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ABSTRACT
The emergence of the novel coronavirus pneumonia (COVID-19) pandemic at the
end of 2019 led to worldwide chaos. However, the world breathed a sigh of relief
when a few countries announced the development of a vaccine and gradually began
to distribute it. Nevertheless, the emergence of another wave of this pandemic
returned us to the starting point. At present, early detection of infected people is
the paramount concern of both specialists and health researchers. This paper
proposes a method to detect infected patients through chest x-ray images by using
the large dataset available online for COVID-19 (COVIDx), which consists of 2128
X-ray images of COVID-19 cases, 8,066 normal cases, and 5,575 cases of pneumonia.
A hybrid algorithm is applied to improve image quality before undertaking
neural network training. This algorithm combines two different noise-reduction
filters in the image, followed by a contrast enhancement algorithm. To detect
COVID-19, we propose a novel convolution neural network (CNN) architecture
called KL-MOB (COVID-19 detection network based on the MobileNet structure).
The performance of KL-MOB is boosted by adding the Kullback–Leibler (KL)
divergence loss function when trained from scratch. The KL divergence loss function
is adopted for content-based image retrieval and fine-grained classification to
improve the quality of image representation. The results are impressive: the overall
benchmark accuracy, sensitivity, specificity, and precision are 98.7%, 98.32%, 98.82%
and 98.37%, respectively. These promising results should help other researchers
develop innovative methods to aid specialists. The tremendous potential of the
method proposed herein can also be used to detect COVID-19 quickly and safely in
patients throughout the world.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision, Data Mining and Machine
Learning
Keywords KL-MOB, The Kullback–Leibler divergence loss function, Noise reduction,
Contrast enhancement, COVID-19

INTRODUCTION
The novel coronavirus 2019 (COVID-19) is a recently recognized disease caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Being highly
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transmissible and life-threatening, it has rapidly turned into a global pandemic, affecting
worldwide health and well-being. Tragically, no effective treatment has yet been approved
for patients with COVID-19. However, patients can have a good chance of survival if
they are diagnosed sufficiently early, where they would undergo the plan of remedial
measures correctly.

As a widely available, time- and cost-effective diagnostic tool, chest x-rays (CXRs) can
potentially be used for early recognition of COVID-19. Nevertheless, COVID-19 can share
similar radiographic features with other types of pneumonia, making it difficult for
radiologists to manually distinguish between the two. As a result, manual detection of
COVID-19 is time-consuming and mistake-prone because it is left to the subjective
judgment of the radiologist. It is thus highly desirable to develop automated detection
techniques.

With the rapid global spread of COVID-19, researchers have begun using state-of-
the-art deep-learning techniques to automate the recognition of COVID-19. The initial
lack of COVID-19 data compelled earlier researchers to use pretrained networks to
build their own models (Narin, Kaya & Pamuk, 2020; Ozturk et al., 2020; Apostolopoulos &
Mpesiana, 2020; Civit-Masot et al., 2020; Albahli, 2020; Sethy & Behera, 2020;
Apostolopoulos, Aznaouridis & Tzani, 2020; Chowdhury et al., 2020; Farooq & Hafeez,
2020; Maghdid et al., 2020; Hemdan, Shouman & Karar, 2020; Taresh et al., 2021; Punn
& Agarwal, 2021). Given that COVID-19 infected millions of people worldwide
within a few months of its detection, a mid-range dataset of positive cases was made
available for public use (Wang, Lin & Wong, 2020). This dataset can be uploaded from
https://github.com/lindawangg/COVID-Net/blob/master/docs/COVIDx.md. This, in
turn, has enabled further progress in developing new, accurate, in-depth models for
COVID-19 recognition (Ahmed et al., 2020; Afshar et al., 2020; Ucar & Korkmaz, 2020;
Luz et al., 2020; Hirano, Koga & Takemoto, 2020; Rezaul Karim et al., 2020). However,
some medical imaging issues usually pose difficulties in the recognition task, reducing
the performance of these models. These issues include, but are not limited to, insufficient
training data, inter-class ambiguity, intra-class variation, and visible noise. These problems
oblige us to significantly enhance the discrimination capability of the associated model.
Specifically, regarding the x-ray image, the common characteristics are grayscale color space,
high noise, low intensity, poor contrast, and weak boundary representation, which will
normally affect the information of the image (Ikhsan et al., 2014).

One way around these issues is to use proper image preprocessing techniques for noise
reduction and contrast enhancement. A closer look at the available images reveals the
presence of various types of noise, such as impulsive, Poisson, speckle, and Gaussian noise
(see Fig. 1 for the most common types of noise in x-ray images (Paul, Perumal &
Rajasekaran, 2018)). However, the most prevalent studies have focused only on some of
these types of noise (e.g., Gaussian and Poisson). In particular, among many other
techniques, histogram equalization (HE) (Civit-Masot et al., 2020; Tartaglione et al., 2020,
Rezaul Karim et al., 2020), contrast limited adaptive histogram equalization (CLAHE)
(El-bana, Al-Kabbany & Sharkas, 2020; Saiz & Barandiaran, 2020; Maguolo & Nanni,
2021; Ramadhan et al., 2020), adaptive total variation method (ATV) (Punn & Agarwal,
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2021), white balance followed by CLAHE (Siddhartha & Santra, 2020), intensity
normalization followed by CLAHE (N-CLAHE) (Horry et al., 2020; El Asnaoui & Chawki,
2020), Perona-Malik filter (PMF), unsharp masking (UM) (Rezaul Karim et al., 2020),
Bi-histogram equalization with adaptive sigmoid function (BEASF) (Haghanifar et al.,
2020), the gamma correction (GC) (Rahman et al., 2021b), histogram stretching (HS)
(Wang et al., 2021; Zhang et al., 2021), Moment Exchange algorithm (MoEx), CLAHE
(Lv et al., 2021), local phase enhancement (LPE) (Qi et al., 2021), image contrast
enhancement algorithm (ICEA) (Canayaz, 2021), and Gaussian filter (Medhi, Jamil &
Hussain, 2020) are, as far as we are aware, the only adopted techniques in COVID-19
recognition to date. An overview of these works is listed in Table 1. It should be noted
that the CLAHE algorithm has widely used by the majority, while some pursued a
hybridization method. Moreover, the utilized filters can result in blurry (by Gaussian
filter) or blocky (by PMF) features in the processed image. Accordingly, there is still
room to incorporate more effective preprocessing techniques to further increase the
accuracy of these systems.

Motivated by the outstanding results in the previously mentioned works as well as
the need for close-to-perfect recognition models, this paper integrates novel image
preprocessing enhancement with deep learning to meet the challenges arising from
data deficiency and complexity. Specifically, we combine an adaptive median filter (AMF)
and a non-local means filter (NLMF) to remove the noise from the images. Numerous
works have already analyzed the performance of these two filters for denoising x-ray
imagery (Kim, Choi & Lee, 2020; Raj & Venkateswarlu, 2012; Rabbouch, Messaoud &
Saâdaoui, 2020; Sawant et al., 1999; Mirzabagheri, 2017), demonstrating their superiority
over various filters, including the ones in the cited works in terms of removing impulsive,
Poisson, and speckle noise while preserving the useful image details. We then utilize
the CLAHE approach that has been already applied for the enhancement of contrast
in medical images (Zhou et al., 2016; Sonali et al., 2019; Wen, Qi & Shuang, 2016),
to enhance the contrast of the denoised images. The enhanced images are finally fed
into the state-of-the-art convolution neural network (CNN) called MobileNet (Howard

Figure 1 Noisy images: (A) image with impulsive noise and (B) image with Gaussian noise.
Full-size DOI: 10.7717/peerj-cs.694/fig-1
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et al., 2017), which has been recently utilized for the same classification task by
(Apostolopoulos, Aznaouridis & Tzani, 2020; Apostolopoulos & Mpesiana, 2020).
MobileNets are small, low-latency, low-power models parameterized to meet the resource
constraints of a variety of use cases. The motivation behind choosing a MobileNet
CNN is that it not only helps to reduce overfitting but also runs faster than a regular
CNN and has significantly fewer parameters (4.24) (Howard et al., 2017; Yu et al., 2020).
Moreover, MobileNets employ two global hyperparameters based on depthwise separable
convolutions to strike a balance between efficiency and accuracy.

KL divergence is one of the measures that reflect the distribution divergence between
different probabilities, which has been widely used in the problem of classification
imbalanced datasets (Su et al., 2015; Feng et al., 2018). The KL divergence loss function is
more commonly used when using models that learn to approximate a more complex
function than simply multiclass classification, such as in the case of an autoencoder used
for learning a dense feature representation under a model that must reconstruct the
original input. Indeed, the lack of necessary extracted features from the images sometimes
cannot provide expected accuracy in the classification result. In this work, inspired by
the variational autoencoder learning (Kingma & Welling, 2013; Alfasly et al., 2019;
Alghaili, Li & Ali, 2020) the Kullback–Leibler (KL) divergence is adopted to devise more

Table 1 An overview of image enhancement techniques and the deep learning method used for COVID-19 detection.

Study Image enhancement
appraoch

Method

Civit-Masot et al. (2020) HE VGG16

Tartaglione et al. (2020) HE ResNet18, ResNet50, DenseNet121

Ramadhan et al. (2020) CLAHE COVIDLite

El-bana, Al-Kabbany & Sharkas
(2020)

CLAHE InceptionV3

Saiz & Barandiaran (2020) CLAHE VGG16

Maguolo & Nanni (2021) CLAHE AlexNet

Punn & Agarwal (2021) ATV ResNet, InceptionV3, InceptionResNetV2, DenseNet169, and NASNetLarge

Siddhartha & Santra (2020) White balance, CLAHE COVIDLite

Horry et al. (2020) N-CLAHE VGG19

El Asnaoui & Chawki (2020) CLAHE VGG16, VGG19, DenseNet201, InceptionResNetV2, InceptionV3, Resnet50, and
MobileNetV2

Rezaul Karim et al. (2020) HE, PMF, UM DeepCOVIDExplainer

Medhi, Jamil & Hussain (2020) Gaussian filtering Deep CNN

Haghanifar et al. (2020) CLAHE, BEASF COVID-CXNet (UNet+DenseNet)

Rahman et al. (2021b) GC Seven different deep CNN networks for classification and modified Unet network for
segmentation

Wang et al. (2021) HS PatchShuffle Stochastic Pooling NN

Zhang et al. (2021) HS Deep convolutional attention network

Lv et al. (2021) MoEx, CLAHE Cascade-SEME net

Qi et al. (2021) LPE Fus-ResNet50

Canayaz (2021) ICEA MH-COVIDNet

Taresh et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.694 4/23

http://dx.doi.org/10.7717/peerj-cs.694
https://peerj.com/computer-science/


efficient and accurate representations and measure how far we are from the optimal
solution during the iterations. We evaluated the performance of the proposed framework
on the COVIDx dataset in terms of a wide variety of metrics: accuracy, sensitivity,
specificity, precision, area under the curve, and computational efficiency. Simulation
results reveal that the proposed framework significantly outperforms state-of-the-art
models from both quantitative and qualitative perspectives.

The novelty of this study is not only to clarify significant features in the CXR images by
developing a hybrid algorithm but also proposes a novel approach in how to devise
more efficient and accurate by using KL loss. The intent behind this study is not only
to achieve a high classification accuracy but to achieve this by training an automated
end-to-end deep learning framework based on CNN. This method is superior to transfer
learning for evaluating the importance of features derived from imagery, as it is not relying
on features previously learned by the pretrained model, which was first trained on
nonmedical images. The main contributions of this work can be summarized as follows:

� For COVID-19 recognition, we propose an automated end-to-end deep learning
framework based on MobileNet CNN with KL divergence loss function.

� We propose an impressive approach to ensure a sufficiently diverse representation by
predicting the output of the mean μ and standard-deviation σ of the Gaussian
distribution.

� We incorporate a novel preprocessing enhancement technique consisting of AMF,
NLMF, and CLAHE to meet the challenges arising from data deficiency and complexity.

� We analyze the performance of the preprocessing enhancement scheme to demonstrate
its role in enhancing the discrimination capability of the proposed model.

The rest of this paper is organized as follows: “Proposed Method” describes the phases
of the proposed method. “Results” highlights the experimental results. “Discussion”
discusses these results, and the conclusion is presented in the “Conclusion”.

PROPOSED METHOD
In this section, we briefly describe the scenario of the methodology used to achieve the
purpose of this study. The proposed method is depicted in Fig 2, which generally consists
of two phases: (a) image preprocessing, to overcome the existing drawbacks mentioned
in the previous section; (b) training and testing dedicated to image classification.

Data acquisition
In this work, we used the COVIDx dataset used by Wang, Lin & Wong (2020) to train
and evaluate the proposed model. In brief, the COVIDx dataset is an open-source dataset
that can be downloaded from https://github.com/lindawangg/COVID-Net/blob/master/
docs/COVIDx.md. The instructions given by Wang, Lin & Wong (2020) were followed
to set up the new dataset. Since few CXR images of positive COVID-19 cases are available,
we downloaded more COVID-19 x-ray images from https://github.com/ml-workgroup/
covid-19-image-repository, and from https://github.com/armiro/COVID-CXNet/tree/
master/chest_xray_images/covid19. Duplicated images were omitted from the new dataset
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to ensure that the proposed training model is more accurate. Thus, the actual number
of images in the COVID-19 class is 2,128 instead of the 1,770 images from COVIDx
(updated on January 28, 2021). We used the same test set that was used for evaluation by
Wang, Lin & Wong (2020), making only a slight change by increasing the number of
COVID-19 images to 100 instead of 92. We further split the training data keeping 70%
data for training and 30% data for validation. Table 2 summarizes the number of images in
each class and the total number of images used for training and testing.

Data preprocessing method
In this study, we attempt to provide an algorithm that would increase the image quality
by using a hybrid technique consisting of noise reduction and contrast enhancement.
Specifically, two efficient filters are used for noise reduction while CLAHE is used for
contrast enhancement. The first filter is the AMF, which removes impulse noise (Ning, Liu
& Qu, 2009; Khare & Chugh, 2014). This filter is followed by the NLMF algorithm that
calculates similarity based on patches instead of pixels. Given a discrete noisy image u = u
(i) for pixel I, the estimated value of NL[u](i) is the weighted average of all pixels:

NL½u�ðiÞ ¼
X
j2i

wði; jÞ:uðjÞ; (1)

where the weight family w(i,j)j depends on the similarity between the pixels i and j.
The similarity between the two pixels i and j is defined by the similarity of the intensity

of gray-level vectors u(Ni) and u(Nj), whereNl signifies a square neighborhood of fixed size
and centered at a pixel L. The similarity is measured as a function to minimize the

Figure 2 Framework of study. Full-size DOI: 10.7717/peerj-cs.694/fig-2

Table 2 The number of images for each class.

Classes Total Training set
70%

Validation set
30%

Test set
(unseen)

COVID-19 2,128 1,420 608 100

Normal 8,066 5,027 2,154 885

Pneumonia 5,575 3,487 1,494 594

Total 15,769 9,933 4,257 1,579

Taresh et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.694 6/23

http://dx.doi.org/10.7717/peerj-cs.694/fig-2
http://dx.doi.org/10.7717/peerj-cs.694
https://peerj.com/computer-science/


weighted Euclidean distance, kuðNiÞ � uðNjÞk2ð2;aÞ where a > 0 is the Gaussian kernel
standard deviation. The pixels with a similar gray-level neighborhood with u(Ni) have
larger weights in average. These weights are defined as;

wði; jÞ ¼ 1
ZðiÞ e

�
kuðNiÞ�uðNjÞk2ð2;aÞ

h2 ; (2)

where Z(i) is the normalizing constant: ZðiÞ ¼ P
j e

�
kuðNiÞ�uðNjÞk2ð2;aÞ

h2 , and the parameter h
acts as a degree of filtering.

Next, CLAHE is applied to the denoised images to achieve an acceptable visualization
and to compensate for the effect of filtration that may contribute to some blurring on
the images (Huang et al., 2016; Senthilkumar & Senthilmurugan, 2014). Since there are
many homogeneous regions in medical images, CLAHE is suitable for optimizing medical
images as the CLAHE algorithm creates non-overlapping homogeneous regions.

Classification neural network model
We used a deep neural network structure called a MobileNet neural network (Howard
et al., 2017). All images were resized to 224 × 224 × 3 before being used as input to
the neural network. Figure 3 depicts the architecture of the proposed neural network.

Apart from the first layer, which is a full convolution, the MobileNets are
constructed using depthwise separable convolutions. Depthwise separable convolution
is a factorized convolution that factorizes the standard convolution into a depthwise
convolution and a 1 × 1 convolution called pointwise convolution. This procedure
reduces the computations and model size drastically. The overall architecture of the
MobileNet is shown in Table 3.

The deep convolutional neural network is used to extract high context features per
input instance. The global average pooling layer is used here to reduce the spatial
dimensions of the features extracted. The output is a feature vector of size 1,024 for each
time step. Then, a dropout layer is used with a probability of 0.001. The output of the

Figure 3 Architecture of proposed neural network. Full-size DOI: 10.7717/peerj-cs.694/fig-3
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dropout layer goes to two fully connected layers that generate an output of size 128. One
fully connected layer is used to predict the mean μ, which is used to extract the most
significant features from those features extracted in previous layers. The other is used to
predict the standard deviation σ of a Gaussian distribution, which is used to calculate
the KL loss function. The output of the fully connected layer, which used to predict the
mean μ goes to the last layer (Softmax classifier), which is defined by

LCEðo; vÞ ¼ �
Xv
i¼1

oi log

�
epiPv
j e

pj

�
;

(3)

where v indicates the output vector, o indicates the objective vector, and pj indicates the
input to the neuron j.

The categorical cross-entropy loss function is generally used to address such a multiclass
classification problem. The three classes are provided with labels such as “0” being a
COVID-19 case, “1” being a normal case, and “2” being pneumonia. We adopted
Kullback–Leibler divergence loss function to devise more efficient and accurate
representations. Moreover, the combined KL loss with the categorical cross-entropy loss

Table 3 Layers of prposed CNN model architecture.182.

Type Stride Filter shape Size in Size out

Conv1 2 3 × 3 × 3 × 32 224 × 224 × 3 112 × 112 × 32

Conv2 dw 1 3 × 3 × 32 112 × 112 × 32 112 × 112 × 32

Conv2 pw 1 1 × 1 × 32 × 64 112 × 112 × 32 112 × 112 × 64

Conv3 dw 2 3 × 3 × 64 112 × 112 × 64 56 × 56 × 64

Conv3 pw 1 1 × 1 × 64 × 128 56 × 56 × 64 56 × 56 × 128

Conv4 dw 1 3 × 3 × 128 56 × 56 × 128 56 × 56 × 128

Conv4 pw 1 1 × 1 × 128 × 128 56 × 56 × 128 56 × 56 × 128

Conv5 dw 2 3 × 3 × 128 56 × 56 × 128 56 × 56 × 128

Conv5 pw 1 1 × 1 × 128 × 256 28 × 28 × 128 28 × 28 × 128

Conv6 dw 1 3 × 3 × 256 28 × 28 × 256 28 × 28 × 265

Conv6 pw 1 1 × 1 × 256 × 256 28 × 28 × 256 28 × 28 × 256

Conv7 dw 2 3 × 3 × 256 28 × 28 × 256 14 × 14 × 256

Conv7 pw 1 1 × 1 × 256 × 512 14 × 14 × 256 14 × 14 × 512

Conv8-12 dw 1 3 × 3 × 512 14 × 14 × 512 14 × 14 × 512

Conv8-12 pw 1 1 × 1 × 512 × 512 14 × 14 × 512 14 × 14 × 512

Conv13 dw 2 3 × 3 × 512 14 × 14 × 512 7 × 7 × 512

Conv13 pw 1 1 × 1 × 512 × 1,024 7 × 7 × 512 7 × 7 × 1,024

Conv14 dw 2 3 × 3 × 1,024 7 × 7 × 1,024 7 × 7 × 1,024

Conv14 pw 1 1 × 1 × 1,024 × 1,024 7 × 7 × 1,024 7 × 7 × 1,024

GAP 1 Pool 7 × 7 7 × 7 × 1,024 1 × 1 × 1,024

Dropout 1 Probability = 0.001 1 × 1 × 1,024 1 × 1 × 1,024

FC (μ) 1 128 × 3 1 × 1 × 1,024 1 × 1 × 128

FC (σ) 1 128 × 3 1 × 1 × 1,024 1 × 1 × 128

Softmax 1 Classifier 1 × 1 × 128 1 × 1 × 3
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function would enforce the network to give a consistent output, in addition to the
preprocessing applied to the input image. The KL divergence distribution between the μ;σ
and the prior is considered as a regularization that aids in addressing the issue of
overfitting. KL loss function is defined by

DKL ¼ � 1
2

Xn
i¼1

ð1þ logðriÞ � l2i � riÞ; (4)

where n is the output vector of the average pooling layer with the size of 1,024, μ is the
mean, which is predicted from one fully connected layer, and σ is the standard deviation of
a Gaussian distribution, which is predicted from the other fully connected layer in the
network, Fig. 3. The multitask learning loss function for our proposed network is now
defined by

L ¼ aDKL þ LCEðo; vÞ: (5)

We use a weighted loss function as illustrated in Eq. (5). The weight of KL loss α is
empirically set to (0:1) to be used as a one-hot vector, which not only ensures a clear
representation of the true class, but also helps in addressing the large variance arising due
to unbalanced data.

Experiments
All CXRs were resized to the same dimension of 224 × 224 in .jpg format. In the first
phase, the AMF window size was taken to be 5 × 5 for effective filtering. The resultant
image was then subjected to the NLMF technique. The performance of the NLMF was
depended on 7 × 7 of the search window, 5 × 5 of the similarity window, and a degree of
filtering h = 1. Furthermore, we increased the contrast using CLAHE with the bin of
256 and block size of 128 in slope 3 to get the enhanced images. We passed the images to
KL-MOB as the input to predict the CXR image (COVID-19, normal, or pneumonia).
Because many functions are not built-in functions from deep learning libraries, such as
the relu6 activation function with a max value of six, we built an interface for the
evaluation process that contains all layers in the network, as in a training network, but
which is not used for training. Instead, it is used to pass on the input image to produce the
output.

The proposed model (KL-MOB) is implemented by using the Python programming
language. All experiments were conducted on a Tesla K80 GPU graphics card on Google
Collaboratory with an Intel© i7-core @3.6GHz processor and 16GB RAM with 64-bit
Windows 10 operating system. The original and enhanced images are used separately to
train the KL-MOB. In the first stage, the baseline model is trained to verify the influence of
the KL loss on performance. Figure 4 presents the curve comparisons of all training
processes. With the maximum training epoch set to 200. A large gap between training and
validation in both original and enhanced images indicates the presence of overfitting.

The network is trained by using a SoftMax classifier with an Adam optimizer
(Kingma & Ba, 2014) with the initial learning rate set to 0.0001 and a batch size of 32.
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The dataset used for training is divided into 70% as a training set and 30% as a validation
set. The total number of parameters is 3,488,426, where the number of trainable
parameters is 3,466,660, and the nontrainable parameters are 21,766. In the training
period, 200 epochs were completed to check the KL-MOB model accuracy and loss, which
are shown in Figs. 5 and 6.

Beforehand, the impact of different feature sizes on training accuracy has been
investigated via conducting extensive experiments. Original images perform best when the

Figure 4 Accuracy and loss graphs for baseline model: (A) training and validation accuracy of the
original images, (B) training and validation loss of the original images, (C) training and
validation accuracy of the enhanced images and (D) training and validation loss of the enhanced
images. Full-size DOI: 10.7717/peerj-cs.694/fig-4

Figure 5 Accuracy and loss graphs for KL-MOB on training and validation of the original images:
(A) accuracy and (B) loss. Full-size DOI: 10.7717/peerj-cs.694/fig-5
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length is set to 256, with an accuracy of 93.24%, whereas the enhanced images perform
best when the length is set to 128 with an accuracy of 96.06%, as shown in Table 4. This can
be attributed to the fact that the KL divergence between μ; σ distribution and the prior is
considered as a regularization which helps to overcome the overfitting problem.

Performance evaluation
Preprocessing performance evaluation
The performance of the proposed preprocessing technique was quantified by using various
evaluation metrics such as mean average error (MAE) and peak signal-to-noise Ratio
(PSNR). These metrics are desirable because they can be rapidly quantified.

Definition: x(i,j) denotes the samples of the original image, y(i, j) denotes the samples of
the output image. M and N are the number of pixels in row and column directions,
respectively.MAE is calculated as in Eq. (6), where a large value means that the images are
of poor quality.

MAE ¼ jEðxÞ � EðyÞj; (6)

The limited value PSNR implies that the images are of low quality. PSNR is described in
terms of Mean Square Error MSE as follows:

PSNR ¼ 10 log10
MAX2

i

MSE ;
(7)

Figure 6 Accuracy and loss graphs for KL-MOB on training and validation of the enhanced images:
(A) accuracy and (B) loss. Full-size DOI: 10.7717/peerj-cs.694/fig-6

Table 4 Model performance on different feature sizes.

Model Output vector Accuracy%

Enhanced Original

64 93.26 88.31

128 96.06 89.36

KL-MOB 256 95.87 93.24

512 94.83 91.08

1024 94.47 90.38
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where MAX2
i is the maximum possible pixel intensity value 255 when the pixel is

represented by 8 bits.

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XM�1

i¼1

XN�1

j¼1

½xði; jÞ � yði; jÞ�2
vuut

;

(8)

Neural network performance evaluation
The test set described in the previous section was used to evaluate KL-MOB. The
classification outcome has four cases: True Positive (TP), False Positive (FP), True
Negative (TN) and False Negative (FN). The metrics used to measure the performance
are accuracy (ACC), sensitivity (TPR), specificity (SPC), and precision (PPV) and are
defined as follows:

Accuracy ðACCÞ ¼ TP þ TN
TP þ FP þ TN þ FN

; (9)

Sensitivity ðTPRÞ ¼ TP
TP þ FN

; (10)

Specificity ðSPCÞ ¼ TN
FP þ TN

; (11)

Precision ðPPVÞ ¼ TP
TP þ FP

; (12)

The graph of true positive rate (TPR) and false positive rate (FPR) is the receiver
operating characteristic (ROC) curve. The FPR is calculated as follows:

False Positive Rate ðFPRÞ ¼ FP
FP þ TN

: (13)

RESULTS
In the experiments, noise reduction and contrast enhancement performance were
evaluated independently, since they are two separate issues. The average value was
computed for all images in each class. Tables 5 and 6 show the results for noise reduction
and image enhancement, respectively. Figure 7 shows the noise reduction techniques
that were applied to the original image and the hybrid method used in this work. Although
the denoising filters could smooth and blur the resulting images, this can be enhanced
by improving the image edges and by highlighting the high-frequency components to

Table 5 Average PSNR (db) and MAE for the various noise-reduction methods.

Method Covid19 Normal Pneumonia

PSNR MAE PSNR MAE PSNR MAE

AMF 21.91 14.46 21.19 17.88 20.43 19.47

NLMF 20.47 19.19 20.41 19.41 20.40 19.40

Proposed method 22.04 14.38 21.21 17.59 20.45 19.32
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remove the residual noise. Figure 8 displays the original images and their enhanced
versions.

The performance of the proposed KL-MOB was evaluated separately for each class
of the test set. Table 7 compares the performance of the KL-MOB model for the
classification problem involving original and enhanced images. Note that the proposed
method boosts the performance of the KL-MOB model in COVID-19 detection, as shown
in Figs. 9 and 10.

DISCUSSION
This work proposes an approach that combines noise-reduction algorithms with
contrast enhancement. This approach introduces a type of hybrid filtering and contrast
enhancement for the data set of images used for COVID-19 detection. The well-known
measurable methods PSNR and MAE were used as image quality measurements for
assessing and comparing image quality. The results of Table 5 show that using an AMF
followed by a NLMF is entirely favorable for eliminating noise. The proposed hybrid
algorithm is applied to the entire image instead of just parts of the image and preserves
important details. Figure 11 illustrates the difference between the original CXRs and CXRs
enhanced by applying the method proposed herein. Furthermore, we judge the lung

Table 6 Average PSNR (db) and MAE for the various contrast-enhancement methods.

Method Covid19 Normal Pneumonia

PSNR MAE PSNE MAE PSNR MAE

CLAHE 17.83 27.35 17.12 25.98 21.91 16.20

Proposed method 19.14 23.13 17.28 25.45 22.11 16.01

Figure 7 Result of noise-reduction techniques applied to images: (A) original image, (B) imagedenoised by AMF, (C) image denoised by
NLMF, (D) image denoised by proposed method. Full-size DOI: 10.7717/peerj-cs.694/fig-7
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damage in the enhanced image to be more perspicuous than in the original image.
In addition, CLAHE with a bin of 256 gives the best PSNR, as shown in Table 6.

To show the impact of the KL divergence loss on the efficacy of the proposed method,
we performed several experiments using the categorical entropy loss function (CCE) and

Figure 8 Results of image enhancement: (A) original image, (B) image enhanced by CLAHE,
(C) image enhanced by proposed method. Full-size DOI: 10.7717/peerj-cs.694/fig-8

Table 7 Metrics for original images and for images enhanced by KL-MOB.

Enahnced image Original image

ACC% PPV% SPC% TPR% MCC% ACC% PPV% SPC% TPR% MCC%

Covid19 99.87 99.00 99.93 99.00 98.93 92.61 96.83 99.13 74.39 80.60

Normal 98.24 98.30 97.85 98.64 96.53 97.11 98.17 98.99 93.86 93.77

Pneumonia 97.99 97.81 98.68 97.31 96.03 91.00 81.30 86.74 98.26 82.53

Overall 98.70 98.37 98.82 98.32 96.60 93.57 92.10 94.95 88.84 85.90

Figure 9 ROC curves of different classes for original images: (A) COVID-19, (B) normal and (C) pneumonia.
Full-size DOI: 10.7717/peerj-cs.694/fig-9
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the mean square error (MSE) loss function. The results obtained in Table 8 show that the
proposed method has a great impact on the performance of KL-MOB, thereby justifying
the selection of the proposed network architecture and its associated training/learning
schemes.

Figure 12 shows the confusion matrix of the proposed network: all classes are identified
with high true positives. Note that the COVID-19 cases are 99% correctly classified by
the KL-MOB model. Only 1% of COVID-19 cases are misclassified as pneumonia
(non-COVID-19), and 1.4% of the normal cases are misclassified as pneumonia. Only
0.2% of pneumonia (non-Covid-19) cases are wrongly classified as COVID-19. These
results demonstrate that the proposed KL-MOB has a strong potential for detecting
COVID-19. In particular, with limited COVID-19 cases, the results show that no
confusion arises between normal patients and COVID-19 patients.

In our experiment of 100 patients with COVID-19, only one was misclassified with a
99.0% PPV for COVID-19, which compares favorably with previous results of 98.9% and
96.12% for Wang, Lin & Wong (2020) and Rezaul Karim et al. (2020), respectively. In
addition, we compare the results obtained from the KL-MOB model with those from
previous studies that used the same or similar datasets for evaluation (see Table 9). Not
included in the comparison are studies that used smaller datasets (Farooq & Hafeez, 2020;
Afshar et al., 2020; Hirano, Koga & Takemoto, 2020; Ucar & Korkmaz, 2020). The results

Figure 10 ROC curves of different classes for enhanced images: (A) COVID-19, (B) normal and (C) pneumonia.
Full-size DOI: 10.7717/peerj-cs.694/fig-10

Table 8 Performance on the test set with different loss functions.

Model Loss function Enhanced image Original image

ACC% PPV% SPC% TPR% ACC% PPV% SPC% TPR%

KL-MOB CCE 96.79 95.22 97.60 95.42 90.14 87.94 92.23 83.05

MSE 92.50 89.70 94.16 86.92 85.12 94.53 97.50 95.11

Proposed method 98.70 98.37 98.82 98.32 93.57 92.10 94.95 88.84
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show that, for all performance metrics [accuracy, sensitivity (TPR), specificity, and PPV
for overall detection], the KL- MOB model produces superior results compared with the
models of Wang, Lin & Wong (2020) and Rezaul Karim et al. (2020).

The promising deep learning models used for the detection of COVID-19 from
radiography images indicate that deep learning likely still has untapped potential and can
play a more significant role in fighting this pandemic. There is definitely still room for
improvement through: (a) the other preprocesses such as increasing the number of images,
implementing another preprocessing technique, i.e., data augmentation, utilizing different
noise filters, and enhancement techniques. (b) design a model that deals with multiple

Figure 11 The first and third columns show the original images, and the second and fourth columnsshow the corresponding enhanced images.
Full-size DOI: 10.7717/peerj-cs.694/fig-11
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inputs simultaneously, where utilizing multiple modalities may achieve superior outcomes
than the individual modality (Zhang et al., 2021).

CONCLUSION
This work proposes a novel CNN-based MobileNet-structured neural network for
detecting COVID-19 using COVIDx, which is the most widely used public dataset of CXR
images to date. The evaluation of this approach shows that it outperforms the recent
approach in terms of accuracy, specificity, sensitivity, and precision (98.7%, 98.%, 98.32%
and 98.37%, respectively). The proposed method relies on image manipulation by
applying a hybrid technique to enhance the visibility of CXR images. This advanced
preprocessing technique facilitates the task of the KL-MOB model to extract features,
allowing complex patterns in medical images to be recognized at a level comparable to
that of an experienced radiologist. The KL divergence is used to boost the performance
of the KL-MOB model, which outperforms recent approaches, as shown by the results.
The KL divergence between the μ;σ distribution and the prior is considered as a
regularization, which aids to overcome the overfitting problem. Moreover, it is also
believed that the notion of using KL divergence can be extended to other similar scenarios
such as content-based image retrieval and fine-grained classification to improve the quality

Figure 12 Confusion matrix for KL-MOB applied to COVIDx test dataset.
Full-size DOI: 10.7717/peerj-cs.694/fig-12

Table 9 Comparative performance of the various models with the improvement percentage
compared tothe state of art.

Study Classifier ACC% SPC% TPR% PPV%

Wang, Lin & Wong (2020) COVID-Net (large) 95.56 96.67 93.33 93.55

Ahmed et al. (2020) ReCoNet 97.48 97.39 97.53 96.27

Rezaul Karim et al. (2020) DeepCOVIDExplainer 98.11 98.19 95.06 96.84

Proposed method KL-MOB 98.7 98.82 98.32 98.37

% Improvement 0.60 0.64 3.43 1.58
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of object representation. Considering several essential factors such as the pattern by which
COVID-19 infections spread, image acquisition time, scanner availability, and costs, we
hope that these findings will make a useful contribution to the fight against COVID-19 and
increase the acceptance of artificial-intelligence-assisted applications in clinical practice.

In future work, we will further enhance the proposed method’s performance by
including lateral views of CXR images in the training data because, in some cases, frontal-
view CXR images do not permit a clear diagnosis of pneumonia cases. Besides, this
work lacked in applying some of the techniques such as progressive resizing (Bhatt,
Ganatra & Kotecha, 2021a), which can be applied to CNNs to carry out imaging-based
diagnostics. Furthermore, visual ablation studies (Bhatt, Ganatra & Kotecha, 2021b;
Joshi, Walambe & Kotecha, 2021; Gite et al., 2021) can be performed along with deep
learning, which will significantly improve the detection of COVID-19 manifestations in
the CXR images. Since only a limited number of CXR images are available for COVID-19
infection, out-of-distribution issues may arise, so more data from related distributions
is needed for further evaluation. There are several techniques that would be another way to
overcome this problem, include, but are not limited to data augmentation techniques
(Chaudhari, Agrawal & Kotecha, 2019), transfer learning (Taresh et al., 2021; Bhatt,
Ganatra & Kotecha, 2021a), domain-adaptation (Zhang et al., 2020; Jin et al., 2021)
and adversarial learning (Goel et al., 2021; Rahman et al., 2021a; Motamed, Rogalla &
Khalvati, 2021), etc. Finally, the image enhancement must be verified by a radiologist,
which we have not yet been able to do due to the emerging conditions.
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