
Defining and measuring microservice
granularity—a literature overview
Fredy H. Vera-Rivera1,2,3,*, Carlos Gaona2,* and Hernán Astudillo4

1 GIA Research Group, Universidad Francisco de Paula Santander, Cúcuta, Norte de Santander,
Colombia

2 GEDI Research Group, Universidad del Valle, Santiago de Cali, Valle del Cauca, Colombia
3 Materials and Technology Research Group, Foundation of Researchers in Science and
Technology of Materials-FORISTOM, Bucaramanga, Santander, Colombia

4 Toeska Research Team, Universidad Técnica Federico Santa María, Santiago, Chile, Chile
* These authors contributed equally to this work.

ABSTRACT
Background: Microservices are an architectural approach of growing use, and the
optimal granularity of a microservice directly affects the application’s quality
attributes and usage of computational resources. Determining microservice
granularity is an open research topic.
Methodology:We conducted a systematic literature review to analyze literature that
addresses the definition of microservice granularity. We searched in IEEE Xplore,
ACM Digital Library and Scopus. The research questions were: Which approaches
have been proposed to define microservice granularity and determine the
microservices’ size? Which metrics are used to evaluate microservice granularity?
Which quality attributes are addressed when researching microservice granularity?
Results:We found 326 papers and selected 29 after applying inclusion and exclusion
criteria. The quality attributes most often addressed are runtime properties (e.g.,
scalability and performance), not development properties (e.g., maintainability).
Most proposed metrics were about the product, both static (coupling, cohesion,
complexity, source code) and runtime (performance, and usage of computational
resources), and a few were about the development team and process. The most used
techniques for defining microservices granularity were machine learning (clustering),
semantic similarity, genetic programming, and domain engineering. Most papers
were concerned with migration from monoliths to microservices; and a few
addressed green-field development, but none address improvement of granularity in
existing microservice-based systems.
Conclusions: Methodologically speaking, microservice granularity research is at a
Wild West stage: no standard definition, no clear development—operation trade-
offs, and scarce conceptual reuse (e.g., few methods seem applicable or replicable in
projects other than their initial proposal). These gaps in granularity research offer
clear options to investigate on continuous improvement of the development and
operation of microservice-based systems.

Subjects Distributed and Parallel Computing, World Wide Web and Web Science, Software
Engineering
Keywords Micro service architecture, Service computing, Micro-service granularity, Metrics,
Monolith to microservices, Microservices decomposition, Quality attributtes, Sistematic literature
review

How to cite this article Vera-Rivera FH, Gaona C, Astudillo H. 2021. Defining and measuring microservice granularity—a literature
overview. PeerJ Comput. Sci. 7:e695 DOI 10.7717/peerj-cs.695

Submitted 23 November 2020
Accepted 5 August 2021
Published 8 September 2021

Corresponding author
Fredy H. Vera-Rivera,
fredyhumbertovera@ufps.edu.co

Academic editor
Philipp Leitner

Additional Information and
Declarations can be found on
page 41

DOI 10.7717/peerj-cs.695

Copyright
2021 Vera-Rivera et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.695
mailto:fredyhumbertovera@�ufps.�edu.�co
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.695
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

INTRODUCTION
Microservices are an architectural style that change the way applications are created,
tested, implemented, and maintained. Microservices facilitate the migration of applications
to the cloud infrastructure, since they allow automatic scaling, load balancing, and fault
tolerance. By using microservices, a large application can be implemented as a set of
small applications that can be developed, deployed, expanded, managed, and monitored
independently. Agility, cost reduction and granular scalability entail some of the challenges
such as the complexity of managing distributed systems (Villamizar et al., 2015).

The agile practices highlighting DevOps (Dev: Developers, Ops: Operations) and
microservices are current trends in the development and deployment of applications in the
cloud; their use by recognized technology companies and world leaders of the microservice
architectural style has grown considerably. Companies such as Netflix, Amazon, eBay,
PayPal, and Google, use microservices, some with more than 1,000 microservices deployed
and supporting a considerable number of concurrent users. Microservice research is in
a formative stage and evolution in this field is continuous. Some companies have adopted
microservices to deploy their businesses. Microservices are characterized by rapid
industrial adoption, and the main advances are taking place in the technology industry.
However, the trend in publications and scientific advances from the academy is growing
(Soldani, Tamburri & Van Den Heuvel, 2018).

Microservices have been presented as an implementation approach of service-oriented
architecture (SOA), aiming to improve its disadvantages and problems (Zimmermann,
2017; Pautasso et al., 2017). Microservices architecture features include business
orientation, polyglot programming in multiple paradigms and languages, fault-tolerant
design, decentralization, and automation. Microservices are independent applications and
distributed systems. SOA and microservices inherit the characteristics of distributed
systems and their complexities. In this article we focus exclusively on microservices, not
including SOA, web services or mobile services, which are implemented, tested, and
deployed very differently than microservices.

Resilience, scalability, fast software delivery and use of fewer resources are essential
characteristics of current applications. Microservices architecture came to fulfill those
expectations (Salah et al., 2016), but many challenges still exist, such as the definition of the
granularity, the complexity of managing small distributed systems, network latency and
lack of reliability, fault tolerance, coherence and integration of data, distributed transaction
management, communication layers, load balancing, orchestration, monitoring and
security (Pautasso et al., 2017). The main objective of this work is to analyze the problem of
defining the granularity of microservices. Microservices granularity is defined mainly,
first by its size or dimensions, meaning the number of operations exposed by the
microservice, along with the number of microservices that are part of the whole
application, and second by its complexity and dependencies. The goal is to have low
coupling, low complexity, and high cohesion between microservices. Hassan, Bahsoon &
Kazman (2020) stated that a granularity level determines “the service size and the scope
of functionality a service exposes (Kulkarni & Dwivedi, 2008)”. Granularity adaptation

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 2/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

entails merging or decomposing microservices thereby moving to a finer or more
coarse-grained granularity level (Hassan, Bahsoon & Kazman, 2020). Homay et al. (2020)
stated that “the problem in finding service granularity is to identify a correct boundary
(size) for each service in the system. In other words, each service in the system needs to
have a concrete purpose, as decoupled as possible, and add value to the system. A service
has a correct or good granularity if it maximizes system modularity while minimizing
the complexity. Modularity in the sense of flexibility, scalability, maintainability, and
traceability, whereas complexity in terms of dependency, communication, and data
processing” (Homay et al., 2020).

The quality of a microservices-based system is influenced by the granularity of its
microservices, because their size and number directly affect the system’s quality
attributes. The optimal size or granularity of a microservice directly affects application
performance, maintainability, storage (transactions and distributed queries), and usage
and consumption of computational resources (mainly in the cloud, the usual platform
to deploy and execute microservices). Although the size of microservice or optimal
granularity is a discussion topic, few patterns, methods, or models exist to determine how
small a microservice should be, as others have already pointed out:

Soldani, Tamburri & Van Den Heuvel (2018) noticed the difficulty of identifying the
business capacities and delimited contexts that can be assigned to each microservice
(Soldani, Tamburri & Van Den Heuvel, 2018). Bogner, Wagner & Zimmermann (2017a)
claimed that “the appropriate microservice granularity is still one of the most discussed
properties (How small is small enough?), as shown in the difficulty of defining acceptable
value ranges for source code metrics” (Bogner, Wagner & Zimmermann, 2017a).
Zimmermann (2017) indicated that professionals request more concrete guidance than
the frequent advice to “define a limited context for each domain concept that will be
exposed as a service” (Zimmermann, 2017). Jamshidi et al. (2018) affirmed that the real
challenge is finding the right modules, with the correct size, the correct assignment of
responsibilities, and well-designed interfaces, and besides, no agreement on the correct size
of microservices exist (Jamshidi et al., 2018).The aim of this article is to identify the main
approaches in the literature that define microservice granularity or that use it in the
process of designing microservice-based systems, either from scratch or migrated from
monoliths. A systematic literature review was carried out on key scientific computing
literature databases (IEEE Xplore, ACM Digital Library, and Scopus); we formulated
three research questions, we defined inclusion and exclusion criteria, and current research
trends to identify relevant works, challenges and gaps for future research were identified.
Research papers that address the problem of microservice granularity are detailed; the
research questions are (RQ1) which approaches have been proposed to define microservice
granularity? (RQ2) which metrics are used to evaluate microservice granularity? and
(RQ3) which quality attributes are addressed when researching microservice granularity?
Very few previous works have reviewed the definition of microservices granularity; we
did not find any review that details the techniques, methods or methodologies used to
define granularity, none describe the metrics used to evaluate it, and few addresses the
quality attributes considered to define it.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 3/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Contributions of this work are as follow: (1) we identified and classified research papers
that address the problem of microservice granularity, therefore we defined the state of the
art; (2) we identified and defined the metrics currently used to assess the granularity of
microservices-based systems; (3) we identified the quality attributes that researchers
studied to define microservice granularity; (4) we identified the case studies used to
validate the methods, which can serve as a dataset for future evaluations of methods or
techniques to define granularity.

The remainder of this article is organized as follows: ‘Related Work’ defines previous
related works; ‘Survey Methodology’ presents the survey design; ‘Results’ organizes the
results; ‘Discussion’ discusses the trends and research gaps; and ‘Conclusions’ summarizes
and concludes.

RELATED WORK
A small number of literature reviews have been published on microservice architecture
research, some of these papers include analysis of application modeling and architecture;
design and development patterns; industrial adoption; state of practice; grey literature
review; and analysis and interviews with industry leaders, software architects, and
application developers of microservices-based applications; whereas two papers focused on
microservice granularity specifically (Hassan, Bahsoon & Kazman, 2020; Schmidt & Thiry,
2020). The literature reviews are described in chronological order below.

Di Francesco (2017) and Di Francesco, Lago &Malavolta (2019) focused on determining
the publication trends of research studies on architecture with microservices and on
the potential for industrial adoption of existing research. They point out that few studies
have focused on design patterns and architectural languages for microservices, and
research gaps exist in areas related to quality attributes (Di Francesco, 2017; Di Francesco,
Lago & Malavolta, 2019).

Zimmermann (2017) extracted the principles of microservices from the literature and
makes a comparison with SOA and highlights the critical points in the research on
microservices, as a result of the review and discussions with industry opinion leaders,
developers and members of the service-oriented community. He raises five research issues:
(1) service interface design (contracting and versioning), (2) microservice assembly and
hosting, (3) microservice integration and discovery, (4) service dependency management,
and (5) service and end client application testing (Zimmermann, 2017).

Jamshidi et al. (2018) presented a technological and architectural perspective on the
evolution of microservices. Their editorial introduction also set out future research
challenges: (1) service modularization and refactoring; (2) service granularity; (3) front-
end integration; (4) resource monitoring and management; (5) failure, recovery and
self-repair; and (6) organizational culture and coordination (Jamshidi et al., 2018).

Soldani, Tamburri & Van Den Heuvel (2018) systematically analyzed the grey industrial
literature on microservices to define the state of practice, identified the technical and
operational problems and benefits of the architectural style based on microservices at an
industrial level. When designing a microservice-based application, key issues involve
determining the right granularity of its microservices and the design of its security policies.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 4/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

During development time, managing distributed storage and application testing, is
challenging. Another pain was usage of network and computing resources during
operation (Soldani, Tamburri & Van Den Heuvel, 2018).

Ghofrani & Lübke (2018) focused on identify challenges and gaps in the design and
development of microservices, they describe the main reasons leveraging and preventing
the usage of systematic approaches in microservice architectures; and the suggestions
or solutions that improve aspects of the microservices architecture. Ghofrani & Lübke
(2018) provided an updated map of the state of practice in microservice architecture and
its complexities for future research. According to the results of their survey, optimization
in security, response time, and performance had higher priorities than resilience,
reliability, fault tolerance, and memory usage are research gaps.

Osses, Márquez & Astudillo (2018) summarized the 44 architectural patterns of
microservices, and proposed a microservice architectural pattern taxonomy: front-end,
back-end, orchestration, migration, internet of things, and DevOps. There was no
specific pattern to define the adequate microservice granularity, and they just proposed
designing the application as a set of modules, each one an independent business function
with its data, developed by a separate team and deployed in a separate process (Osses,
Márquez & Astudillo, 2018).

Hamzehloui, Sahibuddin & Salah (2019) aimed to identify the common trends and
direction of research in microservices. They stated that infrastructure-related issues
were more common than software-related issues, and the cloud was the most common
platform for running microservices. At the infrastructure level, automation and
monitoring require more research, as do software development and design in
microservices; safety, maintenance, and costs were three other areas that have been studied
relatively less compared to other topics (Hamzehloui, Sahibuddin & Salah, 2019).

Vera-Rivera, Gaona Cuevas & Astudillo (2019) identified the challenges and research
trends present in the phases of the development process and in the management of quality
attributes of microservice-based applications (Vera-Rivera, Gaona Cuevas & Astudillo,
2019). This article was more general, it did not emphasize in granularity.

Hassan, Bahsoon & Kazman (2020) carried out a systematic mapping study to provide a
better understanding of the transition to microservices; they consolidated various views
(industrial, research/academic) of the principles, methods, and techniques commonly
adopted to assist in the transition to microservices. They identified gaps in the state of
the art and the practice related to reasoning about microservice granularity. In particular,
they identified possible research topics concerning (1) systematic architecture-oriented
modeling support for microservice granularity, (2) a dynamic architectural assessment
approach for reasoning about the cost and benefit of granularity adaptation, and
(3) effective decision support for informing reasoning about microservice granularity at
runtime (Hassan, Bahsoon & Kazman, 2020). They focused on understanding the
transition to microservices and the microservice granularity problem (a direct antecedent
of this study). They considered quality attributes but not metrics. Their sources were gray
literature (blog articles, presentations, and videos, as means of reporting first-hand
industrial experiences) and research papers, whereas our study put emphasis only on white

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 5/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

literature (articles published in journals and scientific events). Our work was more specific
and detailed evaluating the methods and techniques to define granularity, whereas their
work detailed those methods and techniques in general. Our work are complementary to
their work and take a deeper look at the definition of granularity.

Schmidt & Thiry (2020) carried out a systematic literature review, they found proposals
for identification, decomposition, partitioning or breaking down the application domain
to reach an adequate granularity for microservices. Moreover, the research aims to
highlight the usage of Model-Driven Engineering (MDE) or Domain-Driven Design
(DDD) approaches (Schmidt & Thiry, 2020). They emphasized on DDD and MDE;
whether the selected studies cover DDD or apply MDE; and which elements, principles,
practices, and patterns authors applied; they did not include metrics and quality attributes.
Therefore, our work is complementary to their work.

Most previous literature reviews do not emphasize granularity, they concern general
topics of microservice architecture. To our knowledge, this is the first study focuses
specifically on classified and detailed research papers of microservice granularity, including
quality attributes that motivate working on it, methods/techniques to improve it, and
metrics to measure it.

SURVEY METHODOLOGY
A systematic literature review was carried out following the approach introduced by
Kitchenham define systematic literature reviews as “a form of secondary study that uses a
well-defined methodology to identify, analyze and interpret all available evidence related to
a specific research question in a way that is unbiased and (to a degree) repeatable”
(Kitchenham, 2004).

Planning the systematic literature review
The objectives of this systematic literature review are defined as follows: first, to identify
the proposals that address the microservice granularity problem; second, to identify the
metrics that have been used to evaluate microservice granularity; and third, to analyze
the quality attributes addressed in those works to evaluate microservice granularity.
Few studies or reviews specifically address the problem of microservice granularity, and
very few identify the metrics along with the quality attributes addressed to assess
microservice granularity.

A review protocol specifies the methods that will be used to undertake a specific
systematic review. We selected research papers through two queries strings used in the
IEEE Xplore, ACM Digital Library, and Scopus; then the papers were screening and
reviewed, we applied inclusion and exclusion criteria, next we tabulated the papers, the
contribution of each selected paper was detailed, we classified the papers, the metrics were
described, and the quality attributes were specified. The protocol components are listed
below:

1. Define research questions.

2. Search Strategy.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 6/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

3. Data extraction strategy

4. Study selection criteria and procedures.

5. Synthesis of the extracting data.

1. Define the research questions. The research questions (RQs) covered in this
systematic literature review were:

RQ1: Which approaches have been proposed to define microservice granularity?
RQ2: Which metrics are used to evaluate microservice granularity?
RQ3: Which quality attributes are addressed when researching microservice

granularity?
The definition of the correct size and the functionalities that each microservice must

contain, affects the quality attributes of the system, and affects testing, deployment,
and maintenance; therefore, identify the metrics that are being used to evaluate the
granularity is very important, describe them and use them as references to propose other
methods, techniques or methodologies that allow defining the granularity of the
microservices in a more objective way. Identifying the quality attributes studied and how
they were evaluated is an important reference for future work to define the granularity of
the microservices that are part of an application.

2. Search strategy: Two query strings were defined, which included alternative spellings
for “microservice” and any of the following words: granularity, size, dimensioning, or
decomposition. Additionally, to make the search terms that correspond to the research
questions more precise, another search string was included. In addition to granularity, it
contained the words “method”, “technique”, and “methodology”. Therefore, the search
strings were as follow:

Query string 1 (QS1): (“micro service”ORmicroservice) AND (granularity OR size OR
dimensioning OR decomposition).

According toHassan, Bahsoon & Kazman (2020), it is established that the granularity of
microservices is related to the size and dimension of the microservice, so these terms
are included in the search string. Additionally, the decomposition of monolithic
applications to microservices is an important research topic, so we include this word.

Query string 2 (QS2): (“micro service” OR microservice) AND “granularity” AND
(“method” OR “technique” OR “methodology”), targeting only research papers.

The main objective of the work was to identify the methods, techniques or
methodologies used to determine the microservices granularity.

QS1 and QS2 addresses all research question; for each of the proposals selected in each
QS, the metrics used, and the quality attributes addressed were identified. The query
strings were used in IEEE Xplore1, ACM Digital Library2 and Scopus3, searching for
papers’ titles, abstracts and keywords. The search in these databases, yield 969 results for
QS1 and 146 results for QS2. The search was performed in July 2020.

3. Data extraction strategy. First, papers were tabulated; second, duplicated papers
were removed; third, title, abstract, and conclusions of all papers were reviewed and
analyzed. Each coauthor of this report carried out this process.

1 IEEE Xplore: https://ieeexplore.ieee.org/

2 ACM Digital Library: https://dl.acm.org/

3 Scopus: https://www.scopus.com/search/
form.uri?display=basic

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 7/47

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.scopus.com/search/form.uri?display=basic
https://www.scopus.com/search/form.uri?display=basic
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

4. Study selection criteria and procedures. We selected primary research papers
that make a specific proposal (methodology, model, technique, or method) about
microservices granularity, including migrations from monolith to microservices and
decompositions of systems in microservices. After obtaining the relevant studies, the
inclusion and exclusion criteria were applied (see Table 1). We excluded any paper about
monolith migrations that were not directly related to the definition of microservice
granularity. We also excluded papers that proposed methods, techniques, or models for
SOA, web services or mobile services.

5. Synthesis of the extracting data. Each of the selected papers was evaluated in full-
text form, taking detailed note of the work and the contributions made.

Conducting the systematic literature review
The review process was carried out as follow:

1. We download the full-text paper.

2. Each co-author read and review the paper.

3. Each co-author uses the classification criteria on the paper, using the table presented in
the Appendix A; this was carried out by each co-author independently.

4. We discussed and analyzed the results obtained by each author, resolving doubts and
contradictions and the results are presented in Appendix A.

The results of applying the research protocol is presented in Fig. 1. To analyze the works
presenting definitions of the granularity of microservices, classification criteria were
defined. These criteria were based on the classification performed by (Wieringa et al.,
2006), and have been widely used in previous systematic literature reviews: (Di Francesco,
Lago & Malavolta, 2019; Hamzehloui, Sahibuddin & Salah, 2019; Hassan, Bahsoon &
Kazman, 2020; Vural, Koyuncu & Guney, 2017). To answer the research questions, we
added the classification criteria in each paper: metrics, stage of the development process,
technique used, and quality attributes studied or analyzed; namely:

� Metrics used: Which metrics are used to define the granularity of microservices?

� Development process phases: Phases of the development process on which the work
focuses.

� Research strategies: Includes solution proposal, validation research, experience paper,
opinion paper, philosophical paper, and evaluation research.

� Approach: Structural or behavioral aspects proposed in the papers to define the
granularity of microservices (Hassan, Bahsoon & Kazman, 2020).

� Quality attribute studied: The Quality attributes considered in the proposal, such as
performance, availability, reliability, scalability, maintainability, security, and
complexity.

� Research contribution: Type of contribution made in the article; namely, method,
application, problem formulation, reference architecture, middleware, architectural
language, design pattern, evaluation, or comparison.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 8/47

http://dx.doi.org/10.7717/peerj-cs.695/supp-1
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

� Experimentation type: Type of experimentation used to validate the proposal; namely
experiment, case study, theoretical, or other.

� Technique used: This criterion describes the technique, method or model used to define
the granularity of the microservices.

� Input data: Type of input data used to identify the microservices (i.e., uses cases, logs,
source code, execution traces, among others)

� Type of case study: This criterion determines if the case study is a toy example
(hypothetical case) or a real-life case study. We identified the case study.

� Automatization level: This criterion determines the level of automation of the proposed
technique, if it is manual, automatic, or semi-automatic.

Finally, results were presented in four sections: first, the classification of the selected
papers; second, the main contributions and research gaps in sizing and definition of
microservice granularity were detailed; third, metrics were described an ordered by year
and type; and fourth, quality attributes were detailed, and results were discussed, leading to
conclusions presented in this article.

RESULTS
The search process took place in July 2020. The search in the databases of scientific
publications when applying the search strings (QS1 and QS2) related to the granularity of
the microservices yield 969 and 146 works respectively (see Table 2).

After applying the inclusion and exclusion criteria, 29 papers were selected that address
the definition of the granularity of microservices. (see Table 3). The summarized results of
this systematic literature review are synthesized in Fig. 2.

For RQ1, we identified the papers that propose a method, model, or methodology to
define the microservice granularity; metrics are fundamental because they allow one to
measure, monitor, and evaluate any aspect of a microservice, thus defining or determining
the appropriate granularity of a microservice. For RQ2, we identified metrics used to
evaluate microservice granularity and their decomposition. Figure 2 shows the type and
number of metrics and whether it was applied to microservice, system, development
process, or development team. These metrics are detailed in ‘RQ2: Metrics to Evaluate the
Microservice Granularity’. Finally, for RQ3 we synthesized the works that address quality
attributes to evaluate microservices granularity.

Classification of the selected papers
Appendix A shows the tabulated data and the results of the evaluation of classification
criteria. Most papers were published in conference (86%), and only four (14%) were
published in journals. All selected papers were published between 2016 and the beginning
of 2020 (two in 2016, seven in 2017, six in 2018, 12 in 2019, and two in 2020).

The development process phases addressed by each proposal are shown in Fig. 3.
Several papers emphasize more than one phase, (e.g., P10 focuses on development and
deployment, as befits a method for migration from monolith to microservices).

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 9/47

http://dx.doi.org/10.7717/peerj-cs.695/supp-1
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Most of the proposed methods focus on the design (79%) and development (38%)
phase, with only one addressing testing (3%). Migrations from monolithic architectures to
microservices are very common and important 19 of 29 papers (66%). The papers that
do not address migration do focus on identifying microservices in the design phase;
therefore, defining the size and granularity of microservices from the design phase on is
key, because it has implications for development, testing and deployment.

Further, most papers (79%) focus on the design phase; implicitly or explicitly, they
suggest that defining the “right” microservices granularity from the design phase on is
fundamental. However, some authors affirm that reasoning about microservices size and
performance is not possible at design time; indeed, (Hassan, Ali & Bahsoon, 2017) affirm
that the expected behavior of the system cannot be fully captured at design time.

On the research strategy (see Fig. 4), validation research and solution proposals account
for almost all (14 and 11, respectively); proposals that have been tested and validated in

Table 1 Inclusion and exclusion criteria.

Inclusion criteria Description

Primary research papers that make a specific proposal about the size,
granularity, or decomposition of applications to microservices.

This criterion focuses on identifying primary research papers that propose or
define the size or granularity of microservices, also we include migrations
from monolith to microservices that carry out a proposal to decompose the
monolithic application to microservices.

Papers that propose a methodology, model, technique, or method to
define granularity, size, or dimension of microservices.

The objective of the review is to identify the models, methods, methodologies,
or techniques used to define the microservice granularity.

Migrations that include a methodology, model, technique, or method
to define granularity, size, or dimension of microservices.

We include migrations from monolithic applications to microservices that
reason about the definition of microservice granularity, those migrations
that focus on other aspects are not included.

Papers published in journals and conference proceedings in the field of
software architecture, software engineering and computer science.

We focus on research papers published in international journals and
conferences only in software architecture, software engineering, and
computer science. We include only peer-reviewed papers. We did not
include gray literature.

Exclusion criteria Description

Tutorial, example, experience, and opinion articles. We do not include tutorials, examples, experiences, and opinion articles,
because they do not correspond to primary research papers, or they do not
carry out a new contribution in the definition of microservices granularity.

Survey and literature review. We exclude survey papers, and literature reviews because they are secondary
research papers that list the contributions of other authors.

Use of microservices in other areas. The use of microservices architecture in other areas is evident and
fundamental, for this review they were excluded because they do not
directly address the problem of defining the microservice granularity.

Papers that do not include a methodology, model, technique, or
method to define granularity, size, or dimension of microservices.

Articles related to the microservice architecture, which do not make a specific
proposal on the definition of microservices granularity are excluded.

Papers which propose a specific method, technique or model for SOA,
web services or mobile services.

The fundamentals of SOA, web services, and mobile services are different
from the fundamentals of microservices architecture, so specific proposals
in these topics are not included.

Literature only in the form of abstracts, blogs, or presentations. We used full-text articles, excluding those that are only available in abstract,
blog, or presentation form (not peer-reviewed).

Articles not written in English or Spanish. We only include papers written in English or Spanish; other languages are
excluded.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 10/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

practice are very few, namely P5 (a reference architecture) and P16 (a method for
candidates microservice identification from monolithic systems).

On the type of contribution (see Fig. 5), the vast majority (17 papers) proposed methods
(59%), some proposed methodologies (24%), few proposed reference architectures (7%)
and problem formulation (7%), Only one propose an evaluation or comparison (3%).

On the validation approach (see Fig. 6), most papers (69%) used case studies for
validation and evaluation, other papers use experiments (37%), and most of also used case
studies.

More than half of studies (13 of 29) validated their proposals using realistic (but not
real—hypothetical) case studies, and the remaining almost-half (14 of 29) used real-life
case studies, real-life case studies achieve better validation than hypothetical case studies.

Table 2 Number of publications.

Query String Mont/Year IEEE ACM Scopus Total*

QS1 July/2020 72 774 123 969

QS2 July/2020 4 131 11 146

Note:
* Including duplicated papers.

Figure 1 Systematic literature review method. Full-size DOI: 10.7717/peerj-cs.695/fig-1

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 11/47

http://dx.doi.org/10.7717/peerj-cs.695/fig-1
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Even better, some studies (8) used actual open-source projects. The case studies found in
the reviewed articles are summarized in Table 4; they are valuable resources to validate
future research and to compare new methods with those identified in this review.

Table 3 Selected papers, related works on the definition of granularity of microservices.

ID. Paper Year Type

P1 Microservices and Their Design Trade-offs: A self-adaptive Roadmap (Hassan & Bahsoon, 2016). 2016 Conference paper

P2 Microservice Architectures for Scalability, Agility and Reliability in E-Commerce (Hasselbring & Steinacker, 2017). 2017 Conference paper

P3 From Monolith to Microservices: Lessons Learned on an Industrial Migration to a Web Oriented Architecture
(Gouigoux & Tamzalit, 2017).

2017 Conference paper

P4 Microservices: Granularity vs. Performance (Shadija, Rezai & Hill, 2017). 2017 Conference paper

P5 Microservice Ambients: An Architectural Meta-Modelling Approach for Microservice Granularity (Hassan, Ali &
Bahsoon, 2017).

2017 Conference paper

P6 Microservices Identification Through Interface Analysis (Baresi, Garriga & De Renzis, 2017). 2017 Conference paper

P7 Partitioning Microservices: A domain engineering approach (Josélyne et al., 2018). 2018 Conference paper

P8 A Case Study on Measuring the Size of Microservices (Vural, Koyuncu & Misra, 2018) 2018 Conference paper

P9 Identifying Microservices Using Functional Decomposition (Tyszberowicz et al., 2018). 2018 Conference paper

P10 Unsupervised Learning Approach for Web Application Auto-decomposition into Microservices (Abdullah, Iqbal &
Erradi, 2019).

2019 Journal paper

P11 Requirements Reconciliation for Scalable and Secure Microservice (De)composition (Ahmadvand & Ibrahim, 2016). 2016 Conference paper

P12 Function-Splitting Heuristics for Discovery of Microservices in Enterprise Systems (De Alwis et al., 2018). 2018 Conference paper

P13 Extraction of Microservices from Monolithic Software Architectures (Mazlami, Cito & Leitner, 2017). 2017 Conference paper

P14 From Monolith to Microservices: A Dataflow-Driven Approach (Chen, Li & Li, 2017).
A Dataflow-driven Approach to Identifying Microservices from Monolithic Applications (Li et al., 2019).

2017
2019

Conference paper
Journal paper

P15 From Monolithic Systems to Microservices: A Decomposition Framework Based on Process Mining (Taibi & Syst,
2019).

2019 Conference paper

P16 Service Candidate Identification from Monolithic Systems Based on Execution Traces (Jin et al., 2019). 2019 Journal paper

P17 The ENTICE Approach to Decompose Monolithic Services into Microservices (Kecskemeti, Marosi & Kertesz, 2016).
Towards a Methodology to Form Microservices from Monolithic Ones (Kecskemeti, Kertesz & Marosi, 2017).

2016
2017

Conference paper

P18 Refactoring Orchestrated Web Services into Microservices Using Decomposition Pattern (Tusjunt & Vatanawood,
2018).

2018 Conference paper

P19 A logical architecture design method for microservices architectures (Santos et al., 2019). 2019 Conference paper

P20 A New Decomposition Method for Designing Microservices (Al-Debagy & Martinek, 2019). 2019 Journal paper

P21 Business Object Centric Microservices Patterns (De Alwis et al., 2019). 2019 Conference paper

P22 From a Monolith to a Microservices Architecture: An Approach Based on Transactional Contexts (Nunes, Santos &
Rito Silva, 2019).

2019 Conference paper

P23 Granularity Cost Analysis for Function Block as a Service (Homay et al., 2019). 2019 Conference paper

P24 MicroValid: A Validation Framework for Automatically Decomposed Microservices (Cojocaru, Uta & Oprescu,
2019).

2019 Conference paper

P25 Migration of Software Components to Microservices: Matching and Synthesis (Christoforou, Odysseos & Andreou,
2019).

2019 Conference paper

P26 Microservice Decomposition via Static and Dynamic Analysis of the Monolith (Krause et al., 2020). 2020 Conference paper

P27 Towards Automated Microservices Extraction Using Multi-objective Evolutionary Search (Saidani et al., 2019). 2019 Conference paper

P28 Extracting Microservices’ Candidates from Monolithic Applications: Interface Analysis and Evaluation Metrics
Approach (Al-Debagy & Martinek, 2020).

2020 Conference paper

P29 Migrating Web Applications from Monolithic Structure to Microservices Architecture (Ren et al., 2018). 2018 Conference paper

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 12/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

In any case, other microservice-based datasets have been found to be beyond the
reach of this study; for example, (Rahman, Panichella & Taibi, 2019) shared a dataset
composed of 20 open-source projects using specific microservice architecture patterns; and
(Marquez & Astudillo, 2018) shared a dataset of open source microservice-based projects
when investigating actual use of architectural patterns.

The most used case studies to validate the proposals were Kanban boards (P6, P20, P28)
and Money transfer (P6, P20, P28); they were used by three papers, followed by JPetsStore
(P16, P29) and Cargo tracking (P6, P24) which was used by two papers.

RQ1: Approaches to define microservices granularity
The granularity of microservices involves defining their size and the number that will be
part of the application. From the proposal of Newman (2015), microservices follow the
principle of simple responsibility that says “Gather things that change for the same reason
and separate things that change for different reasons”. The size, dimension, or granularity
of microservices have traditionally been defined as follows:

1. Trial and error, depending on the experience of the architect or developer.

2. According to the number of lines of code.

3. By implementation units.

4. By business capabilities.

5. By capabilities of the development team or teams.

6. Using domain-driven design.

7. Number of methods or exposed interfaces.

Richardson (2020) proposed four decomposition patterns, which allow for the
decomposition of an application into services: (1) Decompose by business capability:
define services corresponding to business capabilities; (2) decompose by subdomain: define
services corresponding to DDD subdomains; (3) self-contained service: design services
to handle synchronous requests without waiting for other services to respond. (4) service
per team: each service is owned by a team, which has sole responsibility for making
changes, and ideally each team has only one service (Richardson & microservices.io).

Zimmermann et al. (2019) proposed a microservice API patter (MAP) for API
design and evolution. The patterns are divided in five categories: (1) foundation,
(2) responsibility, (3) structure, (4) quality, and (5) evolution. These patterns are an
important reference for developing microservice-based applications. There is no specific
pattern that helps to determine the number of microservices and their size, that is, the
number of operations it must contain (Zimmermann et al., 2019).

The size of the microservice or optimal granularity is one of the most discussed
properties and there are few patterns, methods, or models to determine how small a
microservice should be. In this respect, some authors have addressed this problem and
proposed the solutions summarized in Table 5.

The proposed techniques were classified into manual, semi-automatic, or automatic
techniques; manual techniques are methods, procedures, or methodologies performed by

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 13/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

the architect or developer decomposing systems following a few steps. Automatic
techniques use some type of algorithm to generate decomposition, and the system
generates the decomposition. Semi-automatic combine one part made manually and with
another made automatically. Most papers proposed manual procedures to identify the
microservice granularity (15 papers); some proposals were automatic (eight papers) and

Figure 4 Number of papers by research strategy. Full-size DOI: 10.7717/peerj-cs.695/fig-4

Figure 5 Number of papers by contribution type. Full-size DOI: 10.7717/peerj-cs.695/fig-5

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 14/47

http://dx.doi.org/10.7717/peerj-cs.695/fig-4
http://dx.doi.org/10.7717/peerj-cs.695/fig-5
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

few proposals paper were semi-automatic (six papers). The most used case studies to
validate the proposals were Kanban boards and Money Transfer (P6, P20, P28).

The papers from 2017 and 2018 are mostly manual methods or methodologies that
detail the way to decompose or determine microservices, using DDD, domain engineering,
or a specific methodology. Later, the papers from 2019, and 2020 propose semi-automatic,
and automatic methods that use intelligent algorithms and machine learning mostly
focused on migrations from monolith to microservices. We can observe a chronological
evolution in the proposals, the type of techniques used to define the granularity of the
microservices that are part of an application are presented in Fig. 7, semantic similarity,
machine learning, and genetic programing were the most important techniques.

RQ2: Metrics to evaluate the microservice granularity
Software metrics allow us to measure and monitor different aspects and characteristics of a
software process and product, and there are metrics at the level of design, implementation,
testing, maintenance, and deployment. These metrics allow understanding, controling,
and improving of what happens during the development and maintenance of the software,
to take corrective and preventive actions.

In the methods and models identified, most of them (59%) used some metrics to
determine microservices granularity. We would have expected greater importance for
metrics in automatic methods to validate granularity in microservice-based applications
and evaluate decompositions yield by methods.

We identify metrics for coupling, cohesion, granularity, complexity, performance, use of
computational resources, development team, source code, and so on (see Table 6).
We classified them into four groups: about development team, about microservices
development process, about the system, and about each microservice. Most identified
metrics (40) focused on a microservice, and only two address the microservice

Figure 6 Number of papers by validation approach. Full-size DOI: 10.7717/peerj-cs.695/fig-6

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 15/47

http://dx.doi.org/10.7717/peerj-cs.695/fig-6
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

development processes. There is a research gap for metrics to evaluate the full development
process of microservice-based applications and their impact on the granularity of
microservices.

Table 4 Types of case study used by selected papers.

Paper Case Study Type URL

P2 An e-commerce web application called otto. Real-life http://www.otto.de

P3 MGDIS. Real-life http://www.mgdis.fr

P4 University admissions systems. Central Admission Authority UK. Hypothetical No report

P5 Online movie streaming subscription-based system. Hypothetical No report

P6 Cargo tracking, money transfer, and kanban boards. Hypothetical No report

P6 Real-world OpenAPI specification, from Apis.guru Real-life https://apis.guru/openapi-directory/

P7 Weather case study. Hypothetical No report

P8 E-shop Hypothetical No report

P9 The Common Component Modeling Example–CoCoME Herold et al
(2008).

Hypothetical No report

P10 Open source benchmark web application ACME Air. Hypothetical https://github.com/blueperf, https://github.com/
blueperf/acmeair-driver

P11 Movie/TV show streaming system. Hypothetical No report

P12 Open-source projects: SUGAR and Church CRM. Real-life https://www.sugarcrm.com/. http://churchcrm.io/

P13 Open source repositories using the Git VCS. (21 projects) Real-life No report

P14 Case study 1: movies and comments.
Case study 2: cinema, movies, plan screening, online box, office list.

Hypothetical No report

P15 Bookkeeping for Italian tax accountants. Real-life No report

P16 JPetsStore, a web application. Real-life https://github.com/mybatis/jpetstore-6

P16 SpringBlog.
Solo.
jforum2.
Agilefant.
Xwiki.

Real-life https://github.com/bvn13/SpringBlog https://
github.com/b3log/solo https://sourceforge.net/
projects/jforum2 https://roller.apache.org https://
www.agilefant.com http://platform.xwiki.org

P18 Online shopping workflow. Hypothetical No report

P19 The Integrated Management Platform 4.0 (IMP_4.0), ERP System. Real-life No report

P20 Kanban boards.
Money transfer.

Hypothetical No report

P20 AWS. PayPal. Real-life No report

P22 LdoD.
Blended workflow.

Real-life https://ldod.uc.pt
https://github.com/socialsoftware/blended-
workflow.

P24 Cargo tracking. Booking system.
Trading system. Movie crawler system.
Ticket price comparator.

Hypothetical No report

P26 Legacy lottery application in|FOCUS. Real-life No report

P27 JpetStore, SpringBlog Hypothetical https://github.com/mybatis/jpetstore-6.
2 https://github.com/Raysmond/SpringBlog.

P28 Kanban boards. Money transfer. Hypothetical No report

P29 DayTrader, JPetsStore,
TPC-W. RUBiS.
12 applications migrated.

Real-life No report

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 16/47

http://www.otto.de
http://www.mgdis.fr
https://apis.guru/openapi-directory/
https://github.com/blueperf
https://github.com/blueperf/acmeair-driver
https://github.com/blueperf/acmeair-driver
https://www.sugarcrm.com/
http://churchcrm.io/
https://github.com/mybatis/jpetstore-6
https://github.com/bvn13/SpringBlog
https://github.com/b3log/solo
https://github.com/b3log/solo
https://sourceforge.net/projects/jforum2
https://sourceforge.net/projects/jforum2
https://roller.apache.org
https://www.agilefant.com
https://www.agilefant.com
http://platform.xwiki.org
https://ldod.uc.pt
https://github.com/socialsoftware/blended-workflow
https://github.com/socialsoftware/blended-workflow
https://github.com/mybatis/jpetstore-6
https://github.com/Raysmond/SpringBlog
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

The most used metrics are related to coupling (14 proposed metrics), followed by
performance and cohesion (13 metrics), next, computational resources metrics (eight
metrics), and complexity and source code (seven metrics); (see Fig. 8). Nine papers used
coupling metrics (P11, P12, P13, P14, P15, P16, P21, P22, P24), and seven papers used
cohesion metrics (P12, P14, P16, P21, P24, P27, P28), whereas performance metrics was
used by five papers (P4, P10, P12, P21, P23); Complexity metrics were considered by two
papers (P8, P22), although they are fundamental characteristic of microservices.

More proposals that include more complexity metrics are required, as well as metrics
related to the microservice development process. The other metrics were used by only
one paper each. We found that 11 papers used coupling or cohesion metrics, and 5 papers
used both. Only one (P24) used coupling, cohesion, and complexity metrics.

The size and number of microservices that compose an application directly affects its
maintainability. Automation of tests, continuous integration and deployment are essential
especially when microservices and many distributed systems must be managed
independently by each microservice.

Bogner, Wagner & Zimmermann (2017b) performed a literature review to measure the
maintainability of software and identified metrics in four dominant design properties: size,
complexity, coupling, and cohesion. For service-based systems, they also analyzed its
application to systems based on microservices and presented a maintainability model for
services (MM4S), consisting of service properties related to automatically collectible
service metrics (Bogner, Wagner & Zimmermann, 2017b). The metrics proposed by them
can be used or adapted to determine the adequate granularity of the microservices that are
going to be part of an application.

Considering Bogner, Wagner & Zimmermann (2017b), Candela et al. (2016) and related
papers, we detail the following metrics, which can be used or adapted to define the right
granularity of the microservices and to evaluate decompositions.

Coupling metrics

The coupling measures the degree of dependence of one software component in relation to
another. If there is a high degree of coupling, the software component cannot function
properly without the other component; furthermore, when we change a software
component, we must obligatorily change the other component. For these reasons when
designing microservice-based applications, we should look for a low degree of coupling
between each microservice.

Mazlami, Cito & Leitner (2017) represented the information in the monolith and create
an undirected, edge-weighted graph G. Each graph edge has a weight defined by the weight
function; this weight function determines how strong the coupling between the
neighboring edges is, according to the coupling strategy in use (Mazlami, Cito & Leitner,
2017). These coupling strategies can be used as metrics to define the granularity. These
metrics are defined as follows:

Dependency weight. Ahmadvand & Ibrahim (2016) said “dependency weight indicates
the frequency of using the dependency. For example, the dependency weight between a
billing and shopping cart is high, because with each call to the former a call is required to

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 17/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Table 5 Contributions in the definition of the granularity of the microservices by technique, contribution type and automatization level.

Paper Technique Migration,
From
Scratch, or
None

Input Data Contribution type Automatization level

Method Methodology Ref.
Architec.

Problem. Evaluat. Manual Automatic Semi
Auto.

P1 Self-adaptative
solution.

None X X

P2 Vertical
decomposition in
self-contained
systems.

Migration X X

P3 Balance cost quality
assurance vs
deployment.

Migration X X

P4 Comparing the same
microservices in a
single container and
in two containers.

Migration X X

P5 Architecture
definition language
(ADL).

From
Scratch

X X

P6 Semantic similarity,
clustering k-means,
DISCO.

From
Scratch

OpenApi
specification.

X X

P7 Domain engineering,
domain-driven
design.

From
Scratch

X X

P8 Domain-driven
design COSMIC
function points.

From
Scratch

X X

P9 Functional
decomposition.

From
Scratch

Use cases X X

P10 Machine learning
method, scale
weighted k-means.

Migration Access logs X X

P11 Decomposition form
system
requirements—
security vs
scalability

From
Scratch

X X

P12 Heuristics used for
functional splitting,
microservice
discovery
algorithms.

Migration Source code,
database,
execution call
graphs.

X X

P13 Graph-based
clustering
algorithm.

Migration Source code. X X

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 18/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Table 5 (continued)

Paper Technique Migration,
From
Scratch, or
None

Input Data Contribution type Automatization level

Method Methodology Ref.
Architec.

Problem. Evaluat. Manual Automatic Semi
Auto.

P14 Dataflow-driven
decomposition
algorithm.

Migration Dataflow
diagram, uses
cases.

X X

P15 Process-mining
approach, DISCO
used to identify the
business processes.

Migration Execution logs. X X

P16 Search-based
functional atom
grouping algorithm.
Non-dominated
sorting genetic
algorithm-II (NSGA
II).

Migration Execution
traces from
logs.

X X

P17 Virtual machine
image synthesis and
analysis.

Migration X X

P18 Scheme to refactor
SOA services into
microservices using
decomposition
pattern.

From
Scratch

Scenario
statements,
workflow,
BPEL
description.

X X

P19 Set of rule-based
decisions,
adaptation of the
four-step rule set
(4SRS) method.

From
Scratch

UML use cases
model.

X X

P20 Word embedding and
hierarchical
clustering of
semantic similarity.

Migration OpenApi
specification

X X

P21 Microservice
discovery
algorithms. Genetic
algorithm, DISCO,
NSGAII.

Migration Source code,
database,
execution call
graphs

X X

P22 A clustering
algorithm applied to
aggregate domain
entities.

Migration Source code,
MVC
architectural
style.
Call graph.

X X

P23 Service granularity
cost analysis-based
method, cost
analysis function.

From
Scratch

X X

(Continued)

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 19/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

the latter. On the other hand, the dependency weight between the billing service and a
service managing the meta-data of payment methods is low, because the former calls the
latter only once a day” (Ahmadvand & Ibrahim, 2016).

Logical coupling. Gall, Jazayeri & Krajewski (2003) coined the term logical coupling
as a retrospective measure of implicit coupling based on the revision history of an
application source code (Gall, Jazayeri & Krajewski, 2003).Mazlami, Cito & Leitner (2017)
define the value of the logical coupling is one if classes (C1, C2) have changed together in a
certain commit. They use the logical coupling aggregate which is the sum of the logical
coupling for each pair of classes (Mazlami, Cito & Leitner, 2017).

Table 5 (continued)

Paper Technique Migration,
From
Scratch, or
None

Input Data Contribution type Automatization level

Method Methodology Ref.
Architec.

Problem. Evaluat. Manual Automatic Semi
Auto.

P24 Validation framework
for microservice
decompositions.

Migration X X

P25 Ontology scheme
search-based
techniques, multi-
objective genetic
algorithm.

Migration Component
and
microservices
properties.

X X

P26 Domain-driven
design, architectural
design via dynamic
software
visualization.

Migration None X X

P27 Non-dominated
sorting genetic
algorithm-II (NSGA
II).

Migration Source code X X

P28 Fast test model,
clustering using
affinity propagation
algorithm, and
clustering of
semantically similar
API operations.

Migration OpenAPI
specification

X X

P29 Function call graph,
Markov chain
model to represent
migration
characteristics, k-
means hierarchical
clustering.

Migration Source code,
runtime logs

X X

Note:
Migration, The proposal is used in migration from monolith to microservices; From Scratch, The proposal can be used for development from scratch; Ref. Architec.,
reference architecture; Evaluat, evaluation or comparison; Semi Auto, Semi-automatic; DISCO, Distributionally related words using co-occurrences; NSGAII, Non-
dominated sorting genetic algorithm-II; SOA, Service-oriented architecture.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 20/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Semantic coupling. Basically, semantic coupling couples together classes that
contain code about the same things, i.e., domain model entities. The semantic coupling
strategy can compute a score that indicates how related two files are, in terms of domain
concepts or “things” expressed in code and identifiers (Mazlami, Cito & Leitner, 2017).

Contributor count and contributor coupling. The contributor coupling strategy
aims to incorporate the team-based factors into a formal procedure that can be used to
cluster class files according to the team-based factors (reduce communication overhead to
external teams and maximize internal communication and cohesion inside developer
teams). It does so by analyzing the authors of changes on the class files in the version
control history of the monolith. The procedure to compute the contributor coupling is
applied to all class files. In the graph G representing the original monolith M, the weight on
any edge is equal to the contributor coupling between two classes Ci and Cj that are
connected in the graph. The weight is defined as the cardinality of the intersection of the
sets of developers that contributed to class Ci and Cj (Mazlami, Cito & Leitner, 2017).

Structural coupling. Structural coupling consists of the number of classes outside
package Pj referenced by classes in the package Pj divided by the number of packages
(Candela et al., 2016).

Afferent coupling (Ca). The number of classes in other packages (services) that depend
upon classes within the package (service) itself, as such it indicates the package’s (service’s)
responsibility (Martin, 2002) cited by (Li et al., 2019).

Efferent coupling (Ce). The number of classes in other packages (services), that the
classes in a package (service) depend upon, thus indicates its dependence on others
(Martin, 2002) cited by (Li et al., 2019).

Instability (I).Measures a package’s (service’s) resilience to change through calculating
the ratio of Ce and Ce + Ca. I = 0 indicates a completely stable package (service), whereas
I = 1 a completely unstable package (service) (Martin, 2002) cited by (Li et al., 2019).

Figure 7 Type of techniques used in the selected papers. Multiple techniques may be used by one
paper. Some papers used specific techniques, these techniques were not included.

Full-size DOI: 10.7717/peerj-cs.695/fig-7

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 21/47

http://dx.doi.org/10.7717/peerj-cs.695/fig-7
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

T
ab
le
6
P
ap
er
s
an

d
us
ed

m
et
ri
cs
.

P
ap
er

U
se

of
m
et
ri
cs

re
la
ti
ve

to
M
et
ri
c
ty
pe

D
ev
.

T
ea
m

D
ev
.

P
ro
ce
ss

A
pp

.
Sy
st
em

.
M
S.

C
ou

pl
in
g

C
oh

es
io
n

G
ra
n
ul
ar
it
y

C
om

pl
ex
it
y

T
ea
m

C
om

pu
t.

R
es
ou

rc
e.

So
u
rc
e
C
od

e
P
er
fo
rm

an
ce

O
th
er

Q
u
al
it
y

A
tt
ri
bu

te
s

P
3

X
C
os
t
of

qu
al
it
y

as
su
ra
nc
e.

C
os
t
of

de
pl
oy
m
en
t.

P
4

X
R
es
po

ns
e

ti
m
e.

N
um

be
r
of

ca
lls
.

P
8

X
X

C
O
SM

IC
fu
nc
ti
on

po
in
ts
.

P
10

X
A
vg
.C

P
U
.

U
se
d

vi
rt
ua
l

m
ac
hi
ne
s.

A
llo

ca
te
d

vi
rt
ua
l

m
ac
hi
ne
s.

R
es
po

ns
e
ti
m
e

SL
O

vi
ol
at
io
ns
.

N
um

be
r
of

ca
lls
.

N
um

be
r
of

re
je
ct
ed

re
qu

es
t.

T
hr
ou

gh
pu

t.

P
11

X
D
ep
en
de
nc
y

w
ei
gh
t.

Se
cu
ri
ty

im
pa
ct
.

Sc
al
ab
ili
ty

im
pa
ct
.

P
12

X
X

St
ru
ct
ur
al

co
up

lin
g.

La
ck

of
co
he
si
on

.
A
vg
.

M
em

or
y.

A
vg
.

D
is
k.

N
um

be
r
of

re
qu

es
ts
.

E
xe
cu
ti
on

ti
m
e.

P
13

X
X

X
Lo

gi
ca
l
co
up

lin
g.

A
ve
ra
ge

do
m
ai
n

re
du

nd
an
ce
.

C
on

tr
ib
ut
or

co
up

lin
g.

Se
m
an
ti
c

co
up

lin
g.

C
om

m
it

co
un

t.
C
on

tr
ib
ut
or

co
un

t.

Li
ne
s
of

co
de

P
14

X
X

A
ff
er
en
t
co
up

lin
g.

E
ff
er
en
t

co
up

lin
g.

In
st
ab
ili
ty
.

R
el
at
io
na
l

co
he
si
on

.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 22/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

T
ab
le

6
(c
on

ti
n
ue
d
)

P
ap
er

U
se

of
m
et
ri
cs

re
la
ti
ve

to
M
et
ri
c
ty
pe

D
ev
.

T
ea
m

D
ev
.

P
ro
ce
ss

A
pp

.
Sy
st
em

.
M
S.

C
ou

pl
in
g

C
oh

es
io
n

G
ra
n
ul
ar
it
y

C
om

pl
ex
it
y

T
ea
m

C
om

pu
t.

R
es
ou

rc
e.

So
u
rc
e
C
od

e
P
er
fo
rm

an
ce

O
th
er

Q
u
al
it
y

A
tt
ri
bu

te
s

P
15

X
C
ou

pl
in
g
be
tw
ee
n

m
ic
ro
se
rv
ic
e.

N
um

be
r
of

cl
as
se
s.

N
um

be
r
of

du
pl
ic
at
ed

cl
as
se
s.

P
16

X
In
te
gr
at
in
g

in
te
rf
ac
e

nu
m
be
r.

C
oh

es
io
n
at

m
es
sa
ge

le
ve
l.

C
oh

es
io
n
at

do
m
ai
n
le
ve
l.

St
ru
ct
ur
al

m
od

ul
ar
it
y

Q
ua
lit
y.

C
on

ce
pt
ua
l

m
od

ul
ar
it
y

Q
ua
lit
y.

In
te
rn
al
an
d

ex
te
rn
al
C
o-

ch
an
ge

Fr
eq
ue
nc
y
(I
C
F,

E
C
F)
.

R
at
io
n
of

E
C
F
to

IC
F.

P
21

X
X

St
ru
ct
ur
al

co
up

lin
g.

La
ck

of
co
he
si
on

.
A
vg
.C

P
U

A
vg
.

N
et
w
or
k.

N
um

be
r
of

ex
ec
ut
io
ns
.

N
um

be
r
of

pa
ck
et
s

se
nd

.

P
22

X
Si
lh
ou

et
te

Sc
or
e.

N
um

be
r
of

si
ng
le
to
n

cl
us
te
rs
.

M
ax
im

um
cl
us
te
r

si
ze
.

P
23

Se
rv
ic
e

co
m
po

si
ti
on

co
st
.

Se
rv
ic
e

de
co
m
po

si
ti
on

co
st
.

R
eq
ue
st
ti
m
e

P
24

X
X

D
ep
en
de
nc
ie
s

co
m
po

si
ti
on

.
St
ro
ng
ly

co
nn

ec
te
d

co
m
po

ne
nt
s.

N
an
o-
en
ti
ti
es

co
m
po

si
ti
on

.
R
el
at
io
n

co
m
po

si
ti
on

.
R
es
po

ns
ib
ili
ti
es

co
m
po

si
ti
on

.
Se
m
an
ti
c

si
m
ila
ri
ty
.

N
um

be
r
of

na
no

-
en
ti
ti
es
.

(C
on

ti
nu

ed
)

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 23/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

T
ab
le

6
(c
on

ti
n
ue
d
)

P
ap
er

U
se

of
m
et
ri
cs

re
la
ti
ve

to
M
et
ri
c
ty
pe

D
ev
.

T
ea
m

D
ev
.

P
ro
ce
ss

A
pp

.
Sy
st
em

.
M
S.

C
ou

pl
in
g

C
oh

es
io
n

G
ra
n
ul
ar
it
y

C
om

pl
ex
it
y

T
ea
m

C
om

pu
t.

R
es
ou

rc
e.

So
u
rc
e
C
od

e
P
er
fo
rm

an
ce

O
th
er

Q
u
al
it
y

A
tt
ri
bu

te
s

P
27

X
C
oh

es
io
n
at

M
es
sa
ge

le
ve
l.

C
oh

es
io
n
at

D
om

ai
n
le
ve
l.

O
pe
ra
ti
on

nu
m
be
r.

In
te
ra
ct
io
n

nu
m
be
r.

P
28

X
X

La
ck

of
co
he
si
on

.
O
pe
ra
ti
on

nu
m
be
r.

P
29

X
N
um

be
r
of

m
ic
ro
se
rv
ic
es
.

N
um

be
r
of

in
te
rf
ac
es
.

Li
ne
s
of

co
de
.

P
ac
ka
ge

an
al
ys
is
.

C
la
ss

hi
er
ar
ch
y

an
al
ys
is
.

St
at
ic

st
ru
ct
ur
e

an
al
ys
is
.

St
at
ic
ca
ll

gr
ap
h

an
al
ys
is
.

C
om

bi
ne
d

st
at
ic
an
d

dy
na
m
ic

an
al
ys
is
.

N
ot
e: P
ap
er
,p
ap
er

nu
m
be
r;
D
ev
.T

ea
m
,D

ev
el
op

m
en
tt
ea
m
;D

ev
.P

ro
ce
ss
,D

ev
el
op

m
en
tp

ro
ce
ss
;A

pp
.S
ys
te
m
,A

pp
lic
at
io
n
or

sy
st
em

;M
S,
M
ic
ro
se
rv
ic
e;
C
om

pu
t.
R
es
ou

rc
e,
C
om

pu
ta
ti
on

al
re
so
ur
ce
;A

vg
.,

A
ve
ra
ge
;C

O
SM

IC
,C

om
m
on

So
ft
w
ar
e
M
ea
su
re
m
en
t
In
te
rn
at
io
na
lC

on
so
rt
iu
m
;S
LO

,S
er
vi
ce
-l
ev
el
ob

je
ct
iv
e.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 24/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Coupling between microservice (CBM). Taibi & Syst (2019) defined CBM extending
the well-known coupling between objects; this coupling can occur through method
calls, field accesses, inheritance, arguments, return types, and exceptions. They calculated
the relative CBM for each microservice by dividing the number of external links between
the number of classes in the microservices (Taibi & Syst, 2019).

Integrating interface number (IFN). The number of published interfaces of a
service. The smaller the IFN, the more likely the service is to assume a single responsibility.
The IFN for the system is the average of all IFN (Jin et al., 2019).

Average domain redundancy (ADR). A favorable microservice design avoids
duplication of responsibilities across services. Mazlami, Cito & Leitner (2017) computed
the average domain redundancy metric as a proxy to indicate the amount of domain-
specific duplication or redundancy between the services on a normalized scale between
0 and 1, where we favor service recommendations with lower ADR values (Mazlami, Cito
& Leitner, 2017).

Absolute importance of the service (AIS). The number of clients that invoke at least
one operation of a service’s interface (Rud, Schmietendorf & Dumke, 2006).

Absolute Dependence of the Service (ADS). The number of other services that service
S depends on, i.e., the number of services from which S invokes at least one operation (Rud,
Schmietendorf & Dumke, 2006).

Services interdependence in the system (SIY). The number of service pairs that are
bi-directionally dependent on each other (Rud, Schmietendorf & Dumke, 2006).

Dependencies composition. Cojocaru, Uta & Oprescu (2019) defined dependencies
composition as “The test assesses how balanced outward dependencies are across the
microservices, by counting the outward dependencies each microservice has toward its
peers. The algorithm constructs a dependency graph of the system where each dependency
represents a communication path utilized for exchanging data between two components of
the system” (Cojocaru, Uta & Oprescu, 2019).

Figure 8 Amount of metrics per metric type. Full-size DOI: 10.7717/peerj-cs.695/fig-8

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 25/47

http://dx.doi.org/10.7717/peerj-cs.695/fig-8
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Strongly connected components (SCC). SCC identifies strongly connected
components on the previously mentioned dependency graph using Tarjan’s algorithm.
If cycles are detected in the communication paths, then the respective services should be
aggregated into one microservice. The score is divided by the total number of
microservices within the system (Cojocaru, Uta & Oprescu, 2019).

Silhouette score. Nunes, Santos & Rito Silva (2019) define the silhouette score as
“the difference between the mean nearest-cluster distance a and the mean intra-cluster
distance b divided by the greatest of a and b. This score ranges its values from −1 to 1,
representing incorrect clustering (samples on wrong clusters) and highly dense clustering,
respectively. This metric creates a parallelism with the overall coupling of the clusters
of the system, as our objective was to obtain a high intra-cluster similarity and a low
inter-cluster similarity, so the partition between clusters is well defined” (Nunes, Santos &
Rito Silva, 2019).

Perepletchikov et al. (2007) proposed a set of design-level metrics to measure the
structural attribute of coupling in service-oriented systems, which can be adapted to
microservices (Perepletchikov et al., 2007).

Cohesion metrics
Cohesion and coupling are two contrasting goals. A solution balancing high cohesion and
low coupling is the goal for developers. Candela et al. (2016) employed a two-objective
approach aimed at maximizing package cohesion and minimizing package coupling.
They used class dependencies and structural information to measure the structural
cohesion, which can be adapted to microservices. The metrics used in the related work are
listed below:

Lack of cohesion. Lack of cohesion of classes for the Jth package (Pj) measured as the
number of pairs of classes in Pj with no dependency between them (Candela et al., 2016).
Al-Debagy & Martinek (2020) used the metric in a different way as “It is based on
Henderson-Sellers’s lack of cohesion metrics (Al-Debagy & Martinek, 2020). But the
proposed version is modified to be applicable for microservices’ APIs. It works by finding
how many times a microservice has used a specific operation’s parameter, divided by the
product of the number of operations multiplied by the number of unique parameters”.
Candela et al. (2016) used lack of structural cohesion to measure the lack of cohesion
between classes divided by the number of packages, and they also defined a lack of
conceptual cohesion as a metric (Candela et al., 2016).

Relational cohesion. Relational cohesion was defined as “the ratio between the number
of internal relations and the number of types in a package (service). Internal relations
include inheritance between classes, invocation of methods, access to class attributes, and
explicit references like creating a class instance. Higher numbers of RC indicate higher
cohesion of a package (service)” (Larman, 2004) cite by (Li et al., 2019).

Cohesion at the domain level (CHD). The cohesiveness of interfaces provided by a
service at the domain level. The higher the CHD, the more functionally cohesive that
service is (Jin et al., 2019).

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 26/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Average cohesion at the domain level (Avg. CHD). The average of all CHD values
within the system (Jin et al., 2019).

Cohesion at the message level (CHM). The cohesiveness of the interfaces published
by a service at the message level. The higher a service’s CHM, the more cohesive the service
is, from an external perspective. CHM is the average functional cohesiveness (Jin et al.,
2019).

Service interface data cohesion (SIDC). The cohesion of a given service S with respect
to the similarity of parameter data types of its interface’s operations (Perepletchikov, Ryan
& Frampton, 2007).

Service Interface Usage Cohesion (SIUC). The cohesion of a given service S based on
the invocation behavior of clients using operations from its interface (Perepletchikov, Ryan
& Frampton, 2007).

Entities composition. According to Cojocaru, Uta & Oprescu (2019), “entities
composition assesses whether the entities are equally distributed among the proposed
microservices and no duplicates, which might break the cohesion, exist. They define an
entity as the class, or action of the service” (Cojocaru, Uta & Oprescu, 2019).

Relation composition. According to Cojocaru, Uta & Oprescu (2019) “relation
composition assesses the quantitative variation in published language per relation. It
applies the concept of relative assessment to entities shared between the services via their
communication paths. The test identifies services communicating much more data than
their peers, and thus potential communication bottlenecks” (Cojocaru, Uta & Oprescu,
2019).

Responsibilities composition. Cojocaru, Uta & Oprescu (2019) stated that the
responsibilities composition “assesses to what extent the use case responsibilities are
equally distributed among the proposed microservices. It uses the coefficient of variation
between the number of use case responsibilities of each microservice. Services having
relatively more responsibility may imply low cohesion: a service providing multiple actions
violates the single responsibility principle” (Cojocaru, Uta & Oprescu, 2019).

Semantic similarity: According to Cojocaru, Uta & Oprescu (2019) “semantic similarity
uses lexical distance assessment algorithms to flag the services that contain unrelated
components or unrelated actions hindering cohesion” (Cojocaru, Uta & Oprescu, 2019).

Perepletchikov, Ryan & Frampton (2007) “reviewed categories of cohesion initially
proposed for object-oriented software in order to determine their conceptual relevance to
service-oriented designs”; and proposed a set of metrics for cohesion that can be adapted
for microservices (Perepletchikov, Ryan & Frampton, 2007).

Complexity metrics
The complexity of microservices should be low, so that they can be changed within several
weeks, rewritten, and improved quickly. If the complexity is high, then the cost of change is
higher. Measuring complexity is fundamental for developing microservice-based
applications. The metrics used by the authors of the papers are listed below.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 27/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Function points.Amethod for measuring the size of a software. A function point count
is a measurement of the amount of functionality that software will provide (Totalmetrics.
com, 2020).

COSMIC function points. Focuses on data movements between different layers. One of
the benefits of the COSMIC method is that it can estimate the size in the planning phase,
based on the user’s functional requirements. The four main data group types are: entry,
exit, read and write. The COSMIC function point calculation is aimed at measuring the
system at the time of planning. This size calculation can be used for estimating efforts
(Vural, Koyuncu & Misra, 2018).

Total response for service (TRS). The sum of all responses for operation (RFO) values
for all operations of the interface of service S (Perepletchikov et al., 2007).

Number of singleton clusters (NSC). Nunes, Santos & Rito Silva (2019) said “that
having more than two singleton clusters is considered negative. Considering a final
microservice architecture with clear functional boundaries established, it is likely that there
are not two services in which their content is a single domain entity” (Nunes, Santos & Rito
Silva, 2019).

Maximum cluster size (MCS). Nunes, Santos & Rito Silva (2019) “MCS should not
be bigger than half of the size of the system. Even with a cluster size inside this range, there
is also a dependency regarding the number of entity instances that are part of the
aggregate” (Nunes, Santos & Rito Silva, 2019).

Performance metrics
Performance is a critical point of microservice-based applications. The selected papers
used eight performance metrics:

The number of calls or requests. The number of times that a microservice is called.
The number of rejected requests. The number of times that a microservice does not

respond or exceeds the time limit.
Response or execution time. The execution time of the invoked service.
Interaction number (IRN). The number of calls for methods among all pairs of

extracted microservices. The smaller is the IRN, the better the quality of candidate
microservices as a low IRN reflects loose coupling (Saidani et al., 2019).

Number of executions. The number of test requests sent to the system or microservices.
Maximum request time. The maximum time for a request (output) made from one

microservice to another.
Maximum response time: The maximum response time is that of a call (input) or

request to the system or microservice. It is the time to process a response to another
microservice.

Number of packets sent: The packets sent to the system or microservice.
Ren et al. (2018) (P29) they used package analysis (PA), static structure analysis (SSA),

class hierarchy analysis (CHA), static call graph analysis (SCGA), and combined static and
dynamic analysis (CSDA) to evaluate migration performance. However, they did not
explain the details of the performance analysis test or the metrics they used (Ren et al.,
2018).

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 28/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Other quality attributes metrics
Few metrics were directly related to quality attributes. The metrics proposed in the revised
works are defined as follows:

Cost of quality assurance. It can be calculated by adding up the time spent by testers
validating not only the new features but also the non-regression on existing ones, along
with the time spent on release management (Gouigoux & Tamzalit, 2017).

Cost of deployment. The time spent by operational teams to deploy a new release, in
man-days; it decreases greatly as teams automate deployment (Gouigoux & Tamzalit,
2017).

Security impact. The security policy applied to requirements or services. Assets and
threats identified lead to deployed security mechanisms, which form security policies.
Ahmadvand & Ibrahim (2016) mapped the identified policies to the corresponding
functional requirements, mainly based on their access to the system assets. Security impact
is a qualitative value (low, medium, high) (Ahmadvand & Ibrahim, 2016).

Scalability impact. Ahmadvand & Ibrahim (2016) define the Scalability impact as
the required level of scalability (high, medium, low) to implement a a functional
requirement or service. Defining the requirements at design time for a software system to
be scalable is a challenging task. Ahmadvand & Ibrahim (2016) think that a requirements
engineer should answer a question such as “What is the anticipated number of
simultaneous users for this functionality?” (Ahmadvand & Ibrahim, 2016).

Computational resources metrics

The computational resources are all the software and hardware elements necessary for the
operation of the microservice-based applications. The proposed metrics are listed.

Average of memory. The average memory consumption for each microservice or
application.

Average of disk. The average of disk consumption for each microservice or application.
Average of network. The average network bandwidth consumption for the entire

system; Kb/s used by system or microservice (De Alwis et al., 2019).
Average of CPU. The average of the CPU consumption by the system or microservice.
Service composition cost (SCC). Homay et al. (2019) stated that “identifying which

existing functionalities in the service are consuming more resources is not an easy task.
Therefore, we suggest relying on each request that a service provider receives from a service
consumer. Because each request is a chain of stats or activities that needs to be satisfied
inside of the service provider to generate a related response. The cost-of-service
composition for the service s will be equal to the maximum cost of requests (routes)”
(Homay et al., 2019).

Service decomposition cost (SDC). According to Homay et al. (2019), “By refining
a service into smaller services, we will make some drawbacks. The SDC is a function
that calculates the overhead of refining the service s into smaller pieces” (Homay et al.,
2019).

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 29/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Team metrics
Each microservice can be developed by a different team, and with different programming
languages and database engines. It is important to consider metrics that allow analysis
of microservices’ granularity and its impacts on the development team. The proposed
metrics in the analyzed are as follows:

Team size reduction (TSR). Reduced team size translates to reduced communication
overhead and thus more productivity and the team’s focus can be directed toward the
actual domain problem and service for which it is responsible. TSR is a proxy for this
team-oriented quality aspect. Let RM be a microservice recommendation for a monolith
M. TSR is computed as the average team size across all microservice candidates in the RM
divided by the team size of the original monolith M (Mazlami, Cito & Leitner, 2017).

Commit count. The number of commits in the code repository made by the developers.
We found very few metrics related to the development team. This can be an interesting

topic for future research.

Source code metrics
The source code is one of the most important sources for analyzing certain characteristics
of an application. Some authors have used it to identify microservices and define their
granularity. The proposed metrics are described below:

Code size in lines of code. The total size of the code in the repository, in terms of in
lines of code, microservices’ lines of code, or application’s lines of code.

The number of classes per microservice. Helps to understand how large the identified
microservice is and to identify if any microservice is too big compared to others. The
number of classes should be minimized because a smaller number of classes implies more
independent development of the microservice (Taibi & Syst, 2019).

The number of duplicated classes. In some cases, two execution traces will have several
classes in common. The number of duplicated classes helps one to reason about the
different slicing options, considering not only the size of the microservices but also the
number of duplications, that will be then reflected in the microservices’ development.
Duplicated classes should be avoided since duplication adds to the system’s size and
maintenance (Taibi & Syst, 2019).

Internal co-change frequency (ICF). How often entities within a service change
together as recorded in the revision history. A higher ICF means that the entities within
this service will be more likely to evolve together. The ICF is the average of all ICFs within
the system (Jin et al., 2019).

External co-change frequency (ECF). How often entities assigned to different services
change together, according to the revision history. A lower ECF score means that entity
pairs located in different services are expected to evolve more independently. Similarly,
ECF is the average ECF value of all services within the system (Jin et al., 2019).

The ratio of ECF to ICF (REI). The ratio of co-change frequency across services vs.
the co-change frequency within services. The ratio is expected to be less than 1.0 if
co-changes happen more often inside a service than across different services. The smaller
the ratio is, the less likely co-changes are across services, and the extracted services tend to

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 30/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

evolve more independently. Ideally, all co-changes should happen inside the services. REI
is calculated as ECF divided by ICF (Jin et al., 2019).

Modularity quality measure. The modularity of a component or service can be
measured from multiple perspectives, such as structural, conceptual, historical, and
dynamic dimensions(Candela et al., 2016). They extend the modularity quality (MQ), as
defined by Mancoridis et al. (1998) as structural and conceptual dependencies, using
structural modularity quality and conceptual modularity quality to assess the modularity
of service candidates. Structural modularity quality (SMQ) measures the quality of
modularity from a structural perspective. The higher the SMQ, the better modularized
the service is. On the other hand, conceptual modularity quality (CMQ), similarly
measures modularity quality from a conceptual perspective. The higher the CMQ, the
better (Jin et al., 2019).

Granularity metrics
Measuring granularity is complex. Granularity is related to size, including the number of
functionalities or services that the application or microservice will have. It is also related
to coupling and cohesion. Being more granular implies that microservice has no
dependencies and can function independently, as an independent and encapsulated piece.
Six granularity metrics were identified:

Weighted service interface count (WSIC):WSIC(S) is the number of exposed interface
operations of service S. The default weight is set to one. Alternate weighting methods,
which need to be validated empirically, can take into consideration the number and the
complexity of data types of parameters in each interface (Hirzalla, Cleland-Huang &
Arsanjani, 2009). WSIC(S) is the number of exposed interface operations of service
S. Operations can be weighted based on the number of parameters or their granularity
(e.g., a complex nested object) with the default weight being set to one (Bogner, Wagner &
Zimmermann, 2017a).

Component Balance (CB): The CB is a system-level metric to evaluate the
appropriateness of granularity, i.e., if the number and size uniformity of the components
(in this case, services) are in a favorable range for maintainability (Bouwers et al., 2011).

Operation number (OPN): The OPN is used to compute the average number of
public operations exposed by an extracted microservice to other candidate microservices.
The smaller the OPN is the better (Saidani et al., 2019).

Number of microservices: The number of microservices that are part of the system or
application.

Lines of code: The lines of code measure the number of lines of code in the
microservice. Additionally, it may consider the total size of the code in the repository.

Number of nanoentities: Cojocaru, Uta & Oprescu (2019) stated that “the number
of nanoentities (attributes or fields of a class) computes the number of nanoentities
assigned to each proposed service, storing the result as a floating-point parameterized list.
The list’s length is equal to the number of services found in the system model specification
file” (Cojocaru, Uta & Oprescu, 2019).

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 31/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

The fundamentals of microservices suggest that they must have low coupling, high
cohesion, and low complexity. Based on the described metrics, a model or method could be
defined that uses artificial intelligence to determine the most appropriate dimensioning
and size for microservices. Some have already been defined, mainly for migrations
from monoliths to microservices. The number of microservices, their size, and their
computational complexity directly affect the use of computational resources and therefore
their cost of deployment. This is an interesting topic for future research.

In conclusion, some papers used metrics to evaluate the granularity of the microservices,
including coupling, cohesion, number of calls, number of requests, and response time,
although few methods or techniques use complexity as a metric, even though it seems
fundamental for microservices. More research that considers design-level metrics is
needed to define the granularity of the microservices that are part of an application, as well
as research proposing models, methods, or techniques to determine the most appropriate
granularity.

RQ3: Quality attributes to define the microservice granularity
Quality attributes are essential for today’s applications. Availability, performance,
automatic scaling, maintainability, security, and fault tolerance are essential features
that every application must handle. An architecture based on microservices allows
independent management of quality attributes, according to the specific need of each
microservice. This is one of the main advantages compared to monolithic architectures.

The size and number of microservices that compose an application directly affect its
quality attributes. Creating more microservices may affect maintainability because testing
costs will increase, even more so if automated testing is not available. Moreover,
performance may also be affected by having to integrate and process data from several
distributed applications. Clearly, quality attributes are impacted by microservices
granularity and should be considered when defining a model, method, or technique to
determine granularity (see Fig. 9).

Surprisingly, 62% of the identified proposals did not consider or report any quality
attributes at all. Of those that did, scalability and performance were the most considered
(seven papers, 24%), followed by maintainability and availability (two papers, 7%); and
lastly, reliability (fault tolerance), security, functionality, and modularity with only one
paper each. More research is needed that considers quality attributes to define the
granularity of the microservices comprising an application. Security and fault tolerance are
key attributes that microservice-based applications must handle, few works addressed
these features (see Table 7).

We grouped the software quality attributes into the following two categories: firstly,
according to runtime characteristics, (scalability, performance, reliability, availability, and
functionality), which are observable during execution; and secondly according to software
as an artifact characteristic (maintainability, modularity, reusability), which are not
observable during execution (Bass, Clemens & Katzman, 1998; Astudillo, 2005); run time
characteristics were the most used ones, having been addressed by eight papers (P2, P4,
P10, P11, P12, P13, P21 y P29); only two papers addressed software artifact characteristics

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 32/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

(P3 y P16); only one paper used both artifact and runtime characteristics (P16). Therefore,
more proposals are required to define microservices granularity considering both runtime
and software artifact characteristics.

Runtime characteristics
In this section, we detail the runtime quality attributes and the way they were addressed by
the papers, whether they used metrics to evaluate their proposals.

� Scalability, performance, and reliability (fault tolerance) were used by only one paper
(P2). P2 proposed a re-implementation of otoo.de (a real-life case study). They defined
the granularity through vertical decomposition, they used DevOps including
continuous deployment, to deliver features quickly to customers. Team organization is

Table 7 Papers and quality attributes grouped by runtime and artifact software characteristics.

Paper Runtime characteristics Software artifact characteristics

Scalab. Perfor. Reli. Avail. Security Funct. Maint. Modul.

P2 X X X

P3 X

P4 X

P10 X X

P11 X X

P12 X X X

P13 X

P16 X X X X

P21 X X X

P29 X X

Note:
Scalab, Scalability; Perfor, Performance; Reli, Reliability; Avail, Availability; Funct, functionality; Main, Maintainability;
Evol, Evolvability; Modul, Modularity.

Figure 9 Amount of papers per addressed quality attributes and year.
Full-size DOI: 10.7717/peerj-cs.695/fig-9

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 33/47

http://dx.doi.org/10.7717/peerj-cs.695/fig-9
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

crucial for success, this organization was based on Conway’s Law. Full automation of
quality assurance and software deployment allows for early fault and error
detection, thus reducing repair times both during development and during operations
(Hasselbring & Steinacker, 2017). This paper did not propose metrics for evaluation.

� Scalability and performance were used by two papers (P10, P29); P10 proposed an
automatic decomposition method, which was based on a black-box approach that mines
the application access logs using a clustering method to discover URL partitions having
similar performance and resource requirements. Such partitions were mapped to
microservices (Ahmadvand & Ibrahim, 2016). The metrics used in this paper were
performance metrics (response time SLO violations, number of calls, number of
rejected requests, and throughput) and computational resource metrics (Avg. CPU,
number of virtual machines used, and allocated virtual machines). P29 used the
source code and the runtime logs in a semi-automatic method, it used granularity,
performance, and source code metrics to evaluate the decompositions. They presented a
program analysis-based method to migrate monolith legacy applications to
microservices architecture; this method used a function call graph, a Markov chain
model to represent migration characteristics, and a k-means hierarchical clustering
algorithm (Ren et al., 2018).

� Only performance was used by two papers (P4, P13). P4 examined the granularity
problem of the microservice and explored its effect on the latency of the application.
Two approaches for the deployment of microservices were simulated; the first one
with microservices in a single container, and the second one with microservices divided
into separate containers. They discussed the findings in the context of the Internet of
Things (IoT) application architectures (Shadija, Rezai & Hill, 2017); that paper
corresponds to an evaluation or comparison, it is not a method to define the
microservice granularity; it used performance metrics (response time and the number of
calls). P13 presented three formal coupling strategies and embedded those in a
graph-based clustering algorithm: (1) logical coupling, (2) semantic coupling, and
(3) contributor coupling. The coupling strategies rely on meta-information from
monolithic code bases to construct a graph representation of the monoliths that are
in turn processed by the clustering algorithm to generate recommendations for potential
microservice candidates in a refactoring scenario; P13 was the only one that proposed
development team based metrics; logical coupling, average domain redundancy,
contributor coupling, semantic coupling, commit count, contributor count, and lines of
code were the metrics used by this paper.

� Scalability and security were used by one paper (P11). P11 proposed a methodology,
consisting of a series of steps and activities that must be carried out to identify the
microservices that will be part of the system. It is based on the use cases and the analysis
made by the architect in terms of the scalability and security of each use case, as well as
the dependencies with the other use cases (Ahmadvand & Ibrahim, 2016); this paper
used the following metrics: dependency weight, security impact, and scalability impact
(qualitative metrics).

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 34/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

� Scalability, performance, and availability were addressed by two papers (P12, P21).
P12 presented discovery techniques that help identifying the appropriate parts of
consumer-oriented business systems that could be redesigned as microservices with
desired characteristics such as high cohesion, low coupling, high scalability, high
availability, and high processing efficiency (De Alwis et al., 2018). They proposed
microservice discovery algorithms and heuristics. It was an automatic method that used
coupling (structural coupling), cohesion (lack of cohesion), computational resources
(avg. memory, avg. disk), and performance metrics (number of requests, execution
time). P21 was a semi-automatic method, a genetic algorithm with semantic
similarity based on DISCO and non-dominated sorting genetic algorithm-II (NSGAII).
That paper presented four microservice patterns, namely object association, exclusive
containment, inclusive containment, and subtyping for ‘greenfield’ (new) development
of software while demonstrating the value of the patterns for ‘brownfield’ (evolving)
developments by identifying prospective microservices (De Alwis et al., 2019).
The metrics used by that paper were: structural coupling, lack of cohesion, the average
CPU, the average of the network, number of executions, and the number of packets sent.

Software as an artifact characteristic
Only two software as an artifact characteristic were used, which were maintainability and
modularity. Only maintainability was used by one paper (P3); whereas maintainability,
and modularity were used by (P16), which proposed the most complete method.

P3 used a balance between the cost of quality assurance and the cost of deployment for
defining microservices granularity, it was a manual method. The choice of granularity
should be based on the balance between the costs of quality assurance and the cost of
deployment (Gouigoux & Tamzalit, 2017).

P16 presented a framework that consists of three major steps: (1) extracting
representative execution traces, (2) identifying entities using a search-based functional
atom grouping algorithm, and (3) identifying interfaces for service candidates (Jin et al.,
2019). They also presented a comprehensive measurement system to quantitatively
evaluate service candidate quality in terms of functionality, modularity, and evolvability.
P16 proposed an automatic method, which used a search-based functional atom
grouping algorithm and a non-dominated sorting genetic algorithm-II (NSGA II).
The evaluation metrics were coupling (Integrating interface number), cohesion at message
level, cohesion at domain level, structural modularity quality, conceptual modularity
quality, internal co-change frequency (ICF), external Co-change frequency (ECF), and the
ratio of ECF to ICF.

Quality attributes and artificial intelligence
In some cases, artificial intelligence techniques are being used to improve the quality
attributes of microservices. For example:

Alipour & Liu (2017) proposed two machine learning algorithms and predicted the
resource demand of microservice backend systems, as emulated by a Netflix workload
reference application. They proposed a microservice architecture that encapsulates

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 35/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

monitoring functions of metrics and learning of workload patterns. Then, this service
architecture is used to predict the future workload for making decisions about resource
provisioning (Alipour & Liu, 2017).

Prachitmutita et al. (2018) proposed a new self-scaling framework based on the
predicted workload, with an artificial neural network, a recurrent neural network, and a
resource scaling optimization algorithm used to create an automated system to manage the
entire application with Infrastructure-as-a-service (IaaS) (Prachitmutita et al., 2018).

Ma et al. (2018) proposed an approach, called scenario-based microservice retrieval
(SMSR), to recommend appropriate microservices for users based on the Behavior-driven
Development (BDD) test scenarios written by the user. The proposed service retrieval
algorithm is based on word2vec, an automatic learning method widely used in natural
language processing (NLP) to perform service filtering and calculate service similarity (Ma
et al., 2018).

Abdullah, Iqbal & Erradi (2019) proposed a complete automated system for breaking
down an application into microservices, implementing microservices using appropriate
resources, and automatically scaling microservices to maintain the desired response time
(Abdullah, Iqbal & Erradi, 2019).

Artificial intelligence can help to improve and control different characteristics of
microservices, especially those related to improving quality attributes. Some proposals
have been made in this regard, but more research is needed.

Finally, we identified the automatic and semi-automatic methods, which used metrics
and addressed some quality attribute to define the granularity (see Table 8). Only six
papers meet those conditions (P10, P12, P13, P16, P21, and P29), and were the more
suitable methods to define the granularity of microservices.

Also, we identified semi-automatic methodologies, which used metrics to define the
granularity, only two papers were found (P14 and P22); there were no automatic
methodologies, most of them were manual methodologies (P11, P17, P18, and P26) and
only one was semi-automatic but it did not use metrics (P25).

P14 was a data flow-driven decomposition algorithm. Their methodology, first, the use
case specification and business logics were analyzed based on requirements; second, the
detailed dataflow diagrams (DFD) at different levels and the corresponding process-
datastore version of DFD (DFD PS) are constructed from business logics based on
requirement analysis; third, we designed an algorithm to automatically condense the DFD
PS to a decomposable DFD, in which the sentences between processes and data stores are
combined; last but not least, microservice candidates were identified and extracted
automatically from the decomposable DFD (Li et al., 2019). The metrics used by P14 were
coupling (afferent coupling, efferent coupling, instability) and cohesion (relational
cohesion) metrics. P14 did not address any quality attribute directly.

P22 proposed a clustering algorithm applied to aggregate domain entities. It used
coupling (silhouette score) and complexity (number of singleton clusters, maximum
cluster size) metrics. The authors proposed an approach to the migration of monolith
applications to a microservice architecture that focused on the impact of the
decomposition on the monolith business logic (Nunes, Santos & Rito Silva, 2019).

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 36/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

DISCUSSION
The use of artificial intelligence techniques to determine the appropriate granularity or to
identify the microservices that will be part of an application is a growing trend; this is
especially true of machine learning clustering algorithms and genetic algorithms, with an
emphasis on semantic similarity to group the microservices that refer to the same entity.
Domain engineering and DDD are still among the most used techniques.

Migration of software systems implies many architectural decisions that should be
systematically evaluated to assess concrete trade-offs and risks (Cruz et al., 2019). In these
cases, the beginning is given from a monolithic system that must be decomposed into
microservices, and that monolithic system has important data sources that allow for the

Table 8 Semi-automatic methods, which used metrics and addressed some quality attribute to define the granularity.

Paper Metrics Quality attributes

P10 Response time.
Number of calls.
Number of rejected request.

Scalability and performance

P12 Structural coupling.
Lack of cohesion.
Avg. Memory.
Avg. Disk.
Number of requests.
Execution time.

Scalability, performance, and availability

P13 Logical coupling.
Average domain redundance.
Contributor coupling.
Semantic coupling.
Commit count.
Contributor count.
Lines of code

Performance

P16 Integrating interface number.
Cohesion at message level.
Cohesion at domain level.
Structural modularity Quality.
Conceptual modularity Quality.
Internal and extermal Co-change Frequency (ICF, ECF).
Ration of ECF to ICF.

Scalability, functionality, maintainability, evolvability, and modularity

P21 Structural coupling.
Lack of cohesion.
Avg. CPU.
Avg. Network.
Number of executions.
Number of packets send.

Scalability, performance, and availability

P29 Number of microservices.
Number of interfaces.
Lines of code.
Package analysis.
Class hierarchy analysis.
Static structure analysis.
Static call graph analysis.
Combined static and dynamic analysis.

Scalability and performance.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 37/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

identification and evaluation of the candidate microservices. These sources are mainly: the
source code, the use cases, the database, the logs, and the execution traces. It should be
noted that the development of microservice-based applications is closely related to agile
practices and DevOps, and none of the input data that are being considered in the
proposed methods correspond to agile artifacts such as user stories, product backlog,
iteration planning and others. Therefore, research work is needed at this point.

The migration from monolith to microservices is a topic with much interest and is
widely studied. In contrast, the design and development of microservice-based
applications from scratch have few related proposals. The proposed methods emphasize
artifacts available at run time, development, deployment, or production, which are hardly
available when starting a project from scratch at design time.

The development of microservice-based applications from scratch resembles
component-based development (Vera-Rivera & Rojas Morales, 2010), in which
microservices are reusable software components. In Vera-Rivera (2018), we characterized
the process of developing applications based on microservices, identifying two
fundamental parts, first the development of each microservice and then the development
of applications based on those microservices.

The definition of adequate granularity is fundamental to the development of
microservices-based applications (Vera-Rivera, 2018). The granularity of a monolith is
not the most optimal and defining an operation by microservice is also not optimal. Hence,
if an application that offers 100 operations should have 100 microservices, it would not be
optimal either, due to latency, performance, and management of this large distributed
system. The optimal granularity is somewhere in between the monolithic application
and the operation by microservice system, this granularity should be defined according
to the characteristics of the application, the development team, the non-functional
requirements, the available resources, and design, development, and operation trade-offs.

The research gaps focus on proposing techniques or methods that allow for the
evaluation of granularity and its impact on tests, considering security controls, fault
tolerance mechanisms and DevOps. By managing more microservices or larger
microservices, testing can be slower and more tedious. Moreover, the pipelines of
continuous integration and deployment would be more complex. Determining the
appropriate number of microservices and their impact on continuous deployment is an
interesting research topic. Few works address these issues.

In addition, few papers use as input data or analysis units the artifacts used in agile
development, such as user stories, product backlog, release planning, Kanban board and its
data, to propose agile methods or new practices that allow for determination or evaluation
of the microservices that will be part of the application. None of the proposed works
focuses on agile software development.

Several interesting works have been proposed, but there are still few specific, actionable
proposals; more research is needed to propose design patterns, good practices, more
complete models, methods, or tools that can be generalized to define microservices
granularity considering metrics, quality attributes and trade-offs.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 38/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Research trends
We detail the research trends according to the analyzed papers, the trends are summarized
as follows:

� The most used techniques to define microservice granularity included machine learning
clustering, semantic similarity, genetic programming, and domain engineering.

� The most used research strategies were validation research and solution proposals.

� The most used validation method was the case study, although some studies used
experimental evaluations. We summarized the case studies found in the reviewed papers
because they are valuable resources with which to validate future research and to
compare new methods (see Table 4). The most common case studies were Kanban
boards, Money transfer, JPetsStore and Cargo Tracking, which are either hypothetical or
open-source projects.

� The use of metrics was evidenced to evaluate the granularity of the microservices
comprising an application. Performance and coupling were the most used metrics; they
help to identify microservices and their granularity more objectively.

� Migrations from monoliths to microservices have been widely studied. Methods and
techniques have been proposed to decompose applications into microservices, with the
source code, logs, execution traces, and even use cases used as input data. These methods
are used mainly during design and development time.

� Scalability and performance were the most addressed quality attributes in the reviewed
papers; they are fundamental for microservice-based applications. Finally, the main
reason to migrate a monolithic application to microservices is precisely to improve
performance and scalability, followed by fault tolerance, maintainability, and
modularity.

Research gaps
Research gaps allow us to propose new research works and future work, we identify the
research gaps, which are listed as follow:

� Research works that include techniques or methods to evaluate granularity and its
impact on tests, while also considering security controls, fault-tolerance mechanisms,
and DevOps.

� Metrics were grouped into four categories: development team, development process,
microservice-based application (system), and microservice itself. Few metrics were
found for the development team or development process, more research is necessary in
these groups.

� Few methods have been proposed to define the most adequate microservices granularity
at testing or deployment time.

� More research is required that uses agile development artifacts as inputs, (i.e., user
stories, product backlog, release planning, Kanban boards, and their data), to propose

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 39/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

new agile practices to define or assess microservices’ granularity. None of the proposal
identified in this survey focused on agile software development.

THREATS TO VALIDITY
External validity
We express a threat to external validity regarding the search and selection of primary
papers, which may not be representative of the state of the art in the definition of the
granularity of microservices, to reduce this risk we used a systematic and well defined
process, using two search strings so that the papers obtained are representative, to define
and select the papers that were included in our review, each of the authors made their
selection and tabulation independently, then in common agreement and group
discussion were selected by applying the inclusion and exclusion criteria. In addition, the
systematic literature review process carried out corresponds to the classic and widely used
in other reviews, proposed by Kitchenham (2004), also our study significantly includes
research papers that have undergone a rigorous peer-review process, which is a well-
established requirement for high quality publications, so the selected paper may be
representatives to define the state-of-the-art of microservices granularity definition. For
each paper obtained from the query strings, the reason why it was included or excluded
from the review was defined. We did not include grey literature.

By using a systematic method already established and widely used in other reviews, the
replicability of our study is guaranteed, and the process was rigorously followed to reduce
this threat.

Internal validity
In order to reduce the researcher bias a pre-defined protocol was defined (See Fig. 1).
The classification criteria for the selected papers were carefully selected and they were
defined in other literature reviews, these literature reviews were explained in the related
work section.

We downloaded the selected papers; they were shared with all authors for review.
The papers were summarized, we detailed the contribution and made the classification and
analysis based on full-text papers. We specified a paper ID, the used technique, the
input data, the full paper summary and synthesis, the description of the proposal, the
journal or conference where it was published, and observations and comments. We
tabulated the papers using the classification criteria explained in ‘Discussion’, we review
each selected paper based on the interpretation of the contribution raised in each one, then
we grouped the papers. To reduce the selection bias this process was reviewed for each
author independently.

The threats to data synthesis and results were mitigated by having a unified
classification and description scheme and following a standard protocol where a systematic
process was done and externally evaluated. The data extraction process was aligned with
our research questions, also we applied the guidelines of a classic systematic literature
review, following a research protocol, thus making our research easy to check and replicate.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 40/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

CONCLUSIONS
This systematic literature review identified the main contributions and research gaps
regarding the dimensioning and definition of the granularity of microservices comprising
an application. Methods, methodologies, and techniques to determine the granularity of
microservices were identified.

Microservice granularity research is at a Wild West stage: no standard definition exist,
development-operation trade-offs are unclear, there is little notion of continuous
granularity improvement, and conceptual reuse is scarce (e.g., few methods seem
applicable or replicable in projects other than the first to use them). These gaps in
granularity research offer clear options for research on continuous improvement of the
development and operation of microservice-based systems.

We propose a microservice granularity definition, first by its size or dimensions,
meaning the number of operations (services) exposed by the microservice, along with
the number of microservices that are part of the whole application and by its complexity
and dependencies. The goal is to have low coupling, low complexity, and high cohesion of
the microservices. Defining the most optimal granularity for microservices can
significantly improve performance, maintainability, scalability, network use and
consumption, computational resources, and cost, because microservices mainly are
deployed in the cloud.

As future work we will propose “Microservice Backlog” as a model and techniques to
define and evaluate the microservice granularity at design time, using metrics to evaluate
the granularity. We want to develop a genetic programing technique and a semantic
grouping algorithm to group the user stories of the product backlog into candidate
microservices, so the architect or development team can evaluate the candidate
decomposition of the application.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Colombia’s Ministry of Science and Technology
(Minciencias-Colciencias) through doctoral scholarship “753-Formación de capital
humano de alto nivel para el departamento Norte de Santander”; by the Francisco de Paula
Santander University (Cúcuta, Colombia) through the doctoral studies commission
number 14 of 2016; by the Universidad del Valle (Cali, Colombia); and by ANID (Chile)
through PIA/APOYO AFB180002. There was no additional external funding received for
this study. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Colombia’s Ministry of Science and Technology (Minciencias-Colciencias) through
doctoral scholarship “753-Formación de capital humano de alto nivel para el
departamento Norte de Santander”.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 41/47

http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Francisco de Paula Santander University (Cúcuta, Colombia) through the doctoral studies
commission number 14 of 2016.
Universidad del Valle (Cali, Colombia); and by ANID (Chile) through PIA/APOYO
AFB180002.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Fredy H. Vera-Rivera conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, and approved the final
draft.

� Carlos Gaona conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

� Hernán Astudillo conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data of the selected papers and their classification are available in the Supplemental
File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.695#supplemental-information.

REFERENCES
Abdullah M, Iqbal W, Erradi A. 2019. Unsupervised learning approach for web application auto-

decomposition into microservices. Journal of Systems and Software 151(3):243–257
DOI 10.1016/j.jss.2019.02.031.

Ahmadvand M, Ibrahim A. 2016. Requirements reconciliation for scalable and secure
microservice (de)composition. In: 2016 IEEE 24th International Requirements Engineering
Conference Workshops (REW). IEEE, 68–73.

Al-Debagy O, Martinek P. 2019. A new decomposition method for designing microservices.
Periodica Polytechnica Electrical Engineering and Computer Science 63:274–281
DOI 10.3311/PPee.13925.

Al-Debagy O, Martinek P. 2020. Extracting microservices’ candidates from monolithic
applications: interface analysis and evaluation metrics approach. In: 2020 IEEE 15th
International Conference of System of Systems Engineering (SoSE). IEEE, 289–294.

Alipour H, Liu Y. 2017. Online machine learning for cloud resource provisioning of microservice
backend systems. In: 2017 IEEE International Conference on Big Data (Big Data). IEEE.
2433–2441.

Astudillo H. 2005. Five ontological levels to describe and evaluate software architectures. Revista
Facultad de Ingeniería Universidad de Tarapacá 13(1):69–73
DOI 10.4067/S0718-13372005000100008.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 42/47

http://dx.doi.org/10.7717/peerj-cs.695#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.695#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.695#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.695#supplemental-information
http://dx.doi.org/10.1016/j.jss.2019.02.031
http://dx.doi.org/10.3311/PPee.13925
http://dx.doi.org/10.4067/S0718-13372005000100008
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Baresi L, Garriga M, De Renzis A. 2017. Microservices identification through interface analysis.
In: De Paoli F, Schulte S, Broch Johnsen E, eds. Service-Oriented and Cloud Computing. ESOCC
2017. Lecture Notes in Computer Science. Vol. 10465. Cham: Springer.

Bass L, Clemens P, Katzman R. 1998. Software architecture in practice. Westford, Massachusetts:
Addison Wesley.

Bogner J, Wagner S, Zimmermann A. 2017a. Automatically measuring the maintainability of
service-and microservice-based systems. In: Proceedings of the 27th International Workshop on
Software Measurement and 12th International Conference on Software Process and Product
Measurement on-IWSM Mensura ’17. 107–115.

Bogner J, Wagner S, Zimmermann A. 2017b. Towards a practical maintainability quality model
for service-and microservice-based systems. In: Proceedings of the 11th European Conference on
Software Architecture Companion Proceedings-ECSA ’17. New York: ACM Press, 195–198.

Bouwers E, Correia JP, Van Deursen A, Visser J. 2011. Quantifying the analyzability of software
architectures. In: Proceedings-9th Working IEEE/IFIP Conference on Software Architecture,
WICSA 2011. 83–92.

Candela I, Bavota G, Russo B, Oliveto R. 2016. Using cohesion and coupling for software
remodularization: is it enough? ACM Transactions on Software Engineering and Methodology
25(3):1–28 DOI 10.1145/2928268.

Chen R, Li S, Li Z. 2017. From monolith to microservices: a dataflow-driven approach. In: 2017
24th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 466–475
DOI 10.1109/APSEC.2017.53.

Christoforou A, Odysseos L, Andreou A. 2019. Migration of Software Components to
Microservices: Matching and Synthesis. In: Proceedings of the 14th International Conference on
Evaluation of Novel Approaches to Software Engineering. SCITEPRESS. Science and Technology
Publications, 134–146 DOI 10.5220/0007732101340146.

Cojocaru M, Uta A, Oprescu AM. 2019. MicroValid: a validation framework for automatically
decomposed microservices. In: Proceedings of the International Conference on Cloud Computing
Technology and Science, CloudCom. IEEE Computer Society, 78–86.

Cruz P, Astudillo H, Hilliard R, Collado M. 2019. Assessing migration of a 20-year-old system to
a micro-service platform using ATAM. In: 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C). 174–181.

De Alwis AAC, Barros A, Fidge C, Polyvyanyy A. 2019. Business object centric microservices
patterns. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Springer Nature Switzerland: Springer,
476–495.

De Alwis AAC, Barros A, Polyvyanyy A, Fidge C. 2018. Function-splitting heuristics for discovery
of microservices in enterprise systems. In: International Conference on Service-Oriented
Computing. 37–53.

Di Francesco P. 2017. Architecting microservices. In: Proceedings—2017 IEEE International
Conference on Software Architecture Workshops, ICSAW 2017: Side Track Proceedings. 224–229.

Di Francesco P, Lago P, Malavolta I. 2019. Architecting with microservices: a systematic mapping
study. Journal of Systems and Software 150(1):77–97 DOI 10.1016/j.jss.2019.01.001.

Gall H, Jazayeri M, Krajewski J. 2003. CVS release history data for detecting logical couplings. In:
International Workshop on Principles of Software Evolution (IWPSE). Institute of Electrical and
Electronics Engineers Inc., 13–23.

Ghofrani J, Lübke D. 2018. Challenges of microservices architecture: a survey on the state of the
practice. In: Zeus 2018 10th ZEUS.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 43/47

http://dx.doi.org/10.1145/2928268
http://dx.doi.org/10.1109/APSEC.2017.53
http://dx.doi.org/10.5220/0007732101340146
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Gouigoux JP, Tamzalit D. 2017. From monolith to microservices: lessons learned on an industrial
migration to a web oriented architecture. In: Proceedings—2017 IEEE International Conference
on Software Architecture Workshops, ICSAW 2017: Side Track Proceedings. 62–65.

Hamzehloui MS, Sahibuddin S, Salah K. 2019. A systematic mapping study on microservices
Mohammad. In: Saeed F, Gazem N, Mohammed F, Busalim A, eds. IRICT: International
Conference of Reliable Information and Communication Technology 2018. Advances in Intelligent
Systems and Computing. Cham: Springer International Publishing.

Hassan S, Bahsoon R. 2016.Microservices and their design trade-offs: a self-adaptive roadmap. In:
2016 IEEE International Conference on Services Computing (SCC). IEEE, 813–818
DOI 10.1109/SCC.2016.113.

Hassan S, Ali N, Bahsoon R. 2017. Microservice ambients: an architectural meta-modelling
approach for microservice granularity. In: Proceedings—2017 IEEE International Conference on
Software Architecture, ICSA 2017. IEEE, 1–10.

Hassan S, Bahsoon R, Kazman R. 2020. Microservice transition and its granularity problem: a
systematic mapping study. Software: Practice and Experience 50(9):1–31 DOI 10.1002/spe.2869.

HasselbringW, Steinacker G. 2017.Microservice architectures for scalability, agility and reliability
in e-commerce. In: Proceedings—2017 IEEE International Conference on Software Architecture
Workshops, ICSAW 2017: Side Track Proceedings. IEEE Computer Society, 243–246.

Herold S, Klus H, Welsch Y, Deiters C, Rausch A, Reussner R, Krogmann K, Koziolek H,
Mirandola R, Hummel B, Meisinger M, Pfaller C. 2008. CoCoME - The common component
modeling example. In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Berlin: Springer, 16–53
DOI 10.1007/978-3-540-85289-6_3.

Hirzalla M, Cleland-Huang J, Arsanjani A. 2009. A metrics suite for evaluating flexibility and
complexity in service oriented architectures. In: ICSOC Workshops 2008. Berlin, Heidelberg:
Springer, 41–52.

Homay A, de Sousa M, Zoitl A, Wollschlaeger M. 2020. Service granularity in industrial
automation and control systems. In: 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE, 132–139.

Homay A, Zoitl A, De Sousa M, Wollschlaeger M, Chrysoulas C. 2019. Granularity cost analysis
for function block as a service. In: 2019 IEEE 17th International Conference on Industrial
Informatics (INDIN). Helsinki: IEEE, 1199–1204.

Jamshidi P, Pahl C, Mendonca NC, Lewis J, Tilkov S. 2018.Microservices: the journey so far and
challenges ahead. IEEE Software 35(3):24–35 DOI 10.1109/MS.2018.2141039.

Jin W, Liu T, Cai Y, Kazman R, Mo R, Zheng Q. 2019. Service candidate identification from
monolithic systems based on execution traces. IEEE Transactions on Software Engineering
47(5):987–1007 DOI 10.1109/TSE.2019.2910531.

Josélyne MI, Tuheirwe-Mukasa D, Kanagwa B, Balikuddembe J. 2018. Partitioning
microservices - A Domain Engineering Approach. In: Proceedings of the 2018 International
Conference on Software Engineering in Africa - SEiA’18. New York: ACM Press, 43–49
DOI 10.1145/3195528.3195535.

Kecskemeti G, Marosi AC, Kertesz A. 2016. The ENTICE approach to decompose monolithic
services into microservices. In: 2016 International Conference on High Performance Computing
and Simulation, HPCS 2016. 591–596 DOI 10.1109/HPCSim.2016.7568389.

Kecskemeti G, Kertesz A, Marosi AC. 2017. Towards a methodology to form microservices from
monolithic ones. In: Euro-Par 2016 Workshops - Lecture Notes in Computer Science.
Springer Verlag, 284–295 DOI 10.1007/978-3-319-58943-5_23.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 44/47

http://dx.doi.org/10.1109/SCC.2016.113
http://dx.doi.org/10.1002/spe.2869
http://dx.doi.org/10.1007/978-3-540-85289-6_3
http://dx.doi.org/10.1109/MS.2018.2141039
http://dx.doi.org/10.1109/TSE.2019.2910531
http://dx.doi.org/10.1145/3195528.3195535
http://dx.doi.org/10.1109/HPCSim.2016.7568389
http://dx.doi.org/10.1007/978-3-319-58943-5_23
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Kitchenham B. 2004. Procedures for performing systematic reviews. Available at https://www.
semanticscholar.org/paper/Procedures-for-Performing-Systematic-Reviews-Kitchenham/
29890a936639862f45cb9a987dd599dc.

Krause A, Zirkelbach C, Hasselbring W, Lenga S, Kroger D. 2020. Microservice decomposition
via static and dynamic analysis of the monolith. Proceedings - 2020 IEEE International
Conference on Software Architecture Companion, ICSA-C 2020:9–16
DOI 10.1109/ICSA-C50368.2020.00011.

Kulkarni N, Dwivedi V. 2008. The role of service granularity in a successful SOA realization—A
case study. In: Proceedings—2008 IEEE Congress on Services, SERVICES 2008. 423–430.

Larman C. 2004. Applying UML and patterns: an introduction to object oriented analysis and
design and interative development. 3rd Edition. Prentice Hall PTR, USA. Available at
https://dl.acm.org/doi/10.5555/1044919.

Li S, Zhang H, Jia Z, Li Z, Zhang C, Li J, Gao Q, Ge J, Shan Z. 2019. A dataflow-driven approach
to identifying microservices from monolithic applications. Journal of Systems and Software
157(2):110380 DOI 10.1016/j.jss.2019.07.008.

Ma S-P, Chuang Y, Lan C-W, Chen H-M, Huang C-Y, Li C-Y. 2018. Scenario-based microservice
retrieval using Word2Vec. In: 2018 IEEE 15th International Conference on e-Business
Engineering (ICEBE). IEEE, 239–244.

Mancoridis S, Mitchell BS, Rorres C, Chen Y, Gansner ER. 1998. Using automatic clustering to
produce high-level system organizations of source code. In: Proceedings. 6th International
Workshop on Program Comprehension. IWPC’98 (Cat. No.98TB100242). IEEE Computer
Society, 45–52.

Marquez G, Astudillo H. 2018. Actual use of architectural patterns in microservices-based open
source projects. In: Proceedings—Asia-Pacific Software Engineering Conference, APSEC. IEEE
Computer Society, 31–40.

Martin RC. 2002. Agile software development principles, patterns, and practices Alan Apt series.
Upper Saddle River, NJ: Pearson Education, Inc.

Mazlami G, Cito J, Leitner P. 2017. Extraction of microservices from monolithic software
architectures. In: 2017 IEEE International Conference on Web Services (ICWS). IEEE, 524–531.

Newman S. 2015. Building microservices. Sebastopol, CA: O’Reilly Media, Inc.

Nunes L, Santos N, Rito Silva A. 2019. From a monolith to a microservices architecture: an
approach based on transactional contexts. In: 13th European Conference, ECSA 2019. Lectures
Notes in Computer Science 11681. Springer, 37–52.

Osses F, Márquez G, Astudillo H. 2018. An exploratory study of academic architectural tactics
and patterns in microservices: a systematic literature review. In: Avances en Ingenieria de
Software a Nivel Iberoamericano, CIbSE 2018. 71–84.

Pautasso C, Zimmermann O, Amundsen M, Lewis J, Josuttis N. 2017.Microservices in practice,
part 1: reality check and service design. IEEE Software 34(1):91–98 DOI 10.1109/MS.2017.24.

Perepletchikov M, Ryan C, Frampton K. 2007. Cohesion metrics for predicting maintainability of
service-oriented software. In: Seventh International Conference on Quality Software (QSIC 2007).
IEEE, 328–335.

Perepletchikov M, Ryan C, Frampton K, Tari Z. 2007. Coupling metrics for predicting
maintainability in service-oriented designs. In: 2007 Australian Software Engineering Conference
(ASWEC’07). IEEE, 329–340.

Prachitmutita I, Aittinonmongkol W, Pojjanasuksakul N, Supattatham M, Padungweang P.
2018. Auto-scaling microservices on IaaS under SLA with cost-effective framework. In: 2018

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 45/47

https://www.semanticscholar.org/paper/Procedures-for-Performing-Systematic-Reviews-Kitchenham/29890a936639862f45cb9a987dd599dc
https://www.semanticscholar.org/paper/Procedures-for-Performing-Systematic-Reviews-Kitchenham/29890a936639862f45cb9a987dd599dc
https://www.semanticscholar.org/paper/Procedures-for-Performing-Systematic-Reviews-Kitchenham/29890a936639862f45cb9a987dd599dc
http://dx.doi.org/10.1109/ICSA-C50368.2020.00011
https://dl.acm.org/doi/10.5555/1044919
http://dx.doi.org/10.1016/j.jss.2019.07.008
http://dx.doi.org/10.1109/MS.2017.24
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.695

Tenth International Conference on Advanced Computational Intelligence (ICACI). IEEE,
583–588.

Rahman MI, Panichella S, Taibi D. 2019. A curated dataset of microservices-based systems. In:
Joint Proceedings of the Inforte Summer School on Software Maintenance and Evolution (CEUR
Workshop Proceedings; Vol. 2520). CEUR-WS. Tempere, Finland: SSSME-2019.

Ren Z, WangW,Wu G, Gao C, ChenW, Wei J, Huang T. 2018.Migrating web applications from
monolithic structure to microservices architecture. In: ACM International Conference
Proceeding Series. New York, USA: Association for Computing Machinery, 1–10.

Richardson C. 2020. Microservices.io. Microservice architecture pattern. Available at https://
microservices.io/patterns/microservices.html.

Rud D, Schmietendorf A, Dumke RR. 2006. Product metrics for service-oriented infrastructures.
In: Conference: Applied Software Measurement. Proceedings of the International Workshop on
Software Metrics and DASMA Software Metrik Kongress (IWSM/MetriKon 2006).

Saidani I, Ouni A, Mkaouer MW, Saied A. 2019. Towards automated microservices extraction
using muti-objective evolutionary search. In: 17th International Conference Service-Oriented
Computing. Lectures Notes in computer science 11895. Cham: Springer, 58–63.

Salah T, Jamal Zemerly M, Yeun CY, Al-Qutayri M, Al-Hammadi Y. 2016. The evolution of
distributed systems towards microservices architecture. In: 2016 11th International Conference
for Internet Technology and Secured Transactions (ICITST). IEEE, 318–325.

Santos N, Salgado CE, Morais F, Melo M, Silva S, Martins R, Pereira M, Rodrigues H,
Machado RJ, Ferreira N, Pereira M. 2019. A logical architecture design method for
microservices architectures. In: ACM International Conference Proceeding Series. New York:
Association for Computing Machinery, 145–151 DOI 10.1145/3344948.3344991.

Schmidt RA, Thiry M. 2020. Microservices identification strategies: a review focused on model-
driven engineering and domain driven design approaches. In: 2020 15th Iberian Conference on
Information Systems and Technologies (CISTI). IEEE, 1–6.

Shadija D, Rezai M, Hill R. 2017. Microservices: granularity vs. performance. In: UCC ’17
Companion Companion Proceedings of the 10th International Conference on Utility and Cloud
Computing. Austin: ACM, 215–220.

Soldani J, Tamburri DA, Van Den Heuvel W-J. 2018. The pains and gains of microservices: a
systematic grey literature review. Journal of Systems and Software 146(3):215–232
DOI 10.1016/j.jss.2018.09.082.

Taibi D, Syst K. 2019. From monolithic systems to microservices: a decomposition framework
based on process mining. In: International Conference on Cloud Computing and Service
Science—CLOSER 2019.

Totalmetrics.com. 2020. Total Metrics Approach—Function points. Available at https://www.
totalmetrics.com/our_approach.

Tusjunt M, Vatanawood W. 2018. Refactoring orchestrated web services into microservices using
decomposition pattern. In: 2018 IEEE 4th International Conference on Computer and
Communications (ICCC). IEEE, 609–613 DOI 10.1109/CompComm.2018.8781036.

Tyszberowicz S, Heinrich R, Liu B, Liu Z. 2018. Identifying microservices using functional
decomposition. In: Feng X, Müller-Olm M, Yang Z, eds. International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 50–65.

Vera-Rivera FH. 2018. A development process of enterprise applications with microservices.
Encuentro internacional de Ciencias Aplicadas e Ingeniería (Universidad-Industria)—EISI 2018.
Journal of Physics: Conference Series 1126:012017 DOI 10.1088/1742-6596/1126/1/012017.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 46/47

https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
http://dx.doi.org/10.1145/3344948.3344991
http://dx.doi.org/10.1016/j.jss.2018.09.082
https://www.totalmetrics.com/our_approach
https://www.totalmetrics.com/our_approach
http://dx.doi.org/10.1109/CompComm.2018.8781036
http://dx.doi.org/10.1088/1742-6596/1126/1/012017
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

Vera-Rivera FH, Gaona Cuevas CM, Astudillo H. 2019. Desarrollo de aplicaciones basadas en
microservicios: tendencias y desafíos de investigación. Revista Ibérica de Sistemas e Tecnologias
de Informação E23:107–120. Available at https://www.proquest.com/openview/
a2630e98806d976a5e5cb1e9d3948e5a/1.pdf?pq-origsite=gscholar&cbl=1006393.

Vera-Rivera FH, Rojas Morales FA. 2010. Propuesta de aplicación de la Ingeniería del Software
Basada en Componentes en el desarrollo de software empresarial. Revista Iteckne 7:128–135
DOI 10.15332/iteckne.v7i2.279.

Villamizar M, Garcés O, Castro H, Verano M, Salamanca L, Gil S. 2015. Evaluating the
monolithic and the microservice architecture pattern to deploy web applications in the cloud/
Evaluando el Patrón de Arquitectura Monolítica y de Micro Servicios Para Desplegar
Aplicaciones en la Nube. In: 10th Computing Colombian Conference. 583–590.

Vural H, Koyuncu M, Guney S. 2017. A systematic literature review on microservices. In:
International Conference on Computational Science and Its Applications ICCSA 2017. Cham:
Springer, 203–217.

Vural H, Koyuncu M, Misra S. 2018. A case study on measuring the size of microservices. In:
Laganá A, Gavrilova ML, Kumar V, Mun Y, Tan CJK, Gervasi O, eds. International Conference
on Computational Science and Its Applications—ICCSA 2018. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, 454–463.

Wieringa R, Maiden N, Mead N, Rolland C. 2006. Requirements engineering paper classification
and evaluation criteria: a proposal and a discussion. Requirements Engineering 11(1):102–107
DOI 10.1007/s00766-005-0021-6.

Zimmermann O. 2017. Microservices tenets: agile approach to service development and
deployment. Computer Science—Research and Development 32(3–4):301–310
DOI 10.1007/s00450-016-0337-0.

Zimmermann O, Stocker M, Zdun U, Lübke D, Pautasso C. 2019. Microservice API patterns.
Available at https://www.microservice-api-patterns.org/introduction.

Vera-Rivera et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.695 47/47

https://www.proquest.com/openview/a2630e98806d976a5e5cb1e9d3948e5a/1.pdf?pq-origsite=gscholar&cbl=1006393
https://www.proquest.com/openview/a2630e98806d976a5e5cb1e9d3948e5a/1.pdf?pq-origsite=gscholar&cbl=1006393
http://dx.doi.org/10.15332/iteckne.v7i2.279
http://dx.doi.org/10.1007/s00766-005-0021-6
http://dx.doi.org/10.1007/s00450-016-0337-0
https://www.microservice-api-patterns.org/introduction
http://dx.doi.org/10.7717/peerj-cs.695
https://peerj.com/computer-science/

	Defining and measuring microservice granularity—a literature overview
	Introduction
	Related work
	Survey methodology
	Results
	Discussion
	Threats to validity
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

