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ABSTRACT
As an important part of prognostics and health management, remaining useful life
(RUL) prediction can provide users and managers with system life information and
improve the reliability ofmaintenance systems. Data-drivenmethods are powerful tools
for RUL prediction because of their great modeling abilities. However, most current
data-driven studies require large amounts of labeled training data and assume that the
training data and test data follow similar distributions. In fact, the collected data are
often variable due to different equipment operating conditions, fault modes, and noise
distributions. As a result, the assumption that the training data and the test data obey
the same distribution may not be valid. In response to the above problems, this paper
proposes a data-driven framework with domain adaptability using a bidirectional gated
recurrent unit (BGRU). The framework uses a domain-adversarial neural network
(DANN) to implement transfer learning (TL) from the source domain to the target
domain, which contains only sensor information. To verify the effectiveness of the
proposed method, we analyze the IEEE PHM 2012 Challenge datasets and use them for
verification. The experimental results show that the generalization ability of the model
is effectively improved through the domain adaptation approach.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning
Keywords Remaining Useful Life, Transfer Learning, Bidirectional Gated Recurrent Unit,
Domain Adversarial Neural Network, Prognostics and Health Management

INTRODUCTION
Prognostics aims to provide reliable remaining useful life (RUL) predictions for critical
components and systems via a degradation process. Based on reliable forecast results,
managers can determine the best periods for equipment maintenance and formulate
corresponding management plans; this is expected to improve reliability during operation
and reduce risks and costs. Typically, prognostic methods are classified into model-based
methods and data-driven methods (Heng et al., 2009).

Model-based methods describe the degradation process of engineering systems by
establishing mathematical models based on the failure mechanism or the first principle
of damage (Cubillo, Perinpanayagam & Esperon-Miguez, 2016). However, the physical
parameters of the model should vary with different operating environments, so the
uncertainty of parameters limits the application of suchmethods in industrial systems (Pecht
& Jaai, 2010).
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Different from model-based methods, data-driven methods can construct the mapping
relationship between historical data and RUL information but do not need to study the
degradation mechanism of the given system. Data-driven methods have become the focus
of research due to their powerful modeling capabilities. Among them, machine learning, as
a very common data-driven method, has been widely used in the field of RUL prediction.
For example, Theodoros H proposed an E-support vector machine (SVM) method to
predict the remaining life of a rolling bearing (Loutas, Roulias & Georgoulas, 2013). To
solve the limitations of SVMs, Wang proposed an RUL prediction method based on
a relevance vector machine (RVM) (Wang, Youn & Hu, 2012). Selina proposed a naive
Bayes-based RUL prediction model for lithium-ion batteries (Ng, Xing & Tsui, 2014).
Wu used a random forest (RF) to predict tool wear (Wu et al., 2017). However, machine
learning methods require manual extraction or signal processing and statistical projection
to obtain health factors. On the other hand, feature extraction is separate from parameter
training.

Recently, deep neural networks have been widely used in the field of RUL prediction due
to their powerful feature extraction capabilities and regression analysis capabilities (Zhu,
Chen & Peng, 2019; Li, Ding & Sun, 2018; Deutsch & He, 2018; Wu et al., 2018). Deep
learning not only combines feature extraction with the parameter training process but
can also automatically learn relevant features instead of manually designing them. This
greatly compensates for the shortcomings of machine learning. At the same time, most of
the signals collected by the associated sensors are time series. Some deep neural networks
that can support sequence data as inputs are also widely used in RUL prediction. For
example, recurrent neural networks (RNNs) (Malhi, Yan & Gao, 2011;Heimes & Ieee, 2008;
Gugulothu et al., 2017), long short-term memory networks (LSTMs) (Zhang et al., 2018),
and gated recurrent units (GRUs) (Lu, Hsu & Huang, 2020) are common approaches.

Although data-driven methods based on deep learning have achieved good results on
RUL prediction tasks, in suchmethods, the network needs to be trained with a large number
of labeled datasets to obtain a sufficiently accurate model. However, for complex systems,
it is often difficult to collect sufficient data with run-to-failure information. Furthermore,
the current methods based on deep learning require the training data and the test dataset
to follow similar distributions, which means that the dataset needs to come from the same
feature space. However, in the actual application process, due to the changing environment
in which equipment operates, differences in data distribution are widespread, which leads
to a decline in RUL prediction accuracy in actual applications. In other words, the RUL
prediction model obtained through the training dataset may not have good generalization
ability, and the performance on the test dataset may be poor.

To solve these problems, some domain adaptation methods have been designed gradual
application in the field of prognostics and health management (PHM). The purpose of
domain adaptation is to use existing knowledge to solve different but related problems.
This means that we can use a number of models trained with labeled data to adapt to
data with different input characteristics, data distributions, and limited or no labeled data.
However, the existing life prediction method based on domain adaptation is difficult to
adapt to multivariate sensor data because it does not consider the temporal dependency
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problem (Da Costa et al., 2020). As a result, the existing RUL methods based on transfer
learning (TL) can hardly adapt to common RUL prediction problems.

In this article, we propose the use of bidirectional GRUs (BGRUs) to solve the problem
of sequential data processing. We use labeled source domain data and unlabeled target
domain data for training. This can be viewed as a process of unsupervised learning based on
feature transfer. At the same time, we use a domain-adversarial neural network (DANN)
to learn features with domain invariance. To verify the method proposed in this article,
we use the IEEE PHM 2012 Challenge datasets for verification. The experimental results
prove the effectiveness of the method proposed in this article.

The main contributions of our work are as follows:
(1)We propose a new RUL prediction structure that can better adapt to data distribution

shifts under different working environments and fault modes.
(2) The framework not only uses a single sensor but also integrates information from

multiple sensors.
(3) Compared with the nonadaptive method and the traditional nondeep adaptive

method, our proposed structure obtains better prediction results.
The rest of this article is organized as follows: ‘Literature Review’ briefly introduces

the theoretical background of TL and deep learning. Then, the experimental procedure
is introduced in ‘Materials’. In ‘Methods’, the BGRU, DANN, domain-adaptative BGRU
and BGRU-DANN structures proposed in this article are introduced. On this basis, RUL
prediction for a bearing dataset is studied. The comparative results and conclusions are
given in ‘Results’.

LITERATURE REVIEW
Deep learning and PHM
Within the framework of deep learning, RNN is a very representative structure. It can not
only process sequence data but also extract features well. Furthermore, RNNs have been
used in the field of RUL prediction (Yu, Kim &Mechefske, 2020;Guo et al., 2017). However,
such networks cannot deal with the weight explosion and gradient disappearance problems
caused by recursion. This limits their application in long-term sequence processing. To
solve this problem, many RNN variants have begun to appear, for example, LSTM and
GRUs. These networks can process series with long-term correlations and extract features
from them.

As a variant of the RNN proposed earlier, LSTM has already performed well in RUL
prediction. Shi & Chehade (2021) also showed similar results; real-time, high-precision
RUL prediction was achieved by training a dual-LSTM network. Chen et al. (2021) tried
to add the attention mechanism commonly used in the image field to an LSTM network
and proposed an attention-based LSTM method, which also achieved good results. Ma &
Mao (2021) proposed integrating deep convolution into the LSTM network. This approach
applies a convolution structure to output-to-state and state-to-state information and uses
time and time-frequency information simultaneously.

As another type of RNN variant, GRUs have also begun to be applied in RUL prediction.
Compared with LSTM, a GRU has a simpler structure and fewer parameters, but the effect
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is comparable to that of LSTM. Deng et al. (2020) combined a GRU with a particle filter
(PF) and proposed an MC-GRU-based fusion prediction method, which achieved good
performance in a prognostic study of ball screws. Lu, Hsu & Huang (2020) proposed a
GRU network based on an autoencoder. It uses an autoencoder to obtain features and a
GRU network to extract sequence information.

Compared with standard unidirectional LSTM and GRU, the bidirectional structure
can extract better feature information (Yu, Kim &Mechefske, 2019)Huang proposed
to combine multi-sensor data with operation data to make RUL prediction based on
bidirectional LSTM (BLSTM) (Huang, Huang & Li, 2019). Huang et al. (2020) proposed a
fusion prediction model based on BLSTM. It not only proves the advantages of LSTM in
automatic feature acquisition and fusion, but also demonstrates the excellent performance
of BLSTM in RUL prediction. Yu, Kim &Mechefske (2019) proposed a Bidirectional
Recurring Neural Network based on autoencoder for C-MAPSS RUL estimation. She
attempted to use BGRU for RUL prediction and validated its effectiveness with Bearing
data (She & Jia, 2021). There are other deep networks, such as CNN, that are also widely
used in the PHM space (Wang et al., 2021).

Transfer learning
In most classification or regression tasks, it is assumed that sufficient training data with
label information can be obtained. At the same time, it is assumed that the training data
and the test data come from the same distribution and feature space. However, in real life,
data offset is common. The training data and test data may come from different marginal
distributions. As a way to find the similarity between the source domain and the target
domain, TL has achieved good results in domain adaptation. The basic TL methods can be
divided into the following categories:

(1) Instance-based TL;
(2) Feature-based TL;
(3) Model-based TL;
(4) Relation-based TL.
Detailed information about these methods can be found in the literature (Pan & Yang,

2010). In this article, they are divided into two categories according to their development
process. One contains nondeep learning methods, and the other is based on deep learning
methods.

The most representative nondeep learning approaches are a series of methods based on
maximum mean discrepancy (MMD). For example, Pan et al. (2011) proposed transfer
component analysis (TCA), which is the most representative TL method. Long tried
to combine marginal distributions and conditional distributions and proposed joint
distribution adaptation (JDA) (Long et al., 2013).Wang et al. (2017) believed that marginal
distributions and conditional distributions should have different weights. As a result, he
proposed balanced distribution adaptation (BDA). This technique minimizes the distance
between the source domain and the target domain through feature mapping so that the
data distributions of the two domains can be as similar as possible. There are also some
other nondeep learning methods. For example, Tan &Wang (2011) proposed structural
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correspondence learning (SCL) based on feature selection. Sun and Gong proposed
correlation alignment (CORAL) (Sun & Saenko, 2016) and the geodesic flow kernel (GFK)
method (Gong et al., 2012) based on subspace learning.

With the continuous development of deep learning methods, an increasing number
of people are beginning to use deep neural networks for TL. Compared with traditional
nondeep TL methods, deep TL has achieved the best results at this stage. The simplest
method for conducting deep TL to finetune the deep network, which realizes transfer
by finetuning the trained network (Razavian et al., 2014). At the same time, by adding
an adaptive layer to deep learning, deep network adaptation has also begun to appear
consistently. For example, Tzeng proposed deep domain confusion (DDC) (Tzeng et al.,
2014), Long et al. (2015) proposed a domain adaptive neural network, Long et al. (2017)
proposed a joint adaptation network (JAN), etc. Recently, as the latest research result in
the field of artificial intelligence, generative adversarial networks (GANs) have also begun
to be used in transfer learning. Ganin et al. (2017) first proposed the DANN. Yu et al.
(2019) extended a dynamic distribution to an adversarial network and proposed dynamic
adversarial adaptation networks (DAANs).

Transfer learning and PHM
As a way of thinking and a mode of learning, transfer learning has a core problem: finding
the similarity between the new problem and the original problem. TL mainly solves the
following four contradictions (Yu et al., 2019):

(1) The contradiction between big data and less labeling.
(2) The contradiction between big data and weak computing.
(3) The contradiction between a universal model and personalized demand.
(4) The needs of specific applications.
The above four contradictions also exist in PHM. For example, with the development of

advanced sensor technology, an increasing amount of data have been collected. However,
the amount available data with run-to-failure label information is still small. Second,
because the operating state of equipment is affected by many different conditions, the data
collected are often not representative due to the differences between various operating
conditions and environments. Thus, it is difficult to construct a predictive model with
strong universality. Finally, for a PHM system, because of the complexity of the object’s
use environment, we also need an RUL prediction model with specific applications.
However, because there are no data with sufficient label information, it is impossible to
use a data-driven approach to build an accurate predictive model. As an effective means,
TL can help solve the existing problems of PHM. However, in the field of PHM, TL is
mainly used in classification tasks (Da Costa et al., 2020). Shao et al. (2020) proposed a
convolutional neural network (CNN) based on TL, which is used to diagnose bearing faults
under different working conditions. Xing et al. (2021) proposed a distribution-invariant
deep belief network (DIDBN), which can adapt well to new working conditions. Feng
& Zhao (2021) pointed out that it is necessary to conduct fault diagnosis research with
zero samples. They introduced the idea of zero-shot learning into industrial fields and
proposed a zero-sample fault diagnosis method based on the attribute transfer method.
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Table 1 Test data information.

Pitch diameter Diameter of the roller Number of rollers Contact angle

25.6 mm 3.5 mm 13 00

RUL prediction studies based on TL are still relatively few in number, as far as the authors
know (Fan, Nowaczyk & Rögnvaldsson, 2020; Mao, He & Zuo, 2020; Sun et al., 2019; Zhu,
Chen & Shen, 2020).

MATERIALS
Experimental analysis
In this section, we first describe the experimental data and platform in detail. Then, we
analyze the data processing and feature extraction methods and introduce the relevant
performance metrics. Finally, the effectiveness of our proposed method is verified via a
comparison with other methods.

Experimental data description
The IEEE PHM Challenge 2012 bearing dataset is used to test the effectiveness of the
proposed method. This dataset is collected from the PRONOSTIA test platform and
contains run-to-failure datasets acquired under different working conditions.

PRONOSTIA is composed of three main parts: a rotating part, a degradation generation
part and a measurement part. Vibration and temperature signals are gathered during
all experiments. The frequency of vibration signal acquisition is 25.6 kHz. A sample is
recorded every 0.1 s, and the recording interval is 10 s. The frequency of temperature
signal acquisition is 10 Hz. 600 samples are recorded each minute. To ensure the safety of
the laboratory equipment and personnel, the tests are stopped when the amplitude of the
vibration signal exceeds 20 g. The basic information of the tested bearing is shown inTable 1.
Table 2 gives a detailed description of the datasets. From the table, we can see that the
operating conditions of the three datasets are different, and from the literature (Zhu, Chen
& Shen, 2020), we can obtain that the failure modes are also different. This is very suitable
for experimenting with the method proposed in this article. To verify the effectiveness of
the method proposed in this paper, we divide the data into a source domain and target
domain according to the different operating conditions. The basic information is shown
in Table 3.

Feature extraction
The original signal extracted by the sensor cannot reflect the degradation trend of the
system well. At the same time, using original data for network training will increase the
cost of network training and affect the final output result. It is necessary to extract the
degradation information of the system by corresponding methods, which is called feature
extraction.

From the raw vibration data, we extract 13 basic time-domain features. They are the
maximum, minimum, mean, root mean square error (RMSE), mean absolute value,
skewness, kurtosis, shape factor, impulse factor, standard deviation, clearance factor, crest

Wen et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.690 6/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.690


Table 2 Descriptions of the experimental datasets.

Dataset 1 Dataset 2 Dataset 3

Load (N) 4000 4200 5000
Speed (rpm) 1800 1650 1500
Dataset bearing 1-1

bearing 1-2
bearing 1-3
bearing 1-4
bearing 1-5
bearing 1-6
bearing 1-7

bearing 2-1
bearing 2-2
bearing 2-3
bearing 2-4
bearing 2-5
bearing 2-6
bearing 2-7

bearing 3-1
bearing 3-2
bearing 3-3

Table 3 Transfer prognostics task.

Transfer prognostics Source Target

Unlabeled: bearing 2-1
Unlabeled: bearing 2-4Dataset 1-Dataset 2 Labeled: bearing 1-3–bearing 1-7

Unlabeled: bearing 2-6
Unlabeled: bearing 3-1
Unlabeled: bearing 3-2Dataset 1-Dataset 3 Labeled: bearing 1-3–bearing 1-7

Unlabeled: bearing 3-3

factor, and variance. At the same time, through 4-layer wavelet packet decomposition,
we extract the energy of 16 frequency bands as time-frequency domain features. In the
literature (Zhu, Chen & Shen, 2020), the frequency resolution of the vibration signal was too
low. Therefore, we do not extract the frequency domain features but rather use the features
of three trigonometric functions. They are the standard deviation of the inverse hyperbolic
cosine (SD of the IHC), standard deviation of the inverse hyperbolic sine (SD of the IHS),
and standard deviation of the inverse tangent (SD of the IT). For trigonometric features,
trigonometric functions transform the input signal into different scales so that the features
have better trends (Zhu, Chen & Shen, 2020), and the feature types are shown in Table 4.
Through feature extraction, we can obtain 64 features from the feature dataset, which can
better represent the degradation process of the system. Because of space constraints, we
only show features along the X-axis of the bearing 1-1 data in Fig. 1.

Data processing
By processing the original data, we extract a set of feature vectors, which are expressed
as X = (x1,x2,x3,......,xN ). To obtain a better experimental result, the experimental data
need to be normalized. In this article, the maximum and minimum values are normalized,
and the basic calculation formula is as follows:

∼
x
i,j
t =

x i,jt −min(x j)
max(x j)−min(x j)

(1)

where x i,jt represents the ith value of the jth feature at the tth moment and x j is the jth
inputted feature vector.
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Table 4 Feature set.

Type Feature

Time-domain features F1: Maximum
F2: Minimum
F3: Mean
F4: RMSE
F5: Mean Absolute Value
F6: Skewness
F7: Kurtosis

F8: Shape Factor
F9: Impulse Factor
F10: Standard Deviation
F11: Clearance Factor
F12: Crest Factor
F13: Variance

Time-frequency domain features F14-F29: Energies of sixteen bands
Trigonometric features F30: SD of the IHC

F31: SD of the IHS
F32: SD of the IT

Sliding time window processing
After the extracted features are normalized, a sliding time window (TW) is used to generate
the time series input x i={x it }

Tω
t=1. The size of the input time window is Tω. The process of

its generation is shown in Fig. 2:

Performance metrics
We use three indicators to evaluate the performance of the proposed method. The mean
absolute error (MAE), mean squared error (MSE) and R2_score provide estimations
regarding how well the model is performing on the target prediction task. The formulas
for their calculation are as follows.
MAE:

MAE =
1
L

L∑
i=1

|yi− ŷi|. (2)

MSE:

MSE =
1
L

L∑
i=1

(yi− ŷi)2. (3)

R2_score:

R2_score= 1−
∑n

i=1(yi− ŷi)
2∑n

i=1(yi−y
2)2
. (4)

Here, L is the length of the test data, yi is the ith true value, ŷi is the corresponding
predicted value, and y is the average of the true values.

METHODS
Problem definition
We use TS to denote the training task and TT to denote the target task. The training
and testing data are represented as the source domain dataset DS and the target domain
dataset DT , respectively. DS = {(x iS,y

i
S)}

Ns
i=1, where xS is a series of features belonging

to the feature space, its length is Ti, and its characteristic number is qs.yS represents
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Figure 1 Features for Bearing 1-1.
Full-size DOI: 10.7717/peerjcs.690/fig-1

the RUL label corresponding to the feature sequence xS.DT = {(x iT ,)}
NT
i=1, but it only

contains characteristic information and no RUL information. We assume that the marginal
probability distributions of DS and DT are not the same; that is, P(XS) 6= P(XT ). Here,
we use source and target domain data to learn a prediction function F . The goal of the
training process is to enable F to estimate the corresponding RUL of the target domain
samples during testing. During training, we use the corresponding datasets: {(x iS,y

i
S)}

Ns
i=1

from the source domain and {(x iT ,)}
NT
i=1 from the target domain. This is an unsupervised

TL method. The process of training can be expressed as yS= F(xS,xT ).
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Figure 2 Sliding TW processing technique.
Full-size DOI: 10.7717/peerjcs.690/fig-2

Bidirectional gated recurrent unit
A GRU is a variant of the LSTM structure. Compared with LSTM, its structure is simpler,
and there are fewer parameters. He combined the forget gate and input gate in LSTM
into a single update gate. At the same time, the cell state and hidden state were also
merged. A GRU contains two door structures, a reset door and an update door. The reset
gate determines whether the new input is combined with the output from the previous
moment; that is, the smaller the value of the reset gate is, the less the output information
from the previous moment is retained. The update gate determines the degree of influence
of the output information from the previous moment on the current moment. The larger
the value of the update gate is, the greater the influence of the output from the previous
moment on the current output. The GRU-based structure is shown in Fig. 3.

In our proposed structure, a BGRU is used to obtain time series features from a TW
TW . Here, xt is the input at time t , and ht represents the output of the GRU at time t .rt is
the reset gate, and zt is the update gate. These two parts determine how to obtain ht from
ht−1. The hidden layer of the GRU is defined as follows when running at time t :
Forward propagation:
→

h t = f (
→
x t ,
→

h t−1,
→

θ BGRU ) (5)

=



→
r t = σ (

→

W r [
→

h t−1,
→
x t ]+

→

b r )
→
z t = σ (

→

W z [
→

h t−1,
→
x t ]+

→

b z)
→
∼

h t = tanh(
→

W h[
→
r t
→

h t−1,
→
x t ]+

→

b h)
→

h t = (1−
→
z t )
→

h t−1+
→
z t

→
∼

h

(6)
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Figure 3 GRUmemory cell.
Full-size DOI: 10.7717/peerjcs.690/fig-3

Backward propagation:
←

h t = f (
←
x t ,
←

h t−1,
←

θ BGRU ) (7)

=



←
r t = σ (

←

W r [
←

h t−1,
←
x t ]+

←

b r )
←
z t = σ (

←

W z [
←

h t−1,
←
x t ]+

←

b z)
←
∼

h t = tanh(
←

W h[
←
r t
←

h t−1,
←
x t ]+

←

b h)
←

h t = (1−
←
z t )
←

h t−1+
←
z t

←
∼

h .

(8)

Here, rt controls how much information is passed to ht , and its calculation is shown
in Eqs. (6) and (8). zt determines the extent to which ht−1 is passed to the next state,
which is calculated as shown in the formula.→,← represent the processes of forward and
backward propagation, respectively. In the forward and backward propagation versions of
the formula, σ is the sigmoid activation function. Wz is the update weight. Wr is the reset

weight. br and bz are the deviations.
∼

ht indicates the candidate status. ht is the hidden layer
output.

A portion of the input features of the BGRU can be expressed as Xk =

(xk,1,xk,2,......,xk,tTW ). The output of the BGRU can be expressed as

Hk = [h1,...,ht ,...,htTW ]

= f (Xk,
→

θ GRU ,
←

θ GRU ).
(9)

Here, f (·) represents the hidden layer function of the BGRU, as defined by Eqs. (6) and

(8). Hk = [h1,...,ht ,...,htTW ] is the output characteristic. (
→

θ GRU ,
←

θ GRU ) represents the
parameters of the forward and backward propagation operations. ht represents the output
characteristics, and the formula for the base calculation is as follows:

ht =
→

h t ⊕
←

h t . (10)
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Figure 4 The flowchart of DANN.
Full-size DOI: 10.7717/peerjcs.690/fig-4

Domain adversarial neural networks
Inspired by the GAN, Ganin et al. (2017) first proposed domain-adversarial training for
neural networks, the process for which is shown in Fig. 4. A DANN combines domain
adaptation with feature learning during the training process to better obtain distinctive and
domain-invariant features. At the same time, the learned weights can also be directly used
in the target field. The network structure of a DANN is mainly composed of three parts:
a feature extractor Gf , a category predictor Gy and a domain classifier Gd . To maximize
the domain classification error, Gf is used to extract the features with the greatest domain
invariance. Gy is used to classify the source domain data. Gd is used to distinguish between
the characteristic data of the source domain and the target domain. Its training objectives
are mainly twofold: the first is to accurately classify the source domain dataset to minimize
the category prediction error. The second is to confuse the source domain dataset with the
target domain dataset to maximize the domain classification error. The loss function of the
DANN can be expressed by the following formula:

L(θf ,θy ,θd)=
∑

i= 1,...,N
di= 0

Ly(Gy(Gf (xi;θf );θy),yi)−α
∑

i=1,...,N

Ld(Gd(Gf (xi;θf );θd),yi).(11)

Here, Ly is the error of the category predictor, and Ld is the error of domain classification.
θf is the parameter of the feature acquisition layer. The parameter of the category predictor
is θy .θd is the parameter of the domain classifier. During the training process, to find the
features with the best domain invariance, on the one hand, it is necessary to find θf and
θy to minimize the category prediction error. On the other hand, it is also necessary to
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search θd to maximize the error of domain classification.

(θ̂f ,θ̂y)= argmin
θf ,θy

L(θf ,θy ,θ̂d) (12)

(θ̂d)= argmax
θd

L(θ̂f ,θ̂y ,θd). (13)

Judging from the above two optimization formulas, this is a minimax problem. To solve
this problem, a gradient reversal layer (GRL) is introduced into the DANN. During the
process of forward propagation, the GRL acts as an identity transformation. However,
during the back propagation process, the GRL automatically inverts the gradient. The
optimization function selected by the DANN is a stochastic gradient descent (SGD)
function. The GRL layer is generally placed between the feature extraction layer and the
domain classifier layer.

The original DANN was the first proposed TL method based on adversarial networks.
It is not only a method but also a general framework. Based on these foundations, many
people have proposed different architectures (Tzeng et al., 2017; Shen et al., 2018; Meng et
al., 2017).

BGRU-based deep domain adaptation
To process the time series data, we construct the BGRU-DANN model, the process of
which is shown in Fig. 5. Source domain data and target domain data with only domain
information are used to train the network. Similar to theDANNnetwork, the BGRU-DANN
network can also be divided into three parts. The first part is a feature extraction network.
We use a BGRU to map the input data to a hidden state. Then, the output of the BGRU
is embedded in the feature space. That is, f =Gf (BGRU (Xk),θf ). The second part maps
the new features to the label data (source domain) through the fully connected (FC) layer.
That is, ŷ =Gy(f ,θy). In the third part, the same feature is mapped to the domain label
through the FC layer, i.e., d̂ =Gd(f ,θd).Gf consists of a three-layer BGRU and an FC
layer. A nonlinear high-dimensional feature representation of the original data is learned
through the BGRU and FC layers. Gy is composed of FC layers, batch normalization (BN)
layers, and a rectified linear unit (ReLU) layer; Gy provides the regression value of the
source domain data. The network form of Gy is FC1+ BN1+ ReLU1+ Dropout1+ FC2+
BN2+ ReLU2+ FC3.

During the adversarial training process, Gd is used to distinguish whether the observed
feature comes from the source domain or the target domain. Gd consists of a gradient
reversal layer and three FC layers. Here, Gf is trained to extract features so that the
difference between the source domain and the target domain is maximized. The labels of
the source domain and target domain are set to 1 and 0, respectively. The loss function of
the training process is as follows:

L(θf ,θy ,θd)=
1
ns

ns∑
i=1

Liy(θf ,θy)−α(
1
ns

ns∑
i=1

Lid(θf ,θd)+
1
nt

nt∑
i=1

Lid(θf ,θd)) (14)
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Figure 5 The flowchart of BGRU-DANN.
Full-size DOI: 10.7717/peerjcs.690/fig-5

Here, the loss functions Liy and Lid are defined as:

Liy(θf ,θy)= |ŷ
i
t −y

i
t |
p (15)

Lid(θd ,θy)= d i log
1
d̂ it
+ (1−d i)log

1
1− d̂ it

. (16)

In the formula, ŷ it is the predicted value of the RUL at time t , i.e., ŷ it =Gy(f it ,θy).d
i is

the field forecast, and d i=Gd(f it ,θd).L
i
y(θf ,θy) is the regression error. When the value of

p is different, different calculation methods can be used. Lid(θd ,θy) is the binary cross-loss
quotient between the domain labels. The optimization process is shown in Eqs. (12) and
(13). The weight update process is as follows:

θf ← θf −λ(
∂Liy
∂θf
−α

∂Lid
∂θf

) (17)

θy← θy−λ
∂Liy
∂θf

(18)

θd← θd−λα
∂Lid
∂θf

. (19)

Similar to a DANN, the GRL mechanism is also introduced here to realize the
optimization process. SGD is used to update Eqs. (17), (18) and (19).
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Figure 6 BGRU-DANN Structure.
Full-size DOI: 10.7717/peerjcs.690/fig-6

BGRU-DANN structure
The structure of BGRU-DANN is shown in Fig. 6. Its basic composition can be divided
into two parts. One part uses the training data from the source domain to minimize
the loss of source domain regression. The other part uses the sensor data of the source
domain and the target domain to maximize the error of domain classification. The BGRU
and FC layers are shared by both parts. To facilitate the parameter setting process, we
set the learning rates of the two sections to the same value. At the same time, we use
dropout and BN layers for feature acquisition, domain classification and source domain
regression. In the source domain regression task, the purpose of the training process is to
minimize the regression loss function. In the domain classification task, a GRL is placed
between the feature extraction and domain classification layers. During the process of
back propagation, the GRL inverts the corresponding gradient to realize the optimization
process of the model. When the output of the system does not improve significantly, the
training process is stopped. For the corresponding FC layer, we use the ReLU activation
function.

RESULTS
Transfer prediction
To realize the prediction of RUL, we need to establish the BGRU-DANN structure and set
the corresponding hyperparameters. For different transfer tasks, the optimal parameters
of the model may vary. The model in this paper has no specific optimization process for
parameter setting during use, and the parameters used are the same for different transfer
tasks. The input size of the BGRU network is set to 64. The size of each hidden layer is set
to 256. The number of network layers is set to 3. The DANN classifier is set to a 3-layer
FC structure, and the domain classifier is a 3-layer FC structure. The network learning
rate is set to 0.01. The number of training iterations is set to 5000. Some of the remaining
hyperparameter settings are provided in Table 5.
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Table 5 Hyperparameter settings.

BGRU
Layers, (Units), [Dropout]

F (Units) Source Regression
Layers, (Units), [Dropout]

Domain Classification
Layers, (Units), [Dropout]

α λ

3, (64, 256), [0.5] (256) 3, (256, 128, 32), [0.5] 3, (256, 128, 32), [0.5] 0.5 0.01

After setting the relevant parameters, we can predict the RUL. First, we use the BGRU
structure to extract the features of the input sequence data. Then, the DANN network is
used to implement adversarial training to extract features with domain invariance. The
experimental results are shown in Figs. 7 and 8.

Figure 7 reflects the predicted results of bearing 2-1, bearing 2-4 and bearing 2-6. The
source domain data are bearing 1-3-bearing 1-7, and the target data are bearing 2-1, bearing
2-4, and bearing 2-6. Figure 8 reflects the prediction results for bearing 3-1, bearing 3-2,
and bearing 3-3. The source domain data are bearing 1-3-bearing 1-7, and the target data
are bearing 3-1, bearing 3-2, and bearing 3-3. From (A), (C), and (E) in Fig. 7 and (A), (C),
and (E) in Fig. 8, we can conclude that the predicted RUL results exhibit a good downward
trend performance and are very close to the real RUL values; this effectively illustrates the
effectiveness of the proposed data-driven prediction framework based on TL.

Comparison of experimental results
To demonstrate the advantages of data-driven prediction methods based on domain
adaptation, three methods are used for comparison purposes, namely, a BGRU without
transfer learning, TCA-NN, and FC-DANN.

We can see in Figs. 7 and 8 that the RUL prediction results of BGRU-DANN are
significantly better than those of the other three methods, and the declining trend can best
reflect the real RUL value. However, the other three methods cannot reflect the degradation
trend of the RUL effectively.

Figure 9 shows the RUL errors of BGRU-DANN, the BGRU, TCA-NN and FC-DANN.
It can be clearly seen from Fig. 9 that the RUL error generated by the BGRU-DANNmodel
is the smallest, especially for bearings 2-4, 3-1 and 3-3. At the same time, bearing 2-1
and bearing 2-6 in Fig. 9 clearly reflect that the RUL error generated by BGRU-DANN is
smaller than that of the other three methods in most cases. Bearing 3-2 in Fig. 9 may not
clearly indicate the superiority of BGRU-DANN due to the large amount of data involved.
However, through the comparison of the three evaluation indicators in Table 6, it can still
be seen that BGRU-DANN achieves the best effect.

Table 6 shows that BGRU-DANN achieves the best results in terms of the three
evaluations, the MAE, MSE, and R2_score, which further proves the effectiveness of
the method proposed in this paper. Regarding the MSE, the calculated results of the
proposed method for bearing 2-1, bearing 2-4, bearing 2-6, bearing 3-1, bearing 3-2 and
bearing 3-3 are 0.0283, 0.0193, 0.0217, 0.0298, 0.0503, and 0.0472, respectively, which
are far less than the calculated error results of the other three methods. For the MAE,
the calculated results of the proposed method for bearing 2-1, bearing 2-4, bearing 2-6,
bearing 3-1, bearing 3-2 and bearing 3-3 are 0.1157, 0.0928, 0.0875, 0.1215, 0.1569, and
0.1238, respectively, which are still better than the calculated error results of the other three
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Figure 7 Prediction results for dataset 2. (A) Prediction results of Bearing 2-1 using BGRU-DANN; (B)
prediction results of Bearing 2-1 using the comparison method; (C) prediction results of Bearing 2-4 using
BGRU-DANN; (D) prediction results of Bearing 2-4 using the comparison method; (E) prediction results
of Bearing 2-6 using BGRU-DANN; (F) prediction results of Bearing 2-6 using the comparison method.

Full-size DOI: 10.7717/peerjcs.690/fig-7

models. In terms of the R2-score calculation results, the calculated results of the proposed
method for bearing 2-1, bearing 2-4, bearing 2-6, bearing 3-1, bearing 3-2 and bearing 3-3
are 0.6576, 0.7664, 0.7367, 0.6379, 0.3935, and 0.4252, respectively; this indicates that the
model has certain explanatory ability regarding the relationship between the independent
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Figure 8 Prediction results for dataset 3. (A) Prediction results of Bearing 3-1 using BGRU-DANN; (B)
prediction results of Bearing 3-1 using the comparison method; (C) prediction results of Bearing 3-2 using
BGRU-DANN; (D) prediction results of Bearing 3-2 using the comparison method; (E) prediction results
of Bearing 3-3 using BGRU-DANN; (F) prediction results of Bearing 3-3 using the comparison method.
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Figure 9 RUL error.
Full-size DOI: 10.7717/peerjcs.690/fig-9

Table 6 Performance metrics for the datasets.

Dataset Performance
metric

The proposed
method

BGRU TCA-NN FC-DANN

bearing 2-1 0.0283 1.4652 0.5205 0.2865
bearing 2-4 0.0193 1.5442 1.8181 1.0214
bearing 2-6 0.0217 1.0589 1.4436 0.9164
bearing 3-1 0.0298 2.1957 4.4414 1.3557
bearing 3-2 0.0503 0.0883 0.0796 0.0606
bearing 3-3

MSE

0.0472 8.9927 8.8676 2.9564
bearing 2-1 0.1157 0.9440 0.6316 0.4218
bearing 2-4 0.0928 1.0940 1.2917 0.9429
bearing 2-6 0.0875 0.8491 1.0226 0.8063
bearing 3-1 0.1215 1.3532 1.9420 1.0884
bearing 3-2 0.1569 0.2070 0.2377 0.2035
bearing 3-3

MAE

0.1238 2.5813 2.6589 1.5394
bearing 2-1 0.6576 −16.6992 −5.2325 −2.4311
bearing 2-4 0.7664 −17.6799 −20.7599 −11.2249
bearing 2-6 0.7367 −11.8176 −16.2749 −9.9658
bearing 3-1 0.6379 −25.6589 −52.0910 −15.2054
bearing 3-2 0.3935 −0.06367 0.0451 0.2733
bearing 3-3

R2_score

0.4252 −108.42439 −104.9228 −34.3136
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variable and the dependent variable in the regression analysis and is superior to the three
compared methods.

CONCLUSIONS
In this article, a domain-adaptative prediction method based on deep learning with a
BGRU and a DANN is proposed. The validity of the proposed method is demonstrated by
an experiment on the 2012 IEEE PHM dataset. The objective of this study is to propose a
domain-adaptive RUL prediction method. When the input bearing is transferred from the
source domain with label information to a target domain with only sensor information, a
more accurate estimate of the RUL can be obtained. From the results of the experiment,
we can draw the following conclusions:

(1) Compared with the BGRU without TL, the proposed method has a better effect in
terms of RUL prediction. This indicates that the model obtained by adversarial training
has better generalization ability and can adapt to data with different distributions.

(2) The comparisonwithTCA-NNproves that the deep, domain-adaptive BGRU-DANN
method has better performance. This indicates that the transfer method based on deep
learning has a stronger feature extraction ability than the traditional nondeep transfer
method, and it can extract better features with domain invariance.

(3) Using FC layers for feature extraction, this paper constructs an FC-DANN network.
A comparison of the results fully shows that the BGRU has a better effect in terms of feature
extraction. Compared with the features extracted by the FC method, the features extracted
by the BGRU for sequence data processing are more representative.

(4) By means of domain adaptation, the generalization ability of the data-driven RUL
prediction model can be effectively improved, and it can adapt to RUL prediction tasks
under different working conditions to a certain extent.

In future work, wewill take a closer look at the problemof time series transfer. Remaining
life prediction problems with respect to bearings, aero engines, etc. can actually be regarded
as time series transfer problems. However, research on time series transfer is still in its
infancy. There are merely a few studies on such issues. Only Ye proposed two different
time series transfer methods in references (Ye & Dai, 2018; Ye & Dai, 2021), one based
on an extreme learning machine and the other based on a CNN. However, most of the
data monitored by sensors are time series data, and this is a very common data type in
RUL forecasting research. Therefore, the authors intend to conduct related research in the
future, hoping to obtain a better model and research results with more practical application
value.
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