Submitted 27 January 2021
Accepted 28 July 2021
Published 20 August 2021

Corresponding author
Kazuhisa Fujita,
kazu@spikingneuron.net

Academic editor
Nicolas Rougier

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.679

© Copyright
2021 Fujita

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Approximate spectral clustering using
both reference vectors and topology of the
network generated by growing neural gas

Kazuhisa Fujita'?

! Komatsu University, Komatsu, Ishikawa, Japan
2 University of Electro-Communications, Chofu, Tokyo, Japan

ABSTRACT

Spectral clustering (SC) is one of the most popular clustering methods and often
outperforms traditional clustering methods. SC uses the eigenvectors of a Laplacian
matrix calculated from a similarity matrix of a dataset. SC has serious drawbacks: the
significant increases in the time complexity derived from the computation of
eigenvectors and the memory space complexity to store the similarity matrix. To
address the issues, I develop a new approximate spectral clustering using the network
generated by growing neural gas (GNG), called ASC with GNG in this study. ASC
with GNG uses not only reference vectors for vector quantization but also the
topology of the network for extraction of the topological relationship between data
points in a dataset. ASC with GNG calculates the similarity matrix from both the
reference vectors and the topology of the network generated by GNG. Using the
network generated from a dataset by GNG, ASC with GNG achieves to reduce the
computational and space complexities and improve clustering quality. In this study,
I demonstrate that ASC with GNG effectively reduces the computational time.
Moreover, this study shows that ASC with GNG provides equal to or better clustering
performance than SC.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Software Engineering
Keywords Spectral clustering, Growing neural gas, Self-organizing map, Large-scale data

INTRODUCTION

A clustering method is a workhorse and becomes more important for data analysis, data
mining, image segmentation, and pattern recognition. The most famous clustering method
is k-means, but it cannot accurately partition a nonlinearly separable dataset. Spectral
clustering (SC) is one of the efficient clustering methods for a nonlinearly separable dataset
(Filippone et al., 2008) and can extract even complex structures such as half-moons data
(Bojchevski, Matkovic & Giinnemann, 2017). SC often outperforms traditional popular
clustering methods such as k-means (von Luxburg, 2007). However, SC has significant
drawbacks: the considerable increases in computational complexity and space complexity
with the number of data points. These drawbacks make it difficult to use SC for a large
dataset. Nowadays, the drawbacks are becoming more crucial as datasets become more
massive, more varied, and more multidimensional.

SC treats a dataset as a graph (network) consisting of nodes and weighted edges. The
nodes and the edges respectively represent the data points in the dataset and the

How to cite this article Fujita K. 2021. Approximate spectral clustering using both reference vectors and topology of the network generated
by growing neural gas. Peer] Comput. Sci. 7:¢679 DOI 10.7717/peerj-cs.679

http://dx.doi.org/10.7717/peerj-cs.679
mailto:kazu@�spikingneuron.�net
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.679
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

connections between the data points. The weights of the edges are the similarities between
data points. In SC, eigenvectors are calculated from the Laplacian matrix derived from
the similarity matrix of the network. The rows of the matrix that consist of the eigenvectors
are clustered using a traditional clustering method such as k-means. The drawbacks of SC
for a large dataset are the time complexity to compute the eigenvectors and the space
complexity to store the similarity matrix.

Researchers have tackled the high computational cost of SC. There are four approaches
to improve the computational cost. The first approach is parallel computing to reduce
computational time (Song et al., 2008; Chen et al., 2011; Jin et al., 2013). The second
approach is data size reduction by random sampling. For example, Sakai ¢ Imiya (2009)
make a similarity matrix small by random sampling its columns to reduce the
computational cost of eigendecomposition. The third approach is to use a low-rank matrix
that approximates the similarity matrix of the original dataset to avoid calculating the
whole similarity matrix (Fowlkes et al., 2004; Li et al., 2011). The last approach is to reduce
a data size using a vector quantization method such as k-means (Yan, Huang ¢ Jordan,
2009), selt-organizing map (SOM) (Duan, Guan ¢ Liu, 2012) and neural gas (NG)
(Moazzen & Tasdemir, 2016). This method is called approximate spectral clustering or
two-level approach. In approximate spectral clustering (ASC), data points are replaced
with fewer reference vectors. We can decrease the computational cost of SC by reducing
data size using a quantization method.

This study focuses on ASC using SOM and its alternatives such as NG and growing
neural gas (GNG). SOM and its alternatives are brain-inspired artificial neural networks
that represent data points in the network parameters. The network consists of units that
have weights regarded as reference vectors and edges connecting pairs of the units.

ASC uses fewer reference vectors instead of data points to reduce the size of the input to
SC. Furthermore, the reference vectors are regarded as local averages of data points, thus,
less sensitive to noise than the original data (Vesanto ¢ Alhoniemi, 2000). This may
improve the clustering performance of SC. The performance of SC highly depends on the
quality of the constructed similarity matrix from input data points (Chang ¢ Yeung, 2008;
Li et al., 2018; Park & Zhao, 2018; Zhang & You, 2011). In other words, to construct a
more robust similarity matrix is to improve the clustering performance of SC (Lu, Yan ¢
Lin, 2016). Because of the dependence on the quality of the similarity matrix, SC is highly
sensitive to noisy input data (Bojchevski, Matkovic & Giinnemann, 2017). Thus, the
lower sensitivity of reference vectors to noise may improve the clustering quality of SC.
In many studies, reference vectors of a network generated by SOM are used to reduce input
size, but the topology of the network is not exploited.

In this study, I develop a new ASC using a similarity matrix calculated from both the
reference vectors and the topology of the network generated by GNG, called ASC with
GNG. The key point is to regard the network generated by GNG as a similarity graph and
calculate the similarity matrix from not only the reference vectors but also the topology of
the network that reflects the topology of input. I employ GNG to generate a network
because the network generated by GNG can represent important topological relationships
in a given dataset (Fritzke, 1994) and the better similarity matrix will lead to better

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 2/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

clustering performance in the ASC. The quantization by GNG reduces the computational
complexity and the space complexity of SC. Furthermore, the effective extraction of the
topology by GNG may improve clustering performance. This paper investigates the
computation time and the clustering performance of ASC with GNG. Moreover, I compare
ASC with GNG with ASC using a similarity matrix calculated from quantization results
generated by neural gas, Kohonen’s SOM, and k-means instead of GNG.

RELATED WORKS

The most well-known clustering method is k-means (MacQueen, 1967), which is one of the
top 10 most common algorithms used in data mining (Wu et al, 2007). k-means is
highly popular because it is simple to implement and yet effective in performance (Haykin,
2009). It groups data points so that the sum of Euclidean distances between the data points
and their centroids is small. It can accurately partition only linearly separable data.

Expectation-maximization algorithm (EM algorithm) is a popular tool for
simplifying difficult maximum likelihood problems (Hastie, Tibshirani ¢ Friedman, 2009).
EM algorithm can estimate the parameters of a statistical model and is also used for
clustering. When we use EM algorithm for clustering, we often assume that data points are
generated from a mixture of Gaussian distributions. However, EM algorithm cannot
precisely partition data points not generated from the assumed model. k-means is
described by slightly extending the mathematics of the EM algorithm to this hard
threshold case (Bottou & Bengio, 1994) and assumes a mixture of isotropic Gaussian
distributions with the same variances.

A major drawback to k-means is that it cannot partition nonlinearly separable clusters
in input space (Dhillon, Guan ¢ Kulis, 2004). There are two approaches for achieving
nonlinear separations using k-means. One is kernel k-means (Girolami, 2002) that
partitions the data points in a higher-dimensional feature space after the data points are
mapped to the feature space using the nonlinear function (Dhillon, Guan ¢ Kulis, 2004).
All the computation of kernel k-means can be done by the kernel function using the kernel
trick (Ning ¢» Hongyi, 2016). However, kernel k-means cannot accurately partition data
points if the kernel function is not suitable for the data points. The other is k-means using
other distances such as spherical k-means (sk-means) (Dhillon & Modha, 2001; Banerjee
et al., 2003, 2005) and cylindrical k-means (cyk-means) (Fujita, 2017). Sk-means uses
cosine distance because of assuming the data points generated from a mixture of von
Mises-Fisher distributions. Cyk-means uses the distance that combines cosine distance
and Euclidean distance because of assuming the data points generated from a mixture of
joint distributions of von Mises distribution and Gaussian distribution. However, k-means
using other distances cannot accurately partition data points if the distance is not
suitable for the data points.

Affinity propagation (Frey ¢» Dueck, 2007) is a clustering method using a similarity
matrix as in SC and is derived as an instance of the max-sum algorithm. Affinity
propagation simultaneously considers all data points as potential exemplars and
recursively transmits real-value messages along edges of the network until a good set of
exemplars is generated (Frey ¢» Dueck, 2007). Its advantage is that there is no need to

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 3/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

pre-specify the number of clusters and no assumption of a mixture of distributions. Its
time complexity is O(N°T) (Fujiwara, Irie & Kitahara, 2011; Khan, Amjad ¢ Kleinsteuber,
2018), where N and T are the number of data points and the number of iterations,
respectively. Space complexity is O(N?) because it stores a similarity matrix. For a large
dataset, these complexities are not ignored.

Spectral clustering (SC) is a popular modern clustering method based on
eigendecomposition of a Laplacian matrix calculated from a similarity matrix of a dataset
(Tasdemir, Yalcin ¢ Yildirim, 2015). SC does not assume a statistical distribution and
partitions a dataset using only a similarity matrix. SC displays high performance for
clustering nonlinear separable data (Chin, Mirzal ¢» Haron, 2015) and has been applied to
various fields such as image segmentation (Eichel et al., 2013), co-segmentation of 3D
shapes (Luo et al., 2013), video summarization (Cirne ¢ Pedrini, 2013), identification of
cancer types (Chin, Mirzal & Haron, 2015; Shi ¢» Xu, 2017), document retrieval (Szymariski
¢ Dziubich, 2017). In SC, a dataset is converted to a Laplacian matrix calculated from
the similarity matrix of the dataset. We obtain a clustering result by grouping the rows of the
matrix that consists of the eigenvectors of the Laplacian matrix. SC often outperforms a
traditional clustering method, but it requires enormous computational cost and large
memory space for a large dataset. Especially, its use is limited since it is often infeasible
due to the computational complexity of O(N°) (Izquierdo-Verdiguier et al,, 2015; Tasdemir,
20125 Tasdemir, Yalgin & Yildirim, 2015; Wang et al., 2013), where N is the number of
data points. The huge computational complexity of SC is mainly derived from the
eigendecomposition and constitutes the real bottleneck of SC for a large dataset (Izquierdo-
Verdiguier et al., 2015). The required memory space increases with O(N?) (Mall, Langone ¢
Suykens, 2013) because the similarity matrix is an N x N matrix.

Clustering a large dataset often becomes more challenging due to increasing
computational cost with the size of a dataset. One approach to reducing the computational
cost of clustering is two-level approach that partitions the quantization result of a dataset
(Vesanto & Alhoniemi, 2000). In two-level approach, first, data points are converted to
fewer reference vectors by a quantization method such as SOM and k-means (abstraction
level 1). Then the reference vectors are combined to form the actual clusters (abstraction
level 2). Each data point belongs to the same cluster as its nearest reference vector.

The two-level approach has the advantage of dealing with fewer reference vectors instead of
the data points as a whole, therefore reducing the computational cost (Brito da Silva ¢
Ferreira Costa, 2014). This approach does not limit a quantization method in abstraction
level 1 and a clustering method in abstraction level 2. There are many pairs of quantization
methods and clustering methods, for example, SOM and hierarchical clustering (Vesanto ¢
Alhoniemi, 20005 Tasdemir, Milenov ¢ Tapsall, 2011), GNG and hierarchical clustering
(Mitsyn ¢ Ososkov, 2011), and SOM and normalized cut (Yu et al., 2012). Especially, the
approach using SC in abstraction level 2 is called Approximate Spectral Clustering (ASC)
(Tasdemir, Yalgin ¢ Yildirim, 2015).

In two-level approach, there is the concern of underperformance of clustering by the
quantization because it uses fewer reference vectors instead of all the data points in a

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 4/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

dataset. However, a quantized dataset would be sufficient in many cases (Bartkowiak et al.,
2005). Furthermore, two-level approach using SOM also has the benefit of noise reduction
(Vesanto ¢ Alhoniemi, 2000).

APPROXIMATE SPECTRAL CLUSTERING WITH GROWING
NEURAL GAS

This paper proposes approximate spectral clustering with growing neural gas (ASC with
GNG). ASC with GNG partitions a dataset using a similarity matrix calculated from both
reference vectors and the topology of the network generated by GNG. ASC with GNG
consists of the two processes, which are abstraction level 1 and abstraction level 2, based on
two-level approach (Tasdemir, Yalcin ¢ Yildirim, 2015; Vesanto & Alhoniemi, 2000).

In abstraction level 1, a dataset is converted into the network by GNG. The similarity
matrix is calculated from the network, considering the reference vectors and the topology
of the network. In abstraction level 2, the reference vectors are merged by SC using the
similarity matrix. The data points in the dataset are assigned to the clusters to which the
reference vectors nearest to the data points belong.

ASC with GNG can partition a nonlinearly separable dataset. After abstraction level 2,
the data points are assigned to the nearest reference vectors based on Euclidean distance.
Thus, ASC with GNG divides the space into regions consisting of Voronoi polygons
around reference vectors. In ASC with GNG, SC merges the reference vectors to k clusters.
Simultaneously, the Voronoi polygons corresponding to the reference vectors are also
merged to k regions. ASC with GNG provides the complex decision regions consisting of
Voronoi polygons and achieves nonlinear separation.

At first, ASC with GNG appears to be the same as other ASCs because many ASCs using
a quantization method such as k-means, SOM and its alternatives already exist. For
example, Duan, Guan ¢ Liu (2012) have proposed ASC using SOM. In their method, data
points are quantized by SOM, and SC partitions the reference vectors. The similarity
measure of their method is defined by the Euclidean distance divided by local variance
reflecting the distribution of data points around a reference vector. The interesting point of
their method is using a local variance. Moazzen & Tasdemir (2016) have proposed ASC
using NG. Similarly, in their method, the similarity matrix used by SC is calculated
from reference vectors. It is interesting that their method uses integrated similarity criteria
to improve accuracy. In ASC with GNG as well as the other ASCs, reference vectors are
partitioned by SC. However, ASC with GNG uses both reference vectors and topology
of the network generated by GNG, but the other ASCs use only reference vectors. Using
the topology will play an important role in improving clustering performance because
SC can be regarded as a type of partition problem for a network (Diao, Zhang ¢» Wang,
2015) and partitions the units of the network into disjoint subsets.

Algorithm
ASC with GNG consists of generating a network by GNG, partitioning reference vectors by
SC, and assigning data points into clusters. The algorithm for ASC with GNG is given in
Algorithm 1.

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 5/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 ASC with GNG.

Input: Data points X € R, the number of clusters k
Output: A partition of given data points into k clusters C,...,Cy
1: {Abstraction Levell}
Generate the network from the dataset X using GNG.
Calculate the similarity matrix A € R ** from the reference vectors and the topology of the network.
: {Abstraction Level 2}

Calculate the normalized Laplacian matrix Ly, by Eq. (2).

2

3

4

5

6: Calculate the k first eigenvectors uy,...,uy of Loy

7: Let U e R™ ¥ be the matrix containing the vectors uy,...,u; as columns.

8: Fori=1,.., M,lety; €Rbe the vector corresponding to the i-th row of U.
9: Assign ()i = 1,..m to clusters Cy,...,Ci by k-means.

10: {Assign data points to the clusters.}

11: Find the nearest unit to each data point.

12: Each data point is assigned to the cluster to which the nearest unit is assigned.

Let us consider a set of N data points, X = { x;, x,...,X,,,...,xXn}, where x,, € R? (Fig. 1A).
The data point n is denoted by x,,. In this study, each data point is previously normalized
by x, < %,/||Xmax||, where x,,,,, is the data point that has the maximum norm. For an
actual application, such normalization will not be required because we can use specific
parameters for the application.

GNG generates a network from data points (Fig. 1B). The generated network is not a
complete graph, and its topology reflects input space. The unit 7 in the network has the
reference vector w; € R”. The algorithm of GNG is denoted in Appendix.

M > M s calculated from the reference vectors and the

The similarity matrix A € R
topology of the generated network. M is the number of units in the network. If the unit

connects to the unit j, the element a;; of A is defined as follows:

2
[[wi — wi
202 ’

(1)

(Jl,‘j = €xp

where w; and w; are the reference vectors of i and j, respectively. Otherwise, a;; = 0.
Equation (1) is the Gaussian similarity function that is most widely used to obtain a
similarity matrix. The proposed method’s new point is to make a similarity matrix from
both the reference vectors and the network topology. The similarity matrix is sparse
because of using the network topology. However, the similarity matrix has information
about significant connections representing input space.

The reference vectors are merged to k clusters by SC as shown in Fig. 1C. The

normalized Laplacian matrix Leym € RM XM i calculated from A. Here, we define the
RM x M

diagonal matrix D € to calculate the Laplacian matrix. The element of the diagonal

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 6/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

A

Figure 1 Schematic image of ASC with GNG. (A) Data distribution. The dots denote the data points.
(B) Generated network. The open circles and the solid lines denote the units and the edges, respectively.
(C) Partition of the units using SC. The broken line denotes the connection cut by SC. SC merges the
units into two clusters: C1 and C2. In other words, SC removes the edges connecting the units that belong
to different clusters. Full-size K&l DOT: 10.7717/peerj-cs.679/fig-1

matrix is d; = Z]Ail aj. The Laplacian matrix is L = D — A. We derive the normalized

Laplacian matrix from the following equation:

Lym = D" '2LD7'/2, (2)

Here, we calculate the k first eigenvectors uy,...,u; of Leym. Let U € RM % be the matrix
containing the vector u,...,u; as columns. For i = 1,...,M, let y; € R* be the vector
corresponding to the i-th row of U. k-means assigns (y;); - 1,.._ to clusters Ci,...,Ci. Each
row vector corresponds with each reference vector one-to-one.

Each data point is assigned to the cluster to which the nearest reference vector belongs.
Finally, the data points are assigned to the clusters.

ASC with SOM and its alternatives

In this study, ASC with GNG is compared with ASCs with NG, SOM, k-means, and GNG
using no topology to investigate the difference in clustering performances depending on
the methods used to generate the network. ASCs with NG and SOM use NG and
Kohonen’s SOM to generate networks instead of GNG, respectively. The weights of the
network generated by NG and SOM are calculated using the Gaussian similarity function.
ASC with k-means uses centroids generated by k-means as units in the network. The
network is fully connected, and its weights are calculated using the Gaussian similarity
function. ASC with GNG using no topology uses only the reference vectors generated by
GNG. In ASC with GNG using no topology, the network is fully connected, and its weights
are calculated using the Gaussian similarity function. In this study, ASC with GNG is
also compared with SC. SC uses a fully-connected network, the Gaussian similarity
function, a normalized Laplacian matrix Lym=D" 121D = Y2 and k-means.

Complexity
The time complexity of SC is O(N?) (Izquierdo-Verdiguier et al., 2015; Tasdemir, Yalgin &
Yildirim, 2015; Wang et al., 2013), where N is the number of data points. The complexity
relies on the eigendecomposition of a Laplacian matrix. The eigendecomposition takes
O(N?) time.

The time complexity of ASCs with GNG is O(MT + M? + NM), where M and T are
respectively the number of units and the number of iterations. O(MT) is the time

Fujita (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.679 7/22

http://dx.doi.org/10.7717/peerj-cs.679/fig-1
http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

complexity of GNG because O(M) is required to find the best match unit of a presented
data point at every iteration. To decide the best match unit, we need to compute the
distance between every reference vector and a presented data point and find the minimum
distance. Thus, we calculate and compare M distances at every iteration. O(M) is the time
complexity of SC to partition the units. O(MN) is the time complexity to assign data
points to clusters. To assign data points to clusters, we determine the nearest reference
vector of every data point. Thus, we calculate M distances for each data point. For N > M,
O(MN) dominates the computational time of ASCs with GNG.

If we use a sort algorithm, such as quicksort, to simultaneously find the best match unit
and the second-best match unit every iteration, the time complexity of ASC with GNG
is O(T M log M + M + NM). In this case, GNG sorts the distances between all the
reference vectors and a presented data point to finds the best match and the second-best
match units at every iteration. The sort algorithm takes O(M log M).

The time complexity of ASC with NG is O(TM log M + M’ + NM). The complexity of
NG is O(TM log M). In NG, the distances between all the reference vectors and a presented
data point are calculated at every iteration. The calculation of the distances takes O(M).
NG sorts the distances to obtain the neighborhood ranking of the reference vectors at every
iteration. The sort of M distances takes O(M log M) when we use quicksort. NG updates
the weights of all the reference vectors at every iteration. NG takes O(M) to update the
weighs. Thus, the time complexity of NG is O(T(M + M log M + M)) = O(TM log M). For
N > M, O(MN) dominates the computational time of ASC with NG.

The time complexity of ASC with SOM is O(MT + M? + NM). O(MT) is the time
complexities of SOM because it requires finding the best match unit of a presented data
point and updating all the reference vectors at every iteration. For N > M, O(MN)
dominates the computational time of ASCs with SOM.

The time complexities of ASC with k-means is O(MNTmeans + M + NM), where
Tikmeans 18 the number of iterations in k-means. O(MNTypeans) is the time complexities of
k-means because the distances between M centroids and N data points are calculated at
every iteration. It is difficult to estimate Ty cans, but the convergence of k-means is fast
(Bottou & Bengio, 1994) and Tymeans Will be enough smaller than N. For N > M, O
(MNTymeans + NM) dominates the computational time of ASCs with k-means. In this case,
the computational time approximately linearly increases with N because Tymeans Will be
enough smaller than N.

The space complexity of SC is O(N?) (Mall, Langone ¢ Suykens, 2013) because the
memory space is required to store the N x N similarity matrix. The space complexity of
ASCs with GNG, NG, SOM, and k-means is O(N + M?). O(N) is the memory space to store
the data points. O(M?) is the memory space to store the similarity matrix of reference
vectors. For N > M, the space complexity of the ASCs is O(N). Thus, the space
complexities of the ASCs are much smaller than that of SC.

The time complexities and the space complexities of ASCs and SC are summarized in
Table 1.

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 8/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Time complexities and space complexities.

Method Time complexity Space complexity

ASC with GNG OMT + M® + NM) O(N + M?)

ASC with NG O(TM log M + M® + NM) O(N + M?)

ASC OMT + M® + NM) O(N + M?)

ASC with k-means O(MNTjeans + M> + NM) O(N + M?)

SC O(N?) O(N?)
Parameters

All the parameters of the methods, except for T, M,.x, M, and [, are found using grid
search to maximize the mean of the purity scores for the datasets used in “Clustering
Quality”. The parameters of ASC with GNG are T = 10°, A = 250, &, = 0.1, e, = 0.01,
Amax = 75, = 0.25, f = 0.99, 6 = 0.25. The parameters of ASC with NG are T'=10°, A; = 1.0,
Ar=0.01, &; = 0.5, & = 0.005, dpax; = 100, dpmays = 300, and 6 = 0.25. The Parameters of
ASC with SOM are T = 10°, Yo = 0.05, 69 = 1.0, and o = 0.5. The Parameter of ASC
with k-means is 6 = 0.1. The parameters of ASC with GNG no edge are T = 10, A = 350,
€, =0.05, &, = 0.01, ap. = 100, @ = 0.5, p = 0.999, 6 = 0.5. The Parameter of ASC with
k-means and SC is 6 = 0.1. The meanings of the parameters are shown in “Algorithm”
and Appendix.

RESULTS
This section describes computational time and clustering performances of ASCs with
GNG.

The programs used in the experiments were implemented using Python and its libraries.
The libraries are numpy for linear algebra computation, networkx for dealing a network,
and scikit-learn for loading datasets and using k-means.

Computational time

This subsection describes the computational time of ASCs with GNG, NG, SOM, and
k-means and SC. For the measurement of the computational time, the dataset has five
clusters and consists of 3-dimensional data points. This dataset is generated by datasets.
make_blobs, which is the function of scikit-learn. The dataset is called Blobs in this study.
In this experiment, I use the computer with two Xeon E5-2687W v4 CPUs and 64 GB of
RAM and cluster the dataset using only one thread to not process in parallel.

Figure 2A shows the relationship between the computational time and the number
of data points for 10* units. The computational time of ASC with k-means is shortest
under about 5 x 10° data points. The computational time of ASC with k-means linearly
increases from about 10* data points. ASCs with GNG, NG, and SOM show better
computational performance than ASC with k-means beyond about 10° data points. The
computational time of ASCs with GNG, NG, and SOM does not significantly change under
about 10° data points. However, the computational time of ASCs with GNG, NG, and
SOM linearly increases with the number of data points from about 10° data points.

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 9/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

103 80r
o 2 %)
o 0% @ 60f
N N
v 10'F (]
E —e— GNG E 40+
- —— NG)

100k SOM

—o— kmeans
1071k IR o

10° 10 10° 106 107 10° 100 200 300
num of data points num of units

Figure 2 Computational time of ASCs for clustering the synthetic dataset. (A) Relationship between
computational time and the number of data points. The number of units of all ASCs is 10%. (B) Rela-
tionship between computational time and the number of units. The number of the data points in the
dataset is 10°. GNG, NG, SOM, k-means, and SC in these figures represent the computational time of
ASCs with GNG, NG, SOM, and k-means and SC, respectively. The computational time is the mean of
10 runs with random initial values. Full-size K&l DOT: 10.7717/peerj-cs.679/fig-2

Under 10° data points, the computational time of ASCs with GNG, NG, and SOM will
mainly depend on the computational cost to generate a network because O(MT) and
O(TM log M) are more than O(M’) and O(MN). On the other hand, the linear increase of
the computational time of ASCs with GNG, NG, and SOM will be dominantly derived
from the computational cost to assign data points to units. The computational time of ASC
with SOM is shorter than that of ASCs with GNG and NG under about 10° data points
because SOM does not have the process to change the network topology. From about
107 data points, the computational time of ASC with SOM is not different from ASCs with
GNG and NG because the computational cost to assign data points to units is dominant.
Under 10° data points, the computational time of ASC with GNG is shorter than ASC
with NG. This difference occurs because the mean of growing M of ASC with GNG during
learning is less than M of ASC with NG. The computational time of SC is not shown
for more than 10* data points because the computational time of spectral clustering is too
long compared to the other methods. These results show that the ASCs outperform SC in
terms of computational time for a large dataset. However, the results also show that
ASC using topology is not effective for a small dataset.

Figure 2B shows the relationship between the computational time and the number of
units for 10° data points. In ASC with GNG, the number of units means the maximum
of the number M,,,,x. The computational time of all ASCs linearly increases with the
number of units. The computational time of the ASCs with GNG, NG, and SOM increases
more slowly than k-means because the complexity of k-means depends on not only the
number of units but also the number of data points.

Clustering quality

To investigate the clustering performances of the ASC with GNG, NG, and SOM, three

synthetic datasets and six real-world datasets are used. The synthetic datasets are Blobs,

Circles, and Moons generated by datasets.make_blobs, datasets.make_circles, and datasets.

Fujita (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.679 10/22

http://dx.doi.org/10.7717/peerj-cs.679/fig-2
http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Datasets.

Dataset k n d
Blobs 3 1,000 2
Circles 2 1,000 2
Moons 2 1,000 2
Iris 3 150 4
Wine 3 178 13
Spam 2 4,601 54
CNAE-9 9 1,080 856
Digits 10 1,797 8x8
MNIST 10 70,000 28 x 28
Note:

k, n, and d indicate the number of classes, data points and attributions, respectively.

make_moons that are functions of scikit-learn, respectively. Blobs are generated from
three isotropic Gaussian distributions. The standard deviation and the means of each
Gaussian are default values of the generating function. Blobs can be partition by a linear
separation method such as k-means. Circles consists of two concentric circles.
The noise and the scale parameters of the function generating Circles are set at 0.05 and
0.5, respectively. Moons includes two-moons shape distributed data points. The noise
parameter of the function generating Moons is 0.05. Circles and Moons are typical
synthetic datasets that can not be partitioned by a linear separation method. The real-
world data are Iris, Wine, Spam, CNAE-9, Digits, and MNIST (Lecun et al., 1998). Iris,
Wine, Spam, CNAE-9, and Digits are datasets found in the UCI Machine Learning
Repository. In this study, Iris, Wine, Digits, and MNIST are obtained using scikit-learn.
Iris and Wine are datasets frequently used to evaluate the performance of a clustering
method. Spam and CNAE-9 are word datasets. In this study, three attributions of Spam:
capital_run_length_average, capital_run_length_longest, and capital_run_length_total,
are not used. Digits and MNIST are handwritten digits datasets. Table 2 shows the
numbers of classes, data points, and attributions of the datasets.

To evaluate the clustering methods, we use the purity score. Purity is given by

Purity = 1/N Zle max; l:, where N is the number of data points in a dataset, k is the
number of clusters, and #; is the number of data points that belong to the class j in the
cluster i. When the purity score is 1, all data points belong to true clusters.

Table 3 shows the purities of ASCs with GNG, NG, SOM, k-means, and GNG using no
topology and SC. ASC with GNG shows the best accurate clustering results for five
datasets: Circles, Moons, Spam, CNAE-9, and Digits. For Blobs, ASC with GNG displays
the second-best performance, but the difference of purity between ASC with GNG, NG,
and GNG using no topology and SC is small. For MNIST, ASC with GNG shows the
second-best performance. ASC with NG also shows relatively high purities for Blobs,
Circles, Moons, and Digits. However, for Iris and Wine dataset, the clustering
performances of ASCs with GNG and NG are worse than the others. The lower
performance of ASCs with GNG and NG may be caused by too many units for the number

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 11/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Performances of clustering (purity).

Dataset GNG NG SOM k-means GNG using no topology SC
Blobs 0.9744 0.9632 0.4110 0.9690 0.9813 0.9671
Circles 1.0000 1.0000 0.5403 0.9997 1.0000 1.0000
Moons 0.9992 0.9884 0.5810 0.9328 0.9985 0.9933
Iris 0.5840 0.5648 0.5020 0.8473 0.8427 0.8533
Wine 0.4650 0.4649 0.4379 0.6656 0.6827 0.6742
Spam 0.7676 0.6063 0.6082 0.6095 0.7464 0.6070
CNAE-9 0.6711 0.5920 0.2913 0.4887 0.5706 0.1871
Digits 0.8572 0.8129 0.3356 0.7641 0.8025 0.6023
MNIST 0.6100 0.5801 0.2784 0.6754 0.5888 nan
Note:

GNG, NG, SOM, k-means, GNG using no topology, and SC mean ACSs with GNG, NG, SOM, k-means, and GNG using
no topology, and spectral clustering, respectively. The purities are the mean of 100 runs with random initial values. The
best purities are bold.

of data points. Perhaps, there will be the optimal number of units to make a better
similarity matrix. The performance of ASC with SOM is worse than the other methods for
the datasets apart from Spam. The bad performance of ASC with SOM may be caused
by the feature of SOM that is the tendency to have null units often. This feature of
SOM is unsuitable for ASC using topology. ASC with k-means shows relatively high
performance for Blobs, Circles, Moons, Iris, Wine, and MNIST. For MNIST, the
performance of ASC with k-means is best. ASC with GNG using no topology shows the
best performance for Blobs, Circles, and Wine. For Moons and Spam, ASC with GNG
using no topology displays the second-best performance. For Blobs, Circles, Moons, Wine,
Spam, CNAE-9, and Digits, the performance of ASC with GNG using no topology is better
than that of ASC with k-means. This result suggests that GNG can quantize dataset
better than k-means in many cases. For MNIST, SC cannot perform clustering because
overflow occurs. These results suggest that the network topology effectively improves the
performance of the clustering, and GNG will generate the same or better quantization
result than k-means.

Figure 3 shows the relationship between purity and the number of units for Circles, Iris,
and MNIST to investigate the dependence of clustering performance on the number of
units. For Circles, the clustering performances of ASCs with GNG and NG vary in convex
upward. This result suggests that the performances become worse for the larger or smaller
number of units than the optimal number of units and become better for the around
optimal number of units. For Iris, the performances of ASCs with GNG and NG are high
under about 50 and 36 units, respectively. From about 50 and 36 units, these performances
go down with the number of units. This result suggests that the number of units used
in Table 3 is too large to obtain the optimal performances for Iris and Wine. For MNIST,
the performances of ASCs with GNG and NG improve with the number of units. For all
cases, the performances of ASCs with k-means and GNG using no topology more
weakly depend on the number of units. This result suggests that ASC not using network

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 12/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

" —
% 0.9t ’(Z 0.8
b -
= 0.8} =07
© > ’
> 0.7F —e— GNG —_ —t— GNG
_";" —= NG 5 06'—.— NG
5 0.6} k-means o k-means
o in the absence of 0.5} —o— in the absence
05l topology ' of topology
. 100 200 300 50 100 150
num of units num of units
= 0.65}
2,
=
E 0.60f
2 0.55} —— onG
': —= NG
-] k-means
Q o.50} in the absence of
topology

0 100 200 300 400
num of units

Figure 3 The relationship between purity and the number of units. (A)-(C) Show the performance of
clustering Circles, Iris, and MNIST, respectively. Purities are the mean of 100 runs with random initial
values. The line labeled “in the absence of topology” denotes the clustering performance of ASC with
GNG using no topology. Full-size K&] DOT: 10.7717/peerj-cs.679/fig-3

topology displays peak performance less than ASCs using network topology in many cases
but its performance does not strongly depend on the number of units.

CONCLUSION

This study proposes approximate spectral clustering using the network generated by
growing neural gas, called ASC with GNG. ASC with GNG partitions a dataset using a
Laplacian matrix calculated from not only the reference vectors but also the topology of the
network generated by GNG. ASC with GNG displays better computational performance
than SC for a large dataset. Furthermore, the clustering quality of ASC with GNG is
equal or better than SC in many cases. The results of this study suggest that ASC with GNG
improves not only computational but also clustering performances. Therefore, ASC with
GNG can be a successful method for a large dataset.

Why does ASC with GNG display better clustering performance? The clustering
results of SC depend on the quality of the constructed network from which a Laplacian
matrix is calculated (Li et al., 2018). Namely, we need to improve the way to construct a
similarity matrix to obtain better clustering performance for SC (Lu, Yan ¢ Lin, 2016;
Park ¢ Zhao, 2018). The network generated by GNG represents the important topological

Fujita (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.679 13/22

http://dx.doi.org/10.7717/peerj-cs.679/fig-3
http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

relationships in a given dataset (Fritzke, 1994). Furthermore, in ASC with GNG, a
similarity matrix calculated using the network topology is sparse because the elements of a
similarity matrix between not connected units are zero. The sparse similarity matrix
may contribute to the improvement of clustering performance. Therefore, the ability of
GNG to extract the topology of a dataset will lead to improving clustering performance.

However, when the number of units is not optimal, ASC with GNG will produce more
unsatisfactory results than ASC with GNG using no topology, and SC. This problem occurs
when the number of units is close to or too smaller than the number of data points. This
problem will not frequently occur in the actual application dealing with a large dataset.

ASC using no topology, such as ASCs with k-means and GNG using no topology,
also displays high performance, but its peak performance is less than ASC with GNG in
many cases. If we are concerned about the dependence of performance on the number of
units, then ASC using no topology may also be a good option.

Why can ASC partition a nonlinearly separable dataset? The ability for nonlinear
clustering is provided by SC used in abstraction level 2. Simply put, abstraction level 1
reduces the size of a dataset. The assignment after abstraction level 2 does not provide
nonlinear separation, as only it creates only Voronoi regions around the reference vectors.
SC makes the complex decision region merging the Voronoi regions and achieves
nonlinear clustering. Thus, the ability for nonlinear clustering is not derived from the way
of abstraction level 1. However, the clustering performance of ASC also depends on the
way of abstraction level 1, as mentioned in the results section.

ASC with GNG can be more accelerated by parallel computing. Garcia-Rodriguez et al.
(2011) have achieved to accelerate GNG using graphics processing unit (GPU). Vojdcek ¢
Dvorsky (2013) have parallelized GNG algorithm using high-performance computing.
Thus, the process of making the network using GNG can be accelerated by GPU or
high-performance computing. Furthermore, finding the nearest reference vectors of data
points can easily be parallelized because each calculation of distance is independent.

If the nearest reference vectors are found using parallel computing with p threads, the
computational time of the finding is reduced to 1/p.

SC and ASC have a limitation as well as other clustering methods such as k-means. SC
and ASCs can make nonlinear boundaries but can only group neighboring data points
based on similarity or distance. In other words, they cannot group some not-neighboring
subclusters that represent the same category. For instance, in MNIST, the subclusters
representing the same digit are scattered, as shown in Fig. 10 of Khacef et al. (2019).

To accurately cluster such a dataset, the scattered subclusters must be merged into one
cluster. Khacef et al. (2019) and Khacef, Rodriguez & Miramond (2020) have accurately
clustered MNIST using only six hundred labeled data points. Their proposed method
projects input data onto a 2-dimensional feature map using SOM and then labels reference
vectors using post-labeled unsupervised learning. Post-labeled unsupervised learning using
SOM is efficient if we have some labeled data points in a dataset and require a more
accurate clustering result.

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 14/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

APPENDIX

A self-organizing map and its alternatives

Self-organizing map (SOM) and its alternatives, such as NG and GNG, are artificial
neural networks using unsupervised learning. They convert data points to fewer weights
(representative vectors) of units in a neural network and preserve the input topology as the
topology of the neural network. Kohonen’s SOM (Kohonen, 1990) is a basic and typical
SOM algorithm. Kohonen’s SOM has the features that the network topology is fixed into

a lattice (Sun, Liu & Harada, 2017) and the number of units is constant. NG has been
proposed by Martinetz ¢ Schulten (1991) and can flexibly change the topology of its network.
However, in NG, we have to preset the number of units in the network. GNG (Fritzke, 1994)
achieves to flexibly change both the network topology and the number of units in the
network according to an input dataset. GNG can find the topology of an input distribution
(Garca-RodrGuez et al., 2012). GNG has been widely applied to clustering or topology
learning such as extraction of two-dimensional outline of an image (Angelopoulou, Psarrou ¢
Garcia-Rodriguez, 2011; Angelopoulou et al., 2018), reconstruction of 3D models (Holdstein ¢
Fischer, 2008), landmark extraction (Fatemizadeh, Lucas ¢ Soltanian-Zadeh, 2003), object
tracking (Frezza-Buet, 2008), and anomaly detection (Sun, Liu ¢» Harada, 2017).

Kohonen’s self-organizing map

Kohonen’s SOM is one of the neural network algorithms and a competitive learning and
unsupervised learning algorithm. Kohonen’s SOM can project high-dimensional to a low-
dimensional feature map. The function of the projection is used for cluster analysis,
visualization, and dimension reduction of a dataset.

The topology of the network of Kohonen’s SOM is a two-dimensional / x [lattice in this
study, where I x [= M. The unit i in the network has the reference vector w; € R%. The unit i is at
p; € R? on lattice, where p; = (mod(i — 1,) + 1)/L [i/[]/]), i = {1, 2,...,.M}. mod(a, b) is the
remainder of the division of a by b. A general description of SOM algorithm is as follows:

1. Initialize the reference vectors of the units. All elements of the reference vectors are
randomly initialized in the range of [0, 1].

2. Randomly select a data point x,, and find the best match unit ¢, that is

¢ = arg min ||x,, — w;||. (3)
i

3. Update the reference vectors of all units. The new reference vector of the unit i is

defined by

wW; «— W; + hci<t)(xn — Wi), (4)

where t is the number of iterations, h(t) is the neighborhood function. h(t) is described
by the following equation:

hei(t) = a(yg, t) exp (— M)

2069, t)° ©)

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 15/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

where a(z, t) is a monotonically decreasing scalar function of ¢, and sqdist(i, c) is the square
of the geometric distance between the unit i and the best match unit c on the lattice. a(z, t)
is defined by

a(z,t) =z X (1—%), (6)

sqdist(i, ¢) is defined by
sqdist(i, ¢) = [lp; — pclI” (7)

4. If t = T, terminate. Otherwise, go to Step 2.

Neural gas (NG)

NG also generates a network from input data points. NG flexibly changes the topology
of the network according to input data points, but the number of the units is static.

The network consists of M units and edges connecting pairs of units. The unit i has

the reference vector w;. The edges are not weighted and not directed. An edge has a
variable called age to decide whether the edge is deleted. Let us consider the set of N data
points, X = { x1, x5,...,X,,,...,Xxn}, Where x,, € R% The algorithm of the neural gas is shown
below:

1. Assign initial values to the weight w; € R? and set all Cjj to zero. C;; describes the
connection between the unit i and the unit j.

2. Select a data point x,, from the dataset at random.

3. Determine the neighborhood-ranking of 7, k;, according to distance between w; and x,, by
the sequence of ranking (ig, i1,...»ik....iar — 1) Of units with

[l = wio|| <l = wi[| <o <l —wi]| <o <l —wiy . ®)
4. Perform as adaptation step for the weights according to
w,-<—w,<+se’k”/’\(xn—wi),i:1,...,N. 9)

5. Determine the nearest neighbor unit i, and the second nearest neighbor unit i;. If
Ci; =0,setC;; =landl,; =0.IfC;; =1,setl; =0.1
edge between the unit i, and the unit 7.

ioiy ioiy ioin i1 iy ini, describes the age of the

6. Increase the age of all connections of i, by setting [;; = I;; + 1 for all j with C;; = 1.

7. Remove all connections of i, that have their age exceeding the lifetime by setting C;; = 0
for all j with C;; = 1 and [;; > amax.

8. If the number of iterations is not T, go to step 2.

€, A, and ap,,x decay with the number of iterations t. This time dependence has the same
form for these parameters and is determined by g(t) = g; (gf/)"

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 16/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

Growing neural gas
Growing neural gas (GNG) can generate a network from a given set of input data points.
The network represents important topological relations in the data points using Hebb-like
learning rule (Fritzke, 1994). A network generated by GNG consists of units and edges
that are connections between units. In GNG, not only the number of the units but also the
topology of the network can flexibly change according to input data points. The unit i has
the reference vector w; € R? and summed error E;. The edges are not weighted and not
directed. An edge has a variable called age to decide whether the edge is deleted.

Let us consider the set of N data points, X = { x1, x,,...,X,,,...,Xn}, where x,, € R%. The
algorithm of the GNG to make a network from X is given by the following:

1. Start the network with only two units that are connected to each other. The reference
vectors of the units set two data points randomly selected from X.

2. Select a data point x,, from the dataset at random.

3. Find the winning unit s, of x,, by
s) = argmin ||x, — w|. (10)
1
Simultaneously, find the second nearest unit s,.

4. Add the squared distance between x,, and w,, to the summed error Ej:

ESl — ESl + ||x" - WS1||‘ (11)

5. Move w;, toward x,, by fraction g of the total distance:

W, — Wy, + & (%, — wy)). (12)

Also move the reference vectors of the all direct neighbor units s,, of s; toward x,, by the
fraction g;, of the total distance:

W, — Wy, + &, (X, — Ws,). (13)

6. If s; and s, are connected by an edge, set the age of this edge to zero. If 5; and s, are not
connected, create the edge connecting between these units.

7. Add one to the ages of all the edges emanating from s;.

8. Remove the edges with their age larger than a,,,,. If this results in nodes having no
emanating edges, remove them as well.

9. Every certain number A of the input data point generated, insert a new unit as follows:

e Determine the unit g with the maximum summed error E,.

Find the node f with the largest error among the neighbors of g.

Insert a new unit r halfway between g and f as follows:

w, = (wg + wy)/2. (14)

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 17/22

http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

The number of units has the limit M.

e Insert edges between r and ¢, and r and f. Remove the edge between g and f.

e Decrease the summed errors of g and f by multiplying them with a constant a. Initialize
the summed error of r with the new summed error of g.

10. Decrease all summed errors by multiplying them with a constant j

11. If the number of iterations is not 7, go to step 2.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The author received no funding for this work.

Competing Interests
The author declares that they have no competing interests.

Author Contributions

e Kazuhisa Fujita conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Python scripts are available at GitHub: https://github.com/KazuhisaFujita/asc-using-
som. The account and the repositories are KazuhisaFujita and asc-using-som, respectively.

REFERENCES

Angelopoulou A, Garcia-Rodriguez J, Orts-Escolano S, Gupta G, Psarrou A. 2018. Fast 2d/3d
object representation with growing neural gas. Neural Computing and Applications
29(10):903-919 DOI 10.1007/s00521-016-2579-y.

Angelopoulou A, Psarrou A, Garcia-Rodriguez J. 2011. A growing neural gas algorithm with
applications in hand modelling and tracking. In: Cabestany], Rojas I, Joya G, eds. Advances in
Computational Intelligence. Berlin: Springer, 236-243.

Banerjee A, Dhillon I, Ghosh J, Sra S. 2003. Generative model-based clustering of directional data.
In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and
Data, KDD ’03. New York: ACM, 19-28.

Banerjee A, Dhillon IS, Ghosh J, Sra S. 2005. Clustering on the unit hypersphere using von mises-
fisher distributions. Journal of Machine Learning Research 6:1345-1382.

Bartkowiak A, Zdziarek J, Evelpidou N, Vassilopoulos A. 2005. Choosing representative data
items: Kohonen, neural gas or mixture model? In: Enhanced Methods in Computer Security,
Biometric and Artificial Intelligence Systems. Boston: Springer, 337-344.

Bojchevski A, Matkovic Y, Gilnnemann S. 2017. Robust spectral clustering for noisy data:
Modeling sparse corruptions improves latent embeddings. In: Proceedings of the 23rd ACM

Fujita (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.679 18/22

https://github.com/KazuhisaFujita/asc-using-som
https://github.com/KazuhisaFujita/asc-using-som
http://dx.doi.org/10.1007/s00521-016-2579-y
http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM,
737-746.

Bottou L, Bengio Y. 1994. Convergence properties of the k-means algorithms. In: Proceedings of
the 7th International Conference on Neural Information Processing Systems, NIPS’94. Cambridge:
MIT Press, 585-592.

Brito da Silva LE, Ferreira Costa JA. 2014. A density-based clustering of the self-organizing map
using graph cut. In: 2014 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM). Piscataway: IEEE, 32-40.

Chang H, Yeung D-Y. 2008. Robust path-based spectral clustering. Pattern Recognition
41(1):191-203 DOI 10.1016/j.patcog.2007.04.010.

Chen W, Song Y, Bai H, Lin C, Chang EY. 2011. Parallel spectral clustering in distributed systems.
IEEE Transactions on Pattern Analysis and Machine Intelligence 33(3):568-586
DOI 10.1109/TPAMI.2010.88.

Chin AJ, Mirzal A, Haron H. 2015. Spectral clustering on gene expression profile to identify
cancer types or subtypes. Jurnal Teknologi 76:289-297.

Cirne MVM, Pedrini H. 2013. A video summarization method based on spectral clustering. In:
Ruiz-Shulcloper J, Sanniti di Baja G, eds. Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications. Berlin: Springer, 479-486.

Dhillon IS, Guan Y, Kulis B. 2004. Kernel k-means: Spectral clustering and normalized cuts.
In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. New York: ACM, 551-556.

Dhillon IS, Modha DS. 2001. Concept decompositions for large sparse text data using clustering.
Machine Learning 42(1-2):143-175.

Diao C, Zhang A-H, Wang B. 2015. Spectral clustering with local projection distance
measurement. Mathematical Problems in Engineering 2015:1-13.

Duan Y, Guan T, Liu L. 2012. Self-organizing map based multiscale spectral clustering for image
segmentation. In: 2012 International Conference on Computer Science and Electronics
Engineering. 1:329-333.

Eichel JA, Wong A, Fieguth P, Clausi DA. 2013. Robust spectral clustering using statistical
sub-graph affinity model. PLOS ONE 8(12):¢82722 DOI 10.1371/journal.pone.0082722.

Fatemizadeh E, Lucas C, Soltanian-Zadeh H. 2003. Automatic landmark extraction from image
data using modified growing neural gas network. IEEE Transactions on Information Technology
in Biomedicine 7(2):77-85.

Filippone M, Camastra F, Masulli F, Rovetta S. 2008. A survey of kernel and spectral methods for
clustering. Pattern Recognition 41(1):176-190 DOI 10.1016/j.patcog.2007.05.018.

Fowlkes C, Belongie S, Chung F, Malik J. 2004. Spectral grouping using the Nystrém method.
IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2):214-225
DOI 10.1109/TPAMI.2004.1262185.

Frey BJ, Dueck D. 2007. Clustering by passing messages between data points. Science
315(5814):972-976 DOI 10.1126/science.1136800.

Frezza-Buet H. 2008. Following non-stationary distributions by controlling the vector
quantization accuracy of a growing neural gas network. Neurocomputing 71(7-9):1191-1202
DOI 10.1016/j.neucom.2007.12.024.

Fritzke B. 1994. A growing neural gas network learns topologies. In: Proceedings of the 7th

International Conference on Neural Information Processing Systems, NIPS’94. Cambridge: MIT
Press, 625-632.

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 19/22

http://dx.doi.org/10.1016/j.patcog.2007.04.010
http://dx.doi.org/10.1109/TPAMI.2010.88
http://dx.doi.org/10.1371/journal.pone.0082722
http://dx.doi.org/10.1016/j.patcog.2007.05.018
http://dx.doi.org/10.1109/TPAMI.2004.1262185
http://dx.doi.org/10.1126/science.1136800
http://dx.doi.org/10.1016/j.neucom.2007.12.024
http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

Fujita K. 2017. A clustering method for data in cylindrical coordinates. Mathematical Problems in
Engineering 2017(3):1-11 DOI 10.1155/2017/3696850.

Fujiwara Y, Irie G, Kitahara T. 2011. Fast algorithm for affinity propagation. In: IJCAI'11. AAAI
Press, 2238-2243.

Garca-RodrGuez J, Angelopoulou A, Garca-Chamizo JM, Psarrou A, Orts Escolano S,
Morell GiméNez V. 2012. Autonomous growing neural gas for applications with time
constraint: optimal parameter estimation. Neural Networks 32(4-5):196-208
DOI 10.1016/j.neunet.2012.02.032.

Garcia-Rodriguez J, Angelopoulou A, Morell V, Orts S, Psarrou A, Garcia-Chamizo JM. 2011.
Fast image representation with GPU-based growing neural gas. In: Cabestany], Rojas I, Joya G,
eds. Advances in Computational Intelligence. Berlin: Springer, 58-65.

Girolami M. 2002. Mercer kernel-based clustering in feature space. IEEE Transactions on Neural
Networks 13(3):780-784 DOI 10.1109/TNN.2002.1000150.

Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning: data mining,
inference, and prediction, Springer series in statistics. New York: Springer.

Haykin SS. 2009. Neural networks and learning machines. Third Edition. Upper Saddle River:
Pearson Education.

Holdstein Y, Fischer A. 2008. Three-dimensional surface reconstruction using meshing growing
neural gas (MGNG). The Visual Computer 24(4):295-302 DOI 10.1007/s00371-007-0202-z.
Izquierdo-Verdiguier E, Jenssen R, Gémez-Chova L, Camps-Valls G. 2015. Spectral clustering
with the probabilistic cluster kernel. Neurocomputing 149:1299-1304

DOI 10.1016/j.neucom.2014.08.068.

Jin R, Kou C, Liu R, Li Y. 2013. Efficient parallel spectral clustering algorithm design for large data
sets under cloud computing environment. Journal of Cloud Computing 2(1):18
DOI 10.1186/2192-113X-2-18.

Khacef L, Miramond B, Barrientos D, Upegui A. 2019. Self-organizing neurons: toward brain-
inspired unsupervised learning. In: 2019 International Joint Conference on Neural Networks
(IJICNN). 1-9.

Khacef L, Rodriguez L, Miramond B. 2020. Improving self-organizing maps with unsupervised
feature extraction. In: Yang H, Pasupa K, Leung AC-S, Kwok JT, Chan JH, King I, eds. Neural
Information Processing. Cham: Springer.

Khan RA, Amjad RA, Kleinsteuber M. 2018. Extended affinity propagation: global discovery and
local insights. Available at http://arxiv.org/abs/1803.04459.

Kohonen T. 1990. The self-organizing map. Proceedings of the IEEE 78(9):1464-1480
DOI 10.1109/5.58325.

Lecun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document
recognition. In: Proceedings of the IEEE. 2278-2324.

Li M, Lian X, Kwok JT, Lu B. 2011. Time and space efficient spectral clustering via column
sampling. In: CVPR 2011. 2297-2304.

Li Z, Nie F, Chang X, Nie L, Zhang H, Yang Y. 2018. Rank-constrained spectral clustering
with flexible embedding. IEEE Transactions on Neural Networks and Learning Systems
29(12):6073-6082 DOI 10.1109/TNNLS.2018.2817538.

Lu C, Yan S, Lin Z. 2016. Convex sparse spectral clustering: single-view to multi-view.

IEEE Transactions on Image Processing 25(6):2833-2843 DOI 10.1109/TIP.2016.2553459.

Luo P, Wu Z, Xia C, Feng L, Ma T. 2013. Co-segmentation of 3D shapes via multi-view spectral

clustering. The Visual Computer 29(6-8):587-597 DOI 10.1007/s00371-013-0824-2.

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 20/22

http://dx.doi.org/10.1155/2017/3696850
http://dx.doi.org/10.1016/j.neunet.2012.02.032
http://dx.doi.org/10.1109/TNN.2002.1000150
http://dx.doi.org/10.1007/s00371-007-0202-z
http://dx.doi.org/10.1016/j.neucom.2014.08.068
http://dx.doi.org/10.1186/2192-113X-2-18
http://arxiv.org/abs/1803.04459
http://dx.doi.org/10.1109/5.58325
http://dx.doi.org/10.1109/TNNLS.2018.2817538
http://dx.doi.org/10.1109/TIP.2016.2553459
http://dx.doi.org/10.1007/s00371-013-0824-2
http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

MacQueen JB. 1967. Some methods for classification and analysis of multivariate observations.
In: Cam LML, Neyman J, eds. Proceedings of 5th Berkeley Symposium Mathematical Statistics
and Probability. Vol. 1. Berkeley: University of California Press, 281-297.

Mall R, Langone R, Suykens JAK. 2013. Kernel spectral clustering for big data networks. Entropy
15(12):1567-1586 DOI 10.3390/e15051567.

Martinetz T, Schulten K. 1991. A “neural-gas” network learns topologies. Artificial Neural
Networks 1:397-402.

Mitsyn SV, Ososkov GA. 2011. The growing neural gas and clustering of large amounts of data.
Optical Memory and Neural Networks 20(4):260-270 DOI 10.3103/S1060992X11040060.

Moazzen Y, Tagdemir K. 2016. A neural gas based approximate spectral clustering ensemble. In:
Merényi E, Mendenhall MJ, O’Driscoll P, eds. Advances in Self-Organizing Maps and Learning
Vector Quantization. Cham: Springer, 85-93.

Ning C, Hongyi Z. 2016. An optimizing algorithm of non-linear k-means clustering. International
Journal of Database Theory and Application 9(4):97-106 DOI 10.14257/ijdta.2016.9.4.09.

Park S, Zhao H. 2018. Spectral clustering based on learning similarity matrix. Bioinformatics
34(12):2069-2076 DOI 10.1093/bioinformatics/bty050.

Sakai T, Imiya A. 2009. Fast spectral clustering with random projection and sampling.
In: Perner P, ed. Machine Learning and Data Mining in Pattern Recognition. Berlin: Springer,
372-384.

Shi M, Xu G. 2017. Spectral clustering using Nystrom approximation for the accurate
identification of cancer molecular subtypes. Scientific Reports 7:4896
DOI 10.1038/s41598-017-05275-3.

Song Y, Chen W-Y, Bai H, Lin C-J, Chang E. 2008. Parallel spectral clustering. In: European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD). 374-389.

Sun Q, Liu H, Harada T. 2017. Online growing neural gas for anomaly detection in changing
surveillance scenes. Pattern Recognition 64(3):187-201 DOI 10.1016/j.patcog.2016.09.016.

Szymanski J, Dziubich T. 2017. Spectral clustering Wikipedia keyword-based search results.
Frontiers in Robotics and AI 3:78.

Tasdemir K. 2012. Vector quantization based approximate spectral clustering of large datasets.
Pattern Recognition 45(8):3034-3044 DOI 10.1016/j.patcog.2012.02.012.

Tasdemir K, Milenov P, Tapsall B. 2011. Topology-based hierarchical clustering of
self-organizing maps. IEEE Transactions on Neural Networks 22(3):474-485
DOI 10.1109/TNN.2011.2107527.

Tasdemir K, Yal¢in B, Yildirim I. 2015. Approximate spectral clustering with utilized
similarity information using geodesic based hybrid distance measures. Pattern Recognition
48(4):1465-1477 DOI 10.1016/j.patcog.2014.10.023.

Vesanto J, Alhoniemi E. 2000. Clustering of the self-organizing map. IEEE Transactions on Neural
Networks 11(3):586-600 DOI 10.1109/72.846731.

Vojacek L, Dvorsky J. 2013. Growing neural gas—a parallel approach. In: Saeed K, Chaki R,
Cortesi A, Wierzchon S, eds. Computer Information Systems and Industrial Management. Berlin:
Springer, 408-419.

von Luxburg U. 2007. A tutorial on spectral clustering. Statistics and Computing 17(4):395-416
DOI 10.1007/s11222-007-9033-z.

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 21/22

http://dx.doi.org/10.3390/e15051567
http://dx.doi.org/10.3103/S1060992X11040060
http://dx.doi.org/10.14257/ijdta.2016.9.4.09
http://dx.doi.org/10.1093/bioinformatics/bty050
http://dx.doi.org/10.1038/s41598-017-05275-3
http://dx.doi.org/10.1016/j.patcog.2016.09.016
http://dx.doi.org/10.1016/j.patcog.2012.02.012
http://dx.doi.org/10.1109/TNN.2011.2107527
http://dx.doi.org/10.1016/j.patcog.2014.10.023
http://dx.doi.org/10.1109/72.846731
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

PeerJ Computer Science

Wang X, Zheng X, Qin F, Zhao B. 2013. A fast spectral clustering method based on growing
vector quantization for large data sets. In: Motoda H, Wu Z, Cao L, Zaiane O, Yao M, Wang W,
eds. Advanced Data Mining and Applications. Berlin: Springer, 25-33.

Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS,
Zhou Z-H, Steinbach M, Hand DJ, Steinberg D. 2007. Top 10 algorithms in data mining,
Knowledge and Information Systems 14(1):1-37 DOI 10.1007/s10115-007-0114-2.

Yan D, Huang L, Jordan MI. 2009. Fast approximate spectral clustering. In: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’09.
New York: Association for Computing Machinery, 907-916.

Yu Z, You J, Han G, Li L, Wang X. 2012. Fast normalized cut algorithm based on self-organizing
map. In: 2012 International Conference on Machine Learning and Cybernetics. 4:1376-1382.

Zhang X, You Q. 2011. An improved spectral clustering algorithm based on random walk.
Frontiers of Computer Science in China 5(3):268-278 DOI 10.1007/s11704-011-0023-0.

Fujita (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.679 22/22

http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1007/s11704-011-0023-0
http://dx.doi.org/10.7717/peerj-cs.679
https://peerj.com/computer-science/

	Approximate spectral clustering using both reference vectors and topology of the network generated by growing neural gas
	Introduction
	Related works
	Approximate spectral clustering with growing neural gas
	Results
	Conclusion
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

