i = 1,2,…,s be the number of correctly predicted samples for the ith species (up to s
species). These are the diagonal entries of the s × s classification matrix. For a statistical
learning model, assume that it has constant probability π of correctly predicting the
species identity of a sample (i.e. accuracy). Then, Xi is binomially distributed with number
of trials equal to the number of i-th species in the sample (ni) and success probability π. By
Bayes’ Theorem, the posterior distribution of π, given X1,X2,…,Xs, is

f ðpjX1;X2; . . . ;XsÞ ¼ PðX1;X2; . . . ;XsjpÞf ðpÞ �
Z 1

0
PðX1;X2; . . . ;XsjpÞf ðpÞdp

� ��1

;

where f(π) is the prior distribution of π. Using the conservative uniform prior f(π) = 1, 0 <
π < 1, and assuming that PðX1;X2; . . . ;XsjpÞ ¼

Qs
i¼1 PðXijpÞ, it can be shown that f(π|X1,

X2,…,Xs) has a beta distribution with shape parameters a ¼ Ps
i¼1 Xi þ 1, and
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b ¼ N �Ps
i¼1 Xi þ 1, where N is the total sample size. Thus, the Bayesian posterior mean

estimate of π is given by

p̂ ¼
Ps

i¼1 Xi þ 1
N þ 2

:

The lower and the upper limit of the 95% Bayesian credible interval of π are computed
as the 2.5th and the 97.5th percentile of the beta distribution with shape parameters

a ¼ Ps
i¼1 Xi þ 1 and b ¼ N �Ps

i¼1 Xi þ 1, respectively.

ACKNOWLEDGEMENTS
We thank Dr. C.S. Liew and K.G. Ng from the Data Intensive Computing Centre,
Universiti Malaya for technical support. We also thank Dr. Gianluca Polgar for help with
graphics.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Jia Yin Goh was supported by a research assistantship through the RU Grant from the
Faculty of Science, Universiti Malaya, Malaysia (Grant number: GPF029B-2018). The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Faculty of Science, Universiti Malaya, Malaysia: GPF029B-2018.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Jia Yin Goh performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, authored or reviewed drafts of the paper, and
approved the final draft.

� Tsung Fei Khang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The codes and data are available in the Supplemental Files. Links to external data
sources are provided in README files therein.

Data availability for Problem 2:
The dataset and its metadata are available at the CBIS-DDSM website: https://wiki.
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The metadata of the dataset are available by following the sequence below:
CBIS-DDSM website > Data Access > Mass-Training-Description (csv) > Download
CBIS-DDSM website > Data Access > Mass- Test-Description (csv) > Download
The breast cancer images are available by following the sequence below:
CBIS-DDSMwebsite > Detailed Description >Mass-Training ROI and Cropped Images

(DICOM) > Download
CBIS-DDSM website > Detailed Description > Mass-Test ROI and Cropped Images

(DICOM) > Download
For the breast cancer images, clicking the "Download" button will save a ".tcia" manifest

file that can only be opened with the NBIA Data Retriever.
To download the NBIA Data Retriever, please follow the instructions in this link:

https://wiki.cancerimagingarchive.net/display/NBIA/Downloading+TCIA+Images

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
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