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ABSTRACT
Clawpack is a software package designed to solve nonlinear hyperbolic partial dif-
ferential equations using high-resolution finite volume methods based on Riemann
solvers and limiters. The package includes a number of variants aimed at different
applications and user communities. Clawpack has been actively developed as an open
source project for over 20 years. The latest major release, Clawpack 5, introduces a
number of new features and changes to the code base and a new development model
based on GitHub and Git submodules. This article provides a summary of the most
significant changes, the rationale behind some of these changes, and a description of
our current development model.

Subjects Distributed and Parallel Computing, Scientific Computing and Simulation
Keywords Partial differential equations, Finite volume methods, Parallel computing, Open source
software, Conservation laws, Balance laws

INTRODUCTION
The Clawpack software suite (Clawpack Development Team, 2015) is designed for the
solution of nonlinear conservation laws, balance laws, and other first-order hyperbolic
partial differential equations not necessarily in conservation form. The underlying solvers
are based on the wave propagation algorithms described by LeVeque in (LeVeque, 2002),
and are designed for logically Cartesian uniform or mapped grids or an adaptive hierarchy
of such grids. The original Clawpack was first released as a software package in 1994 and
since then has made major strides in both capability and interface. More recently a major
refactoring of the code and a move to GitHub for development has resulted in the release
of Clawpack 5.0 in January, 2014. Beyond enabling a distributed and better managed
development process, a number of user-facing improvements were made including a new
user interface and visualization tools, incorporation of high-order accurate algorithms,
parallelization through MPI and OpenMP, and other enhancements.
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1Details of these changes can be found at
http://depts.washington.edu/clawpack/
users-4.6/changes.html. Version 4.x used
svn version control and the freely available
software (under the BSD license) was
distributed via tarballs.

Because scientific software has become central to many advances made in science, engi-
neering, resource management, natural hazards modeling and other fields, it is increasingly
important to describe and document changes made to widely used packages. Such docu-
mentation efforts serve to orient new and existing users to the strategies taken by developers
of the software, place the software package in the context of other packages, document
major code changes, and provide a concrete, citable reference for users of the software.

With this in mind, the goals of this paper are to:

• Summarize the development history of Clawpack,
• Summarize some of the major changes made between the early Clawpack 4.x versions
and the most recent version, Clawpack 5.3,
• Summarize the development model we have adopted, for managing open source
scientific software projects with many contributors, and
• Identify how users can contribute to the Clawpack suite of tools.

This paper provides a brief history ofClawpack in ‘History ofClawpack’, a background
of themathematical concerns in ‘Hyperbolic problems,’ themodern development approach
now being used in ‘Development approach,’ the major feature additions in the Clawpack
5.x major release up until Version 5.3 in ‘Advances.’ Some concluding thoughts and future
plans for Clawpack are mentioned in ‘Conclusions.’

History of Clawpack
The first version of Clawpack was released by LeVeque (1994) and consisted of Fortran
code for solving problems on a single, uniform Cartesian grid in one or two space
dimensions, together with someMatlab (MathWorks, 2015) scripts for plotting solutions.
The wave-propagation method implemented in this code provided a general way to
apply recently developed high-resolution shock capturing methods to general hyperbolic
systems and required only that the user provide a ‘‘Riemann solver’’ to specify a new
hyperbolic problem. Collaboration with Berger (Berger & LeVeque, 1998) soon led to the
incorporation of adaptivemesh refinement (AMR) in two space dimensions, and work with
Langseth (Langseth & LeVeque, 2000; Langseth, 1996) led to three-dimensional versions
of the wave-propagation algorithm and the software, with three-dimensional AMR then
added by Berger.

Version 4.3 of Clawpack contained a number of other improvements to the code
and formed the basis for the examples presented in a textbook (LeVeque, 2002) published
in 2003. That text not only provided a complete description of the wave propagation
algorithm, developed by LeVeque, but also is notable in that the codes used to produce
virtually all of figures in the text were made available online (LeVeque, 2002).

In 2009, Clawpack Version 4.4 was released with a major change from Matlab to
Python as the recommended visualization tool, and the development of a Python user
interface for specifying the input data. Finally in January of 2013 the 4.x versions of
Clawpack ended with the release of 4.6.3. 1

Version 5 ofClawpack introduces both user-exposed features and a number of modern
approaches to code development, interfacing with other codes, and adding new capabilities.
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The move to git version control also allowed a more complete open source model. These
changes are the subject of the rest of this paper.

Hyperbolic problems
In one space dimension, the hyperbolic systems solved with Clawpack typically take the
form of conservation laws

qt (x,t )+ f (q(x,t ))x = 0 (1)

or non-conservative linear systems

qt (x,t )+A(x)q(x,t )x = 0, (2)

where subscripts denote partial derivatives and q(x,t ) is a vector with m≥ 1 components.
Here the components of q represent conserved quantities, while the function f represents
the flux (transport) of q. Equation (1) generalizes in a natural way to higher space
dimensions; see the examples below. The coefficient matrix A in (2) or the Jacobian
matrix f ′(q) in (1) is assumed to be diagonalizable with real eigenvalues for all relevant
values of q, x , and t . This condition guarantees that the system is hyperbolic, with solutions
that are wave-like. The eigenvectors of the system determine the relation between the
different components of the system, or waves, and the eigenvalues determine the speeds
at which these waves travel. The right hand side of these equations could be replaced by
a ‘‘source term’’ ψ(q,x,t ) to give a non-homogeneous equation that is sometimes called
a ‘‘balance law’’ rather than a conservation law. Spatially-varying flux functions f (q,x) in
(1) can also be handled using the f-wave approach (Bale et al., 2002).

Examples of equations solved by Clawpack include:

• Advection equation(s) for one or more tracers; in the simplest, one-dimensional case
we have:

qt + (u(x,t )q)x = 0.

The velocity field u(x,t ) is typically prescribed from the solution to another fluid flow
problem, such as wind. Typical applications include transport of heat, energy, pollution,
smoke, or another passively-advected quantity that does not influence the velocity field.
• The shallow water equations, describing the velocity (u,v) and surface height h of a
fluid whose depth is small relative to typical wavelengths.

ht + (hu)x+ (hv)y = 0 (3)

(hu)t +
(
hu2+

1
2
gh2

)
x
+ (huv)y =−gbx (4)

(hv)t +
(
hv2+

1
2
gh2

)
y
+ (huv)x =−gby . (5)

Here g is a constant related to the gravitational force and b(x,y) is the bathymetry, or
bottom surface height. Notice that the bathymetry enters the equations through a source
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term; additional terms could be added to model the effect of bottom friction. These
equations are used, for instance, to model inundation caused by tsunamis and dam
breaks, as well as to model atmospheric flows.
• The Euler equations of compressible, inviscid fluid dynamics, which consist of
conservation laws formass,momentum, and energy. Thewave speeds depend on the local
fluid velocity and the acoustic wave velocity (sound speed). Source terms can be added
to include the effect of gravity, viscosity or heat transfer. These systems have important
applications in aerodynamics, climate and weather modeling, and astrophysics.
• Elastic wave equations, used tomodel compressional and shear waves in solid materials.
Here even linear models can be complex due to varying material properties on multiple
scales that affect the wave speeds and eigenvectors.

Discontinuities (shockwaves) can arise in the solution of nonlinear hyperbolic equations,
causing difficulties for traditional numerical methods based on discretizing derivatives
directly. Modern shock capturing methods are often based on solutions to the Riemann
problem that consists of equations (1) or (2) together with piecewise constant initial data
with a single jump discontinuity. The solution to the Riemann problem is a similarity
solution (a function of x/t only), typically consisting of m waves (for a system of m
equations) propagating at constant speed. This is true even for nonlinear problems,
where the waves may be shocks or rarefaction waves (through which the solution varies
continuously in a self-similar manner).

The main theoretical and numerical difficulties of hyperbolic problems involve the
prescription of physically correct weak solutions and understanding the behavior of the
solution at discontinuities. The Riemann solver is an algorithm that encodes the specifics of
the hyperbolic system to be solved, and it is the only routine (other than problem-specific
setup such as initial conditions) that needs to be changed in order to apply the code to
different hyperbolic systems. In some cases, the Riemann solver may also be designed to
enforce physical properties like positivity (e.g., for the water depth in GeoClaw) or to
account for forces (like that of gravity) that may be balanced by flux terms.

Clawpack is based on Godunov-type finite volume methods in which the solution is
represented by cell averages. Riemann problems between the cell averages in neighboring
states are used as the fundamental building block of the algorithm. The wave-propagation
algorithm originally implemented in Clawpack (and still used in much of the code) is
based on using the waves resulting from each Riemann solution together with limiter
functions to achieve second-order accuracy where the solution is smooth together with
sharp resolution of discontinuities without spurious numerical oscillations (see LeVeque
(2002) for a detailed description of the algorithms). Higher-order WENO methods have
also been developed relying on the same Riemann solvers. These methods can be found in
PyClaw (see ‘PyClaw’), one of the packages in the larger Clawpack ecosystem.

Problem-specific boundary conditions must also be imposed, which are implemented by
a subroutine that sets the solution value in ghost cells exterior to the domain each time step.
The Clawpack software contains library routines that implement several sets of boundary
conditions that are commonly used, e.g., periodic boundary conditions, reflecting solid wall
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boundary conditions for problems such as acoustics, Euler, or shallow water equations,
and non-reflecting (absorbing) extrapolation boundary conditions. As with all Clawpack
library routines, the boundary condition routine can be copied and modified by the user
to implement other boundary conditions needed for a particular application.

In two or three space dimensions, the wave-propagation methods are extended using
either dimensional splitting, so that only one-dimensional Riemann solvers are needed,
or by a multi-dimensional algorithm based on transverse Riemann solvers introduced in
(LeVeque, 1997). Both approaches are supported in Clawpack. A variety of Riemann
solvers have been developed for Clawpack, many of which are collected in the riemann
repository, see ‘Riemann: a community-driven collection of approximate riemann solvers.’

Adaptive mesh refinement (AMR) is essential for many problems and has been available
in two space dimensions since 1995, when Marsha Berger joined the project team and her
AMR code for the Euler equations of compressible flow was generalized to fit into the
software which became AMRClaw (Berger & LeVeque, 1998), another package included
in the Clawpack ecosystem. AMRClaw was carried over to three space dimensions using
the unsplit algorithms introduced in (Langseth & LeVeque, 2000). Starting in Version 5.3.0,
dimensional splitting is also supported in AMRClaw, which can be particularly useful
in three space dimensions where the unsplit algorithms are much more expensive. Other
recent improvements to AMRClaw are discussed in ‘AMRClaw.’

There are several other open source software projects that provide adaptive mesh
refinement for hyperbolic PDEs. The interested reader may want to investigate AM-
ROC (Deiterding, 2011), BoxLib (https://ccse.lbl.gov/BoxLib/index.html), Chombo (Adams
et al., 2014), Gerris (Popinet, 2001), OpenFOAM (OpenFOAM Foundation, 2016), or
SAMRAI (Anderson et al., 2013), for example.

DEVELOPMENT APPROACH
Clawpack’s development model is driven by the needs of its developer community. The
Clawpack project consists of several interdependent projects: core solver functionality,
a visualization suite, a general adaptive mesh refinement code, a specialized geophysical
flow code, and a massively parallel Python framework. Changes to the core solvers and
visualization suite have a downstream effect on the other codes, and the developers largely
work in an independent, asynchronous manner across continents and time zones.

The core Clawpack software repositories are:

• clawpack–responsible for installation and coordination of other repositories,
• riemann–Riemann solvers used by all the other projects,
• visclaw–a visualization suite used by all the other projects,
• clawutil–utility functions used by most other projects,
• classic–the original single grid methods in 1, 2, and 3 space dimensions,
• amrclaw–the general adaptive mesh refinement framework in 2 and 3 dimensions,
• geoclaw–solvers for depth-averaged geophysical flows which employs the framework
in amrclaw, and
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• pyclaw–a Python implementation and interface to theClawpack algorithms including
high-order methods and massively parallel capabilities.

A release of Clawpack downloaded by users contains all of the above. The repositories
riemann, visclaw, and clawutil are sometimes referred to as upstream projects, since
their changes affect all the remaining projects in the above list, commonly referred to as
downstream projects. There are some variations on this, for instanceAMRClaw is upstream
of GeoClaw, which uses many of the algorithms and software base from AMRClaw. To
coordinate this the clawpack repository points to the most recent known-compatible
version of each repository.

Beyond the major core code repositories, additional repositories contain documentation
and extended examples for using the packages:

• doc–the primary documentation source files. These files are written in the markup
language reStructured Text (http://www.sphinx-doc.org/en/stable/rest.html), and are
then converted to html files using Sphinx (http://sphinx-doc.org). Other documentation
such as drafts of this paper are also found in this repository.
• clawpack.github.com–the html files created by Sphinx in the doc repository are
pushed to this repository, and are then automatically served on the web. These appear at
http://www.clawpack.org, which is configured to point to http://clawpack.github.com.
The name of this repository follows GitHub convention for use with GitHub Pages
(https://pages.github.com/).
• apps–applications contributed by developers and users that go beyond the introductory
examples included in the core repositories.

The Clawpack 4.x code is also available in the repository clawpack-4.x but is no
longer under development.

Version control
The Clawpack team uses the Git distributed version control system to coordinate
development of each major project. The repositories are publicly coordinated under
the Clawpack organization on GitHub (https://github.com/clawpack) with the top-level
clawpack super-repository responsible for hosting build and installation tools, as well as
providing a synchronization point for the other repositories. The remaining ‘‘core Claw-
pack repositories’’ listed above are subrepositories of the main clawpack organization.

GitHub itself is a free provider of public Git repositories. In addition to repository
hosting, the Clawpack team uses GitHub for issue tracking, code review, automated
continuous integration via Travis CI (https://travis-ci.org/), and test coverage tracking via
Coveralls (http://coveralls.io) for the Python-based modules. The issue tracker on GitHub
supports cross-repository references, simplifying communication between Clawpack
developer sub-teams. The Travis CI service, which provides free continuous integration
for publicly developed repositories on GitHub, runs Clawpack’s test suites through
nose (https://nose.readthedocs.org) on proposed changes to the code base, and through a
connection to the Coveralls service, reports on any test failures as well as changes to test
coverage.

Mandli et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.68 6/27

https://peerj.com
http://www.sphinx-doc.org/en/stable/rest.html
http://sphinx-doc.org
http://www.clawpack.org
http://clawpack.github.com
https://pages.github.com/
https://github.com/clawpack
https://travis-ci.org/
http://coveralls.io
https://nose.readthedocs.org
http://dx.doi.org/10.7717/peerj-cs.68


Submodules
The clawpack ‘‘super-repository’’ serves two purposes. First, it contains installation utilities
for each of the sub-projects. Second, it serves as a synchronization point for the project
repositories. The remainder of this section provides more details on how Git submodules
enable this synchronization.

Whenever possible, teams of software developers coordinate their development in a
single unified repository. In situations where this isn’t possible, one option provided
by Git is the submodule, which allows a super-repository (in this case, clawpack), to
nest sub-repositories as directories, with the ability to capture changes to sub-repository
revisions as new revisions in the super-repository. Under the hood, the super-repository
maintains pointers to the location of each submodule and its current revision. The
submodule directories contain normal Git repositories, all of the coordination happens in
the super-repository.

Each of the other core Clawpack repositories listed above is a submodule of the
clawpack repository. Every commit that creates a new revision to the clawpack repository
describes top-level installation code as well as the revisions of each of the submodules. In
this way, Git submodules allow Clawpack team members to work asynchronously on
independent projects while reusing and maintaining common software infrastructure.

Typically the Clawpack developers advance the master development branch of the
top-level clawpack repository any time a major feature is added or a bug is fixed in one
of the upstream projects that might affect code in other repositories. By checking out a
particular revision in the clawpack repository and performing a git submodule update,
all repositories can be updated to versions that are intended to be consistent and functional.

In particular, when Travis CI runs the regression tests in any project repository
(performed automatically for any pull request), it starts by installing Clawpack on a
virtual machine and the current head of the clawpack/master branch indicates the
commit from each of the other projects that must be checked out before performing the
tests. If the clawpack repository has not been properly updated following changes in other
upstream projects, these tests may fail.

Any new release of Clawpack is a snapshot of one particular revision of clawpack and
the related revisions of all submodules. These particular revisions are also tagged for future
reference with consistent names, such as v5.3.1. (Git tags simply provide a descriptive
name for a particular revision rather than having to refer to a Git hash code.)

Contributing
Scientists who program are often discouraged from sharing code due to existing reward
mechanisms and the fear of being ‘‘scooped.’’ However, recent studies indicate that
scientific communities that openly share and develop code have an advantage because each
researcher can leverage the work of many others (Turk, 2013), and that paper citation rates
can be increased by sharing code (Vandewalle, 2012) and/or data (Piwowar, Day & Fridsma,
2007). Moreover, journals and funding agencies are increasingly requiring investigators to
share code used to obtain published results. One of the goals of the Clawpack project is
to facilitate code sharing by users, by providing an easy mechanism to refer to a specific
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2For a guide on creating a DOI to a
particular version of software see http://
guides.github.com/activities/citable-code/.

version of the Clawpack software and ensuring that past versions of the software remain
available on a stable and citable platform.

On the development side, we expect that the open source development model with
important discussions conducted in public will lead to further growth of the developer
community and additional contributions from users. Over the past twenty years, many
users have written code extending Clawpack with new Riemann solvers, algorithms, or
domain-specific problem tools. Unfortunately, much of this code did not make it back into
the core software for others to use. Many of the development changes in Clawpack 5.x
were done to encourage contributions from a broader community. We have begun to see
an increase in contributions from outside the developers’ groups, and hope to encourage
more of this in the future.

The primary development model is typical for GitHub projects: a contributor forks the
repository on GitHub, then develops improvements in a branch that is pushed to her own
fork. She issues a ‘‘pull request’’ (PR) when the branch is ready to be merged into the main
repository. Increasingly, contributors are also using PRs as a way to conveniently post
preliminary or prototype code for discussion prior to further development, often marked
WIP for ‘‘work in progress’’ to signal that it is not ready to merge.

After a PR is issued, other developers, including one or more of the maintainers for
the corresponding project, review the code. The Travis CI server also automatically runs
the tests on the proposed new code. The test results are visible on the GitHub page for
the PR. Usually there is some iteration as developers suggest improvements or discuss
implementation choices in the code. Once the tests are passing and it is agreed that the
code is acceptable, a maintainer merges it.

An additional benefit of using the GitHub platform is that any version of the code is
accessible either through the command line git interface, through the GitHub website, or
a number of available applications on all widely used platforms. More important however
is the ability to tag a particular version of a repository with a digital object identifier (DOI)
via GitHub and Zonodo.2 The combination of these abilities provides the capability for
Clawpack to not only be accessible at any version but also allows for the citability of
versions of the code used for particular results within the scientific literature.

Releases
Although Clawpack is continuously developed, it is convenient for users to be able to
install stable versions of the software. The Clawpack developers provide these releases
through two distribution channels: GitHub and the Python Package Index (PyPI). Full
source releases are available on GitHub. Alternatively, the PyClaw subproject and its
dependencies can be installed automatically using a PyPI client such as pip.

Clawpack does not follow a calendar release cycle. Instead, releases emerge when the
developer community feels enough changes have accumulated since the last release to
justify the cost of switching to a new release. For the most part, Clawpack releases are
versioned using an M .m.p triplet, representing the major (M), minor (m), and patch
(p) versions respectively. In the broader software engineering community, this is often
referred to as semantic versioning. Small changes that fix bugs and cosmetic issues result
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in increments to the patch-level. Backwards-compatible changes result in an increase to
the minor version. The introduction of backwards-incompatible changes require that
the major version be incremented. In addition, the implementation of significant new
algorithms or capability will also justify the increment of major release number, and is
often an impetus for providing another release to the public. In practice, the Clawpack
software has frequently included changes in minor version releases that were not entirely
backwards compatible, but these have been relatively minor and documented in the release
notes. Major version numbers have changed infrequently and related to major refactoring
of the code as in going from 4.x to 5.0.

Staring with Version 5.3.1, the tarfiles for Clawpack releases will also be archived on
Zenodo (https://zenodo.org), a data repository hosted at CERN that issues DOIs so that
the software version can be cited with a permanent link (Clawpack Development Team,
2015) that does not depend on the long-term existence of GitHub.

Dependencies
Running any part of Clawpack requires a Python interpreter and the common Python
packages numpy (Jones et al., 2001), f2py (Peterson, 2009), matplotlib (Hunter, 2007), as
well as (except for the pure-Python 1D code) GNU make and a Fortran compiler. Other
dependencies are optional, depending on which parts of Clawpack are to be used:

• IPython/Jupyter if using the notebook interfaces (Pérez & Granger, 2007).
• PETSc (Balay et al., 2010), if using distributed parallelism in PyClaw.
• OpenMP, if using shared-memory parallelism in AMRClaw or GeoClaw.
• MATLAB, if using the legacy visualization tools.

ADVANCES
This section describes the major changes in each of the code repositories in moving from
Clawpack 4.x to the most recent version 5.3. A number of the repositories have seen only
minor changes as the bulk of the development is focused on current research interests.
There are a number ofminor changes not listed here and the interested reader is encouraged
to refer to the change logs (http://www.clawpack.org/changes.html) and the individual
Clawpack Git repositories for a more complete list.

Global Changes
Substantial redesign of the Clawpack code base was performed in the move from
Clawpack 4.x to 5.x. Major changes that affected all aspects of the code include:

• The interface to the Clawpack Riemann solvers was changed so that one set
of solvers can be used for all versions of the code (including PyClaw via f2py

(http://docs.scipy.org/doc/numpy-dev/f2py)). Rather than appearing in scattered
example directories, these Riemann solvers have all been collected into the new riemann

repository. Modifications to the calling sequences were made to accommodate this
increased generality.
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• Calling sequences for a number of other Fortran subroutines were also modified based
on experiences with the Clawpack 4.x code. These can also be used as a stand-alone
product for those who only want the Riemann solvers.
• Python front-endswere redesigned tomore easily specify run-time options for the solver
and visualization. The Fortran variants (ClassicClaw, AMRClaw, and GeoClaw) all
use a Python script to facilitate setting input variables. These scripts create text files with a
rigidly specified format that are then read in when the Fortran code is run. The interface
now allows updates to the input parameters while maintaining backwards compatibility.
• The indices of the primary conserved quantities were reordered. In Clawpack 4.x,
the mth component of a system of equations in grid cell (i,j) (in two dimensions, for
example), was stored in q(i,j,m). In order to improve cache usage and to more easily
interface with PETSc (Balay et al., 2010), a global change was made to the ordering so
that the component number comes first; i.e., q(m,i,j). A seemingly minor change like
this affects a huge number of lines in the code and cannot easily be automated. The use
of version control and regression tests was crucial in the successful completion of the
project.

Riemann: a community-driven collection of approximate riemann
solvers
The methods implemented in Clawpack, and all modern Godunov-type methods
for hyperbolic PDEs, are based on the solution of Riemann problems as discussed in
‘Hyperbolic Problems.’ Whereas most existing codes for hyperbolic PDEs use Riemann
solvers to compute fluxes, Clawpack Riemann solvers instead compute the waves (or
discontinuities) that make up the Riemann solution. In the unsplit algorithm, Clawpack
also makes use of transverse Riemann solvers, responsible for computing transport between
cells that are only corner (in 2d) or edge (in 3d) adjacent.

For nonlinear systems, the exact solution of the Riemann problem is computationally
costly and may involve both discontinuities (shocks and contact waves) and rarefactions.
It is almost always preferable to employ inexact Riemann solvers that approximate the
solution using discontinuities only, with an appropriate entropy condition. The solvers
available in Clawpack are all approximate solvers, although one could easily implement
their own exact solver and make it available in the format needed by Clawpack routines.

A common feature in all packages in theClawpack suite is the use of a standard interface
for Fortran Riemann solver routines. This ensures that new solvers or solver improvements
developed for one package can immediately be used by all packages. To further facilitate
this sharing and to avoid duplication, Riemann solvers are (with rare exceptions) not
maintained under the other packages but are collected in a single repository named
riemann. Users who develop new solvers for Clawpack are encouraged to submit them
to the Riemann repository.

In the Fortran-based packages (Classic, AMRClaw, and GeoClaw) the Riemann solver
is selected at compile-time by modifying a problem-specific Makefile. In PyClaw, the
Riemann solver to be used is selected at run-time. This is made possible by compiling all
of the Riemann solvers (when PyClaw is installed) and generating Python wrappers with
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Figure 1 An illustration showing grid cells on levels one and two, and only grid outlines on levels three
and four.

f2py. For PyClaw, riemann also provides metadata (such as the number of equations, the
number of waves, and the names of the conserved quantities) for each solver so that setup
is made more transparent.

Classic
The classic repository contains code implementing the wave propagation algorithm on a
single uniform grid, in much the same form as the original Clawpack 1.0 version of 1994
but with various enhancements added through the years. Following the introduction of
Clawpack 4.4 the three-dimensional routines were left out of the Python user interfaces
and plotting routines. These have been reintroduced in Clawpack 5. Additionally
the OpenMP shared-memory parallelism capabilities have been extended to the three-
dimensional code.

AMRClaw
Fortran code in the AMRClaw repository performs block-structured adaptive mesh
refinement (Berger & Oliger, 1984; Berger & Colella, 1989) for both Clawpack and
GeoClaw applications. The algorithms implemented in AMRClaw are discussed in
detail in (Berger & LeVeque, 1998; LeVeque, George & Berger, 2011), but a short description
is given here to set the stage for a description of recent changes. This type of refinement
solves the PDE on a hierarchy of logically rectangular grids. One (or more) level 1 grids
comprise the entire domain, while grids at finer level are created and destroyed (as opposed
to moving these grids) to follow important features in the solution (see Fig. 1).

AMRClaw includes the functionality for:

• Coordinating the flagging of points where refinement is needed, with a variety of
criteria possible for flagging cells that need refinement from each level to the next finer
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level (including Richardson extrapolation, gradient testing, or user-specified criteria; see
http://www.clawpack.org/flag.html),
• Organizing the flagged points into efficient grid patches at the next finer level, using
the algorithm of (Berger & Rigoutsos, 1991),
• Interpolating the solution to newly created fine grids and initializing auxiliary data
(topography, wind velocity, metric data and so on) on these grids,
• Averaging fine grid solutions to coarser grids,
• Orchestrating the adaptive time stepping (i.e., sub-cycling in time),
• Interpolating coarse grid solution to fine grid ghost cells, and
• Maintaining conservation at patch boundaries between resolution levels.

AMRClaw now allows users to specify ‘‘regions’’ in space–time [x1,x2]×[y1,y2]×[t1,t2]
in which refinement is forced to be at least at some level L1 and is allowed to be at most
L2. This can be useful for constraining refinement, e.g., allowing or ensuring resolution
of only a small coastal region in a global tsunami simulation. Previously the user could
enforce such conditions by writing a custom flagging routine, but now this is handled in
a general manner so that the parameters above can all be specified in the Python problem
specification. Multiple regions can be specified, and a simple rule is used to determine the
constraints at a grid cell that lies in multiple regions.

Auxiliary arrays are often used in Clawpack to store data that describes the problem
and the routine. The routine setauxmust then be provided by the user to set these values
each time a new grid patch is created. For some applications, computing these values can
be time-consuming. In Clawpack 5.2, this code was improved to allow reuse of values
from previous patches at the same level where possible at each regridding time. This is
backward compatible, since no harm is done if previously written routines are used that
still compute and overwrite instead of checking a mask.

In Clawpack 5.3 the capability to specify spatially varying boundary conditions was
added. For a single grid, it is a simple matter to compute the location of the ghost cells
that extend outside the computational domain and set them appropriately. With AMR
however, the boundary condition routine can be called for a grid located anywhere in
the domain, and may contain fewer or larger numbers of ghost cells. For this reason, the
boundary condition routines do not assume a fixed number of ghost cells.

Anisotropic refinement is allowed in both two and three dimensions. This means that
the spatial and temporal refinement ratios can be specified independently from one another
(as long as the temporal refinement satisfies the CFL condition). In addition, capabilities
have been added to automatically select the refinement ratio in time on each level based on
the CFL condition. This has only been implemented in GeoClaw where the wave speed in
the shallow water equations depends on the local depth. The finest grids are often located
only in shallow coastal regions, so a large refinement ratio in space does not lead to a large
refinement ratio in time.

AMRClaw has been parallelized using OpenMP directives. The main paradigm in
structured AMR is an outer loop over levels of refinement, and an inner loop over all
grids at that level, where the same operation is performed on each grid (i.e., taking a time
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Figure 2 AMRClaw example demonstrating a shock-bubble interaction in the Euler equations of
compressible gas-dynamics at two times, illustrating the need for adaptive refinement to capture local-
ized behavior. There are two 20× 10× 10 grids at level 1. They are refined where needed by factors of 4
and then 2 in this 3-level run.

step, finding ghost cells, conservation updates, etc.). This inner loop is parallelized using
a parallel for loop construct one thread is assigned to operate on one grid. Dynamic
scheduling is used with a chunk size of one. To help with load balancing, grids at each
level are sorted from largest to smallest, using the total number of cells in the grid as an
indicator of work. In addition the grids are limited to a maximum of 32 cells in each
dimension, otherwise they are bisected until this condition is met. Note that this approach
causes a memory bulge. Each thread must have its own scratch arrays to save the incoming
and outgoing waves and fluxes for future conservation fix-ups. The bulge is directly
proportional to the number of threads executing. For stack-based memory allocation per
thread, the use of the environment variable OMP_STACKSIZE to increase the limit may be
necessary.

Figure 2 shows two snapshots of the solution to a three-dimensional shock-bubble
interaction problem found in the Clawpack apps repository, illustrating localized
phenomena requiring adaptive refinement. In Fig. 3 we show scalability tests and some
timings for this example, when run on a 24 core Intel Xeon Haswell machine (E5-2670v3 at
2.3 GHz), using KMP_AFFINITY compact with one thread per core. For timing purposes,
the only modifications made to the input parameters was to turn off check-pointing and
graphics output. The plot on the left shows that most of the wall clock time is in the
integration routine (stepgrid), which closely tracks the total time. The second chunk of
time is in the regridding, which contains algorithms that are not completely scalable. Very
little time is in the filling of ghost cells, mostly from other patches but also includes those
at domain boundaries. The efficiency is above 80% until 24 cores. Note that there are only
two grids on level 1, and an average of 22.8 level 2 grids. Most of the work is on level 3
grids, where there are an average of 138.1 grids over all the level 3 timestep. At 24 cores,
there are on average 5.8 grids per core, and the grids are very different sizes.

The target architecture for AMRClaw andGeoClaw are multi-core machines. PyClaw
on the other hand scales to tens of thousands of cores using MPI via PETSc (Balay et al.,
2010) but is not adaptive.

Mandli et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.68 13/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.68


Figure 3 Scaling Results for AMRClaw. (A) is strong scaling results for the AMRClaw example shown
in Fig. 2. (B) is plot of efficiency based on total computational time.

GeoClaw
The GeoClaw branch of Clawpack was developed to solve the two-dimensional shallow
water equations over topography for modeling tsunami generation, propagation, and
inundation. The AMRClaw code formed the starting point but it was necessary to make
many modifications to support the requirements of this application, as described briefly
below. This code originated with the work of George (George, 2004; George, 2006; George,
2008) and was initially called TsunamiClaw. Later it became clear that many other
geophysical flow applications have similar requirements and the code was generalized as
GeoClaw.

One of the major issues is the treatment of wetting and drying of grid cells at the margins
of the flow. The handling of dry states in a Riemann solver is difficult to handle robustly,
and has gone through several iterations. GeoClaw must also be well-balanced in order to
preserve steady states, in particular the ‘‘ocean at rest.’’ To achieve this, the source terms in
the momentum equations arising from variations in topography are incorporated into the
Riemann solver rather than using a fractional step splitting approach. This is critical for
modeling waves that have very small amplitudes relative to the variations in the depth of
the ocean. See LeVeque (2010) for a general discussion of such methods and George (2006)
and George (2008) for details of the Riemann solver used in GeoClaw. Other features
of GeoClaw include the ability to solve the equations in latitude–longitude coordinates
on the surface of the sphere, and the incorporation of source terms modeling bottom
friction using a Manning formulation. More details about the code and tsunami modeling
applications can be found in (Berger et al., 2011; LeVeque, George & Berger, 2011). In 2011,
a significant effort took place to verify and validate GeoClaw against the US National
Tsunami Hazard Mitigation Program (NTHMP) benchmarks (González et al., 2011).
NTHMP approval of the code allows GeoClaw to be used in hazard mapping projects that
are funded by this program or other federal and state agencies, e.g., (González, LeVeque &
Adams, 2013; Gonzalez et al., 2014). One such project is illustrated in Fig. 4.
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Figure 4 Tsunami Simulation and Planning forWestport, WA.Gray’s Harbor showing Westport, WA on southern peninsula. (Map data c©2016
Google) (B) Simulation of a potential magnitude 9 Cascadia Subduction Zone event, 40 min after the earthquake. (C) Design for new Ocosta Ele-
mentary School in Westport, based in part on GeoClaw simulations (González, LeVeque & Adams, 2013). Image courtesy of TCF Architecture.

In addition to a variety of tsunami modeling applications, GeoClaw has been used to
solve dam break problems in steep terrain (George, 2011), storm surge problems (Mandli
& Dawson, 2014) (see Fig. 5 and Table 1), and submarine landslides (Kim, 2014). The code
also formed the basis for solving the multi-layer shallow water equations for storm surge
modeling (Mandli, 2011; Mandli, 2013), and is currently being extended further to handle
debris flow modeling in the packages D-Claw (Iverson & George, 2014; George & Iverson,
2014) (see Figs. 6 and 7).

Nearly one quarter of the files in the AMRClaw source library have to be modified
for GeoClaw. There are currently 113 files in the AMRClaw 2D library, of which 26 are
replaced by a GeoClaw-specific files of the same name in the GeoClaw 2D library. For
example, to preserve a flat sea surface when interpolating, it is necessary to interpolate the
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Figure 5 GeoClaw Storm Surge Example. (A) A snapshot of a GeoClaw storm surge simulation of
Hurricane Ike at landfall. (B) Tide gauge data computed from GeoClaw and adcirc along with observed
data at the same location.

Table 1 Computational effort and timings forGeoClaw and adcirc. FromMandli & Dawson (2014).

Package Threads Wall Time Core Time

ADCIRC 4,000 35 min 2,333 h
GeoClaw 4 2 h 8 h

Figure 6 Debris-Flow Examples. (A) Photograph of the 2010 Mt. Meager debris-flow deposit, from Allstadt (2013). (B) Simulated debris flow,
from D. George.

surface elevation (topography plus water depth) rather than simply interpolating the depth
component of the solution vector as would normally be done in AMRClaw. An additional
24 files in the GeoClaw shallow water equations library handle other complications
introduced by the need to model tsunamis and storm surge.

Mandli et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.68 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.68


Figure 7 Oso,WA Landslide Simulation.Observed (yellow line) and computed (blue) landslide at Oso,
WA in 2014 (Iverson et al., 2015).

Several other substantial improvements in the algorithms implemented in GeoClaw
have been made between versions 4.6 and 5.3.0, including:

• In depth-averaged flow, the wave speed and therefore the CFL condition depends on
the depth. As a result, flows in shallow water that have been refined spatially may not
need to be refined in time. This ‘‘variable-time-stepping’’ was easily added along with
the anisotropic capabilities that were added to AMRClaw.
• The ability to specify topography via a set of topo files that may cover overlapping
regions at different resolutions has been added. The finite volume method requires
cell averages of topography, computed by integrating a piecewise bilinear function
constructed from the input topo files over each grid cell. In Clawpack 5.1.0, this was
improved to allow an arbitrary number of nested topo grids. When adaptive mesh
refinement is used, regridding may take place every few time steps. Improvements were
made in 5.2.0 so that topography could be copied rather than always being recomputed
in regions where there is an existing old grid.
• The user can now provide multiple dtopo files that specify changes to the initial
topography at a series of times. This is used to specify sea-floor motion during a
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3Described in http://www.clawpack.org/
fgmax.html.

tsunamigenic earthquake, but can also be used to specify submarine landslide motion
or a failing dam, for example.
• A number of new Python modules has been developed to assist the user in working
with topo and dtopo files. These are documented in the Clawpack documentation and
several of them are illustrated with Jupyter notebooks found in the Clawpack Gallery.
• New capabilities were added in 5.0.0 tomonitor themaximumof various flow quantities
over a specified time range of a simulation. This capability is crucial formany applications
where the maximum flow depth at each point, maximum current velocities in a harbor,
or maximum momentum flux (a measure of the hydrodynamic force that would be
exerted by the flow on a structure) is desired. Arrival time of the first wave at each point
can also be monitored. Such capabilities were included in the 4.x version of the code, but
were more limited and did not always perform properly near the edges of refinement
patches. In Version 5.2 these routines were further improved and extended. The user can
specify a grid of points on which to monitor values, and the new code is more flexible in
allowing one-dimensional grids (e.g., a transect), two-dimensional rectangular grids, or
an arbitrary set of points.3

PyClaw
PyClaw is an object-oriented Python package that provides a convenient way to set up
problems and call the algorithms of Clawpack. It grew from what was initially a set of
data structures and file IO routines that are used by the other Clawpack codes and by
VisClaw. These routines were released in an early form in later 4.x versions of Clawpack.
Those releases also included a fully-functional implementation of the 1D classic algorithm
in pure Python. That implementation still exists in PyClaw and is useful for understanding
the algorithm.

The current release of PyClaw includes access to the classic algorithms as well as
the high-order algorithms introduced in SharpClaw (Ketcheson, Parsani & LeVeque,
2013) (i.e., WENO reconstruction and Runge–Kutta integrators) and can be used on
large distributed-memory parallel machines. For the latter capability, PyClaw relies on
PETSc (Balay et al., 2010). Lower-level code (whatever gets executed repeatedly and needs
to be fast) from the earlier Fortran Classic and SharpClaw codes is automatically wrapped
at install time using f2py.

Recent applications of PyClaw include studies of laser light trapping by moving
refractive index perturbations (San Roman Alerigi, 2015), instabilities of weakly nonlinear
detonation waves (Faria & Kasimov, 2015), and effective dispersion of nonlinear waves via
diffraction in periodic materials (Ketcheson & Quezada de Luna, 2015). Two of these are
depicted in Fig. 8.

Librarization and extensibility
Scientific software is easier to use, extend, and integrate with other tools when it is designed
as a library (Brown, Knepley & Smith, 2015). Clawpack has always been designed to be
extensible, but PyClaw takes this further in several ways. First, it is distributed via a
widely-used package management system, pip. Second, the default installation process
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Figure 8 PyClaw Example Simulations. (A) A two-dimensional detonation wave solution of the reac-
tive Euler equations, showing transverse shocks that arise from instabilities; see Faria & Kasimov (2015).
(B) Dispersion of waves in a layered medium with matched impedance and periodically-varying sound
speed; see Ketcheson & Quezada de Luna (2015).

(‘‘pip install clawpack’’) provides the user with a fully-compiled code and does not
require setting environment variables. Like other Clawpack packages, PyClaw provides
several ‘‘hooks’’ for users to plug in custom routines (for instance, to specify boundary
conditions). In PyClaw, these routines –including the Riemann solver itself –are selected at
run-time, rather than at compile-time. These routines can be written directly in Python, or
(if they are performance-critical) in a compiled language (like Fortran or C) and wrapped
with one of themany available tools. Problem setup (including things like initial conditions,
algorithm selection, and output specification) is also performed at run-time, which means
that researchers can bypass much of the slower code-compile-execute-post-process cycle.
It is intended that PyClaw be easily usable within other packages (without control of
main()).

Python geometry
PyClaw includes Python classes for describing collections of structured grids and data on
them. These classes are also used by the other codes and VisClaw, for post-processing.
A mesh in Clawpack always consists of a set of (possibly mapped) tensor-product grids
(interval, quadrilateral, or hexahedral), also referred to as patches. At present, PyClaw
solvers operate only on a single patch, but the geometry and grids already incorporate
multi-patch capabilities for visualization in AMRClaw and GeoClaw.

PyClaw solvers
PyClaw includes an interface to both the Classic solvers (already described above) and
those of SharpClaw (Ketcheson et al., 2012). SharpClaw uses a traditional method-of-
lines approach to achieve high-order resolution in space and time. Spatial operators are
discretized first, resulting in a system of ODEs that is then solved using Runge–Kutta or
linear multistep methods. The spatial derivatives are computed using a weighted essentially
non-oscillatory (WENO) reconstruction from cell averages, which suppresses spurious
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oscillations near discontinuities. The WENO routines in SharpClaw were generated by
PyWENO (http://github.com/memmett/PyWENO), which is a standalone package that
generates WENO routines.

The default time stepping routines in SharpClaw are strong stability preserving (SSP)
Runge–Kuttamethods of order two to four. Some of themethods use extra stages in order to
allowmore efficient time stepping with larger CFL numbers. Time stepping in SharpClaw
has recently been augmented to include linear multistep methods with variable step size.
These methods use a time step size selection that ensures the strong stability preserving
property, as described in Hadjimichael et al. (2016).

Parallelism
PyClaw includes a distributed parallel backend that uses PETSc through the Python
wrapper petsc4py. The parallel code uses the same low-level routineswithoutmodification.
In the high-level routines, only a few hundred lines of Python code deal explicitly with
parallel communication, in order to transfer ghost cell information between subdomains
and to find the global maximum CFL number in order to adapt the time step size. For
instance, the computation shown in the right part of Fig. 8 involved more than 120 million
degrees of freedom and was run on two racks of the Shaheen I BlueGene/P supercomputer.
The code has been demonstrated to scale with better than 90% efficiency in even larger
tests on tens of thousands of processors on both the Shaheen I (BlueGene/P) and Shaheen
II (Cray XC40) supercomputers at KAUST. A hybrid MPI/OpenMP version is already
available in a development branch and will be included in future releases.

VisClaw : visualizing Clawpack output
A practical way to visualize the results of simulations is essential to any software package
for solving PDEs. This is particularly true for simulations making use of adaptive mesh
refinement, since most available visualization packages do not have tools that conveniently
visualize hierarchical AMR data. VisClaw provides support for all of the main Clawpack
submodules, including ClassicClaw, AMRClaw, PyClaw and GeoClaw.

From the first release in 1994, Clawpack has included tools for visualizing the output
of Clawpack and AMRClaw runs. Up until the release of version Clawpack 4.x, these
visualization tools consisted primarily of Matlab routines for creating one, two and
three dimensional plots including pseudo-color plots, Schlieren plots, contour plots and
scatter plots, including radially or spherically symmetric data. Built-in tools were also
available for handling one, two and three-dimensional mapped grids. Starting with version
4.x, however, it was recognized that a reliance on proprietary software for visualization
prevented a sizable potential user base from making use of the Clawpack software. The
one and two dimensional plotting routines were converted from Matlab to matplotlib,
a popular open source Python package for producing publication quality graphics for one
and two dimensional data (Hunter, 2007).

With the development of Clawpack Version 5 and above, Python graphics tools have
been collected into the VisClaw repository. The VisClaw tools extend the functionality
of the Version 4.x Python routines for creating one and two dimensional plots, and adds
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several new capabilities. Chief among these are the ability to generate output to webpages,
where a series of plots can be viewed individually or as an animated time sequence using
the Javascript package (https://github.com/jakevdp/JSAnimation) (which was motivated
by code in an earlier version of Clawpack). The VisClaw module Iplotclaw provides
interactive plotting capabilities from the Python or IPython prompt. Providingmuch of the
same interactive capabilities as the original Matlab routines, Iplotclaw allows the user
to step, interactively, through a time sequence of plots, jump from one frame to another,
or interactively explore data from the current time frame.

Tools for visualizing geo-spatial data produced by GeoClaw
The geo-spatial data generated by GeoClaw has particular visualization requirements.
Tsunami or storm surge simulations are most useful when the plots showing inundation or
flooding levels are overlaid onto background bathymetry or topography. Supplementary
one dimensional time series data (e.g., gauge data) numerically interpolated from
the simulation at fixed spatial locations are most useful when compared graphically
to observational data. Finally, to more thoroughly analyze the computational data,
simulation data should be made available in formats that can be easily exported to
GIS tools such as ArcGIS (http://www.arcgis.com) or the open source alternative QGIS
(http://www.qgis.org). For exploration of preliminary results or communicating results to
non-experts, Google Earth is also helpful.

The latest release ofClawpack includesmany specializedVisClaw routines for handling
the above issues with plotting geo-spatial data. Topography or bathymetry data that was
used in the simulation will be read by the graphing routines, and, using distinct colormaps,
both water and land can be viewed on the same plot. Additionally, gauge locations can
be added, along with contours of water and land. One dimensional gauge plots are also
created, according to user-customizable routines. In these gauge plotting routines, users
can easily include observational data to compare with GeoClaw simulation results.

In addition to HTML and Latex formats available for all Clawpack results, VisClaw
will now also produce KML and KMZ files suitable for visualizing results in Google Earth.
Using the same matplotlib graphics routines, VisClaw creates PNG files that can be used
as GroundOverlay features in a KML file. Other features, such as gauges, borders on AMR
grids, and user specified regions can also be shown on Google Earth. All KML and PNG files
are compressed into a single KMZ file that can be opened directly in Google Earth or made
available online. While VisClaw does not have any direct support for ArcGIS or QGIS,
the KML files created for Google Earth can be edited for export, along with associated PNG
files to these other GIS applications.

Matlab plotting routines
The Matlab plotting tools available in early versions of Clawpack are still included in
VisClaw.Whilemost of the one and two dimensional capabilities available originally in the
Matlab suite have been ported to Python and matplotlib, the originalMatlab routines
are still available in theMatlab suite of plotting tools. Other plotting capabilities, such as
two dimensional manifolds embedded in three dimensional space, or three dimensional
plots of fully three-dimensional data are only available in theMatlab routines in a way that
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interfaces directly with Clawpack. More advanced three-dimensional plotting capabilities
are planned for future releases of VisClaw.

CONCLUSIONS
Clawpack has evolved over the past 20 years from its genesis as a small and focused
software package that two core developers could manage without version control. It is
now an ecosystem of related projects that share a core philosophy and some common
code (notably Riemann solvers and visualization tools), but that are aimed at different
user communities and that are developed by overlapping but somewhat distinct groups
of developers scattered at many institutions. The adoption of better software engineering
practices, in particular the use of Git and GitHub as an open development platform and the
use of pull requests to discuss proposed changes, has been instrumental in facilitating the
development of many of the new capabilities summarized in this paper. These developer
facing improvements of course affect the user as well since better and faster development
cycles means better and faster implementation of features. The user facing features already
implemented in version 5 have opened up the use of Clawpack to a broader audience.

Future plans
The Clawpack development team continues to look forward to new ideas and efforts
that will allow great accessibility to the project as well as new capabilities that the core
development team has not thought of. To this end a number of the broad efforts that are
being considered for the next major release of Clawpack include

• An increased librarization effort with the Fortran based sub-packages,
• An extensible and more accessible interface to the Riemann solvers,
• An effort to allow PyClaw and the Clawpack Fortran packages to rely on more of the
same code-base,
• An increased emphasis on a larger development community,
• More support for new frameworks such as ForestClaw (Burstedde et al., 2014),
• Adjoint error estimation for flagging cells to increase the efficiency of the AMR
codes (Davis & LeVeque, 2015),
• A refactoring of the visualization tools in VisClaw, along with support for
additional backends, particularly for three-dimensional results (e.g., Mayavi

(http://docs.enthought.com/mayavi/mayavi/), VisIt (https://visit.llnl.gov), ParaView
(http://www.paraview.org/), or yt (http://yt-project.org/)).
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