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ABSTRACT
Background and Objectives: This paper presents an in-depth review of the state-of-
the-art genetic variations analysis to discover complex genes associated with the
brain’s genetic disorders. We first introduce the genetic analysis of complex brain
diseases, genetic variation, and DNA microarrays. Then, the review focuses on
available machine learning methods used for complex brain disease classification.
Therein, we discuss the various datasets, preprocessing, feature selection and
extraction, and classification strategies. In particular, we concentrate on studying
single nucleotide polymorphisms (SNP) that support the highest resolution for
genomic fingerprinting for tracking disease genes. Subsequently, the study provides
an overview of the applications for some specific diseases, including autism spectrum
disorder, brain cancer, and Alzheimer’s disease (AD). The study argues that despite
the significant recent developments in the analysis and treatment of genetic
disorders, there are considerable challenges to elucidate causative mutations,
especially from the viewpoint of implementing genetic analysis in clinical practice.
The review finally provides a critical discussion on the applicability of genetic
variations analysis for complex brain disease identification highlighting the future
challenges.
Methods: We used a methodology for literature surveys to obtain data from
academic databases. Criteria were defined for inclusion and exclusion. The selection
of articles was followed by three stages. In addition, the principal methods for
machine learning to classify the disease were presented in each stage in more detail.
Results: It was revealed that machine learning based on SNP was widely utilized to
solve problems of genetic variation for complex diseases related to genes.
Conclusions: Despite significant developments in genetic diseases in the past two
decades of the diagnosis and treatment, there is still a large percentage in which the
causative mutation cannot be determined, and a final genetic diagnosis remains
elusive. So, we need to detect the variations of the genes related to brain disorders in
the early disease stages.
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INTRODUCTION
The genetic mechanisms of complex diseases are challenging to discover. The power to
identify the set of genes responsible for complex diseases using current methods is often
lacking. In the last few years, large quantities of biological data have been generated for
genomics and proteomics with rapid developments (Mezlini & Goldenberg, 2017).
These data need a complex mathematical analysis to interpret biological data using the
interdisciplinary science composed of computer science and information technology,
which is known as bioinformatics or computational biology. This new research area is
more important and will grow rapidly as we continue producing and integrating large
amounts of protein, genomic and other data.

Bioinformatics research is an active area to solve biological problems. It utilizes data
mining (DM) techniques and its applications to analyze biological data. In medicine, DM
is emerging of high importance for diagnosing neurodegenerative diseases and supporting
prognosis to provide deeper understanding (Joshi et al., 2010). The data analysis
includes many examples, such as protein structure prediction, gene classification, gene
classification based on microarray data, and clustering gene expression data. Therefore,
DM and bioinformatics interaction should be increased to provide great potential
(Association, 2019).

The association of the structural changes with brain diseases, which occurs as the
disease progresses, is unknown (Sherif, Zayed & Fakhr, 2015; Kim et al., 2013; Bertram, Lill
& Tanzi, 2010; Yokoyama et al., 2015; Hwang et al., 2014; Guerreiro & Hardy, 2012). So,
we need to identify many genetic markers about their association with brain diseases.
In the 1950s, artificial intelligence (AI) appeared as an independent field because of the
potentials to make machines intelligent like a human. In streamlining complex analytical
workflows, bioinformatics with AI techniques play an essential role in performing
multistep analysis within one analytical framework. The problems with biological data,
such as the complexity of data and the growing exponential rate, can be solved with
workflows that enable processing and analysis. Machine learning (ML), knowledge
discovery, and reasoning deployed by AI techniques are continuously improving.
A formidable combination is presented between bioinformatics and AI, where the analysis
of complex biological systems is enabled by bioinformatics and human-like reasoning.
We can perform complex tasks based on reasoning by using AI-based tools (Sandraa et al.,
2010; Bertram & Tanzi, 2012).

In the past few years, intensive computational efforts have been performed to study
single nucleotide polymorphisms (SNPs) structural and functional consequences. In this
context, ML and DM techniques have been widely performed for SNP data analysis.
Biological systems are complex, so most studies on large scales concentrate only on one
specific aspect of the biological system. For example, genome-wide association studies
(GWAS) concentrates on genetic variants associated with phenotypes measurement.
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So, the feature should be chosen precisely from the provided dataset. The best possible
subset of the feature sets is determined using search methods. Then, evaluation techniques
are used to evaluate them.

Some examples of genetic diseases that affect the brain are Alzheimer’s Disease (AD)
and Parkinson’s, as shown in Table 1. The progressive decline of cognition and memory is
caused by AD, which is a degenerative disease. It causes the nerve cells’ degeneration
in the brain due to AD’s side effects, which are related to language and memory (Ang et al.,
2015). After 65 years, symptoms appear, and the spread of disease with age increases
sharply. It is considered the most common form of dementia in the disease’s onset genetic
factors for specific genes. However, they are not the primary effect of the disease. Also, the
suffering can be increased by other factors, such as age, smoking and alcohol (Ang
et al., 2015; Zuk et al., 2012, 2014; Hormozdiari et al., 2015). AD has many common
symptoms, such as complete memory loss, impairments of movements, misplacing things,
verbal communication, and abnormal moods (Sherif, Zayed & Fakhr, 2015). If AD is not
initially diagnosed, the disease’s severity increases (Hemani, Knott & Haley, 2013; Pinto
et al., 2014; Parikshak, Gandal & Geschwind, 2015; Nakka, Raphael & Ramachandran,
2016).

One of the most demanding tasks in a post-genomic era is identifying disease genes
from a vast amount of genetic data. Moreover, complex diseases present a very
heterogeneous genotype that makes it difficult to identify biological markers. ML is widely
used to identify these markers, but their performance relies heavily on the size and quality
of the data available (Asif et al., 2018). Also, modern computational systems help
researchers to analyze complex data like genetic information of humans and its underlying
patterns. These patterns reveal the genes that cause diseases. Mathematical models are
helpful to build robust ML models for analyzing gene expression. So, this paper introduces
a comprehensive review of genetic variations analysis for discovering complex disease-
related genes, especially genetic brain diseases. The SNPs data is commonly used as a

Table 1 Early symptoms comparison of various brain diseases.

Comparison between early symptom Dementia of Lewy
body

Parkinson’s disease (PD) Alzheimer’s disease
(AD)

Age of onset >60 years old >70 years old >60 years old

Gender-specific Men > Women Conflicting Men = women

Family history No Conflicting Yes

Significant Loss of Memory Possible Possible Years After
Diagnosis

Always

Problems of Language Possible Possible Possible

Fluctuating Cognitive Abilities Likely Possible Possible

Planning or Problem-solving Abilities Likely Possible Possible

Decline in Thinking Abilities that Interfere with Everyday Life Always Possible Years After
Diagnosis

Always

Difficulty with a Sense of Direction or Spatial Relationships between
Objects

Likely Possible Possible
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marker-based association or association study in a population. We focus on identifying a
disease’s biomarkers based on SNPs that alter phenotypes by altering some molecular
functions. There are many challenges to defining so-called functional variants. First, the
marker variants themselves may be unbalanced (or linkage, depending on the study)
with the causal variant. Second, the challenge is identifying candidate genes related to
disease to narrow down an area for SNP prioritization. Finally, the molecular function is
poorly understood, so we need to increase how SNPs disrupt their functionality (Hemani,
Knott & Haley, 2013; Pinto et al., 2014; Parikshak, Gandal & Geschwind, 2015; Nakka,
Raphael & Ramachandran, 2016; Guyon et al., 2002; Printy et al., 2014).

This paper is consisting of six sections. In “Methodology”, we explain some basic
concepts of gene sequence and types of genetic variations. In “A Genetic Analysis of
Complex Brain Diseases”, we present some classification, preprocessing, and
dimensionality reduction techniques. “ML Methods” discusses essential research areas
about various diseases depending on discovering genetic mechanisms as shown in tables in
this section. “Literature Review on Complex Disease & Applications” introduces current
research topics, future directions, and challenges. Finally, we discuss the conclusion of
this work in “Critical Discussion and Future Challenges”. Also, Fig. 1 represents the
structure of these sections.

METHODOLOGY
This section introduces the protocol used to survey various genetic variations to diagnose
complex brain diseases using machine learning. We list the search keywords, data sources,
inclusion/exclusion criteria, and article selection in this section. Also, we illustrated in
Fig. 2 the structure of the systematic review analysis and how to remove the overlap articles
among different databases. We remove overlap with two ways by Endnote by choosing the
following elements: (1) Title, author and year. (2) Title, author and journal.

Figure 1 The structure of the survey. Full-size DOI: 10.7717/peerj-cs.697/fig-1

Ahmed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.697 4/44

http://dx.doi.org/10.7717/peerj-cs.697/fig-1
http://dx.doi.org/10.7717/peerj-cs.697
https://peerj.com/computer-science/


Search keywords
Keywords have been carefully chosen for the initial search. After the initial search, new
words found in several relevant articles have formulated multiple keywords. The study’s
keywords included “genetic analysis for brain disease using machine learning”, “genetic
variations based on single nucleotide polymorphism (SNP)”, “Gene analysis for complex
brain disease based on machine learning”.

Data sources
Our survey used different academic database sources to obtain articles, as shown in
Table 2.

Article inclusion/exclusion criteria
Inclusion/exclusion criteria have been developed to determine which papers are eligible for
the next review phase. Relevance for research has been considered for articles that meet

Figure 2 The guidelines for systematic review analysis. Full-size DOI: 10.7717/peerj-cs.697/fig-2

Table 2 The used databases for selecting the academic articles in this article.

Academic database Source

Science direct http://www.sciencedirect.com/

Springerlink https://link.springer.com/

IEEEXplore https://ieeexplore.ieee.org/

Web of science https://apps.webofknowledge.com/

PubMed https://pubmed.ncbi.nlm.nih.gov/

PeerJ https://peerj.com/

Scopus https://www.scopus.com/
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inclusion criteria and excluded articles that do not fulfill inclusion criteria. The following
criteria are defined for inclusion/exclusion.

Inclusion

1. Our paper only focuses on genetic variation for complex diseases related to genes.

2. Only articles that performed on genetic variation for complex diseases related to genes
using machine learning.

3. For inclusion, only articles in English were taken into account.

Exclusion

1. Papers that do not focus on genetic variation for complex diseases related to genes were
excluded.

2. Articles that do not concentrate on genetic variation for complex diseases related to
genes using machine learning were excluded.

3. Articles that are not in English were excluded.

Article selection
Research has established criteria for inclusion and exclusion to choose which articles are
eligible for the next review phase. Articles that satisfy the inclusion criteria were considered
research-related, and items that did not meet the inclusion criteria were excluded. In the
previous section, we present the list of inclusion/exclusion criteria. Three phases were
followed to select an article for this research. The first step was to consider extracting only
the titles and abstracts of the articles. The second stage was to analyze the abstract,
introduction, and conclusion to refine the first stage’s choice. At the end of the process, the
articles were carefully read and the quality of the papers was then measured according to
their relevance to the research.

A GENETIC ANALYSIS OF COMPLEX BRAIN DISEASES
The core of modern medical genetics is to enhance our understanding of the genetic
mutations and possible factors in genetic risk, which cause or contribute directly to human
disease. Evolutionary theory can describe selective forces that affect causal alleles and
susceptibility to human genetic disorders. In the general population, complex disorders are
common and result from the interaction of many sites of sensitivity and environmental
factors (Rahit & Tarailo-Graovac, 2020; Spataro et al., 2017). In contrast, Mendelian
disorders are usually rare and have predictable genotypes as they are generally caused by a
single causative mutation in the gene. However, the classic distinction between Mendelian
diseases and complex diseases is not always absolute due to its heterogeneity and
incomplete penetration. There is a continuum between pure Mendelian diseases and more
complex diseases.

Diseases that follow Mendelian inheritance patterns are called Mendelian disorders.
About 80% of all rare diseases are hereditary, and most of these diseases are monogenic/
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Mendelian. According to an estimate, there are 400 million people worldwide with around
7,000 various rare diseases (Rahit & Tarailo-Graovac, 2020; Spataro et al., 2017). So,
studying gene function by biomedical researchers should consider the impact of the
variations between these diseases. Genetic information about these diseases can supply
valuable insight into the critical regions and operating ranges, proteins, or regulatory
elements. Genetic variants may differ in nature concerning single nucleotide variants,
tandem repeats or deletions, and small insertions to massive copy number variants (CNVs)
(Siavelis et al., 2016). Until lately, genetic variation information is limited to some extent.
However, many large-scale surveys of diversity have provided numerous data on
covariance. A picture is started from the driving forces in human evolution and population
diversity that is emerged (Siavelis et al., 2016;Mathur, 2018; Raza, 2012;Wodehouse, 2006;
Mount & Pandey, 2005; Barnes, 2010).

SNPs work as a pointer in the association and linkage studies to identify the genome’s
part in a particular disease (Hasnain et al., 2020; Ng & Henikoff, 2003; Uppu, Krishna &
Gopalan, 2016; Liang & Kelemen, 2008; Korani et al., 2019). Polymorphs are found in the
same coding and organizing regions, which may be involved in diseases. A non-
synonymous SNP is called the SNP that causes amino acid substitution. The amino acid
variations that lead to genetic lesions that cause diseases have a strong concentration and
interest. Studies aimed at determining polymorphisms and analysis of mutation
complement each other to identify substitutions for amino acids in protein code regions
where any variation can change protein function or structure (Clare & King, 2001).
Substitution of one nucleotide by another is the most simple form of DNA variation
between individuals. As shown in Fig. 3, this type of change is known as SNP. SNPs are
estimated to occur at a rate of 1 in 1,000 bps across the genome (Shastry, 2007). These
simple changes can be of transitional or transitional type. Approximately 50% of the
polymorphisms are found in non-coding regions, whereas 25% of them result in missense
mutations (encoding SNPs or cSNPs). The remaining 25% are silent mutations that do not
alter the code of the amino acid. These silent SNPs are known as synonymous, and most
likely, they are not subject to natural selection.

On the other side, non-synonymous SNPs may cause pathology and may be natural for
selection (nSNPs and codified amino acids). SNPs (both synonymous and unknown)
influence promoter activity and pre-mRNA morphology (or stability) (Shastry, 2007).
They also change the protein’s ability to bind to its substrates or inhibitors and alter

Figure 3 The haplotype of SNPs for individuals. Full-size DOI: 10.7717/peerj-cs.697/fig-3
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subcellular proteins’ localization (nSNPs). Therefore, they may be responsible for disease
susceptibility, drug deposition, and genome evolution. However, many of them affect gene
function. Besides, many of them are not harmful to living organisms and must have
survived selection pressure (Halushka et al., 1999).

Due to the inheritance of certain diseases, a direct aim of the human genome project is
to identify the genes which predispose individuals to different diseases. It also examines
how sequential variation of a gene affects the functions of its product. SNPs often
occur across the genome, as has already been mentioned. They can therefore be used as
markers by studying correlation to discover disease-causing genes. Two closely related
alleles (gene and marker) are supposed to be inherited together in such studies. So, a simple
comparison of patterns of genetic differences between patients and normal individuals
may facilitate a method for determining which sites are responsible for disease
susceptibility.

Types of genetic variation
Candidate genes tend to decrease the number of SNPs in the study to some mutations
where genes are intended to provide the genetic basis for the disease under study. Although
overall candidate genes’ data sets are considered to be, the various tests of hundreds or
even thousands of polymorphisms in our situation make link detection troublesome.
A conceivable method to overcome testing overpowering quantities of SNPs, mainly based
on the studies of a candidate gene, is to order SNPs as per their priority of functional
significance (Clare & King, 2001). Previous natural information can be used in current
databases to reduce the number of SNPs by focusing on specific genomic regions, and
computational methodologies and aptitude are used to separate the neutral
polymorphisms from poly-morphisms of potential functional interest (Mikhail et al.,
2020).

The critical biological determinant is a genetic variation that supports evolution and
determines the phenotype’s genetic basis. A researcher may wish to deal with the genetic
data depending on the researcher’s viewpoint (Barnes, 2010). Researchers of the
biomedical view tend to focus on genetic or phenotypic directions. The function of a gene
cannot be understood fully without realizing the possible variation within the gene. This
means that the biomedical researchers, who study genetics, must know what variants
present and what effect these variants are on the gene’s function and thus the phenotype.
The genetic variation comes in many forms, but every form arises from only two types of
mutation events. The simplest type of different genetic variation results from a simple
primary substitution that comes from mutation. This type of mutation event explains the
most common form of variation (Barnes, 2010), SNP. However, it also represents rare
mutations that may manifest Mendelian inheritance in families. Most other kinds of
variation arise directly or indirectly from inserting or deleting a portion of DNA.

Microarrays
Microarray is a technique in which 1,000 nucleic acids are attached to a surface. They are
used to measure DNA sequences’ concentration in a mixture by hybridization and the
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subsequent detection of hybridization events (Bumgarner, 2013). Millions of sequences in
one reaction are simultaneously analyzed using microarrays. Microarrays come in three
basic types: (A) spotted arrays on glass, (B) self-assembled arrays and (C) insitu
synthesized arrays. Many types of microarrays depend on the type of data (Berry et al.,
2019; Mao, Young & Lu, 2007; Prince, 2017; Smith et al., 2007; Isik, 2010; Yin et al., 2017).
These types are DNA microarray, SNP microarray, cDNA microarrays, SNP microarrays,
protein microarrays, MM chips, peptide microarrays, etc.

All studies on genome association aim to determine the genetic basis for traits and
disease sensitivities using SNP microarrays. They carry the genetic variants, which are the
most common in the human. Variants were identified for families at risk for several
diseases (Coelho et al., 2009; Chen et al., 2012). However, with only a few notable
exceptions, such as the related age of macular degeneration, risk variants usually describe
only a small portion of the genetic risks known for their existence. Many factors are found
that favor is contributing to this observation. Common variants may have minor effects on
the phenotype or have variable penetration due to cognitive or epigenetic effects. Two
other factors are CNVs and rare variants (Barnes, 2010). Genomic variation types have an
essential effect. However, examine these variants on disease phenotypes should perform.

SNP microarrays
SNP microarray is a type of DNA microarrays, which is used to identify polymorphisms
within a population. SNP is a variation of a single site in DNA, and it is the most common
kind of variation in the genome. About 335 million polymorphisms have been specified
in the human genome (Berry et al., 2019; Mao, Young & Lu, 2007). Microarrays of SNP
have grown as a robust tool for the large-scale detection of epigenetic changes in genomes
of predictive and/or predictive value. For genotyping in 1998; SNP matrix technology
was developed (Association, 2019). Since then, this technique has been extensively
developed and has become one of the most robust genetic analyses (Latkowski & Osowski,
2015; González & Belanche, 2013; Xue, Zhang & Browne, 2012; Teng, Dong & Zhou, 2017;
Kong, Mou & Yang, 2009; Saeys, Inza & Larranaga, 2007). In this study, the very long
execution times result in an enormous volume of data. Some preliminary tests were
performed to select the three following constraints for the primary sequence of
experiments (Mao, Young & Lu, 2007). First, it depends on the used data, which we could
not generalize all data analysis. The second issue is the selection of SNP. Finally, the third
issue is the used ML method.

ML METHODS
Microarray technology is a valuable tool for capturing information from biological, genetic
data. An extensive set of genetic data and many computational techniques are needed
to determine whether a human is normal or abnormal as we need to identify the biomarker
in the gene responsible for the diseases. ML algorithms play an important role in
distinguishing unhealthy and normal genes extracted from humans’ genomes (Karthik &
Sudha, 2018). MLmethods contain steps to manage the classification process. ML methods
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contain some stages to manage the diagnosis process and determine candidate genes that
cause diseases, as shown in Fig. 4. Each step is discussed in the following subsections.

Available datasets
In this section, we provided several benchmark databases that can be used to test the
researchers’ proposed techniques and methods (Guyon et al., 2002) as shown in Table 3.
Research in biology and medicine may benefit from higher-order gene screening to
confirm recent genetic disease research discoveries or new ways to explore them.
Therefore, the ADNI (Rémi et al., 2011) dataset’s primary goal is to support researchers
with the chance to combine genetics, imaging, and clinical data with supporting the
investigation of disease mechanisms. Genotyping and sequencing data were generated for
ADNI 1, ADNI GO, and ADNI 2 subjects and are available to ADNI investigators. ADNI
was released in 2003 as a public-private partnership. ADNI phase 1 data were collected
from 757 subjects (214 controls, 366 MCI and 177 AD cases).

Preprocessing
There is a lot of information in a raw dataset prepared by researchers. It depends entirely
on the requirements and purposes if the information is valuable or not. Data preprocessing
is the first step in ML. It is necessary to ensure that the dataset is fully adapted to the
needs. First, we removed unwanted attributes, missing values, and correct arrangement,
and the expression value is normalized. The Bioconductor package completes the two
steps. This raw file must be processed to extract the correct attributes for the following
study. R programming language is chosen as a preferred language for analyzing data.
Therefore, R programming language packages were applied for the preprocessing of the
dataset. The Bioconductor analyzed the value of the expression and set the data set further,

Figure 4 The common ML procedure for the complex brain disease diagnosis.
Full-size DOI: 10.7717/peerj-cs.697/fig-4
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using the data normalization that reduces the data range to be studied as shown in Eq. (1).
Unwanted attributes and the samples that have missing values must be removed. Data
rearrangement according to format requirements will be completed before the next phases
proceed. For classification purposes, only desired attributes are kept.

Gene removal with no expression value through all samples is one of the most simple
and straightforward preprocessing techniques used in Karthik & Sudha (2018) and Daoud
& Mayo (2019). Researchers applied this step by removing samples with 20% of the
deleted features. After then, the data are normalized. Normalization is to remove the
unimportant technical differences in data and to filter matrices with the p-value.
Preprocessing is a step towards facilitating the use of data. The normalization was
performed in the preprocessing stage by changing the scale or range of data from 0 to 1.
Data normalization is necessary because microarray data has a significant range difference.
The function of data normalization is presented by Eq. (1).

y0 ¼ y � ymin

ymax � ymin
(1)

where y′ is the value of features in the normalization domain, while the data’s value before
the normalization process is y. At the same time, ymin and ymax refer to the smallest and
largest values of all data in an attribute to be normalized, respectively. Algorithms
of ML tend to be affected by noisy data. To avoid unnecessary complexity, noise should be
decreased as much as possible in the inferred models (Karthik & Sudha, 2018; Daoud &
Mayo, 2019; Adiwijaya et al., 2018). Two common types of noise can be known: (1) class
noise and (2) attribute noise. Class noise is affected by samples classified as belonging to
more than one class, which leads to wrong classifications. Simultaneously, the attribute
causes attribute noise value errors, such as variables with wrongly measured and missing
values.

The classification of patterns with missing data generally affects two issues: handling
missing values and classifying patterns. The ability to handle missing data has become an
essential requirement for pattern classification because inadequate data processing can
lead to significant errors or false classification results. Most literature approaches can be
grouped into four different types according to how both problems are resolved, as shown
in Fig. 5.

Table 3 Some of the benchmark datasets.

Dataset Diseases Source

GEO Database ASD https://www.ncbi.nlm.nih.gov/geo/

(KEGG) database AD https://www.genome.jp/kegg/

ADNI/Whole-genome sequencing (WGS) datasets AD http://adni.loni.usc.edu/

TCGA Cancer The Cancer Genome Atlas (TCGA): https://portal.gdc.cancer.gov/

UCI for Cancer Cancer UCI Machine Learning Repository: http://archive.ics.uci.edu/ml

NCBI Gene Expression Omnibus (GEO) Cancer NCBI repository: https://www.ncbi.nlm.nih.gov/geo/
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1. Removal of incomplete cases and design of classifier using only the full data portion.

2. Imputation or estimation by editing set of missing data and the classification problem
learning, i.e., with imputed values for complete data portion and incomplete patterns.

3. Use of model-based processes where the distribution of data is modelled using
certain procedures, e.g. by expectation–maximization (EM) algorithm.

4. Use of ML methods in which missing values are included in the classification system.

The two first types of approaches are solved separately: the handling of missing value
(data deletion, imputation) and the pattern classification, but the third type of approaches
model the probability density function (PDF), used by the theory of decision in Bayes
to classify the input data (complete and incomplete). Finally, the classifier is designed to
process incomplete input data without previous estimates of missing data in the last types
of approaches.

Dimensionality reduction
As for increasing dimensions, the cost of computations also increases, usually
exponentially. To get around this problem, it is essential to find a way to decrease the
number of features in mind. Often two methods are used, which are feature selection and
extraction (Daoud & Mayo, 2019; Adiwijaya et al., 2018).

Feature selection

Informative polymorphisms that are known as Tag SNPs and irrelevant ones are all found
in the whole dataset. SNP data have high dimensionality, such as microarray gene
expression, but it is larger several hundred times, which leads to the impractical of data
analysis. Thus, removing the useless SNPs and extracting a small subset of those
discriminants would help identify polymorphisms markers, which could be used as
biomarkers. This process can be performed through feature selection, reducing a search

Figure 5 Methods for pattern classification with missing data.
Full-size DOI: 10.7717/peerj-cs.697/fig-5
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space to facilitate classification tasks. Feature selection is divided mainly into the filter,
wrapper, and embedded types. Before classification, task filtering techniques are applied to
a dataset and usually to simple statistics, such as the t-statistic or F-stat, or the p-value that
is used as the trait evaluation (Batnyam, Gantulga & Oh, 2013).

Conversely, wrapper methods take advantage of the learning algorithm to define a
feature subset by integrating it within the feature search and selection. In the third type, the
search for an ideal subset of features is included in the classifier’s construction and can
search for the combined space of sub-feature sets and hypotheses. Table 4 provides a
common classification of feature selection methods and shows most of the technique’s
advantages and disadvantages (Batnyam, Gantulga & Oh, 2013, Van Rooij et al., 2019). An
example of feature selection techniques is the information gain (IG) measure. It is
dependent on the concept of entropy (Pereira et al., 2018; Joachims, 1998; Chandrashekar
& Sahin, 2014; Khalid, Khalil & Nasreen, 2014; Kursa & Rudnicki, 2010). It is commonly
used to measure feature suitability in filtering strategies that assess features’ individuality,
and this method is quick. Suppose D (A1,A2,…,An, C), n ≥ 1, be a dataset with n + 1
attributes, where C is the class attribute. Let m be the number of distinct class values. The
class distribution of entropy in D, represented by Entropy(D), is defined by Eq. (2).

EntropyðDÞ ¼
Xm
i¼1

pi � log2 �pi (2)

where pi is the probability that an arbitrary instance of D belongs to the class ci. Eq. (2)
defines the single-label strategy concepts, also known as IG attribute ranking (Mezlini &
Goldenberg, 2017). It calculates the feature’s ability to distinguish between class values.
In Daoud & Mayo (2019), For dealing with multi-label data, the C4.5 algorithm was
adapted. This decision tree algorithm lets multiple labels at the tree leaves by calculating an
entropy adaptation, as described by Eq. (3).

Entropy:MLðDÞ ¼ �
Xl

i¼1

pð�iÞ � log2 �pð�iÞ þ qð�iÞ � log2 �qð�iÞ (3)

where p(λi) is the probability that an arbitrary instance in D belongs to the class label λi, q
(λi) = 1 − p(λi), and the number of labels is l in the dataset (Kursa & Rudnicki, 2010;
Shaltout et al., 2015; How & Narayanan, 2004). They have adopted this formula to create
an IG feature selection capable of dealing with multi-label data. By using IG as a filter
approach, the feature selection can be performed with any multi-label classifier.

While embedded methods have the advantage of interacting with the classification
algorithm, they have a lower computational cost than wrapper methods. It is referred to as
the hybrid approach, which typically combines two or more feature selection algorithms of
the various search strategies sequentially. For example, a less costly algorithm such as a
filter might eliminate features first and use a more complex and costly algorithm afterward,
such as a wrapper.
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Feature extraction
Various techniques have been adopted to decrease the dimensions of gene data by
choosing a subset of genes. There are several methods implemented to extract necessary
information from microarrays and thus reduce their size. New variables are created by
feature extraction as combinations of other variables to reduce the selected features’
dimensions. The feature extraction algorithms are consisting of two classes, which are
linear and nonlinear techniques (Chu & Wang, 2005; Khodatars et al., 2020).

Linear
linear features extraction techniques suppose that the data is located in a low-dimensional
linear subspace. The matrix factorization is projected onto this subspace. The most popular
algorithm for dimensional reduction is principal component analysis (PCA). PCA finds
main components in the data representing uncorrelated eigenvectors, representing a
percentage of the variance of the data, using the covariance matrix and its eigenvalues and
eigenvectors. PCA and many of its variants have been performed to reduce data
dimensions in microarray data (Adiwijaya et al., 2018).

The steps for dimensional reduction algorithm using PCA, according to Chu & Wang
(2005), are described below:

Table 4 The main feature selection techniques.

Feature selection Advantages Disadvantages

Filter Univariate

Fast Neglect dependencies with feature

Scalable Neglect the classifier interaction

The selection of classifier is independent

Multivariate

Models feature dependencies Slower

Regardless of the classifier Less scalable

Better computational complexity than wrapper methods Interaction is neglected with the classifier

Deterministic

Wrapper Simple Risk of overfitting

Interacts with the classifier More prone than randomized

Feature of models is dependent Algorithms to obtaining stuck in a local optimum (greedy search)

Less computationally The selection of classifier is dependent

Intensive than randomized methods

Randomized

To local optima is less prone Computationally intensive

Models feature dependencies The selection of classifier is dependent

Overfitting with higher risk

Than deterministic algorithms

Embedded Interacts with the classifier The selection of classifier is dependent

Computational complexity is better than wrapper methods

Feature of models is dependent
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1. Let X be a matrix of input for PCA. X is training data consist of an n-vector with data
dimension m.

2. For each dimension (X), calculate the mean data using Eq. (4).

�X ¼ 1
n

Xn
i¼1

Xi (4)

where n = samples number or number of data observation, Xi = observation data.
3. The covariance matrix (CX) is calculated with Eq. (5), where (X) = mean data.

Cx ¼ 1
n� 1

Xn
i¼1

ðxi � �xÞðxi � �xÞT (5)

4. The eigenvectors (vm) and eigenvalues (λ m) of the matrix of covariance is calculated
using Eq. (6).

cxvm ¼ �mvm (6)

5. In descending order, the sorting of eigenvalues.
6. The principal component (PC) is the eigenvector set corresponding to the eigenvalues

sorted in step 5.
7. Based on the eigenvalues, the PC dimension will be reduced. Several ways are found

for reducing. PC dimension based on eigenvalues, such as:

a) Using a scree plot. The number of eigenvectors is determined based on the curve’s
point, which is no longer sharply decreasing.

b) Using the cumulative proportion of variance (eigenvalues) of the total variance
(eigenvalues).

PVV ¼ �iP
�i

� 100% (7)

Next, the number of eigenvectors was set by comparing the threshold with the
cumulative proportion of variance. PC, which has reduced dimensionally (cPC), is a matrix
consisting of the largest k eigenvalues. Also, k eigenvectors are vectors corresponding to
meet Eq. (8). The testing data (Y) dimensions are reduced by multiplying testing data with
(cPC) in Eq. (9).PK

i¼1 �iPn
i¼1 �i

� 100% > Threshold (8)

y0 ¼ Y � PC (9)

It was argued that there is no guarantee that PCs are linked to the class variable when
computing PCs of data sets. Supervised principal component analysis (SPCA) has
therefore been introduced, in which the PCs based on the class variables were selected. This
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extra step is named the gene screening step. Even though the supervised PCA’s version
works better than its unsupervised version, the PCA has a significant limitation: Nonlinear
relationships, especially in complex biological systems, that often exist in data are not
identified. SPCA works as follows (Hira & Gillies, 2015):

1. Calculate the relationship measurement between each gene using linear, logistic, or
proportional hazard model results.

2. Using cross-validation of the models in step (1) select the most associated genes with the
outcome.

3. Estimate PC scores using only the selected genes.

4. Using the model in step (1), fit regression with the outcome.

The method was extremely effective in determining essential genes, and in cross-
validation tests, it was only outperformed by gene shaving, a statistical method for
clustering, like hierarchical clustering. The term “shaving” is derived from the removal or
having a percentage of the genes (normally 10%) that have the inner product with the
smallest absolute with the leading PC. The main difference is that more than one cluster
can be part of the genes.

Nonlinear
Reducing dimensions by using nonlinear techniques is applied by using many distinct ways.
The low-dimensional surface can be mapped to high dimensional space to establish a
nonlinear relation between the features. In theory, it is possible to use the lift function (x) to
map the features over a space with higher dimensions. In a higher space, the relationship
between the features can be shown as linear and easily discoverable. This is then sent to space
with the lower dimensions, and their relevance can be considered nonlinear (Daoud &
Mayo, 2019; Adiwijaya et al., 2018). Table 5 provides a comparison between techniques of
feature selection and feature extraction.

Classification
After reducing the dimensional complexity of the data, the next step is the classification
process. Classification is not only the primary purpose of this research, but also it is
critical to detect biomarkers of complex diseases. At this stage, the data was diagnosed
(classified) based on whether they are affected by a specific disease or not. Biomarkers that

Table 5 A comparison between selection and extraction techniques.

Method Advantages Disadvantages

Selection Data Preserving for data interpretability Discriminative power

Lower times of training

Reducing overfitting

Extraction Higher distinguishing power Interpretability of data is lost

Overfitting Controlled when it is unsupervised Switching can be costly
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can detect and diagnose brain diseases accurately are urgently required. So, we introduce a
comprehensive review of genome sequencing analysis for discovering complex genes
related to genetic brain diseases. Most of the genetic variation is contributed by SNPs about
the human genome. Many complex and common diseases are associated with SNPs like
AD. Early diagnosis and treatment can improve by investigating SNP biomarkers at
different loci of these diseases. The investigation of genetic variants in the human genome
related to complex diseases is one of the most important study objectives (Sherif, Zayed &
Fakhr, 2015; Saeys, Inza & Larranaga, 2007). So, we divided the review into three sections.
Each section discusses a disease, which is summarized in Tables 8–10 and 12. Table 11
provides some of the available datasets that the researcher can use.

Support vector machine (SVM)
SVM is considered the well-known classification technique, which can be used in disease
diagnosis. SVM is depend on statistical learning theory (Hira & Gillies, 2015; Tang,
Suganthan & Yao, 2006; Bansal et al., 2018). It is an algorithm that identifies a specific
linear model, which maximizes the hyper-plane margin. Maximizing the margin of
hyperplanes will maximize classes separation (Abd El Hamid, Omar & Mabrouk, 2016;
Breiman, 2001). The training points closest to the margin of the cloud are the support
vectors. These vectors (points) are only used to define the boundaries between classes.

Table 6 The confusion matrix elements.

Predicted

Normal Abnormal

Actual Normal TP FN

Abnormal FP TN

Table 7 Some of the performance evaluation metrics.

Metrics Description Formula

Accuracy This is a relation between the sum of TP and TN divided by the total sum of
the population

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Sensitivity,
Recall

This is a relation between TP divided by the total sum of TP, FN
Recall ¼ TP

TP þ FN

Specificity This is a relation between TN divided by the total sum of TN, FP
Specificity ¼ TN

TN þ FP

AUROC This metric is used to measure the average area under ROC
TPR ¼ TP

TP þ FN
FPR ¼ FP

FP þ TN

DSC This is a relation between TP divided by the total sum of TP, FN, FP
DSC ¼ 2 � TP

2 � TP þ FP þ FN

Precision It is a relation between TP divided by the total sum of TP, FP
Precision ¼ TP

TP þ FP

MCC An effective solution overcoming the class imbalance issue comes fromMCC
MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FN

p
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Assuming the classes are linearly separable, they obtain the hyper-planes with maximum
margin to separate them (Chu & Wang, 2005; El-Gamal et al., 2018; Gayathri, Sumathi &
Santhanam, 2013; Karthik & Sudha, 2018; Farhadian, Shokouhi & Torkzaban, 2020).

Quadratic Programming (QP) methods are well Known methods for solving
constrained problems to determine the optimum line for the data. When the data cannot
be separated linearly, the data is mapped to a larger dimensional space using a kernel
function to be divided linearly in this new space. Different kernel functions, like linear,

Table 8 An overview of ASD using different ML methods.

Authors Application on
diseases

Method Results Problem with method

Spencer et al.
(2018)

ASD FPM algorithms& contrast mining Including 193 novel autism
candidates as significant
associations from connected
286 genes.

It is a challenge for FPM to
store many combinations of
items as a memory
requirement problem.

Al-Diabat (2018) ASD Data mining and fuzzy rule Fuzzy rules achieved accuracy up
to 91.35% and 91.40%
sensitivity rate.

Considering the assessment of
features on the dataset in this
study is not extensive and
does not consider other target
data sets like adults,
adolescents, and infants.

Alzubi et al.
(2017)

ASD SVM, NB, linear discriminant analysis,
and KNN

Classification accuracy up to 96% Their work remains incomplete
until the basis of genetic
diseases, and traits well
understand.

Krishnan et al.
(2016)

ASD ML approach Area Under the Receiver–
Operator curve (AUC) = 0.80.

The accuracy of the system
needs to enhance

Cogill & Wang
(2016)

ASD SVM A mean accuracy = 76.7% -

Jiao et al. (2012) ASD DSs, ADTrees, and FlexTrees DS and FlexTree With an
accuracy = 67%,

One limitation of this work is
that this study includes only
29 SNPs.

Table 9 An overview of cancer diseases using different ML methods.

Authors Application on diseases Method Results Problem with method

Ismaeel &
Ablahad
(2013)

Cancer disease Classification by ANN The best classifier with mean square
error 0.0000001.

The system cannot apply as general
for all diseases, so we need to
propose a novel system to detect
all diseases.

Jain, Jain &
Jain (2018)

Cancer NB classifier with cross-
validation of stratified 10-
fold

An accuracy up to 100% In the microarray datasets, this
approach is less reliable and
having a small sample size.

Liu et al.
(2008)

Periodontal Disease (PD),
and Cardiovascular
Disease (CVD)

NBSVM, and UDC. The performance of NB and SVM
better than (uncorrelated normal
based quadratic Bayes classifier)
UDC.

The number of features is limited,
so the differences between the
test’s accuracy levels were not
noticeable.

Hussain et al.
(2019)

Cancer ANN, k-NN, DTs, NB, RF,
and SVM

RF provides the best performance for
the classification
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radial, polynomial and sigmoid, can be used in this situation. The optimal hyperplane is
the initial goal that should be found. The hyperplane is the border between classes. Not
only separating between classes is the primary goal of the optimal hyperplane, but it also
increases the margin. Margin is the longest distance between the hyperplane and the
closest data (support vector) in each category (Chu &Wang, 2005; Karthik & Sudha, 2018;
Farhadian, Shokouhi & Torkzaban, 2020).

1. Let {x1,x2,…,xn } is a dataset of real value. It is a dataset of real value.
2. Assume classes is yi ∈ { − 1,1} is the label of data, w is a weighted vector. Eq. (10) can

be written as follow to estimate hyperplane:

f ðxÞ ¼ wxi þ b ¼ 0 (10)

Then, from Eqs. (10)–(12) are obtained:

wxi þ b � þ1 for classþ 1 (11)

Table 10 An overview of AD diseases using different ML methods.

Authors Application
on diseases

Methods Results Problem with method

Tejeswinee,
Shomona &
Athilakshmi
(2017)

AD Classification techniques
fed by each subset
feature selection

Classification
accuracy ~93%

They cannot generalize all machine learning techniques are
efficient in the classification of disease.

Park et al. (2018) AD Feature selection & ML
&10-fold validation

Classification
accuracy 91.6%

The system cannot apply as general for all diseases, so we need
to propose a novel system to detect all diseases.

Abd El Hamid,
Mabrouk &
Omar (2019)

AD Classification of ML
techniques

Accuracy of NB
99.63%

Their system does not support integrating some metadata like
gender, age, and smoking to check if these data are associated
SNPs or not.

Shahbaz et al.
(2019)

AD ML & DM techniques Accuracy of GLM is
88.24%

The model cannot be trained with unbalanced data and
insufficient data for all classes of disease.

Zafeiris, Rutella &
Ball (2018)

AD ANN The methodology can
reliably generate
novel markers

The power of the algorithms and speed are needed to be
improved.

Bringas et al.
(2020)

AD CNN The accuracy 90.91%
and an F1-score of
0.897

This methodology needs to be used in a cloud architecture
system to collect accelerometer data and a service that users
can subscribe to for monitoring changes in the AD stage.

Table 11 Some publicly available datasets.

Authors Application on diseases Dataset

Al-Diabat (2018) ASD UCI data repository

Ismaeel & Ablahad (2013) Breast Cancer disease NCBI

Tejeswinee, Shomona & Athilakshmi (2017) AD (KEGG) database

Abd El Hamid, Mabrouk & Omar (2019) AD Phase 1 (ADNI-1)/Whole genome sequencing (WGS) datasets
(Rémi et al., 2011).
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wxi þ b � �1 for class� 1 (12)

where x is the input data, w is the normal plane, and b is the position relative to the middle
field coordinates.

3. The main goal of SVM is to find high levels between two classes that increase margins.

minw
1
2
kwk2 (13)

yiðwxi þ bÞ � 1 � 0 (14)

The problem can be solved in quadratic programming using the Lagrange multipliers
shown in Eq. (15):

Lðw; b; aÞ ¼ 1
2
kwk2 �

XI

i¼1

aiðyiððwxi þ bÞ � 1ÞÞ (15)

Table 12 Different used applications to detect biomarkers for diseases.

Authors Application on
diseases

Methods Results Problem with method

Narayanan et al.
(2019)

CAD for malaria,
brain tumors, etc

ML Their approach provided reasonable
performance for all these applications

Their research needs to further
extend by studying the ROI
determined by class activation
mapping.

Carter, Dubchak &
Holbrook (2001)

Bacterial and
archaeal

ML approach using
ANN and SVM

RNA genes could be recognized with high
confidence using the ML

Future studies are necessary to
characterize the extent of these
elements and the accuracy of
predection.

Narayanan, Hardie
& Kebede (2018)

Lung cancer SVM CAD perform sensitivity with 82.82 They should optimize the feature
set for SVM classification.

Yang et al. (2020) AD ML The AUC to ~0.84

De Velasco Oriol et al.
(2019)

LOAD ML Classification performance is 72% The classification performance
needs more enhancement.

Ahn et al. (2019) Business big data
business analytics

Fuzzy logic
dependent on ML
tools

Their improved version led to benefits of
additional 10% accuracy.

Their tool need to handle further
outliers and edge cases and
explore factors that are more
explicit and/or implicit in
business processes.

Gao & Tembine
(2016)

Network systems Distributed Mean-
Field

Mean Square Error =2.01 They use no more complex
detectors based on vision. In
addition to reducing measuring
noise they don’t use deep learned
features.

Xu et al. (2020) Smoking prediction
Models

SVM and RF AUC of SVM = 0.720, and AUC of RF =
0.667.

Their work in the future needs to
identify the inner complex
relations between these SNPs and
smoking status.

Ahmed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.697 20/44

http://dx.doi.org/10.7717/peerj-cs.697
https://peerj.com/computer-science/


LðaÞ ¼
XI

i¼1

ai
1
2

XI

j¼1

aiajyiyjxixj (16)

where, αi is the weight (parameter obtained from the Lagrangian Multipliers).
4. For making decisions, Eq. (17) is used for linear equations, while Eq. (18) is used for

nonlinear equations:

f ðxdÞ ¼ sign

�Xn
i¼1

aiyiðxi; xdÞ þ b

�
(17)

f ðxdÞ ¼ sign

�Xn
i¼1

aiyiKðxi; xdÞ þ b

�
(18)

where n is the number of support vectors and xd is the test data and K(xi,xd) is the kernel
function used, as per Eq. (19).

Linear Kernel:

Kð~xi;~xdÞ ¼ ð~xi;~xdÞ (19)

The radial basis function kernel (RBF) is shown in Eq. (20):

Kð~xi;~xdÞ ¼ exp

��j~xi �~xdj2
2r2

�
(20)

K-nearest neighbors algorithm (KNN)
KNN is considered one of the most straightforward techniques of DM. It is also known as a
memory-based classification because it is at run-time needed for the training examples to
be in the memory (Shouman, Turner & Stocker, 2012; Alpaydin, 1997). However, the major
drawback of the KNN classifier is the large memory requirements, which are needed to
store the entire sample. When the sample is large, the response time on a serial computer is
also significant. In the first step, the closest point to P is found, where P is the point
for which the label needs to be predicted. Then, the label is assigned to P at the closest
point. Second, the k nearest to P is identified, and the majority of its k neighbors
classify points by vote. The most voting class of each object is predicted by its class and by
the most votes class. The distances between these points, such as Euclidean, Hamming,
Manhattan, and Minkowski, are calculated using distance measures for finding the nearest
similar points. The algorithm has the following basic steps: distance calculation, find
closest neighbors, and labels voting.

In order to calculate the distance between P and its closest neighbors, there are three
most commonly used distances measures:

1. The difference between features is calculated using the Euclidean distance when
dealing with continuous features. If the first instance is (a1, a2, a3,…, an) and the second
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instance is (b1, b2, b3,…,bn), by the following formula the distance between them is
computed :

EuclideanDistance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � b1Þ2 þ ða2 � b2Þ2 þ . . . ðan � bnÞ2

q
(21)

The main problem is that the frequencies of large values swamp into small values in
dealing with the Euclidean distance formula.

2. Manhattan distance: It is the distance that is usually preferred over the more common
Euclidean distance where data are of a high dimension.

Manhattandistance ¼
XK
i¼1

jai � bij (22)

3. Minkowski distance:

Minkowskidistance ¼
�XK

i¼1

ðai � biÞq
�1

=q (23)

Logistic regression (LR)
LR is one of the ML classification algorithms for analyzing the dataset in which there are
one or more independent variables that identify the outcome and the categorical
dependent variable (Bertram, Lill & Tanzi, 2010). In many ways, LR is the natural
complement of normal linear regression when the target variable is categorized (Sa’id et al.,
2020). For output (dependent) variable Y to classify two class and input (independent)
variable X, let g(x) = pr(X = x) = 1 − pr(X = x), the LR model has a linear form for logit
probability as follows:

logit½gðxÞ� ¼ log

�
gðxÞ

1� gðxÞ
�

¼ aþ bx (24)

where ð gðxÞ
1�gðxÞÞ is called odd. The logit has a form of linear approximation. It is equated with

the logarithm of the odds. The parameter β is the rate of increase or decrease of the S-
shaped curve of g(x).

Performance evaluation metrics
Performance evaluation metrics are used to measure the classification model’s
performance and investigate how a model works well to achieve the goal. On the test
dataset, performance evaluation metrics are used to estimate the classification model’s
performance and effectiveness, chosen correct metrics. It is essential, such as the confusion
matrix in Table 6 to evaluate the model performance. Some commonly used performance
metrics include accuracy, precision, and Matthews’s correlation coefficient (MCC). which
are listed in Table 7 (Jain, Jain & Jain, 2018; Singh & Sivabalakrishnan, 2015; Raj &
Masood, 2020; Le et al., 2020; Do & Le, 2019).

Ahmed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.697 22/44

http://dx.doi.org/10.7717/peerj-cs.697
https://peerj.com/computer-science/


LITERATURE REVIEW ON COMPLEX DISEASE &
APPLICATIONS
Autism spectrum disorder (ASD)
Spencer et al. (2018) presented a heritable genotype system. Their system consisted of five
stages, as shown in Fig. 6. The preprocessing is the first step, which contained the missing
value imputations for the SNPs, and then they selected the most SNPs significantly.
The second stage is population division. Prioritization is used as a primary association for
each genome-wide subgroup procedure. The third stage is the prioritization of genome-
wide by turning to the question: what sets of SNPs are they to test? The answer is to use the
minimum threshold support in the frequent models (FPM) algorithm. The filter is
performed for SNP sets, according to its prevalence among the affected population. The
fourth stage is FPM, one of the most DM techniques that excellently identifies the most
common occurrence in feature combinations. The data must be interpreted in binary form
with both reference states in one person. The presence or absence of the item in FPM
shows potential interactions among variants. Finally, the stage is the UICsup, which is a
contrast mining utilizing. In the end, the comparison with another application is carried
out, and its system for all was superior.

Al-Diabat (2018) presented an autism screening process which comprises presenting
some questions to parents, family members, and caregivers to answer the child’s behalf to
identify potential autism traits. The data mining and fuzzy rule are adapted to improve
the screen efficiency and accuracy, which is considered one potential solution. To discover
the features of ASD, the fuzzy unordered rule induction (FURIA) algorithm was evaluated.
The automated method, FURIA, is designed to examine patterns from controls and
historical cases. After then, they used the models to determine the possibility of autism
traits in new individuals. The higher performance of fuzzy data mining models is
evidenced by experimental results regarding predictive accuracy and sensitivity rates.

Alzubi et al. (2017) developed an accurate method based on hybrid feature selection for
identifying the most SNPs that are informative and chosen an optimal SNP subset. Their
method was based on the fusion of the wrapper and filter method. The system
performance was evaluated against four feature selection methods and four classifiers on
SNPs’ five different data sets. The experiment results show the adopted feature selection
approach’s efficiency and achieve classification accuracy up to 96% for the used data set.
Overall, they concluded that the whole genome could efficiently differentiate between

Figure 6 Diagnosis system for ASD based on DM techniques.
Full-size DOI: 10.7717/peerj-cs.697/fig-6
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people with complex diseases and healthy individuals. Their method has been validated in
an independent and large case and evidence study.

Krishnan et al. (2016) introduced a complementary ML approach based on a network
for the human brain’s specific genes to present a wide prediction genome of autism risk
genes, comprising candidates who may be hundreds is minimal or no previous genetic
evidence. Leveraging these genome- and network-specific predictions of the brain, we
showed that a large group of ASD genes converge in fewer major pathways and
developmental stages of the brain. Finally, they identified potentially pathogenic genes
within autism-related CNVs and suggested genes and pathways that are likely mediators of
ASD across multiple CNVs.

The model decision function output ranks the gene lists comprising an ASD risk gene
and adjacent genes. Cogill & Wang (2016) developed SVM with training on brain
developmental gene expression data for classification and prioritization of ASD risk genes.
The pre-reduction process has been shown to improve the accuracy of the SVM
classification. The results showed that each filter procedure identifies different gene sets
with a specific gene repetition. Due to the high variance in ASD of several genes, further
selection steps are necessary.

Jiao et al. (2012) presented an SNP-based predictive model which could predict the
severity of ASD’s symptoms. They divided 118 ASD children into a moderate group of
autisms (n = 65) and a severe group of autisms (n = 53). 29 SNPs of 9 ASD-related genes
were obtained for every child. They applied three ML techniques to create predictive
models: Decision stumps (DSs), ADTrees, and FlexTrees. With an accuracy = 67%, DS and
FlexTree produced modestly better classifiers. All models of the SNP rs878960 in GABRB3
were selected and linked to the CARS evaluation.

Cancer & brain diseases
Ismaeel & Ablahad (2013) developed a method that can predict the disease by mutations.
Bioinformatics techniques were used to train and used back-propagation algorithms to test
whether the patient has the disease or not on the collected data, using all expected
mutations for genes of some diseases (e.g., BRCA1 and BRCA2). They Implemented their
method as the first way of predicting the disease based on mutations in the gene sequence
causing this disease which showed two decisions were achieved successfully, as shown in
Fig. 7. The first way was to diagnose whether a patient had cancer mutations or not by
using bioinformatics techniques. Back-propagation is the second classification of these
mutations.

Jain, Jain & Jain (2018) introduced a two-phase hybrid model for cancer classification.
A low-dimensional set is selected for this model of prognostic genes. For biological samples
classification into binary and multi-class cancers using naïve Bayes (NB) classifier with a
cross-validation stratified 10-fold. Different cancer types have been evaluated in their
system by using 11 microarray datasets. The experiment results are compared with seven
methods. Their system achieved better results, showing the classification accuracy and the
selected number of genes in most cases. It is obtained classification accuracy for seven
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datasets up to 100% with prognostic gene subset with very small sizes (up to <1.5%) for
all datasets.

Liu et al. (2008) developed a supervised recursive feature addition (SRFA) method for
feature selection. This approach chose candidate features/SNPs. Supervised learning and
statistical measures are combined to control the redundancy information and enhance
classification performance in association studies. Additionally, they have developed a
support vector-based recursive feature addition (SVRFA) scheme in the SNP association
analysis of disease.

Hussain et al. (2019) analyzed the DNA sequences of cancer patients using various
classification techniques. Based on this study, it can be concluded that people’s cancer
diseases can be diagnosed easily based on their DNA sequences. Different classifiers have
been used to analyze purposes, such as an artificial neural network (ANN), KNN, decision
trees (DTs), and fuzzy classifiers, NB, random forest (RF), and SVM. Based on the
analysis of results, it has been found that these classifiers provide sufficient performance in
terms of accuracy, recall, specificity, and other parameters. By using the gene dataset, the
paper used different classifiers to analyze the data. They found the RF provides the best
performance for the classification of cancer patients.

Alzheimer’s disease (AD)
The most common forms of dementia that degenerate neurons are AD and PD found in
the brain cells. Tejeswinee, Shomona & Athilakshmi (2017) described a computational
framework to investigate neurodegenerative disorders, as shown in Fig. 5. The collection of
data that they performed has not been the computational explorations of earlier utilization.
In the first stage, the genes related to AD and PD are collected as the dataset generation.

Figure 7 The main tasks of the gene-based analysis system.
Full-size DOI: 10.7717/peerj-cs.697/fig-7
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Genes uniquely of AD are 74 and 38 genes uniquely of PD, representing 112 of genes
collected. Both diseases have 95 common genes. Feature selection is the second step. Three
feature selection methodologies are used in this study to select the optimal feature set.
The result revealed that it is the best-optimized feature subset. This subset is used to feed
the six classification algorithms individually to each of them in the classification phase, as
shown in Fig. 8. The accuracy of all these algorithms was measured when predicting
the correct diagnostic class.

Park et al. (2018) introduced genetic interactions based on ML from heterogeneous
gene expression profiles, as presented in Fig. 9. Related gene determination of disease and
dis-ease mechanisms is a research goal and necessary process; this problem has been
approached with many studies problems by analyzing gene expression profiles and
datasets interaction for genetic networks. Among pairs of genes, correlations or
associations must be determined to construct a gene network. However, when
heterogeneous data for gene expression is noisy with high levels for assigned samples to the
same condition, it is difficult to specify whether a gene’s pair represents a significant (GGI).
To find a solution for this challenge, they introduced an RF-based method to classify data
of gene expression of significant GGIs. The model is trained by defining sets of novel
features and utilizing various datasets with high confidence interactome.

Abd El Hamid, Mabrouk & Omar (2019) developed a method for detecting biomarkers
SNPs associated with the disease with high accuracy classification, leading to early disease
prediction and diagnosis. For discovering new biomarkers, ML techniques are utilized
for the dis-ease. Many common diseases have SNPs related to AD. SNPs are recognized for
this disease as significant biomarkers. In its early stages, they allow in understanding
and detecting the disease. They apply many techniques that are performed on all genetic
data of AD. They achieved the highest accuracy of classification. The results detected that
K2 learning and NB algorithms accomplished an accuracy of 98.40% and 98%,
respectively.

Shahbaz et al. (2019) introduced an AD classification using ML techniques to classify
AD. In their paper, they performed six different ML and DM algorithms. The first step in
their work is a data processing and feature selection. The second step is to partition
data partitioning using 70% of training data and the reset for testing. Finally, classification
techniques are used. Five stages of AD’s can efficiently classify using the generalized linear

Figure 8 The computational system for AD disorders. Full-size DOI: 10.7717/peerj-cs.697/fig-8
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model (GLM) described in the study results on the test dataset with 88.24% accuracy.
In medicine and healthcare, these techniques can be successful for early disease detection
and diagnosis.

Zafeiris, Rutella & Ball (2018) discussed, explored, and evaluated an integrated ANN
pipeline in AD for biomarker discovery and validation. Over time, the most popular form
of dementia and no specific cause and no treatment available. The developed system
consists of analyzing data that are public with a categorical and predicting gene
interactions. A continuous stepwise algorithm is used and further examined through
network inference. Novel markers can be generated by their methodology and another
well-known study that could be used to guide future research in AD.

Bringas et al. (2020) implemented deep learning model AD stage identification. Data
from a daycare center collected for one week from 35 AD patients on smartphones were
used. The data sequences for each patient recorded changes in the accelerometer during
daily operations and labeled with the disease stage (early, middle or late). Their
methodology uses the CNN model to identify the patterns which identify each step. Their
methodology is used to process these time series. As a result, the 90.91% accuracy and an
F1-score of 0.897 were achieved through the CNN-based method, which greatly improves
the results achieved by classifying features.

Different applications
Narayanan et al. (2019) provided a computer-aided detection (CAD), and it is considered
as a hot research area that is attracting significant interest in the past ten years. ML
algorithms have been widely used for this application because they provide clinicians with
valuable opinions to make the right decision. Regardless of the many ML models available
for medical imaging applications, not much has been implemented in the real world
due to the inexplicable nature of the network’s decisions. Their research paper investigated

Figure 9 The identification of genetic interactions system.
Full-size DOI: 10.7717/peerj-cs.697/fig-9
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the results supported by deep neural networks to detect malaria, brain tumors, etc.,
in various imaging methods. They visualized category activation mappings for all
applications to improve understanding of these networks. This work will help data science
experts understand their models and assist clinicians in the decision-making process. The
main drawback of their work should extend by studying the region of interest (RoI).

Carter, Dubchak & Holbrook (2001) developed an ML approach using ANN and SVM
to extract standard features among known Ribonucleic acids (RNAs) to predict new RNA
genes in regions not shown on them. Results showed RNA genetic differences in
composition and structural parameters in known RNAs compared to non-coding
sequences could be recognized with high confidence using M L-Approach in both bacterial
and archaeal genomes. Besides cross-validation testing, highly predicted sequences in
E. coil, M.geneitalium, etc., not involved in the training datasets, were experimentally
distinguished and reported in the literature as expressed fRNAs.

Narayanan, Hardie & Kebede (2018) presented a study of lung cancer and explored
SVM’s performance based on a wide range of features. The SVM performance was studied
according to the number of features. Their results demonstrated greater robustness, faster
computation with a wide range of features, and less prone to overtraining than
conventional classifiers. Besides, they also offered a computationally efficient approach to
select SVM features. Results are presented to the publicly available 2016 lung nodule
analysis dataset. Their results show that the SVM is superior to the Fisher linear
discrimination classifier based on 10-fold cross-validation by 14.8%.

Yang et al. (2020) provided a review that introduced sequencing technology
development and explains the structure of DNA sequence data and sequence similarity.
Second, they analyzed the necessary DM process, summarized several of the significant ML
algorithms, and highlighted the future challenges faced by ML algorithms in extracting
biological sequence data and possible future solutions. Third, they reviewed four typical
applications of ML in DNA sequencing data. Fourth, they analyzed the background and
relevance of the corresponding biological application. Fifth, they have systematically
summarized the evolution and potential problems in the field of DM for DNA sequencing
in recent years. Finally, they summarized the content of the review and looked forward to
the future for some research directions.

Bellinger et al. (2017) performed a systematic review of the application of DM and ML
methods in the epidemiology of air pollution. A systematic review identified current trends
and challenges and explored recent trends for applying data extraction methods to air
pollution epidemiology. Their work presented that DM is increasingly performed in the
epidemiology of air pollution. The potential is to enhance air pollution epidemiology
continues to grow with DM’s advances for temporal and geospatial mining and deep
learning. New sensors and storage media, which allow greater and better information, also
support this. This shows that a large number of successful applications can in the future be
expected.

Bracher-Smith, Crawford & Escott-Price (2021) introduced a review for psychiatric
disorders based on ML for genetic prediction. ML methods have been performed to make
predictions in psychiatry from genotypes, with the potential to enhance the process of

Ahmed et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.697 28/44

http://dx.doi.org/10.7717/peerj-cs.697
https://peerj.com/computer-science/


prediction of outcomes in psychiatric genetics; however, their current performance is
unclear. This paper aimed to systematically review ML methods for psychiatric disorders
prediction from genetics alone and estimate their discrimination, bias, and
implementation.

Romero-Rosales et al. (2020) compared three ML methods that have been shown to
build robust predictive models (genetic algorithms, LASSO, and progressive wisdom) and
provided the involvement of markers from misclassified samples to enhance the accuracy
of overall prediction. Their results described that adding markers from a prototype plus
model markers fitted to misclassified samples enhances the AUC about 5%, to ≈ 0.84,
which is very competitive using only the genetic information. The computational strategy
applied here can support good ways to enhance classification models for AD. Their work
could have a positive effect on early AD diagnosis.

De Velasco Oriol et al. (2019) performed systematic comparisons of representative ML
models to predict the late onset of AD (LOAD) from the ADNI cohort’s genetic variance
data. Their experimental results demonstrated that classification performance is the best-
tested model resulting in 72% of the area under the receiver operating characteristic (ROC)
curve.

Mishra & Li (2020) introduced the first intensive reviews for applying AI technology in
medicine and the current genetic research state in AD. Next, the extensive review
concentrated on applying AI in genetic research of AD, including diagnosis and prediction
of AD based on genetic data, analysis of genetic variance, gene expression profile, and gene
expression. AD analysis based on the knowledge base. Although several studies have
yielded some meaningful results, it is still in the preliminary stage. Fundamental
shortcomings include database limitations, failure to leverage AI to conduct a systematic
biological analysis of multi-level databases, and a theoretical framework for analysis
results. Finally, the future direction of development is to aspire to high quality,
comprehensive sample size, and data sharing resources should be developed. An AI
analysis strategy for multi-level system biology is a development trend. Computational
innovation may play a role in constructing and validating the theoretical model and
designing new intervention protocols for AD.

Ahn et al. (2019) introduced fuzzy logic dependent on ML tools for enhancing business
big data business analytics in complex AI environments. Specifically, they have provided a
suitable and extended the traditional C4.5 algorithm by incorporating fuzzy logic for
business processes. To classify and predict the individual wage, government staff, help take
actions appropriate to those in need and/or make better use of their available resources.
The resulting tool supported analysts in this process. Additionally, they have also released
an enhanced version, and this base copy has been reinforced by branch extension. The
enhanced version speeded up the mining process and the business analytics and led to
higher accuracy.

Gao & Tembine (2016) presented networked systems for the effective way of extraction
and utilization and the availability of accurate prediction, proactive tools of mean-field
type dynamical systems. They introduced large-scale networked systems based on the
distributed mean-field filter (DMF). The filter exploits the network’s topology and breaks it
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down into highly independent components concerning marginal mean-field correlations.
The experiments showed for two object tracking scenarios are performed to illustrate the
performance of their algorithm. Results of the evaluation show that DMF superior to the
existing filtering algorithms.

Yazdani et al. (2020) introduced simultaneously complex and common features that
arise from multiple genes interacted and regulated. Therefore, to unravel the fundamental
biological networks, it is vital to characterize genes’ interconnectivity. They have
systematically combined transcription, genotyping, and Hi-C data to determine the
interconnections between individual genes as a causal network. They used various ML
techniques to extract information from the network, determine differential regulatory
patterns between cases, and control schizophrenia.

Yazdani et al. (2018) introduced a method which is known as Bounded Fuzzy
Possibilistic Method (BFPM) that takes into account preserving the flexibility of the search
space for higher accuracy cluster sampling (Yazdani, 2020). The method assessed samples
for their movement from one cluster to another. This technique lets us finding important
samples in advance of those with the potential to belong to other clusters in the near
future. BFPM was performed on the metabolism of individuals in a lung cancer case-
control study. Metabolism as close molecular signals of actual disease processes may be
powerful biomarkers of the current disease process. They aimed to find out whether
healthy human serum metabolites can be distinguished from those with lung cancer. With
BFPM, some differences were noticed, pathology data were evaluated, and essential
samples were identified.

Xu et al. (2020) used the methods of SVM and RF for developing smoking prediction
models. For a model building of 10- fold cross-validation, they first used 1,431 smokers
and 1.503 non-smokers and tested the model prediction models on independent datasets
of 213 smokers and 224 non-smokers. AUC of 0.691, 0.721 and 0.720 for training,
tests, and independent test samples were obtained by SVM with the 500 top SNPs, selected
using LR methods (p < 0.01). AUCs 0.671.665 and 0.667 were obtained for the training, the
tests, and independent test samples of 500 top SNPs selected using LR (p < 0.01).

Le & Nguyen (2019) applied DL in the prediction of SNARE proteins, which is one of life
science’s most essential molecular functions. Several human illnesses involve a functional
loss of SNARE proteins (e.g., neurodegenerative, mental illness, cancer, and so on).
There is thus a critical problem in understanding these diseases and designing the drug
targets by establishing a precise model to determine their functions. With 2D
convolutional neural network (CNN) and position-specific scoring matrix profiles, their
SNARE-CNN model could identify the accuracy reached with the SNARE proteins of
89.7%.

In many aspects of cellular life activities, antioxidant proteins are essential. Cell and
DNA are protected against oxidative agents. In this study, Ho Thanh Lam et al. (2020)
developed an ML model from a benchmark set of sequence data that was applied for
this prediction purpose. The experiments have been performed through 10-fold
cross-validation during the training and validated by three separate datasets. On the
optimum set of sequence features, various ML and DL algorithms were evaluated. Among
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them, RF was identified as the best model for identifying antioxidant proteins with the
highest performance. Their optimal model has achieved 84.6% high accuracy.

CRITICAL DISCUSSION AND FUTURE CHALLENGES
Microarray data’s emergence poses many ML research challenges due to its large
dimensional nature with small sample size. Aside from the notable disadvantage of having
many features of a small number of samples, researchers also have to meet the unbalanced
classes characterizing the data, testing datasets and extracting training in various cases,
and the presence of outliers (dataset shift). For all these reasons, new technologies continue
to emerge every year, aiming to improve the classification accuracy of previous approaches
and help biologists discover and understand the underlying mechanism linking gene
expression to diseases. So, we added Table 13, which displays the classification accuracy of
previous approaches.

So, it is useful in biological research to determine individuals’ phenotype and genotype
characteristics. The phenotype connected with physical appearance, and the genotype is
the genotype of the individual. SNPs make the individual different from others as well as
help in determining genetic variation in the population. The main factor in identifying
the relationship of an individual to a population is genomic variation. SNPs play an
essential role in genome-based disease detection, drug design, drug and isolation reaction
to an environmental factor, such as toxins and disease development risk in a population, so
it is used for this purpose (Tahir & Sardaraz, 2020).

Biomarkers are urgently needed for the early detection of complex genetically related
brain diseases. So, the main goal is to identify a set of genetic variants that happened
together. Besides, it can determine individuals who must start screening at a young age
(Chen et al., 2016). Determination of related genes to disease and disease mechanisms is a
research goal and a necessary process. Some challenges are summarized in the following
points, and also as shown in Fig. 10:

Data processing: The processing of large-scale DNA sequence data still presents
efficiency challenges.

Table 13 Different applications of ML and their accuracy.

Authors Methods Accuracy Disease

Alzubi et al. (2017) ML 96% ASD

Tejeswinee, Shomona & Athilakshmi (2017) ML 93% AD

Al-Diabat (2018) DM and Fuzzy Rules 91.35% ASD

Jain, Jain & Jain (2018) NB 100% Cancer

Park et al. (2018) ML 91.6% AD

Narayanan, Hardie & Kebede (2018) SVM 82.82% Lung Cancer

Abd El Hamid, Mabrouk & Omar (2019) NB 99.63% AD

Shahbaz et al. (2019) GLM 88.24% AD

Bringas et al. (2020) CNN 90.91% AD

Yang et al. (2020) ML 84% AD
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Data Representation: Certain problems exist with the quantification of DNA sequence
aspects. No one knows which representation in these nucleotides is best for encoding
numeric values. However, we cannot avoid using the numeric representations of those
biological units when applying ML to biological studies.

Genes and gene pairs: A new method is required to discover associated genes and gene
pairs or to study the relation between genes with subgroups of disorders. Recent
discoveries about the new sub-classification of AD patients make this disease a suitable
target for this method. To verify their significance, autism candidate genes identified in this
study should be integrated into future data collection. These genes are contributed by
understanding the mechanisms of genes to develop autism subtypes (Jain, Jain & Jain,
2018).

Identification of genetic risk variants: Identifying genetic risk variants in ASD and
their effects on the brain and morphology remains largely elusive. More recently, the
advent of a gene imaging approach integrates genetic discoveries with technological
advances in brain imaging. Researchers were strongly encouraged to analyze ASD
pathophysiology mechanisms and to characterize neurological systems which are directly
affected by risk gene variants (Jain, Jain & Jain, 2018; Spencer et al., 2018).

Heterogeneity in expression levels across large samples: Due to heterogeneity, there
may be an asymmetry in this effect on sample quality among patients with genetic brain
disease and the degree of affected gene expression. Recently, an attempt was made to
identify heterozygous genes in the study of gene expression data with genetic brain disease
patients (Tejeswinee, Shomona & Athilakshmi, 2017 , Escott-Price et al., 2014; Baker et al.,
2019; Ruiz et al., 2014; Edwards, Stajich & Hansen, 2009; Staples et al., 2019; Pop &
Salzberg, 2008; Yazdani et al., 2018) .

Figure 10 Limitations and future directions. Full-size DOI: 10.7717/peerj-cs.697/fig-10
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Linking genetics and brain imaging: The genetic imaging techniques make it possible
to improve our understanding of the etiology of genetic diseases by bridging the gap
between genetic differences and their resulting biological effects on the brain (Chu &
Wang, 2005; Hussain et al., 2019).

The capability of generalizing: The ability to generalize and adapt techniques to
various data is considered the most challenging task. Also, the ability to reduce hardware
power requirements is considered a critical task.

Genetic structure for rare diseases and common complex diseases: Rare and common
diseases may be used for the study of Next Generation Sequencing (NGS). Causal variants
can be found even in smaller sample sizes for single-gene rare diseases. It doesn’t remain
easy, however, above all to define causal alleles. Not all rare diseases have a simple genetic
structure like single-gene diseases. Rare diseases are usually diagnosed or identified by
symptoms, while different mechanisms can cause the same symptoms. In fact, some rare
diseases are a group of diseases that exhibit similar symptoms (Gao & Tembine, 2016).
Determination of causal variants of these diseases generally requires larger sample sizes
than monogenic diseases. NGS technologies provide a huge quantity of biological data,
presenting different problems, including high processing times and high memory
requirements. Research is therefore aimed at detecting SNP in genome sequences which
can solve these problems. Also, there are many problems with SNPs detection algorithms,
e.g., overhead computing costs, accuracy, and memory requirements. These issues are
considered as another challenge for SNP identification (Tahir & Sardaraz, 2020; Wang,
Lu & Zhao, 2015).

In the future, researchers should focus on identifying variations of rare diseases.
They have great potential in the last few years, and genotyping and sequencing
technologies have advanced. The researchers should also concentrate on these discoveries,
the technologies that supported their discovery of rare variant detection and working with
big data as challenges. Another challenge is imaging genetics, which addresses this
question by bridging the gap between imaging and the genetic fields. Finally, finding the
relationship between genes also helps discover complex diseases that are affected by risk
genes.

In the future, we need to learn how to use biomarkers together in an integrated manner
and learn to map them to specific necessary treatment actions or symptoms. Biomarkers
may also be very helpful in explaining the significant variability associated with genetic
diseases. The underlying pathophysiology symptoms of genetic diseases may vary
significantly from patient to patient. ML is the DM core and the most widely used method
of data processing. The main advantage of ML algorithms is that it can be used to filter
large quantities of data to check patterns which could be ignored otherwise. ML plays a
crucial role in discovering predictable patterns in biological systems and big data
biomedical research. The current implementation of ML in biomedical data mainly faces
the following issues:

1. Big datasets are essential to ML. Currently, most biological datasets are still too small to
meet the requirements of ML algorithms. Although the total amount of biological data is
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huge and increases daily, data collection is obtained from various platforms. Due to
technology and biology differences themselves, it is challenging for different data sets to
integrate.

2. Because of biological data differences itself, trained ML models on one dataset may not
generalize well to other datasets. The results of the analysis of the ML model can be
wrong if the new data is significantly different from the training data.

3. The black-box nature of ML models obtained a new challenge to biological applications.
The translation of the output of a specific model from a biological viewpoint that limits
the use of the model is usually difficult.

4. Reduction of computational requirements: ML models are often very complex and
require a lot of training. It is often computer-intensive and memory-intensive to
produce well-trained modeling and even to use the model productively. These
requirements limit the deployment of ML seriously on computer-saving machines,
especially in the bioinformatics and healthcare sectors, which are also data-intensive.
Several methods were proposed for ML compression, which can at the very beginning
reduce the computational requirements of these models, like parameter pruning, which
reduces the redundant parameters that do not contribute to the performance of the
model.

5. Achieving the best performance and perfect classification by implementing various
optimization techniques.

6. Additional attempts could be made to extract other DNA features before feeding them
to the models. Overall, this could lead to more accurate assessments.

Currently, many softwares can be helpful for ML, and knowledge discovery tools for
different uses are available, such as the Waikato Environment for Knowledge Analysis
(WEKA), RapidMiner, Clementine, Intelligent Miner, Rosetta, etc. These tools and
software provide methods and algorithms that help users better use information and data,
including data analysis methods and algorithms, cluster analysis, etc (Borges, Marques &
Bernardino, 2013).

RapidMiner (RM): It is an ML and DM processing environment. It is an open-source,
free Java project. It is a new way of designing all the complicated problems. For the input
and output of data in various file formats, RM has flexible operators. It includes over 100
learning schemes for regression, classification, and clustering tasks (Borges, Marques &
Bernardino, 2013).

WEKA: It is an open-source, non-commercial project. WEKA includes tools for data
preprocessing, classification, regression, clustering, association rules, and visualization. It is
also ideal for developing new systems of ML (Borges, Marques & Bernardino, 2013).

R: It is one of the key data science languages. It offers excellent visualization features
that are essential to explore the data in an automated learning process before it is
submitted and the results of the learning algorithm assessed. A lot of R packages are
available for ML, and R implements numerous modern methods for statistical learning
(Borges, Marques & Bernardino, 2013).
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So, ML models will in the future offer many opportunities for discovering new insights
from the research gaps discussed. In particular, analysis of genetic variations that lead to
diseases, such as ASD, AD, cancer, and other fatal diseases will help find out a way to
cure new medicines and therapies permanently. As shown in Fig. 9, we present limitations
and future directions to handle it in the future.

CONCLUSION
This review comprehensively reviews genetic variations analysis of gene expression
analysis to discover complex genes associated with diseases and related genetic diseases.
This survey describes various diseases, such as AD, ASD, and cancer, to identify genetic
variations that cause diseases. Here, we describe variation identified for putative rare
genetic risk. We observe that variants’ rare identification can decrease disease susceptibility
than generally seen with common risk variation and protein-coding changes that can be
modeled efficiently. Finally, we have highlighted some open issues and future research
directions for the progress of this field. Also, genetic mapping supplies a powerful method
for identifying the presence of SNPs in genes. These SNPs are found in DNA, which is very
similar to mutation. But this SNP is damaged DNA in humans, causing serious disease in
the future. So, our focus is to detect the SNPs that lead to diseases. New genome-wide
multiple gene testing or high-throughput genetic testing has come with new hope in the
field, offering a fast, cost-effective, and intensive analysis of genetic variation. This is
particularly interesting with high genetic disorders heterogeneity. Therefore, the
interaction between data mining, machine learning, and bioinformatics should be
increased as a great potential for analyzing gene sequences in the future.
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