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In this study, a deep learning bidirectional long short-term memory (BiLSTM) recurrent
neural network-based channel state information estimator is proposed for 5G orthogonal
frequency-division multiplexing systems. The proposed estimator is a pilot-dependent
estimator and follows the online learning approach in the training phase and the offline
approach in the practical implementation phase. The estimator does not deal with
complete a priory certainty for channels’ statistics and attains superior performance in the
presence of a limited number of pilots. A comparative study is conducted using three loss
functions, namely, mean absolute error, cross entropy function for kth mutually exclusive
classes and sum of squared of the errors. The Adam optimisation algorithm is used to
evaluate the performance of the proposed estimator under each loss function. In terms of
symbol error rate and accuracy metrics, the proposed estimator outperforms long short-
term memory (LSTM) neural network-based channel state information, least squares and
minimum mean square error estimators under different simulation conditions. The
computational and training time complexities for deep learning BiLSTM- and LSTM-based
estimators are provided. Given that the proposed estimator relies on the deep learning
neural network approach, where it can analyse massive data, recognise statistical
dependencies and characteristics, develop relationships between features and generalise
the accrued knowledge for new datasets that it has not seen before, the approach is
promising for any 5G and beyond communication system.

PeerJ Comput. Sci. reviewing PDF | (CS-2021:04:60719:1:1:CHECK 12 Jun 2021)

Manuscript to be reviewedComputer Science



1 Channel State Information Estimation for 5G Wireless 

2 Communication Systems: Recurrent Neural Networks 

3 Approach
4

5

6 Mohamed Hassan Essai Ali1 and Ibrahim B. M. Taha2

7

8

9 1Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Qena 

10 83513, Egypt 

11 2Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, 

12 Saudi Arabia

13

14  

15 Corresponding Author:

16 Mohamed Hassan Essai Ali 1

17 Masaken Osman, Qena, Qena, 83513, Egypt

18 Email address: mhessai@azhar.edu.eg
19

20 Abstract

21 In this study, a deep learning bidirectional long short-term memory (BiLSTM) recurrent neural 

22 network-based channel state information estimator is proposed for 5G orthogonal frequency-

23 division multiplexing systems. The proposed estimator is a pilot-dependent estimator and follows 

24 the online learning approach in the training phase and the offline approach in the practical 

25 implementation phase. The estimator does not deal with complete a priory certainty for channels’ 

26 statistics and attains superior performance in the presence of a limited number of pilots. A 

27 comparative study is conducted using three loss functions, namely, mean absolute error, cross 

28 entropy function for kth mutually exclusive classes and sum of squared of the errors. The Adam 

29 optimisation algorithm is used to evaluate the performance of the proposed estimator under each 

30 loss function. In terms of symbol error rate and accuracy metrics, the proposed estimator 

31 outperforms long short-term memory (LSTM) neural network-based channel state information, 

32 least squares and minimum mean square error estimators under different simulation conditions. 

33 The computational and training time complexities for deep learning BiLSTM- and LSTM-based 

34 estimators are provided. Given that the proposed estimator relies on the deep learning neural 

35 network approach, where it can analyse massive data, recognise statistical dependencies and 

36 characteristics, develop relationships between features and generalise the accrued knowledge for 

37 new datasets that it has not seen before, the approach is promising for any 5G and beyond 

38 communication system. 

39

PeerJ Comput. Sci. reviewing PDF | (CS-2021:04:60719:1:1:CHECK 12 Jun 2021)

Manuscript to be reviewedComputer Science



40 Introduction
41 5G wireless communication is the most active area of technology development and a rapidly 
42 growing branch of the wider field of communication systems. Wireless communication has made 
43 various possible services ranging from voice to multimedia.
44 The physical characteristics of the wireless communication channel and many unknown 
45 surrounding effects result in imperfections in the transmitted signals. For example, the 
46 transmitted signals experience reflections, diffractions, and scattering, which produce multipath 
47 signals with different delays, phase shift, attenuation, and distortion arriving at the receiving end; 
48 hence, they adversely affect the recovered signals (Oyerinde & Mneney 2012b). 
49 A priori information on the physical characteristics of the channel provided by pilots is one of 
50 the significant factors that determine the efficiency of channel state information estimators 
51 (CSIEs). For instance, if not a priori information is available (no or insufficient pilots), channel 
52 estimation is useless; finding what you do not know is impossible. When complete information 
53 on the transmission channel is available, CSIEs are no longer needed. Thus, a priori uncertainty 
54 exists for communication channel statistics. However, the classical theory of detection, 
55 recognition, and estimation of signals deals with complete priory certainty for channel statistics, 
56 and it is an unreliable and unpractical assumption (Bogdanovich et al. 2009).
57 In the classic case, uncertainty is related to useful signals. In detection problems, the unknown 
58 is the fact of a signal existence. In recognition problems, the unknown is the type of signal being 
59 received at the current moment. In estimation problems, the unknown is the amplitude of the 
60 measured signal or one of its parameters. The rest of the components of the signal-noise 
61 environment in classical theory are regarded as a priori certain (known) as follows: the known is 
62 the statistical description of the noise, the known is the values of the unmeasured parameters of 
63 the signal and the known is the physical characteristics of the wireless communication channel. 
64 In such conditions, the classical theory allows the synthesis of optimal estimation algorithms, but 
65 the structure and quality coefficients of the algorithms depend on the values of the parameters of 
66 the signal-noise environment. If the values of the parameters describing the signal-noise 
67 environment are slightly different from the parameters for which the optimal algorithm is built, 
68 then the quality coefficients will become substantially poor, making the algorithm useless in 
69 several cases (Bogdanovich et al. 2009), (O'Shea et al. 2017). The most frequently used CSIEs 
70 are derived from signal and channel statistical models by employing techniques, such as 
71 maximum likelihood (ML), least squares (LS), and minimum mean squared error (MMSE) 
72 optimisation metrics (Kim 2015).
73 One of the major concerns in the optimum performance of wireless communication systems is 
74 providing accurate channel state information (CSI) at the receiver end of the systems to detect 
75 the transmitted signal coherently. If CSI is unavailable at the receiver end, then the transmitted 
76 signal can only be demodulated and detected by a noncoherent technique, such as differential 
77 demodulation. However, using a noncoherent detection method occurs at the expense of a loss of 
78 signal-to-noise ratio of about 3–4 dB compared with using a coherent detection technique. To 
79 eliminate such losses, researchers have focused on the development of channel estimation 
80 techniques to provide perfect detection of transmitted information in wireless communication 
81 systems using the Orthogonal Frequency-Division Multiplexing (OFDM) modulation scheme 
82 (Oyerinde & Mneney 2012a).
83 The use of deep learning neural networks (DLNNs) is the state-of-the-art approach in the field 
84 of wireless communication. The amazing learning capabilities of DLNNs from  training data sets 
85 and the tremendous progress of graphical processing units (GPUs), which are considered the 
86 most powerful tools for training DLNNs, have motivated its usage for different wireless 
87 communication issues, such as modulation recognition (Zhou et al. 2020), (Karra et al. 2017) and 
88 channel state estimation and detection (Essai Ali ; Joo et al. 2019; Kang et al. 2020; Ma et al. 
89 2018; Ponnaluru & Penke 2020; Yang et al. 2019a; Ye et al. 2018). According to (Karra et al. 
90 2017; Kim 2015; Oyerinde & Mneney 2012a; Zhou et al. 2020) and (Ma et al. 2018), all 
91 proposed deep learning-based CSIEs have better performance compared with the examined 
92 traditional channel ones, such as LS and MMSE estimators.
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93 Recently, numerous long short-term memory (LSTM)- and BiLSTM-based applications have 
94 been introduced for prognostic and health management (Zhao et al. 2020), artificial intelligence-
95 based translation systems (Wu et al. 2016), (Ong 2017) and other areas. For channel state 
96 information estimation in 5G-OFDM wireless communication systems, many deep learning 
97 approaches, such as convolutional neural network (CNN), recurrent neural network (RNN) (e.g. 
98 LSTM and BiLSTM NNs) and hybrid (CNN and RNN) neural networks have been used (Essai 
99 Ali ; Liao et al. 2019; Luo et al. 2018a; Ponnaluru & Penke 2020; Yang et al. 2019a; Yang et al. 

100 2019b; Ye et al. 2018).
101 In (Liao et al. 2019), a deep learning-based CSIE was proposed by using CNN and BiLSTM-
102 NN for the extraction of the feature vectors of the channel response and channel estimation, 
103 respectively. The aim was to improve the channel state information estimation performance at 
104 the downlink, which is caused by the fast time-varying and varying channel statistical 
105 characteristics in high-speed mobility scenarios. In (Luo et al. 2018b), an online-trained CSIE 
106 that is an integration of CNN and LSTM-NN was proposed. The authors also developed an 
107 offline–online training technique that applies to 5G wireless communication systems. In (Ye et 
108 al. 2018), a joint channel estimator and detector that is based on feedforward DLNNs for 
109 frequency selective channel (OFDM) systems was introduced. The proposed algorithm was 
110 found to be superior to the traditional MMSE estimation method when unknown surrounding 
111 effects of communication systems are considered. In (Yang et al. 2019b), an online estimator 
112 was developed by adopting feedforward DLNNs for doubly selective channels. The proposed 
113 estimator was considered superior to the traditional LMMSE estimator in all investigated 
114 scenarios. In (Ponnaluru & Penke 2020), a one-dimensional CNN (1D-CNN) deep learning 
115 estimator was proposed. Under various modulation scenarios and in terms of MSE and BER 
116 metrics, the authors compared the performance of the proposed estimator with that of 
117 feedforward neural networks (FFNN), MMSE and LS estimators. 1D-CNN outperformed LS, 
118 MMSE and FFNN estimators. In (Essai Ali), an online pilot‐assisted estimator model for OFDM 
119 wireless communication systems was developed by using LSTM NN. The conducted 
120 comparative study showed the superior performance of the proposed estimator in comparison 
121 with LS and MMSE estimators under limited pilots and a prior uncertainty of channel statistics. 
122 The authors in (Sarwar et al. 2020) used the genetic algorithm-optimised artificial neural network 
123 to build a CSIE. The proposed estimator was dedicated for space–time block-coding MIMO-
124 OFDM communication systems. The proposed estimator outperformed LS and MMSE 
125 estimators in terms of BER at high SNRs, but it achieved approximately the same performance 
126 as LS and MMSE estimators at low SNRs. The authors in (Senol et al. 2021) proposed a CSIE 
127 for OFDM systems by using ANN under the condition of sparse multipath channels. The 
128 proposed estimator achieved a comparable SER performance as matching pursuit- and 
129 orthogonal matching pursuit-based estimators at a lower computational complexity than that of 
130 the examined estimators. The authors in (Le Ha et al. 2021) proposed a CSIE that uses deep 
131 learning and LS estimator and utilizes the multiple-input multiple-output system for 5G-OFDM.  
132 The proposed estimator minimizes the MSE loss function between the LS-based channel 
133 estimation and the actual channel. The proposed estimator outperformed LS and LMMSE 
134 estimators in terms of BER and MSE metrics.
135 In this study, a BiLSTM DLNN-based CSIE for OFDM wireless communication systems is 
136 proposed and implemented. To the best of the authors’ knowledge, this work is the first to use 
137 the BiLSTM network as a CSIE without integration with CNN. The proposed estimator does not 
138 need any prior knowledge of the communication channel statistics and powerfully works at 
139 limited pilots (under the condition of less CSI). The proposed BiLSTM-based CSIE is a data-
140 driven estimator, so it can analyse, recognise and understand the statistical characteristics of 
141 wireless channels suffering from many known interferences such as adjacent channel, inter 
142 symbol, inter user, inter cell, co-channel and electromagnetic interferences and unknown ones 
143 (Jeya et al. 2019; Sheikh 2004). Although an impressively wide range of configurations can be 
144 found for almost every aspect of deep neural networks, the choice of loss function is 
145 underrepresented when addressing communication problems, and most studies and applications 
146 simply use the ‘log’ loss function (Janocha & Czarnecki 2017). In this study two customed loss 

PeerJ Comput. Sci. reviewing PDF | (CS-2021:04:60719:1:1:CHECK 12 Jun 2021)

Manuscript to be reviewedComputer Science



147 functions known as mean absolute error (MAE), and sum of squared errors (SSE) are proposed 
148 to obtain the most reliable and robust estimator under unknown channel statistical characteristics 
149 and limited pilot numbers.
150 The performance of the proposed BiLSTM-based estimator is compared with the performance 
151 of the most frequently used LS and MMSE channel state estimators. The obtained results show 
152 that the BiLSTM-based estimator attains a comparable performance as the MMSE estimator and 
153 outperforms LS and MMSE estimators at large and small numbers of pilots, respectively. In 
154 addition, the proposed estimator improves the transmission data rate of OFDM wireless 
155 communication systems because it exhibits optimal performance compared with the examined 
156 estimators at a small number of pilots. 
157  The rest of this paper is organised as follows. The DLNN-based CSIE is presented in Section 
158 II. The standard OFDM system and the proposed deep learning BiLSTM NN-based CSIE are 
159 presented in Section III. The simulation results are given in Section IV. The conclusions and 
160 future work directions are provided in Section V.
161

162 DLNN-BASED CSIE
163 In this section, a deep learning BiLSTM NN for channel state information estimation is 
164 presented. The BiLSTM network is another version of LSTM neural networks, which are 
165 recurrent neural networks (RNN) that can learn the long-term dependencies between the time 
166 steps of input data (Hochreiter & Schmidhuber 1997) (Luo et al. 2018a; Zhao et al. 2020). 
167 The BiLSTM architecture mainly consists of two separate LSTM-NNs and has two 
168 propagation directions (forward and backward). The LSTM NN structure consists of input, 
169 output and forget gates and a memory cell. The forget and input gates enable the LSTM NN to 
170 effectively store long-term memory. Figure 1 shows the main construction of the LSTM cell 
171 (Hochreiter & Schmidhuber 1997). The forget gate enables LSTM NN to remove the undesired 
172 information by currently used input tx and cell output th of the last process. The input gate finds 
173 the information that will be used with the previous LSTM cell state 1tc   to obtain a new cell state 
174 tc  based on the current cell input tx and the previous cell output 1th  . Using the forget and input 
175 gates, LSTM can decide which information is abandoned and which is retained.
176 The output gate finds current cell output th  by using the previous cell output 1th   at current cell 
177 state tc and input tx . The mathematical model of the LSTMNN structure can be described 
178 through Equations (1) – (6).
179  1t g i t i t ii w x R h b    ,        (1)

180  1t g f t f t ff w x R h b    ,        (2)

181  1t c g t g t gg w x R h b    ,       (3)

182  1t g o t o t oo w x R h b    ,       (4)

183                                                         ,                                      (5)𝑐𝑡 = 𝑓𝑡ʘ𝑐𝑡 ‒ 1 + 𝑖𝑡ʘ𝑔𝑡
184              ,                                              (6)ℎ𝑡 = 𝑜𝑡ʘ𝜎𝑐(𝑐𝑡)
185 where ,  ,  ,  ,i f g o  c , 

g  and ʘ denote the input gate, forget gate, cell candidate, output gate, state 

186 activation function (hyperbolic tangent function (tanh), gate activation function (sigmoid 
187 function) and Hadamard product (element-wise multiplication of vectors), respectively. 
188 [    ]Ti f g ow w w wW , [    ]Ti f g oR R R RR and [    ]Ti f g ob b b bb are input weights, recurrent weights 

189 and bias, respectively.
190 The forward and backward propagation directions of BiLSTM are transmitted at the same time 
191 to the output unit. Therefore, old and future information can be captured, as shown in Figure 2. 
192 At any time t , the input is fed to forward LSTM and backward LSTM networks. The final output 
193 of BiLSTM-NN can be expressed as follows:
194                                       ,                       (7) ℎ𝑡 = ℎ𝑡ʘℎ𝑡
195 where and are forward and backward outputs of BiLSTM-NN, respectively.ℎ𝑡 ℎ𝑡
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196 As the proposed BiLSTM-based CSIE is built, the weights and biases of the proposed 
197 estimator are optimised (tuned) using the Adam optimization algorithm. Adam trains the 
198 proposed estimator by using one of three loss functions, namely, cross entropy function for kth 
199 mutually exclusive classes (crossentropyex), mean absolute error (MAE), and sum of squared 
200 errors (SSE).  The loss function estimates the loss between the expected and actual outcome. 
201 During the learning process, optimisation algorithms try to minimise the available loss function 
202 to the desired error goal by optimising the DLNN weights and biases iteratively at each training 
203 epoch. Selecting a loss function is one of the essential and challenging tasks in deep learning. 
204 The proposed estimator is trained using above-mentioned three different loss functions to obtain 
205 the most optimal BiLSTM-based estimator for wireless communication systems with low prior 
206 information (limited pilots) for signal-noise environments. 
207

208 To build the DL BiLSTM NN-based CSIE, an array is created with the following five layers: 
209 sequence input, BiLSTM, fully connected, softmax and output classification. The input size was 
210 set to 256. The BiLSTM layer consists of 16 hidden units and shows the sequence’s last element. 
211 Four classes are specified by considering the size 4 fully connected (FC) layer, followed by a 
212 softmax layer and ended by a classification layer. Figure 3 illustrates the structure of the 
213 proposed estimator (Essai Ali).
214

215

216 DL BiLSTM NN-BASED CSIE for 5G–OFDM WIRELESS 

217 COMMUNICATION SYSTEMS
218 The standard OFDM wireless communication system and an offline DL of the proposed CSIE 
219 are presented in the following subsections. 
220

221 OFDM SYSTEM MODEL
222 In accordance with (Essai Ali ; Ye et al. 2018), Figure 4 clearly illustrates the structure of the 
223 traditional OFDM communication system. On the transmitter side, a serial-to-parallel (S/P) 
224 converter is used to convert the transmitted symbols with pilot signals into parallel data streams. 
225 Then, inverse discrete Fourier transform (IDFT) is applied to convert the signal into the time 
226 domain. A cyclic prefix (CP) must be added to alleviate the effects of inter-symbol interference. 
227 The length of the CP must be longer than the maximum spreading delay of the channel.
228 The multipath channel of a sample space defined by complex random variables 1

0{ ( )}N

nh n 


229  is considered. Then, the received signal can be evaluated as follows:{h(n)}N ‒ 1
n = 0

230                  ( ) ( ) ( ) ( )y n x n h n w n   ,                    (8)y(n) = x(n)⊕ h(n) + w(n)

231 where  ( )x n is the input signal,  is circular convolution, ( )w n is additive white  ⊕ x(n) w(n)
232 Gaussian noise (AWGN) and ( )y n  is the output signal.y(n)

233 The received signal in the frequency domain can be defined as 
234                  ( ) ( ) ( ) ( )Y k X k H k W k  ,                     (9)Y(k) = X(k)H(k) + W(k)

235 where the discrete Fourier transformations (DFT) of  ( )x n , ( )h n , ( )y n  and ( )w n  are x(n) h(n) w(n)

236 ( )X k , ( )H k , ( )Y k and ( )W k , respectively. These discrete Fourier X(k) H(k) Y(k) W(k)
237 transformations are estimated after removing CP. 
238 The OFDM frame includes the pilot symbols of the 1st OFDM block and the transmitted data of 
239 the next OFDM blocks. The channel can be considered stationary during a certain frame, but it can 
240 change between different frames. The proposed DL BiLSTM NN-based CSIE receives the arrived 
241 data at its input terminal and extracts the transmitted data at its output terminal (Essai Ali), (Ye et 
242 al. 2018).
243
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244 OFFLINE DL OF THE DL BILSTM NN-BASED CSIE
245 DLNN utilisation is the state-of-the-art approach in the field of wireless communication, but 
246 DLNNs have high computational complexity and long training time.  GPUs are the most 
247 powerful tools used for training DLNNs (Sharma et al. 2016). Training should be done offline 
248 due to the long training time of the proposed CSIE and the large number of BILSTM-NN’s 
249 parameters, such as biases and weights, that should be tuned during training. The trained CSIE is 
250 then used in online implementation to extract the transmitted data (Ye et al. 2018), (Essai Ali).
251 In offline training, the learning dataset is randomly generated for one subcarrier. The 
252 transmitting end sends OFDM frames to the receiving end through the adopted (simulated) 
253 channel, where each frame consists of single OFDM pilot symbol and a single OFDM data 
254 symbol. The received OFDM signal is extracted based on OFDM frames that are subjected to 
255 different channel imperfections. 
256 All classical estimators rely highly on tractable mathematical channel models, which are 
257 assumed to be linear, stationary and follow Gaussian statistics. However, practical wireless 
258 communication systems have other imperfections and unknown surrounding effects that cannot 
259 be tackled well by accurate channel models; therefore, researchers have developed various 
260 channel models that effectively characterise practical channel statistics. By using these channel 
261 models, reliable and practical training datasets can be obtained by modelling (Bogdanovich et al. 
262 2009), (Essai Ali), (2019).  
263 In this study, the 3GPP TR38.901-5G channel model developed by (2019) is used to simulate 
264 the behaviour of a practical wireless channel that can degrade the performance of CSIEs and 
265 hence, the overall communication system’s performance. 
266 The proposed estimator is trained via Adam optimisation, which updates the weights and 
267 biases by minimising a specific loss function. Simply, a loss function is defined as the difference 
268 between the estimator's responses and the original transmitted data. The loss function can be 
269 represented by several functions. MATLAB/neural network toolbox allows the user to choose a 
270 loss function amongst its available list that contains crossentropyex, MSE, sigmoid and softmax. 
271 In this study, another two custom loss functions (MAE and SSE) are created. The performance of 
272 the proposed estimator when using three loss functions (i.e. MAE, crossentropyex and SSE) is 
273 investigated. The loss functions can be expressed as follows:
274  

1 1
ˆlog( ( ))

N c

ij iji j
crossentropyex X k X k

 
   ,                           crossentropyex = ‒ ∑N

i = 1
∑c

j = 1
Xij(k)log (Xij(k))

275 (10)                  MAE =
∑N

i = 1
∑c

j = 1
|Xij(k) ‒ Xij(k)|

N

276            
 

1 1
ˆ ( )

N c

ij iji j
X k X k

MAE
N

 



 

,                                  (11)

277              2

1 1
ˆ ( )

N c

ij iji j
SSE X k X k

 
   ,                                      (12)SSE = ∑N

i = 1
∑c

j = 1
(Xij(k) ‒ Xij(k))

2

278

279 where N is the sample number, c  is the class number, 
ijX  is the th transmitted data sample for C i𝑖

280 the j th class and   is the DL BiLSTM-based CSIE response for sample i  for class j .j Xij 𝑋𝑖𝑗 i
281 Figure 5 illustrates the processes of generating the training data sets and offline DL to obtain a 
282 learned CSIE based on BiLSTM-NN.
283

284 Simulation Results

285 STUDYING THE PERFORMANCE OF THE PROPOSED, LS AND MMSE 
286 ESTIMATORS BY USING DIFFERENT PILOTS AND LOSS FUNCTIONS
287 Several simulation experiments are performed to evaluate the performance of the proposed 
288 estimator. In terms of symbol error rate (SER) performance analysis, the SER performance of the 
289 proposed estimator under various SNRs is compared with that of the LSTM NN-based CSIE (Essai 
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290 Ali), the well-known LS estimator and the MMSE estimator, which is an optimal estimator but 
291 requires channel statistical information. A priori uncertainty of the used channel model statistics is 
292 assumed and considered for all conducted experiments.
293 Moreover, the Adam optimisation algorithm is used to train the proposed estimator whilst using 
294 different loss functions to obtain the most robust version of the proposed CSIE. The proposed 
295 model is implemented in 2019b MATLAB/software.
296 Table 1 lists the parameters of BiLSTM-NN and LSTM-NN architectures and their related 
297 training options. These parameters are identified by a trial-and-error approach. Table 2 lists the 
298 parameters of the OFDM system model and the channel model.
299 The examined estimators’ performance is evaluated at different pilot numbers of 4, 8 and 64 as 
300 well as crossentropyex, MAE and SSE loss functions. The Adam optimisation algorithm is used 
301 for all simulation experiments. 
302 With a sufficiently large number of pilots (64) and the use of the crossentropyex loss function, 
303 the proposed BiLSTMcrossentropyex estimator outperforms LSTMcrossentropyex, LS and MMSE 
304 estimators over the entire SNR range, as shown in Figure 6. At the use of the MAE loss function, 
305 the BiLSTMMAE estimator outperforms the LS estimator over the SNR range [0–18 dB], but 
306 LSTMMAE outperforms it over the SNR range [0–14 dB]. In addition, the BiLSTMMAE and 
307 LSTMMAE estimators are at par with the MMSE estimator over the SNR ranges [0–10 dB] and [0–
308 4 dB], respectively. Beyond these SNR ranges, the MMSE estimator outperforms BiLSTMMAE and 
309 LSTMMAE estimators. BiLSTMMAE outperforms LSTMMAE starting from 0 dB to 20 dB. 
310  At the use of the SSE loss function, Figure 6 shows that the BiLSTMSSE and LSTMSSE 
311 estimators achieve approximately the same performance as the MMSE estimator over a low SNR 
312 range [0–6 dB]. MMSE outperforms the BiLSTMSSE and LSTMSSE estimators starting from 8 dB, 
313 and the LS estimator outperforms BiLSTMSSE starting from 16 dB and LSTMSSE starting from 14 
314 dB. BiLSTMSSE outperforms LSTMSSE starting from 10 dB to 20 dB. LS provides poor 
315 performance compared with MMSE because it does not use prior information about channel 
316 statistics in the estimation process. MMSE exhibits superior performance, especially with 
317 sufficient pilot numbers, because it uses second-order channel statistics. Concisely, MMSE and the 
318 proposed BiLSTMcrossentropyex attain close SER performance with respect to all SNRs. Furthermore, 
319 at low SNR (0–6 dB), BiLSTM(crossentropyex, MAE, and SSE), LSTM(crossentropyex, MAE, and SSE) and MMSE 
320 attain approximately the same performance.
321 Figures 7 present the performance comparison of LS, MMSE, BiLSTM and LSTM-based 
322 estimators using the Adam optimisation algorithm and the different (crossentropyex, MAE and 
323 SSE) loss functions at 8 pilots. Figure 7 shows that the proposed BiLSTM(crossentropyex, or MAE or SSE) 
324 estimators outperform the LSTM(crossentropyex, or MAE or SSE) estimators and the traditional estimators 
325 over the examined SNR range. At a low SNR (0–7 dB), the proposed BiLSTM(crossentropyex, or MAE or 
326 SSE) estimators exhibit semi-identical performance. Furthermore, the proposed BiLSTMSSE 
327 estimator trained by minimising the SSE loss function outperforms the BiLSTMcrossentropyex 
328 estimator trained by minimising the crossentropyex loss function starting from 0 dB; also it 
329 outperforms BiLSTMMAE, which is trained by minimising the MAE loss function starting from 14 
330 dB. Concisely at 8 pilots BiLSTMSSE estimator achieved the most minimum SER.
331 Figures 8 show the performance comparison of the LS, MMSE, BiLSTM(crossentropyex, or MAE or 
332 SSE) and LSTM(crossentropyex, or MAE or SSE) estimators at 4 pilots. Figure 8 shows the superiority of the 
333 proposed BiLSTM(crossentropyex, or MAE or SSE) estimators in comparison with the traditional 
334 estimators, which have lost their workability starting from 0 dB. It also shows the superiority of 
335 the proposed estimator BiLSTM(MAE or SSE) over LSTM(MAE or SSE). LSTM(crossentropyex) exhibits a 
336 competitive performance as BiLSTM(crossentropyex) starting from 0 dB to 12 dB, and 
337 LSTM(crossentropyex) outperforms BiLSTM(crossentropyex) starting from 14 dB. At very low SNRs (0–3 
338 dB), the proposed BiLSTM(crossentropyex, or MAE or SSE) estimators have the same performance. The 
339 proposed BiLSTMSSE estimator outperforms the BiLSTMcrossentropyex estimator starting from 4 dB, 
340 and it exhibits an identical performance as the BiLSTMMAE estimator until 14 dB and 
341 outperforms it in the rest of the SNR examination range.
342 Figures 6, 7 and 8 emphasise the robustness of the BiLSTM-based estimators against the 
343 limited number of pilots, low SNR, and under the condition of a priori uncertainty of channel 
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344 statistics. They demonstrate the importance of testing various loss functions in the deep learning 
345 process to obtain the most optimal architecture of any proposed estimator.
346 Figure 9 indicates that the proposed BiLSTMcrossentropyex, BiLSTMSSE and BiLSTMSSE 
347 estimators have close SER performance at 64, 8 and 4 pilots, respectively. The performance of 
348 BiLSTMSSE at 8 pilots coincides with the performance of BiLSTMcrossentropyex at 64 pilots. 
349 Therefore, using the proposed estimators with few pilots is recommended for 5G OFDM wireless 
350 communication systems to attain a significant improvement in their transmission data rate.  
351 Given that the proposed estimator adopts a training data set-driven approach, it is robust to a 
352 priori uncertainty for channel statistics. 
353

354

355 LOSS CURVES 
356 The quality of the DLNNs’ training process can be monitored efficiently by exploring the 
357 training loss curves. These loss curves provide information on how the training process goes, and 
358 the user can decide whether to let the training process continue or stop.
359 Figures 10–12 show the loss curves of the DLNN-based estimators (BiLSTM and LSTM) at 
360 pilot numbers = 64, 8 and 4 and with the three examined loss functions (crossentropyex, MAE 
361 and SSE). The curves emphasise and verify the obtained results in Figure 6, 7, and 8. For 
362 example, the sub-curves in Figure 10 for BiLSTMcrossentropyex and LSTMcrossentropyex estimators 
363 emphasise their superiority over the other estimators. This superiority can be seen clearly from 
364 Figures 6. Moreover, the training loss curves in Figures 11 and 12 emphasise the obtained SER 
365 performance in Figures 7 and 8, respectively, of each examined DLNN-based CSIE. For more 
366 details, good zooming, and analysis of the presented loss curves, they can be downloaded from 
367 this link (shorturl.at/lqxGQ).
368

369 ACCURACY CALCULATION
370 The accuracy of the proposed and other examined estimators is a measure of how the 
371 estimators recover transmitted data correctly. Accuracy can be defined as the number of correctly 
372 received symbols divided by the total number of transmitted symbols. The proposed estimator is 
373 trained in different conditions as indicated in the previous subsection, and we wish to investigate 
374 how well it performs in a new data set. Tables 3, 4 and 5 present the obtained accuracies for all 
375 examined estimators under all simulation conditions.  
376 As illustrated in Tables 3 to 5, the proposed BiLSTM-based estimator attains accuracies from 
377 98.61 to 100 under different pilots and loss functions. The other examined DL LSTM-based 
378 estimator has accuracies from 97.88 to 99.99 under the same examination conditions. The 
379 achieved accuracies indicate that the proposed estimator has robustly learned and emphasises the 
380 obtained SER performance in Figure 9. The obtained results of MMSE and LS in Tables 1, 2 and 
381 3 emphasise the presented SER performance in Figures 6, 7 and 8, respectively, and show that as 
382 the pilot number decreases, the accuracy of the conventional estimators dramatically decreases.  
383 The proposed BiLSTM- and LSTM-based estimators rely on DLNN approaches, where they 
384 can analyse huge data sets that may be collected from any plant, recognise the statistical 
385 dependencies and characteristics, devise the relationships between features and generalise the 
386 accrued knowledge for new data sets that they have not seen before. Thus, they are applicable to 
387 any 5G and beyond communication system.
388

389 COMPLEXITY
390 The feed-forward pass and feed-back pass operations dominate the computational complexity 
391 ( )O W  of all neural networks, such as FFNNs, LSTM and BiLSTM. In a feed-forward pass, the 
392 weighted sum of inputs from previous layers to the next layers is calculated. In feed-back pass, 
393 the errors are evaluated; hence, the weights are modified. 
394 The computational complexity of LSTM is 
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395            ( ) ( )O W O KH KCS HI CSI    ,            (13)
396 where W is the weight number, K is the output unit number, H is the hidden unit number, I  is 
397 the input number, C is the memory cell block number and S is the memory cell block size 
398 (Hochreiter & Schmidhuber 1997).  
399 The BiLSTM architecture has two separate LSTM-NNs and two propagation directions 
400 (forward and backward). Hence, for BiLSTM, 2W W . The computational complexity of 
401 BiLSTM is 
402 (2 ) (2( ))O W O KH KCS HI CSI    .           (14)
403 The required training time can be used as another a complexity metric. Table 6 lists the 
404 consumed processing time for the examined BiLSTM- and LSTM-based CSIEs. The used 
405 computer is equipped with an Intel(R) Core (TM) i5-2400 CPU running with a 3.10–3.30 GHz 
406 microprocessor and 4 GB of RAM. The LSTM-based estimators consume less processing time 
407 than the BiLSTM-based estimators do. Hence, they have the lowest complexity. 
408

409

410 CONCLUSIONS and FUTURE WORK
411 The proposed DL-BiLSTM-based CSIE is an online pilot-assisted estimator. It is robust against a 
412 limited number of pilots and exhibits superior performance compared with conventional 
413 estimators; it is also robust under the conditions of a priori uncertainty of communication channel 
414 statistics (non-Gaussian/stationary statistical channels) and demonstrates superior performance 
415 compared with conventional estimators and DL LSTM NN-based CSIEs. 
416 The proposed CSIE exhibits a consistent performance at large and small pilot numbers and 
417 superior performance at low SNRs, especially at limited pilots, compared with conventional 
418 estimators. It also achieves the highest accuracy amongst all examined estimators at 64, 8, and 4 
419 pilots for all the used loss functions.
420  The proposed BiLSTM- and LSTM-based estimators have high prediction accuracies of 
421 98.61% to 100% and 97.88% to 99.99%, respectively, when using crossentropyex, MAE, and 
422 SSE loss functions for 64, 8, and 4 pilots. They are promising for 5G and beyond wireless 
423 communication systems.
424   Two customized loss functions (MAE and SSE) are introduced. The computational and training 
425 time complexities are presented to illustrate the complexity of the proposed estimator compared 
426 with that of the LSTM-based estimator.
427 For future work, authors suggest the following research plans: 
428 1. Investigating the proposed estimator’s performance and accuracy by using other learning 
429 algorithms, such as Adadelta, Adagrad, AMSgrad, AdaMax and Nadam.
430 2. Investigating the proposed estimator’s performance and accuracy by using different cyclic 
431 prefix lengths and types. 
432 3. Developing robust loss functions by using robust statistics estimators, such as Tukey, Cauchy, 
433 Huber and Welsh.
434 4. Investigating the performance of CNN-, gated recurrent unit (GRU)- and simple recurrent unit 
435 (SRU)-based CSIEs whilst using crossentropyex, MAE and SSE loss functions and for 64, 8 
436 and 4 pilots.
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Figure 1
Long short-term memory (LSTM) cell.
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Figure 2
BiLSTM-NN architecture.
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Figure 3
Structure of the DL BiLSTM NN for the BiLSTM estimator.
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Figure 4
Conventional OFDM system
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Figure 5
Training data set formation and offline DL process of the BiLSTM-NN-based CSI
estimator.
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Figure 6
SER comparison of LS, MMSE, BiLSTM and LSTM estimators using 64 pilots, the Adam
learning algorithm and crossentropyex, MAE and SSE loss functions.
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Figure 7
SER performance comparison of LS, MMSE, BiLSTM, and LSTM estimators using 8 pilots,
the Adam learning algorithm and crossentropyex, MAE and SSE loss functions.
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Figure 8
SER performance comparison of LS, MMSE, BiLSTM, and LSTM estimators using 4 pilots,
the Adam learning algorithm and crossentropyex, MAE and SSE loss functions.
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Figure 9
SER performance comparison of the best DL BiLSTM-based CSIEs using various pilots
and loss functions.
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Figure 10
Loss curves comparison of BiLSTM- and LSTM- based estimators using 64 pilots, the
Adam learning algorithm and crossentropyex, MAE and SSE loss functions.
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Figure 11
Loss curves comparison of BiLSTM- and LSTM-based estimators using 8 pilots, the Adam
learning algorithm and crossentropyex, MAE and SSE loss functions.
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Figure 12
Loss curves comparison of BiLSTM- and LSTM-based estimators using 4 pilots, the Adam
learning algorithm and crossentropyex, MAE and SSE loss functions.
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Table 1(on next page)

BiLSTM- and LSTM-NN structure parameters and training process options
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1
2
3
4
5
6
7
8

Parameter Value

Input Size 256

BiLSTM Layer Size

LSTM Layer Size

30 hidden neurons

30 hidden neurons

FC Layer Size 4

Loss Functions Crossentropyex, MAE, SSE

Mini Batch Size 1000

Epochs Number 1000

Learning Algorithm Adam

Training Data Size 8000 - OFDM frame

Validation Data Size 2000 - OFDM frame

Test Data Size 10000 - OFDM frame

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
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Table 2(on next page)

OFDM system and channel parameters
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1
2
3
4
5
6

Parameter Value

Modulation 
Mode

QPSK

Carrier 
Frequency

2.6 GHz

Paths Number 24

CP Length 16

Subcarrier 

Number

64

Pilot Number 64, 8 and 4

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
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Table 3(on next page)

Accuracy comparison of the examined estimators using 64 pilots
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

64 pilots

BiLSTM LSTM MMSE LS

Crossentropyex 100 99.99 100 99.94

SSE 99.23 97.88 100 99.96

MAE 99.87 99.52 100 99.97

16

17

18

19

20

21

22
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Table 4(on next page)

Accuracy comparison of the examined estimators using 8 pilots
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1

2

3

4

5

6

7

8

9

8 pilots

BiLSTM LSTM MMSE LS

Crossentropyex 99.84 99.53 91.34 91.62

SSE 100 99.95 91.60 91.49

MAE 100 99.94 91.53 91.50

10

11

12

13

14

15

16

17
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Table 5(on next page)

Accuracy comparison of the examined estimators using 4 pilots
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1

2

3

4

4 pilots

BiLSTM LSTM MMSE LS

Crossentropyex 98.61 97.94 0.24 0.02

SSE 100 99.28 0.24 0.09

MAE 99.97 99.05 0.26 0.04

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
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Table 6(on next page)

Processing time comparison of the examined DLNN-based CSIEs
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1
2
3
4
5
6
7

                 64 pilots                             8 pilots 4 pilots

Bi-LSTM LSTM Bi-LSTM LSTM Bi-LSTM LSTM

Crossentropyex
10:13 8:2 9:14 6:9 8:33 7:53

SSE 10:48 6:57 8:18 7:40 7:43 7:11

MAE 10:43 6:32 9:1 7:24 7:23 7:10

8

PeerJ Comput. Sci. reviewing PDF | (CS-2021:04:60719:1:1:CHECK 12 Jun 2021)

Manuscript to be reviewedComputer Science


