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ABSTRACT
In this study, a deep learning bidirectional long short-term memory (BiLSTM)
recurrent neural network-based channel state information estimator is proposed for 5G
orthogonal frequency-divisionmultiplexing systems. The proposed estimator is a pilot-
dependent estimator and follows the online learning approach in the training phase and
the offline approach in the practical implementation phase. The estimator does not deal
with complete a priori certainty for channels’ statistics and attains superior performance
in the presence of a limited number of pilots. A comparative study is conducted using
three classification layers that use loss functions: mean absolute error, cross entropy
function for kth mutually exclusive classes and sum of squared of the errors. The
Adam, RMSProp, SGdm, and Adadelat optimisation algorithms are used to evaluate
the performance of the proposed estimator using each classification layer. In terms of
symbol error rate and accuracymetrics, the proposed estimator outperforms long short-
term memory (LSTM) neural network-based channel state information, least squares
and minimum mean square error estimators under different simulation conditions.
The computational and training time complexities for deep learning BiLSTM- and
LSTM-based estimators are provided. Given that the proposed estimator relies on the
deep learning neural network approach, where it can analyse massive data, recognise
statistical dependencies and characteristics, develop relationships between features and
generalise the accrued knowledge for new datasets that it has not seen before, the
approach is promising for any 5G and beyond communication system.

Subjects Artificial Intelligence, Computer Networks and Communications
Keywords BiLSTM, Channel state information estimator, Deep learning neural networks, Loss
functions

INTRODUCTION
5Gwireless communication is themost active area of technology development and a rapidly
growing branch of the wider field of communication systems. Wireless communication
has made various possible services ranging from voice to multimedia.

The physical characteristics of the wireless communication channel and many unknown
surrounding effects result in imperfections in the transmitted signals. For example, the
transmitted signals experience reflections, diffractions, and scattering, which produce
multipath signals with different delays, phase shift, attenuation, and distortion arriving at
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the receiving end; hence, they adversely affect the recovered signals (Oyerinde & Mneney,
2012).

A priori information on the physical characteristics of the channel provided by pilots
is one of the significant factors that determine the efficiency of channel state information
estimators (CSIEs). For instance, if not a priori information is available (no or insufficient
pilots), channel estimation is useless; finding what you do not know is impossible. When
complete information on the transmission channel is available, CSIEs are no longer
needed. Thus, a priori uncertainty exists for communication channel statistics. However,
the classical theory of detection, recognition, and estimation of signals deals with complete
priory certainty for channel statistics, and it is an unreliable and unpractical assumption
(Bogdanovich, Vostretsov & Electronics, 2009).

In the classic case, uncertainty is related to useful signals. In detection problems, the
unknown is the fact of a signal existence. In recognition problems, the unknown is the type
of signal being received at the current moment. In estimation problems, the unknown is
the amplitude of the measured signal or one of its parameters. The rest of the components
of the signal-noise environment in classical theory are regarded as a priori certain (known)
as follows: the known is the statistical description of the noise, the known is the values of
the unmeasured parameters of the signal and the known is the physical characteristics of
the wireless communication channel. In such conditions, the classical theory allows the
synthesis of optimal estimation algorithms, but the structure and quality coefficients of
the algorithms depend on the values of the parameters of the signal-noise environment. If
the values of the parameters describing the signal-noise environment are slightly different
from the parameters for which the optimal algorithm is built, then the quality coefficients
will become substantially poor, making the algorithm useless in several cases (Bogdanovich,
Vostretsov & Electronics, 2009; O’Shea, Karra & Clancy, 2017). The most frequently used
CSIEs are derived from signal and channel statistical models by employing techniques,
such as maximum likelihood (ML), least squares (LS), and minimum mean squared error
(MMSE) optimisation metrics (Kim, 2015).

One of the major concerns in the optimum performance of wireless communication
systems is providing accurate channel state information (CSI) at the receiver end of the
systems to detect the transmitted signal coherently. If CSI is unavailable at the receiver
end, then the transmitted signal can only be demodulated and detected by a noncoherent
technique, such as differential demodulation. However, using a noncoherent detection
method occurs at the expense of a loss of signal-to-noise ratio of about 3–4 dB compared
with using a coherent detection technique. To eliminate such losses, researchers have
focused on the development of channel estimation techniques to provide perfect detection
of transmitted information in wireless communication systems using the Orthogonal
Frequency-Division Multiplexing (OFDM) modulation scheme (Oyerinde & Mneney,
2012).

The use of deep learning neural networks (DLNNs) is the state-of-the-art approach in
the field of wireless communication. The amazing learning capabilities of DLNNs from
training data sets and the tremendous progress of graphical processing units (GPUs),
which are considered the most powerful tools for training DLNNs, have motivated its
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usage for different wireless communication issues, such as modulation recognition (Zhou,
Liu & Gravelle, 2020; Karra, Kuzdeba & Petersen, 2017) and channel state estimation and
detection (Essai Ali, 2021; Joo et al., 2019; Kang, Chun & Kim, 2020; Ma, Ye & Li, 2018;
Ponnaluru & Penke, 2020; Yang et al., 2019; Ye, Li & Juang, 2018). According to Karra,
Kuzdeba & Petersen (2017), Kim (2015), Oyerinde & Mneney (2012), Zhou, Liu & Gravelle
(2020) and Ma, Ye & Li (2018), all proposed deep learning-based CSIEs have better
performance compared with the examined traditional channel ones, such as LS and
MMSE estimators.

Recently, numerous long short-term memory (LSTM)- and BiLSTM-based applications
have been introduced for prognostic and health management (Zhao et al., 2020), artificial
intelligence-based translation systems (Wu et al., 2016; Ong, 2017) and other areas. For
channel state information estimation in 5G-OFDM wireless communication systems,
many deep learning approaches, such as convolutional neural network (CNN), recurrent
neural network (RNN) (e.g., LSTM and BiLSTMNNs) and hybrid (CNN and RNN) neural
networks have been used (Essai Ali, 2021; Liao et al., 2019; Luo et al., 2018; Ponnaluru &
Penke, 2020; Yang et al., 2019; Yang et al., 2019; Ye, Li & Juang, 2018).

In Liao et al. (2019), a deep learning-based CSIE was proposed by using CNN and
BiLSTM-NN for the extraction of the feature vectors of the channel response and channel
estimation, respectively. The aim was to improve the channel state information estimation
performance at the downlink, which is caused by the fast time-varying and varying
channel statistical characteristics in high-speed mobility scenarios. In Luo et al. (2018),
an online-trained CSIE that is an integration of CNN and LSTM-NN was proposed. The
authors also developed an offline–online training technique that applies to 5G wireless
communication systems. In Ye, Li & Juang (2018), a joint channel estimator and detector
that is based on feedforward DLNNs for frequency selective channel (OFDM) systems
was introduced. The proposed algorithm was found to be superior to the traditional
MMSE estimation method when unknown surrounding effects of communication systems
are considered. In Yang et al. (2019), an online estimator was developed by adopting
feedforward DLNNs for doubly selective channels. The proposed estimator was considered
superior to the traditional LMMSE estimator in all investigated scenarios. In Ponnaluru &
Penke (2020), a one-dimensional CNN (1D-CNN) deep learning estimator was proposed.
Under various modulation scenarios and in terms of MSE and BER metrics, the authors
compared the performance of the proposed estimator with that of feedforward neural
networks (FFNN),MMSE and LS estimators. 1D-CNNoutperformed LS,MMSE and FFNN
estimators. In Essai Ali (2021), an online pilot-assisted estimator model for OFDMwireless
communication systems was developed by using LSTM NN. The conducted comparative
study showed the superior performance of the proposed estimator in comparison with LS
and MMSE estimators under limited pilots and a priori uncertainty of channel statistics.
Sarwar, Shah & Zafar (2020) used the genetic algorithm-optimised artificial neural network
to build a CSIE. The proposed estimator was dedicated for space–time block-coding
MIMO-OFDM communication systems. The proposed estimator outperformed LS and
MMSE estimators in terms of BER at high SNRs, but it achieved approximately the
same performance as LS and MMSE estimators at low SNRs. Senol, Tahir & Özmen (2021)
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proposed a CSIE for OFDM systems by using ANN under the condition of sparse multipath
channels. The proposed estimator achieved a comparable SER performance as matching
pursuit- and orthogonal matching pursuit-based estimators at a lower computational
complexity than that of the examined estimators. Le Ha et al. (2021) proposed a CSIE that
uses deep learning and LS estimator and utilizes the multiple-input multiple-output system
for 5G-OFDM. The proposed estimator minimizes the MSE loss function between the LS-
based channel estimation and the actual channel. The proposed estimator outperformed
LS and LMMSE estimators in terms of BER and MSE metrics.

In this study, a BiLSTMDLNN-based CSIE for OFDM wireless communication systems
is proposed and implemented. To the best of the authors’ knowledge, this work is the
first to use the BiLSTM network as a CSIE without integration with CNN. The proposed
estimator does not need any prior knowledge of the communication channel statistics
and powerfully works at limited pilots (under the condition of less CSI). The proposed
BiLSTM-based CSIE is a data-driven estimator, so it can analyse, recognise and understand
the statistical characteristics of wireless channels suffering from many known interferences
such as adjacent channel, inter symbol, inter user, inter cell, co-channel and electromagnetic
interferences and unknown ones (Jeya et al., 2019; Sheikh, 2004). Although an impressively
wide range of configurations can be found for almost every aspect of deep neural networks,
the choice of loss function is underrepresented when addressing communication problems,
and most studies and applications simply use the ‘log’ loss function (Janocha & Czarnecki,
2017). In this study two customed loss functions known as mean absolute error (MAE), and
sum of squared errors (SSE) are proposed to obtain the most reliable and robust estimator
under unknown channel statistical characteristics and limited pilot numbers.

The performance of the proposed BiLSTM-based estimator is compared with the
performance of the most frequently used LS and MMSE channel state estimators. The
obtained results show that the BiLSTM-based estimator attains a comparable performance
as the MMSE estimator and outperforms LS and MMSE estimators at large and small
numbers of pilots, respectively. In addition, the proposed estimator improves the
transmission data rate of OFDM wireless communication systems because it exhibits
optimal performance compared with the examined estimators at a small number of pilots.

The rest of this paper is organised as follows. The DLNN-based CSIE is presented
in Section II. The standard OFDM system and the proposed deep learning BiLSTM
NN-based CSIE are presented in Section III. The simulation results are given in Section
IV. The conclusions and future work directions are provided in Section V.

DLNN-BASED CSIE
In this section, a deep learning BiLSTM NN for channel state information estimation is
presented. The BiLSTM network is another version of LSTM neural networks, which are
recurrent neural networks (RNN) that can learn the long-term dependencies between
the time steps of input data (Hochreiter & Schmidhuber, 1997; Luo et al., 2018; Zhao et al.,
2020).

The BiLSTM architecture mainly consists of two separate LSTM-NNs and has two
propagation directions (forward and backward). The LSTM NN structure consists of
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Figure 1 Long short-termmemory (LSTM) cell.
Full-size DOI: 10.7717/peerjcs.682/fig-1

input, output and forget gates and a memory cell. The forget and input gates enable the
LSTM NN to effectively store long-term memory. Figure 1 shows the main construction
of the LSTM cell (Hochreiter & Schmidhuber, 1997). The forget gate enables LSTM NN to
remove the undesired information by currently used input xt and cell output ht of the last
process. The input gate finds the information that will be used with the previous LSTM cell
state ct−1 to obtain a new cell state ct based on the current cell input xt and the previous
cell output ht−1. Using the forget and input gates, LSTM can decide which information is
abandoned and which is retained.

The output gate finds current cell output ht by using the previous cell output ht−1 at
current cell state ct and input xt . The mathematical model of the LSTMNN structure can
be described through Eqs. (1) –(6).

it = σg (wixt +Riht−1+bi) (1)

ft = σg
(
wf xt +Rf ht−1+bf

)
(2)

gt = σc
(
wgxt +Rght−1+bg

)
(3)

ot = σg (woxt +Roht−1+bo) (4)

ct = ft
⊙

ct−1+ it
⊙

gt (5)
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Figure 2 BiLSTM-NN architecture.
Full-size DOI: 10.7717/peerjcs.682/fig-2

ht = ot
⊙

σc(ct ) (6)

where i,f ,g ,o, σc , σg and
⊙

denote the input gate, forget gate, cell candidate, output
gate, state activation function (hyperbolic tangent function (tanh), gate activation function
(sigmoid function) and Hadamard product (element-wise multiplication of vectors),
respectively. W= [wiwf wgwo]

T , R= [RiRf RgRo]
T and b= [bibf bgbo]T are input weights,

recurrent weights and bias, respectively.
LSTM DNN, only analyses the impact of the previous sequence in the present,

disregarding information later on and failing to reach optimal performance. On the other
hand BiLSTM connects the LSTM unit’s output bidirectionally (forward and backward
propagation directions) and capture bidirectional signals dependencies, increasing the
overall model’s performance.

The forward and backward propagation directions of BiLSTM are transmitted at the
same time to the output unit. Therefore, old and future information can be captured, as
shown in Fig. 2. At any time t , the input is fed to forward LSTM and backward LSTM
networks. The final output of BiLSTM-NN can be expressed as follows:

ht = Eht
⊙
Eht , (7)

where Eht and Eht are forward and backward outputs of BiLSTM-NN, respectively. The
operation of BiLSTM in the proposed estimator can be described briefly by the following
algorithm:

Input: sequence represents transmitted signal (original signal + channel model)
Output: Prediction matrix of the extracted features of the input sequence
Step 1: The forward LSTM layer receives the transmitted signal vectors from X.
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for i ∈length (X) do
send Xi to BiLSTM Layer
end for
Step 2: Eqs. (1)–(6) are used to update the state of the LSTM cell.
Step 3: The backward LSTM layer receives the signal vectors from X, and the two

previous steps are repeated.
Step 4: A hidden state sequence vector is created by splicing the forward and backward

sequences of hidden layers.
Step 5: A hidden state sequence vector is sent into a full connection layer and the

prediction matrix is obtained
Step 6: Return the prediction matrix.
To build the DL BiLSTM NN-based CSIE, an array is created with the following five

layers: sequence input, BiLSTM, fully connected, softmax and output classification. The
input size was set to 256. The BiLSTM layer consists of 30 hidden units and shows the
sequence’s last element. Four classes are specified by considering the size 4 fully connected
(FC) layer, followed by a softmax layer and ended by a classification layer. Figure 3 illustrates
the structure of the proposed estimator (Essai Ali, 2021; Ye, Li & Juang, 2018).

As the proposed BiLSTM-based CSIE is built, the weights and biases of the proposed
estimator are optimised (tuned) using the desired optimisation algorithm. The optimisation
algorithm trains the proposed estimator by using one of three loss functions, namely, cross
entropy function for kth mutually exclusive classes (crossentropyex), mean absolute error
(MAE), and sum of squared errors (SSE). The loss function estimates the loss between
the expected and actual outcome. During the learning process, optimisation algorithms
try to minimise the available loss function to the desired error goal by optimising the
DLNN weights and biases iteratively at each training epoch. Figure 4 illustrates the training
processes of the proposed estimator. Selecting a loss function is one of the essential
and challenging tasks in deep learning. Also, investigating the efficiency of the training
process using different optimization algorithms such as Adaptive Moment Estimation
(Adam), Root Mean Square Propagation (RMSProp), Stochastic Gradient Descent with
momentum (SGdm) (Dogo et al., 2018), and an adaptive learning rate method (Adadelta)
(Zeiler, 2012). The proposed estimator is trained using above-mentioned three different
loss functions and optimization algorithms to obtain the most optimal BiLSTM-based
estimator for wireless communication systems with low prior information (limited pilots)
for signal-noise environments.

DL BILSTM NN-BASED CSIE FOR 5G–OFDM WIRELESS
COMMUNICATION SYSTEMS
The standard OFDM wireless communication system and an offline DL of the proposed
CSIE are presented in the following subsections.
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Figure 3 Structure of the DL BiLSTMNN for the BiLSTM estimator.
Full-size DOI: 10.7717/peerjcs.682/fig-3

OFDM SYSTEM MODEL
In accordance with Essai Ali (2021) and Ye, Li & Juang (2018), Fig. 5 clearly illustrates
the structure of the traditional OFDM communication system. On the transmitter side,
a serial-to-parallel (S/P) converter is used to convert the transmitted symbols with pilot
signals into parallel data streams. Then, inverse discrete Fourier transform (IDFT) is
applied to convert the signal into the time domain. A cyclic prefix (CP) must be added to
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Figure 4 Offline training of the BiLSTM-NN-based CSI estimator.
Full-size DOI: 10.7717/peerjcs.682/fig-4
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Figure 5 Conventional OFDM system.
Full-size DOI: 10.7717/peerjcs.682/fig-5

alleviate the effects of inter-symbol interference. The length of the CP must be longer than
the maximum spreading delay of the channel.

The multipath channel of a sample space defined by complex random variables
{h(n)}N−1n=0 is considered. Then, the received signal can be evaluated as follows:

y (n)= x (n)⊕h(n)+w (n), (8)

where⊕ x(n) is the input signal,⊕ is circular convolution, w(n) is additive white Gaussian
noise (AWGN) and y(n) is the output signal.

The received signal in the frequency domain can be defined as

Y (k)=X (k)H (k)+W (k), (9)

where the discrete Fourier transformations (DFT) of x(n), h(n), y(n) and w(n) are X(k),
H (k), Y (k) and W (k), respectively. These discrete Fourier transformations are estimated
after removing CP.

The OFDM frame includes the pilot symbols of the 1st OFDM block and the transmitted
data of the next OFDM blocks. The channel can be considered stationary during a certain
frame, but it can change between different frames. The proposed DL BiLSTM NN-based
CSIE receives the arrived data at its input terminal and extracts the transmitted data at its
output terminal (Essai Ali, 2021; Ye, Li & Juang, 2018).

OFFLINE DL OF THE DL BILSTM NN-BASED CSIE
DLNN utilisation is the state-of-the-art approach in the field of wireless communication,
but DLNNs have high computational complexity and long training time. GPUs are
the most powerful tools used for training DLNNs (Sharma, Vinutha & Moharir, 2016).
Training should be done offline due to the long training time of the proposed CSIE and
the large number of BILSTM-NN’s parameters, such as biases and weights, that should be
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tuned during training. The trained CSIE is then used in online implementation to extract
the transmitted data (Ye, Li & Juang, 2018; Essai Ali, 2021).

In offline training, the learning dataset is randomly generated for one subcarrier. The
transmitting end sends OFDM frames to the receiving end through the adopted (simulated)
channel, where each frame consists of single OFDM pilot symbol and a single OFDM data
symbol. The received OFDM signal is extracted based on OFDM frames that are subjected
to different channel imperfections.

All classical estimators rely highly on tractable mathematical channel models, which are
assumed to be linear, stationary and follow Gaussian statistics. However, practical wireless
communication systems have other imperfections and unknown surrounding effects that
cannot be tackled well by accurate channel models; therefore, researchers have developed
various channel models that effectively characterise practical channel statistics. By using
these channel models, reliable and practical training datasets can be obtained by modelling
(Bogdanovich, Vostretsov & Electronics, 2009; Essai Ali, 2021; 2019).

In this study, the 3GPP TR38.901-5G channel model developed by (2019) is used to
simulate the behaviour of a practical wireless channel that can degrade the performance of
CSIEs and hence, the overall communication system’s performance.

The proposed estimator is trained via the algorithm, which updates the weights and
biases by minimising a specific loss function. Simply, a loss function is defined as the
difference between the estimator’s responses and the original transmitted data. The loss
function can be represented by several functions. MATLAB/neural network toolbox allows
the user to choose a loss function amongst its available list that contains crossentropyex,
MSE, sigmoid and softmax. In this study, another two custom loss functions (MAE and SSE)
are created. The performance of the proposed estimator when using three loss functions
(i.e.,MAE, crossentropyex and SSE) is investigated. The loss functions can be expressed as
follows:

crossentropyex =−
N∑
i=1

c∑
j=1

Xij (k)log(X̂ij(k)), (10)

MAE =

∑N
i=1
∑c

j=1

∣∣Xij (k)− X̂ij(k)
∣∣

N
, (11)

SSE =
N∑
i=1

c∑
j=1

(
Xij (k)− X̂ij(k)

)2
, (12)

where N is the sample number, c is the class number, Xij is the ith transmitted data sample
for the jth class and X̂ij X̂ij is the DL BiLSTM-based CSIE response for sample i ifor class j.

Figure 4 illustrates the offline training processes to obtain a learned CSIE based on
BiLSTM-NN.
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Table 1 BiLSTM- and LSTM-NN structure parameters and training process options.

Parameter Value

Input Size 256
BiLSTM Layer Size 30 hidden neurons
LSTM Layer Size 30 hidden neurons
FC Layer Size 4
Loss Functions Crossentropyex, MAE, SSE
Mini Batch Size 1000
Epochs Number 1000
Learning Algorithm Adam
Training Data Size 8000 - OFDM frame
Validation Data Size 2000 - OFDM frame
Test Data Size 10000 - OFDM frame

Table 2 OFDM system and channel parameters.

Parameter Value

Modulation Mode QPSK
Carrier Frequency 2.6 GHz
Paths Number 24
CP Length 16
Subcarrier Number 64
Pilot Number 64, 8 and 4

SIMULATION RESULTS
Studying the performance of the proposed, LS and MMSE estimators
by using different pilots and loss functions
Several simulation experiments are performed to evaluate the performance of the proposed
estimator. In terms of symbol error rate (SER) performance analysis, the SER performance
of the proposed estimator under various SNRs is comparedwith that of the LSTMNN-based
CSIE (Essai Ali, 2021), the well-known LS estimator and the MMSE estimator, which is an
optimal estimator but requires channel statistical information. A priori uncertainty of the
used channel model statistics is assumed and considered for all conducted experiments.

Moreover, the Adam optimisation algorithm is used to train the proposed estimator
whilst using different loss functions to obtain the most robust version of the proposed
CSIE. The proposed model is implemented in 2019b MATLAB/software.

Table 1 lists the parameters of BiLSTM-NN and LSTM-NN architectures and their
related training options. These parameters are identified by a trial-and-error approach.
Table 2 lists the parameters of the OFDM system model and the channel model.

The examined estimators’ performance is evaluated at different pilot numbers of 4, 8
and 64 as well as crossentropyex, MAE and SSE loss functions. The Adam optimisation
algorithm is used for all simulation experiments.
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Figure 6 SER comparison of LS, MMSE, BiLSTM and LSTM estimators using 64 pilots, the Adam
learning algorithm and crossentropyex, MAE and SSE loss functions.

Full-size DOI: 10.7717/peerjcs.682/fig-6

With a sufficiently large number of pilots (64) and the use of the crossentropyex loss
function, the proposed BiLSTMcrossentropyex estimator outperforms LSTMcrossentropyex, LS
and MMSE estimators over the entire SNR range, as shown in Fig. 6. At the use of the
MAE loss function, the BiLSTMMAE estimator outperforms the LS estimator over the SNR
range [0–18 dB], but LSTMMAE outperforms it over the SNR range [0–14 dB]. In addition,
the BiLSTMMAE and LSTMMAE estimators are at par with the MMSE estimator over the
SNR ranges [0–10 dB] and [0–4 dB], respectively. Beyond these SNR ranges, the MMSE
estimator outperforms BiLSTMMAE and LSTM MAE estimators. BiLSTMMAE outperforms
LSTMMAE starting from 0 dB to 20 dB.

At the use of the SSE loss function, Fig. 6 shows that the BiLSTMSSE and LSTMSSE

estimators achieve approximately the same performance as the MMSE estimator over a low
SNR range [0–6 dB]. MMSE outperforms the BiLSTMSSE and LSTMSSE estimators starting
from 8 dB, and the LS estimator outperforms BiLSTMSSE starting from 16 dB and LSTMSSE

starting from 14 dB. BiLSTMSSE outperforms LSTMSSE starting from 10 dB to 20 dB. LS
provides poor performance comparedwithMMSEbecause it does not use prior information
about channel statistics in the estimation process. MMSE exhibits superior performance,
especially with sufficient pilot numbers, because it uses second-order channel statistics.
Concisely, MMSE and the proposed BiLSTMcrossentropyex attain close SER performance with
respect to all SNRs. Furthermore, at low SNR (0–6 dB), BiLSTM(crossentropyex, MAE, and SSE),
LSTM(crossentropyex, MAE, and SSE) and MMSE attain approximately the same performance.

Figure 7 present the performance comparison of LS, MMSE, BiLSTM and
LSTM-based estimators using the Adam optimisation algorithm and the differ-
ent (crossentropyex, MAE and SSE) loss functions at 8 pilots. Figure 7 shows
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Figure 7 SER performance comparison of LS, MMSE, BiLSTM, and LSTM estimators using 8 pilots,
the Adam learning algorithm and crossentropyex, MAE and SSE loss functions.

Full-size DOI: 10.7717/peerjcs.682/fig-7

that the proposed BiLSTM(crossentropyex, or MAE or SSE) estimators outperform the
LSTM(crossentropyex, or MAE or SSE) estimators and the traditional estimators over the exam-
ined SNR range. At a low SNR (0–7 dB), the proposed BiLSTM(crossentropyex, or MAE or SSE)

estimators exhibit semi-identical performance. Furthermore, the proposed BiLSTMSSE

estimator trained by minimising the SSE loss function outperforms the BiLSTMcrossentropyex

estimator trained by minimising the crossentropyex loss function starting from 0 dB; also
it outperforms BiLSTMMAE, which is trained by minimising the MAE loss function starting
from 14 dB. Concisely at 8 pilots BiLSTMSSE estimator achieved the most minimum SER.

Figure 8 show the performance comparison of the LS, MMSE,
BiLSTM(crossentropyex, or MAE or SSE) and LSTM(crossentropyex, or MAE or SSE) estimators at four
pilots. Figure 8 shows the superiority of the proposed BiLSTM(crossentropyex, or MAE or SSE)

estimators in comparison with the traditional estimators, which have lost their
workability starting from 0 dB. It also shows the superiority of the proposed estimator
BiLSTM(MAE or SSE) over LSTM(MAE or SSE). LSTM(crossentropyex) exhibits a competitive
performance as BiLSTM(crossentropyex) starting from 0 dB to 12 dB, and LSTM(crossentropyex)

outperforms BiLSTM(crossentropyex) starting from 14 dB. At very low SNRs (0–3 dB), the
proposed BiLSTM(crossentropyex, or MAE or SSE) estimators have the same performance. The
proposed BiLSTMSSE estimator outperforms the BiLSTMcrossentropyex estimator starting
from 4 dB, and it exhibits an identical performance as the BiLSTMMAE estimator until 14
dB and outperforms it in the rest of the SNR examination range.

Figures 6–8 emphasise the robustness of the BiLSTM-based estimators against the
limited number of pilots, low SNR, and under the condition of a priori uncertainty of
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Figure 8 SER performance comparison of LS, MMSE, BiLSTM, and LSTM estimators using 4 pilots,
the Adam learning algorithm and crossentropyex, MAE and SSE loss functions.

Full-size DOI: 10.7717/peerjcs.682/fig-8

channel statistics. They demonstrate the importance of testing various loss functions in the
deep learning process to obtain the most optimal architecture of any proposed estimator.

Figure 9 indicates that the proposed BiLSTMcrossentropyex, BiLSTMSSE and BiLSTMSSE

estimators have close SER performance at 64, eight and four pilots, respectively.
The performance of BiLSTMSSE at eight pilots coincides with the performance of
BiLSTMcrossentropyex at 64 pilots. Therefore, using the proposed estimators with few pilots
is recommended for 5G OFDM wireless communication systems to attain a significant
improvement in their transmission data rate. Given that the proposed estimator adopts a
training data set-driven approach, it is robust to a priori uncertainty for channel statistics.

Loss curves
The quality of the DLNNs’ training process can be monitored efficiently by exploring the
training loss curves. These loss curves provide information on how the training process
goes, and the user can decide whether to let the training process continue or stop.

Figures 10–12 show the loss curves of the DLNN-based estimators (BiLSTM and
LSTM) at pilot numbers = 64, eight and four and with the three examined loss functions
(crossentropyex, MAE and SSE). The curves emphasise and verify the obtained results
in Figs. 6, 7, and 8. For example, the sub-curves in Fig. 10 for BiLSTMcrossentropyex and
LSTMcrossentropyex estimators emphasise their superiority over the other estimators. This
superiority can be seen clearly from Fig. 6. Moreover, the training loss curves in Figs. 11 and
12 emphasise the obtained SER performance in Figs. 7 and 8, respectively, of each examined
DLNN-based CSIE. For more details, good zooming, and analysis of the presented loss
curves, they can be downloaded from this link (shorturl.at/lqxGQ).
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Figure 9 SER performance comparison of the best DL BiLSTM-based CSIEs using various pilots and
loss functions.

Full-size DOI: 10.7717/peerjcs.682/fig-9

Figure 10 Loss curves comparison of BiLSTM- and LSTM- based estimators using 64 pilots, the Adam
learning algorithm and crossentropyex, MAE and SSE loss functions.

Full-size DOI: 10.7717/peerjcs.682/fig-10

Essai Ali and Taha (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.682 16/23

https://peerj.com
https://doi.org/10.7717/peerjcs.682/fig-9
https://doi.org/10.7717/peerjcs.682/fig-10
http://dx.doi.org/10.7717/peerj-cs.682


Figure 11 Loss curves comparison of BiLSTM- and LSTM-based estimators using eight pilots, the
Adam learning algorithm and crossentropyex, MAE and SSE loss functions.

Full-size DOI: 10.7717/peerjcs.682/fig-11

Figure 12 Loss curves comparison of BiLSTM- and LSTM-based estimators using four pilots, the
Adam learning algorithm and crossentropyex, MAE and SSE loss functions.

Full-size DOI: 10.7717/peerjcs.682/fig-12
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Table 3 Accuracy comparison of the examined estimators using 64 pilots.

64 pilots

BiLSTM LSTM MMSE LS

Crossentropyex 100 99.99 100 99.94
SSE 99.23 97.88 100 99.96
MAE 99.87 99.52 100 99.97

Table 4 Accuracy comparison of the examined estimators using eight pilots.

8 pilots

BiLSTM LSTM MMSE LS

Crossentropyex 99.84 99.53 91.34 91.62
SSE 100 99.95 91.60 91.49
MAE 100 99.94 91.53 91.50

Table 5 Accuracy comparison of the examined estimators using four pilots.

4 pilots

BiLSTM LSTM MMSE LS

Crossentropyex 98.61 97.94 0.24 0.02
SSE 100 99.28 0.24 0.09
MAE 99.97 99.05 0.26 0.04

Accuracy calculation
The accuracy of the proposed and other examined estimators is a measure of how the
estimators recover transmitted data correctly. Accuracy can be defined as the number
of correctly received symbols divided by the total number of transmitted symbols. The
proposed estimator is trained in different conditions as indicated in the previous subsection,
and we wish to investigate how well it performs in a new data set. Tables 3, 4 and 5 present
the obtained accuracies for all examined estimators under all simulation conditions.

As illustrated in Tables 3 to 5, the proposed BiLSTM-based estimator attains accuracies
from 98.61 to 100 under different pilots and loss functions. The other examined DL
LSTM-based estimator has accuracies from 97.88 to 99.99 under the same examination
conditions. The achieved accuracies indicate that the proposed estimator has robustly
learned and emphasises the obtained SER performance in Fig. 9. The obtained results of
MMSE and LS in Tables 1, 2 and 3 emphasise the presented SER performance in Figs. 6,
7 and 8, respectively, and show that as the pilot number decreases, the accuracy of the
conventional estimators dramatically decreases.

The proposed BiLSTM- and LSTM-based estimators rely on DLNN approaches, where
they can analyse huge data sets that may be collected from any plant, recognise the statistical
dependencies and characteristics, devise the relationships between features and generalise
the accrued knowledge for new data sets that they have not seen before. Thus, they are
applicable to any 5G and beyond communication system.
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Figure 13 Performance comparison of BiLSTM-based estimator using eight pilots, the RMSProp,
SGdm, and Adadelta optimisation algorithms and crossentropyex, MAE and SSE loss functions.

Full-size DOI: 10.7717/peerjcs.682/fig-13

Impact of using different optimization algorithms on the proposed
estmator performance
DL procedures benefit greatly from optimization methods. DNN training can be thought
of as an optimisation issue that aims to discover a global optimum by applying gradient
descent methods to obtain a robust training, and hence reliable prediction or classification
models. Choosing the best optimization method for a particular scientific topic is a difficult
task. Using the wrong optimization strategy during training can cause the DN to stay at
the local minimum, which results in no training progress (Dogo et al., 2018). As a result,
examination is required to evaluate the performance of various optimisers to get the
optimal CSIE.

This section provides performance comparison experiments using RMSProp, SGdm,
and Adadelta optimisation algorithms (Soydaner & Intelligence, 2020)for training the
proposed BiLSTM-based CSIE at using 8-pilots, as illustrated in Fig. 13. Table 6 arranges
the proposed BiLSTM CSIE estimators using different optimisation algorithms and loss
functions from the highest performance to the lowest and their related accuracies.

It is clear from Fig. 13 and Table 6 that the trained BiLSTM-based CSIE using Adadelta
optimisation algorithm and SSE loss function achieves the best SER performance and
provides the highest accuracy with 100%. On the other hand, the same estimator achieves
the lowest SER performance and provides accuracy with 97.46% using SGdm optimization
algorithm and SSE loss function. This, in turn, shows the importance of studying the
training process efficiency using different optimization algorithms in the case of using a
specific loss function.
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Table 6 Performance comparison of different optimisation algorithms and its related accuracies.

Order Optimisation algorithmLoss function Accuracy

First AdadeltaSSE 100%
Second Adadeltacrossentropyex 99.99%
Third AdadeltaMAE 99.98%
Fourth RMSPropcrossentropyex 99.90%
Fifth RMSPropMAE 99.84%
Sixth RMSPropSSE 99.74%
Seventh SGdmMAE 98.76%
Eighth SGdmcrossentropyex 98.53%
Ninth SGdmSSE 97.46%

CONCLUSIONS AND FUTURE WORK
The proposed DL-BiLSTM-based CSIE is an online pilot-assisted estimator. It is robust
against a limited number of pilots and exhibits superior performance compared with
conventional estimators; it is also robust under the conditions of a priori uncertainty
of communication channel statistics (non-Gaussian/stationary statistical channels) and
demonstrates superior performance compared with conventional estimators and DL LSTM
NN-based CSIEs.

Two customized classification layers using the loss functions (MAE and SSE) are
introduced. The proposed CSIE exhibits a consistent performance at large and small pilot
numbers and superior performance at low SNRs, especially at limited pilots, compared
with conventional estimators. It also achieves the highest accuracy amongst all examined
estimators at 64, eight, and four pilots for all the used loss functions.

The proposed BiLSTM- and LSTM-based estimators have high prediction accuracies of
98.61% to 100% and 97.88% to 99.99%, respectively, when using crossentropyex, MAE,
and SSE loss functions for 64, eight, and four pilots. The proposed BiLSTM using (Adam,
and crossentroyex), BiLSTM using (Adam, MAE, and SSE; and Adadelta, and SSE), and
BiLSTM using (Adam, and SSE), achieve the best SER performance and provide accuracies
with 100% at 64, eight, and four pilots respectively. The proposed estimator is promising
for 5G and beyond wireless communication systems.

For future work, authors suggest the following research plans:
1. Investigating the proposed estimator’s performance and accuracy by using different

cyclic prefix lengths and types.
2. Developing robust loss functions by using robust statistics estimators, such as Tukey,

Cauchy, Huber and Welsh.
3. Investigating the performance of CNN-, gated recurrent unit (GRU)- and simple

recurrent unit (SRU)-based CSIEs whilst using crossentropyex, MAE and SSE loss
functions and for 64, eight, and four pilots.
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